2024
pdf
abs
ChatUIE: Exploring Chat-based Unified Information Extraction Using Large Language Models
Jun Xu
|
Mengshu Sun
|
Zhiqiang Zhang
|
Jun Zhou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Recent advancements in large language models have shown impressive performance in general chat. However, their domain-specific capabilities, particularly in information extraction, have certain limitations. Extracting structured information from natural language that deviates from known schemas or instructions has proven challenging for previous prompt-based methods. This motivated us to explore domain-specific modeling in chat-based language models as a solution for extracting structured information from natural language. In this paper, we present ChatUIE, an innovative unified information extraction framework built upon ChatGLM. Simultaneously, reinforcement learning is employed to improve and align various tasks that involve confusing and limited samples. Furthermore, we integrate generation constraints to address the issue of generating elements that are not present in the input. Our experimental results demonstrate that ChatUIE can significantly improve the performance of information extraction with a slight decrease in chatting ability.
pdf
abs
Continual Few-shot Event Detection via Hierarchical Augmentation Networks
Chenlong Zhang
|
Pengfei Cao
|
Yubo Chen
|
Kang Liu
|
Zhiqiang Zhang
|
Mengshu Sun
|
Jun Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Traditional continual event detection relies on abundant labeled data for training, which is often impractical to obtain in real-world applications. In this paper, we introduce continual few-shot event detection (CFED), a more commonly encountered scenario when a substantial number of labeled samples are not accessible. The CFED task is challenging as it involves memorizing previous event types and learning new event types with few-shot samples. To mitigate these challenges, we propose a memory-based framework: Hierarchical Augmentation Network (HANet). To memorize previous event types with limited memory, we incorporate prototypical augmentation into the memory set. For the issue of learning new event types in few-shot scenarios, we propose a contrastive augmentation module for token representations. Despite comparing with previous state-of-the-art methods, we also conduct comparisons with ChatGPT. Experiment results demonstrate that our method significantly outperforms all of these methods in multiple continual few-shot event detection tasks.
pdf
abs
Zero-Shot Cross-Lingual Document-Level Event Causality Identification with Heterogeneous Graph Contrastive Transfer Learning
Zhitao He
|
Pengfei Cao
|
Zhuoran Jin
|
Yubo Chen
|
Kang Liu
|
Zhiqiang Zhang
|
Mengshu Sun
|
Jun Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Event Causality Identification (ECI) refers to the detection of causal relations between events in texts. However, most existing studies focus on sentence-level ECI with high-resource languages, leaving more challenging document-level ECI (DECI) with low-resource languages under-explored. In this paper, we propose a Heterogeneous Graph Interaction Model with Multi-granularity Contrastive Transfer Learning (GIMC) for zero-shot cross-lingual document-level ECI. Specifically, we introduce a heterogeneous graph interaction network to model the long-distance dependencies between events that are scattered over a document. Then, to improve cross-lingual transferability of causal knowledge learned from the source language, we propose a multi-granularity contrastive transfer learning module to align the causal representations across languages. Extensive experiments show our framework outperforms the previous state-of-the-art model by 9.4% and 8.2% of average F1 score on monolingual and multilingual scenarios respectively. Notably, in the multilingual scenario, our zero-shot framework even exceeds GPT-3.5 with few-shot learning by 24.3% in overall performance.
2020
pdf
abs
Selection and Generation: Learning towards Multi-Product Advertisement Post Generation
Zhangming Chan
|
Yuchi Zhang
|
Xiuying Chen
|
Shen Gao
|
Zhiqiang Zhang
|
Dongyan Zhao
|
Rui Yan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
As the E-commerce thrives, high-quality online advertising copywriting has attracted more and more attention. Different from the advertising copywriting for a single product, an advertisement (AD) post includes an attractive topic that meets the customer needs and description copywriting about several products under its topic. A good AD post can highlight the characteristics of each product, thus helps customers make a good choice among candidate products. Hence, multi-product AD post generation is meaningful and important. We propose a novel end-to-end model named S-MG Net to generate the AD post. Targeted at such a challenging real-world problem, we split the AD post generation task into two subprocesses: (1) select a set of products via the SelectNet (Selection Network). (2) generate a post including selected products via the MGenNet (Multi-Generator Network). Concretely, SelectNet first captures the post topic and the relationship among the products to output the representative products. Then, MGenNet generates the description copywriting of each product. Experiments conducted on a large-scale real-world AD post dataset demonstrate that our proposed model achieves impressive performance in terms of both automatic metrics as well as human evaluations.
2019
pdf
abs
Stick to the Facts: Learning towards a Fidelity-oriented E-Commerce Product Description Generation
Zhangming Chan
|
Xiuying Chen
|
Yongliang Wang
|
Juntao Li
|
Zhiqiang Zhang
|
Kun Gai
|
Dongyan Zhao
|
Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Different from other text generation tasks, in product description generation, it is of vital importance to generate faithful descriptions that stick to the product attribute information. However, little attention has been paid to this problem. To bridge this gap we propose a model named Fidelity-oriented Product Description Generator (FPDG). FPDG takes the entity label of each word into account, since the product attribute information is always conveyed by entity words. Specifically, we first propose a Recurrent Neural Network (RNN) decoder based on the Entity-label-guided Long Short-Term Memory (ELSTM) cell, taking both the embedding and the entity label of each word as input. Second, we establish a keyword memory that stores the entity labels as keys and keywords as values, and FPDG will attend to keywords through attending to their entity labels. Experiments conducted a large-scale real-world product description dataset show that our model achieves the state-of-the-art performance in terms of both traditional generation metrics as well as human evaluations. Specifically, FPDG increases the fidelity of the generated descriptions by 25%.