Abstract
We examine the effects of contrastive visual semantic pretraining by comparing the geometry and semantic properties of contextualized English language representations formed by GPT-2 and CLIP, a zero-shot multimodal image classifier which adapts the GPT-2 architecture to encode image captions. We find that contrastive visual semantic pretraining significantly mitigates the anisotropy found in contextualized word embeddings from GPT-2, such that the intra-layer self-similarity (mean pairwise cosine similarity) of CLIP word embeddings is under .25 in all layers, compared to greater than .95 in the top layer of GPT-2. CLIP word embeddings outperform GPT-2 on word-level semantic intrinsic evaluation tasks, and achieve a new corpus-based state of the art for the RG65 evaluation, at .88. CLIP also forms fine-grained semantic representations of sentences, and obtains Spearman’s 𝜌 = .73 on the SemEval-2017 Semantic Textual Similarity Benchmark with no fine-tuning, compared to no greater than 𝜌 = .45 in any layer of GPT-2. Finally, intra-layer self-similarity of CLIP sentence embeddings decreases as the layer index increases, finishing at .25 in the top layer, while the self-similarity of GPT-2 sentence embeddings formed using the EOS token increases layer-over-layer and never falls below .97. Our results indicate that high anisotropy is not an inevitable consequence of contextualization, and that visual semantic pretraining is beneficial not only for ordering visual representations, but also for encoding useful semantic representations of language, both on the word level and the sentence level.