Abstract
Argument mining, dealing with the classification of text based on inference and information, denotes a challenging analytical task in the rich context of Twitter (now 𝕏), a key platform for online discourse and exchange. Thereby, Twitter offers a diverse repository of short messages bearing on both of these elements. For text classification, transformer approaches, particularly BERT, offer state-of-the-art solutions. Our study delves into optimizing the embeddings of the understudied BERTweet transformer for argument mining on Twitter and broader generalization across topics.We explore the impact of pre-classification fine-tuning by aligning similar manifestations of inference and information while contrasting dissimilar instances. Using the TACO dataset, our approach augments tweets for optimizing BERTweet in a Siamese network, strongly improving classification and cross-topic generalization compared to standard methods.Overall, we contribute the transformer WRAPresentations and classifier WRAP, scoring 86.62% F1 for inference detection, 86.30% for information recognition, and 75.29% across four combinations of these elements, to enhance inference and information-driven argument mining on Twitter.