Abstract
Previous work on multi-task learning in Natural Language Processing (NLP) oftenincorporated carefully selected tasks as well as carefully tuning ofarchitectures to share information across tasks. Recently, it has shown thatfor autoregressive language models, a multi-task second pre-training step on awide variety of NLP tasks leads to a set of parameters that more easily adaptfor other NLP tasks. In this paper, we examine whether a similar setup can beused in autoencoder language models using a restricted set of semanticallyoriented NLP tasks, namely all SemEval 2022 tasks that are annotated at theword, sentence or paragraph level. We first evaluate a multi-task model trainedon all SemEval 2022 tasks that contain annotation on the word, sentence orparagraph level (7 tasks, 11 sub-tasks), and then evaluate whetherre-finetuning the resulting model for each task specificially leads to furtherimprovements. Our results show that our mono-task baseline, our multi-taskmodel and our re-finetuned multi-task model each outperform the other modelsfor a subset of the tasks. Overall, huge gains can be observed by doingmulti-task learning: for three tasks we observe an error reduction of more than40%.- Anthology ID:
- 2022.semeval-1.233
- Volume:
- Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
- Month:
- July
- Year:
- 2022
- Address:
- Seattle, United States
- Editors:
- Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer, Nathan Schneider, Siddharth Singh, Shyam Ratan
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1695–1703
- Language:
- URL:
- https://aclanthology.org/2022.semeval-1.233
- DOI:
- 10.18653/v1/2022.semeval-1.233
- Cite (ACL):
- Rob van der Goot. 2022. MaChAmp at SemEval-2022 Tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets. In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1695–1703, Seattle, United States. Association for Computational Linguistics.
- Cite (Informal):
- MaChAmp at SemEval-2022 Tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets (van der Goot, SemEval 2022)
- PDF:
- https://preview.aclanthology.org/naacl24-info/2022.semeval-1.233.pdf
- Code
- robvanderg/semeval2022
- Data
- GLUE