2024
pdf
abs
A Comparative Study of Explicit and Implicit Gender Biases in Large Language Models via Self-evaluation
Yachao Zhao
|
Bo Wang
|
Yan Wang
|
Dongming Zhao
|
Xiaojia Jin
|
Jijun Zhang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
While extensive work has examined the explicit and implicit biases in large language models (LLMs), little research explores the relation between these two types of biases. This paper presents a comparative study of the explicit and implicit biases in LLMs grounded in social psychology. Social psychology distinguishes between explicit and implicit biases by whether the bias can be self-recognized by individuals. Aligning with this conceptualization, we propose a self-evaluation-based two-stage measurement of explicit and implicit biases within LLMs. First, the LLM is prompted to automatically fill templates with social targets to measure implicit bias toward these targets, where the bias is less likely to be self-recognized by the LLM. Then, the LLM is prompted to self-evaluate the templates filled by itself to measure explicit bias toward the same targets, where the bias is more likely to be self-recognized by the LLM. Experiments conducted on state-of-the-art LLMs reveal human-like inconsistency between explicit and implicit occupational gender biases. This work bridges a critical gap where prior studies concentrate solely on either explicit or implicit bias. We advocate that future work highlight the relation between explicit and implicit biases in LLMs.
pdf
abs
Emotion Recognition in Conversation via Dynamic Personality
Yan Wang
|
Bo Wang
|
Yachao Zhao
|
Dongming Zhao
|
Xiaojia Jin
|
Jijun Zhang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Emotion recognition in conversation (ERC) is a field that aims to classify the emotion of each utterance within conversational contexts. This presents significant challenges, particularly in handling emotional ambiguity across various speakers and contextual factors. Existing ERC approaches have primarily focused on modeling conversational contexts while incorporating only superficial speaker attributes such as names, memories, and interactions. Recent works introduce personality as an essential deep speaker factor for emotion recognition, but relies on static personality, overlooking dynamic variability during conversations. Advances in personality psychology conceptualize personality as dynamic, proposing that personality states can change across situations. In this paper, we introduce ERC-DP, a novel model considering the dynamic personality of speakers during conversations. ERC-DP accounts for past utterances from the same speaker as situation impacting dynamic personality. It combines personality modeling with prompt design and fine-grained classification modules. Through a series of comprehensive experiments, ERC-DP demonstrates superior performance on three benchmark conversational datasets.
pdf
abs
LA-UCL: LLM-Augmented Unsupervised Contrastive Learning Framework for Few-Shot Text Classification
Jing Zhang
|
Hui Gao
|
Peng Zhang
|
Boda Feng
|
Wenmin Deng
|
Yuexian Hou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
The few-shot tasks require the model to have the ability to generalize from a few samples. However, due to the lack of cognitive ability, the current works cannot fully utilize limited samples to expand the sample space and still suffer from overfitting issues. To address the problems, we propose a LLM-Augmented Unsupervised Contrastive Learning Framework (LA-UCL), which introduces a cognition-enabled Large Language Model (LLM) for efficient data augmentation, and presents corresponding contrastive learning strategies. Specifically, in the self-augmented contrastive learning module, we construct a retrieval-based in-context prompt scheme by retrieving similar but different category data from the original samples, guiding the LLM to generate more discriminative augmented data. Then, by designing group-level contrastive loss to enhance the model’s discriminative ability. In the external-augmented contrastive learning module, we utilize web knowledge retrieval to expand the sample space and leverage LLM to generate more diverse data, and introduce sample-level contrastive loss for unlabeled data to improve the model’s generalization. Experimental results on six datasets show that our model exceeds the baseline models.
2023
pdf
abs
Mining Effective Features Using Quantum Entropy for Humor Recognition
Yang Liu
|
Yuexian Hou
Findings of the Association for Computational Linguistics: EACL 2023
Humor recognition has been extensively studied with different methods in the past years. However, existing studies on humor recognition do not understand the mechanisms that generate humor. In this paper, inspired by the incongruity theory, any joke can be divided into two components (the setup and the punchline). Both components have multiple possible semantics, and there is an incongruous relationship between them. We use density matrices to represent the semantic uncertainty of the setup and the punchline, respectively, and design QE-Uncertainty and QE-Incongruity with the help of quantum entropy as features for humor recognition. The experimental results on the SemEval2021 Task 7 dataset show that the proposed features are more effective than the baselines for recognizing humorous and non-humorous texts.
pdf
abs
MTGP: Multi-turn Target-oriented Dialogue Guided by Generative Global Path with Flexible Turns
Anqi Liu
|
Bo Wang
|
Yue Tan
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Findings of the Association for Computational Linguistics: ACL 2023
Target-oriented dialogue guides the dialogue to a target quickly and smoothly. The latest approaches focus on global planning, which plans toward the target before the conversation instead of adopting a greedy strategy during the conversation. However, the global plan in existing works is fixed to certain turns by generating paths with certain nodes, which limits the optimization of turns and coherence of the target-oriented process. Toward flexible global planning, we propose to generate a global path as a natural language sentence instead of a sequence of nodes. With this path, the dialog is guided to the target with flexible turns of dialog. For model training, we also extract targetoriented dialogues from the chit-chat corpus with a knowledge graph. We conduct experiments on three datasets and simulate scenarios with and without user participation. The results show that our method has fewer turns, more coherent semantics, and a higher success rate in reaching the target than baselines.
