IUST at ImageArg: The First Shared Task in Multimodal Argument Mining

Melika Nobakhtian, Ghazal Zamaninejad, Erfan Moosavi Monazzah, Sauleh Eetemadi


Abstract
ImageArg is a shared task at the 10th ArgMining Workshop at EMNLP 2023. It leverages the ImageArg dataset to advance multimodal persuasiveness techniques. This challenge comprises two distinct subtasks: 1) Argumentative Stance (AS) Classification: Assessing whether a given tweet adopts an argumentative stance. 2) Image Persuasiveness (IP) Classification: Determining if the tweet image enhances the persuasive quality of the tweet. We conducted various experiments on both subtasks and ranked sixth out of the nine participating teams.
Anthology ID:
2023.argmining-1.13
Volume:
Proceedings of the 10th Workshop on Argument Mining
Month:
December
Year:
2023
Address:
Singapore
Editors:
Milad Alshomary, Chung-Chi Chen, Smaranda Muresan, Joonsuk Park, Julia Romberg
Venues:
ArgMining | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
133–138
Language:
URL:
https://aclanthology.org/2023.argmining-1.13
DOI:
10.18653/v1/2023.argmining-1.13
Bibkey:
Cite (ACL):
Melika Nobakhtian, Ghazal Zamaninejad, Erfan Moosavi Monazzah, and Sauleh Eetemadi. 2023. IUST at ImageArg: The First Shared Task in Multimodal Argument Mining. In Proceedings of the 10th Workshop on Argument Mining, pages 133–138, Singapore. Association for Computational Linguistics.
Cite (Informal):
IUST at ImageArg: The First Shared Task in Multimodal Argument Mining (Nobakhtian et al., ArgMining-WS 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/naacl24-info/2023.argmining-1.13.pdf