Abstract
In this paper we present a novel rule-based, language independent method for determining lexical entailment relations using semantic representations built from Wiktionary definitions. Combined with a simple WordNet-based method our system achieves top scores on the English and Italian datasets of the Semeval-2020 task “Predicting Multilingual and Cross-lingual (graded) Lexical Entailment” (Glavaš et al., 2020). A detailed error analysis of our output uncovers future di- rections for improving both the semantic parsing method and the inference process on semantic graphs.- Anthology ID:
- 2020.semeval-1.15
- Volume:
- Proceedings of the Fourteenth Workshop on Semantic Evaluation
- Month:
- December
- Year:
- 2020
- Address:
- Barcelona (online)
- Editors:
- Aurelie Herbelot, Xiaodan Zhu, Alexis Palmer, Nathan Schneider, Jonathan May, Ekaterina Shutova
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- International Committee for Computational Linguistics
- Note:
- Pages:
- 135–141
- Language:
- URL:
- https://aclanthology.org/2020.semeval-1.15
- DOI:
- 10.18653/v1/2020.semeval-1.15
- Cite (ACL):
- Ádám Kovács, Kinga Gémes, Andras Kornai, and Gábor Recski. 2020. BMEAUT at SemEval-2020 Task 2: Lexical Entailment with Semantic Graphs. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 135–141, Barcelona (online). International Committee for Computational Linguistics.
- Cite (Informal):
- BMEAUT at SemEval-2020 Task 2: Lexical Entailment with Semantic Graphs (Kovács et al., SemEval 2020)
- PDF:
- https://preview.aclanthology.org/naacl24-info/2020.semeval-1.15.pdf