Sockeye 2: A Toolkit for Neural Machine Translation

Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar


Abstract
We present Sockeye 2, a modernized and streamlined version of the Sockeye neural machine translation (NMT) toolkit. New features include a simplified code base through the use of MXNet’s Gluon API, a focus on state of the art model architectures, and distributed mixed precision training. These improvements result in faster training and inference, higher automatic metric scores, and a shorter path from research to production.
Anthology ID:
2020.eamt-1.50
Volume:
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
Month:
November
Year:
2020
Address:
Lisboa, Portugal
Editors:
André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg, Mikel L. Forcada
Venue:
EAMT
SIG:
Publisher:
European Association for Machine Translation
Note:
Pages:
457–458
Language:
URL:
https://aclanthology.org/2020.eamt-1.50
DOI:
Bibkey:
Cite (ACL):
Felix Hieber, Tobias Domhan, Michael Denkowski, and David Vilar. 2020. Sockeye 2: A Toolkit for Neural Machine Translation. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 457–458, Lisboa, Portugal. European Association for Machine Translation.
Cite (Informal):
Sockeye 2: A Toolkit for Neural Machine Translation (Hieber et al., EAMT 2020)
Copy Citation:
PDF:
https://preview.aclanthology.org/naacl24-info/2020.eamt-1.50.pdf
Code
 awslabs/sockeye