Abstract
The goal of meta-learning is to learn to adapt to a new task with only a few labeled examples. Inspired by the recent progress in large language models, we propose in-context tuning (ICT), which recasts task adaptation and prediction as a simple sequence prediction problem: to form the input sequence, we concatenate the task instruction, labeled in-context examples, and the target input to predict; to meta-train the model to learn from in-context examples, we fine-tune a pre-trained language model (LM) to predict the target label given the input sequence on a collection of tasks.We benchmark our method on two collections of text classification tasks: LAMA and BinaryClfs. Compared to MAML which adapts the model through gradient descent, our method leverages the inductive bias of pre-trained LMs to perform pattern matching, and outperforms MAML by an absolute 6% average AUC-ROC score on BinaryClfs, gaining more advantage with increasing model size. Compared to non-fine-tuned in-context learning (i.e. prompting a raw LM), in-context tuning meta-trains the model to learn from in-context examples. On BinaryClfs, ICT improves the average AUC-ROC score by an absolute 10%, and reduces the variance due to example ordering by 6x and example choices by 2x.- Anthology ID:
- 2022.acl-long.53
- Volume:
- Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
- Month:
- May
- Year:
- 2022
- Address:
- Dublin, Ireland
- Editors:
- Smaranda Muresan, Preslav Nakov, Aline Villavicencio
- Venue:
- ACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 719–730
- Language:
- URL:
- https://aclanthology.org/2022.acl-long.53
- DOI:
- 10.18653/v1/2022.acl-long.53
- Cite (ACL):
- Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. 2022. Meta-learning via Language Model In-context Tuning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 719–730, Dublin, Ireland. Association for Computational Linguistics.
- Cite (Informal):
- Meta-learning via Language Model In-context Tuning (Chen et al., ACL 2022)
- PDF:
- https://preview.aclanthology.org/naacl24-info/2022.acl-long.53.pdf
- Code
- yandachen/in-context-tuning
- Data
- LAMA