Zhuoren Jiang


2024

pdf
Evolving Knowledge Distillation with Large Language Models and Active Learning
Chengyuan Liu | Fubang Zhao | Kun Kuang | Yangyang Kang | Zhuoren Jiang | Changlong Sun | Fei Wu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have demonstrated remarkable capabilities across various NLP tasks. However, their computational costs are prohibitively high. To address this issue, previous research has attempted to distill the knowledge of LLMs into smaller models by generating annotated data. Nonetheless, these works have mainly focused on the direct use of LLMs for text generation and labeling, without fully exploring their potential to comprehend the target task and acquire valuable knowledge. In this paper, we propose EvoKD: Evolving Knowledge Distillation, which leverages the concept of active learning to interactively enhance the process of data generation using large language models, simultaneously improving the task capabilities of small domain model (student model). Different from previous work, we actively analyze the student model’s weaknesses, and then synthesize labeled samples based on the analysis. In addition, we provide iterative feedback to the LLMs regarding the student model’s performance to continuously construct diversified and challenging samples. Experiments and analysis on different NLP tasks, namely, text classification and named entity recognition show the effectiveness of EvoKD.

2021

pdf
Adjacency List Oriented Relational Fact Extraction via Adaptive Multi-task Learning
Fubang Zhao | Zhuoren Jiang | Yangyang Kang | Changlong Sun | Xiaozhong Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
A Role-Selected Sharing Network for Joint Machine-Human Chatting Handoff and Service Satisfaction Analysis
Jiawei Liu | Kaisong Song | Yangyang Kang | Guoxiu He | Zhuoren Jiang | Changlong Sun | Wei Lu | Xiaozhong Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Chatbot is increasingly thriving in different domains, however, because of unexpected discourse complexity and training data sparseness, its potential distrust hatches vital apprehension. Recently, Machine-Human Chatting Handoff (MHCH), predicting chatbot failure and enabling human-algorithm collaboration to enhance chatbot quality, has attracted increasing attention from industry and academia. In this study, we propose a novel model, Role-Selected Sharing Network (RSSN), which integrates both dialogue satisfaction estimation and handoff prediction in one multi-task learning framework. Unlike prior efforts in dialog mining, by utilizing local user satisfaction as a bridge, global satisfaction detector and handoff predictor can effectively exchange critical information. Specifically, we decouple the relation and interaction between the two tasks by the role information after the shared encoder. Extensive experiments on two public datasets demonstrate the effectiveness of our model.

2020

pdf
Camouflaged Chinese Spam Content Detection with Semi-supervised Generative Active Learning
Zhuoren Jiang | Zhe Gao | Yu Duan | Yangyang Kang | Changlong Sun | Qiong Zhang | Xiaozhong Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose a Semi-supervIsed GeNerative Active Learning (SIGNAL) model to address the imbalance, efficiency, and text camouflage problems of Chinese text spam detection task. A “self-diversity” criterion is proposed for measuring the “worthiness” of a candidate for annotation. A semi-supervised variational autoencoder with masked attention learning approach and a character variation graph-enhanced augmentation procedure are proposed for data augmentation. The preliminary experiment demonstrates the proposed SIGNAL model is not only sensitive to spam sample selection, but also can improve the performance of a series of conventional active learning models for Chinese spam detection task. To the best of our knowledge, this is the first work to integrate active learning and semi-supervised generative learning for text spam detection.

2019

pdf
Detect Camouflaged Spam Content via StoneSkipping: Graph and Text Joint Embedding for Chinese Character Variation Representation
Zhuoren Jiang | Zhe Gao | Guoxiu He | Yangyang Kang | Changlong Sun | Qiong Zhang | Luo Si | Xiaozhong Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The task of Chinese text spam detection is very challenging due to both glyph and phonetic variations of Chinese characters. This paper proposes a novel framework to jointly model Chinese variational, semantic, and contextualized representations for Chinese text spam detection task. In particular, a Variation Family-enhanced Graph Embedding (VFGE) algorithm is designed based on a Chinese character variation graph. The VFGE can learn both the graph embeddings of the Chinese characters (local) and the latent variation families (global). Furthermore, an enhanced bidirectional language model, with a combination gate function and an aggregation learning function, is proposed to integrate the graph and text information while capturing the sequential information. Extensive experiments have been conducted on both SMS and review datasets, to show the proposed method outperforms a series of state-of-the-art models for Chinese spam detection.