Personalized Headline Generation aims to generate unique headlines tailored to users’ browsing history. In this task, understanding user preferences from click history and incorporating them into headline generation pose challenges. Existing approaches typically rely on predefined styles as control codes, but personal style lacks explicit definition or enumeration, making it difficult to leverage traditional techniques. To tackle these challenges, we propose General Then Personal (GTP), a novel framework comprising user modeling, headline generation, and customization. We train the framework using tailored designs that emphasize two central ideas: (a) task decoupling and (b) model pre-training. With the decoupling mechanism separating the task into generation and customization, two mechanisms, i.e., information self-boosting and mask user modeling, are further introduced to facilitate the training and text control. Additionally, we introduce a new evaluation metric to address existing limitations. Extensive experiments conducted on the PENS dataset, considering both zero-shot and few-shot scenarios, demonstrate that GTP outperforms state-of-the-art methods. Furthermore, ablation studies and analysis emphasize the significance of decoupling and pre-training. Finally, the human evaluation validates the effectiveness of our approaches.1
As the impact of social media gradually escalates, people are more likely to be exposed to indistinguishable fake news. Therefore, numerous studies have attempted to detect rumors on social media by analyzing the textual content and propagation paths. However, fewer works on rumor detection tasks consider the malicious attacks commonly observed at response level. Moreover, existing detection models have poor interpretability. To address these issues, we propose a novel framework named **D**efend-**A**nd-**S**ummarize (DAS) based on the concept that responses sharing similar opinions should exhibit similar features. Specifically, DAS filters out the attack responses and summarizes the responsive posts of each conversation thread in both extractive and abstractive ways to provide multi-perspective prediction explanations. Furthermore, we enhance our detection architecture with the transformer and Bi-directional Graph Convolutional Networks. Experiments on three public datasets, *i.e.*, RumorEval2019, Twitter15, and Twitter16, demonstrate that our DAS defends against malicious attacks and provides prediction explanations, and the proposed detection model achieves state-of-the-art.
A notable challenge in Multi-Document Summarization (MDS) is the extremely-long length of the input. In this paper, we present an extract-then-abstract Transformer framework to overcome the problem. Specifically, we leverage pre-trained language models to construct a hierarchical extractor for salient sentence selection across documents and an abstractor for rewriting the selected contents as summaries. However, learning such a framework is challenging since the optimal contents for the abstractor are generally unknown. Previous works typically create pseudo extraction oracle to enable the supervised learning for both the extractor and the abstractor. Nevertheless, we argue that the performance of such methods could be restricted due to the insufficient information for prediction and inconsistent objectives between training and testing. To this end, we propose a loss weighting mechanism that makes the model aware of the unequal importance for the sentences not in the pseudo extraction oracle, and leverage the fine-tuned abstractor to generate summary references as auxiliary signals for learning the extractor. Moreover, we propose a reinforcement learning method that can efficiently apply to the extractor for harmonizing the optimization between training and testing. Experiment results show that our framework substantially outperforms strong baselines with comparable model sizes and achieves the best results on the Multi-News, Multi-XScience, and WikiCatSum corpora.