pdf
abs
Guiding Dialogue Agents to Complex Semantic Targets by Dynamically Completing Knowledge Graph
Yue Tan
|
Bo Wang
|
Anqi Liu
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Findings of the Association for Computational Linguistics: ACL 2023
In the target-oriented dialogue, the representation and achievement of targets are two interrelated essential issues. In current approaches, the target is typically supposed to be a single object represented as a word, which makes it relatively easy to achieve the target through dialogue with the help of a knowledge graph (KG). However, when the target has complex semantics, the existing knowledge graph is often incomplete in tracking complex semantic relations. This paper studies target-oriented dialog where the target is a topic sentence. We combine the methods of knowledge retrieval and relationship prediction to construct a context-related dynamic KG. On dynamic KG, we can track the implicit semantic paths in the speaker’s mind that may not exist in the existing KGs. In addition, we also designed a novel metric to evaluate the tracked path automatically. The experimental results show that our method can control the agent more logically and smoothly toward the complex target.
pdf
abs
Causal Intervention for Mitigating Name Bias in Machine Reading Comprehension
Jiazheng Zhu
|
Shaojuan Wu
|
Xiaowang Zhang
|
Yuexian Hou
|
Zhiyong Feng
Findings of the Association for Computational Linguistics: ACL 2023
Machine Reading Comprehension (MRC) is to answer questions based on a given passage, which has made great achievements using pre-trained Language Models (LMs). We study the robustness of MRC models to names which is flexible and repeatability. MRC models based on LMs may overuse the name information to make predictions, which causes the representation of names to be non-interchangeable, called name bias. In this paper, we propose a novel Causal Interventional paradigm for MRC (CI4MRC) to mitigate name bias. Specifically, we uncover that the pre-trained knowledge concerning names is indeed a confounder by analyzing the causalities among the pre-trained knowledge, context representation and answers based on a Structural Causal Model (SCM). We develop effective CI4MRC algorithmic implementations to constrain the confounder based on the neuron-wise and token-wise adjustments. Experiments demonstrate that our proposed CI4MRC effectively mitigates the name bias and achieves competitive performance on the original SQuAD. Moreover, our method is general to various pre-trained LMs and performs robustly on the adversarial datasets.
pdf
abs
Enhancing Personalized Dialogue Generation with Contrastive Latent Variables: Combining Sparse and Dense Persona
Yihong Tang
|
Bo Wang
|
Miao Fang
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The personalized dialogue explores the consistent relationship between dialogue generation and personality. Existing personalized dialogue agents model persona profiles from three resources: sparse or dense persona descriptions and dialogue histories. However, sparse structured persona attributes are explicit but uninformative, dense persona texts contain rich persona descriptions with much noise, and dialogue history query is both noisy and uninformative for persona modeling. In this work, we combine the advantages of the three resources to obtain a richer and more accurate persona. We design a Contrastive Latent Variable-based model (CLV) that clusters the dense persona descriptions into sparse categories, which are combined with the history query to generate personalized responses. Experimental results on Chinese and English datasets demonstrate our model’s superiority in personalization.
2022
pdf
abs
Aligning Recommendation and Conversation via Dual Imitation
Jinfeng Zhou
|
Bo Wang
|
Minlie Huang
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Human conversations of recommendation naturally involve the shift of interests which can align the recommendation actions and conversation process to make accurate recommendations with rich explanations. However, existing conversational recommendation systems (CRS) ignore the advantage of user interest shift in connecting recommendation and conversation, which leads to an ineffective loose coupling structure of CRS. To address this issue, by modeling the recommendation actions as recommendation paths in a knowledge graph (KG), we propose DICR (Dual Imitation for Conversational Recommendation), which designs a dual imitation to explicitly align the recommendation paths and user interest shift paths in a recommendation module and a conversation module, respectively. By exchanging alignment signals, DICR achieves bidirectional promotion between recommendation and conversation modules and generates high-quality responses with accurate recommendations and coherent explanations. Experiments demonstrate that DICR outperforms the state-of-the-art models on recommendation and conversation performance with automatic, human, and novel explainability metrics.
pdf
abs
CR-GIS: Improving Conversational Recommendation via Goal-aware Interest Sequence Modeling
Jinfeng Zhou
|
Bo Wang
|
Zhitong Yang
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 29th International Conference on Computational Linguistics
Conversational recommendation systems (CRS) aim to determine a goal item by sequentially tracking users’ interests through multi-turn conversation. In CRS, implicit patterns of user interest sequence guide the smooth transition of dialog utterances to the goal item. However, with the convenient explicit knowledge of knowledge graph (KG), existing KG-based CRS methods over-rely on the explicit separate KG links to model the user interests but ignore the rich goal-aware implicit interest sequence patterns in a dialog. In addition, interest sequence is also not fully used to generate smooth transited utterances. We propose CR-GIS with a parallel star framework. First, an interest-level star graph is designed to model the goal-aware implicit user interest sequence. Second, a hierarchical Star Transformer is designed to guide the multi-turn utterances generation with the interest-level star graph. Extensive experiments verify the effectiveness of CR-GIS in achieving more accurate recommended items with more fluent and coherent dialog utterances.
pdf
abs
TopKG: Target-oriented Dialog via Global Planning on Knowledge Graph
Zhitong Yang
|
Bo Wang
|
Jinfeng Zhou
|
Yue Tan
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 29th International Conference on Computational Linguistics
Target-oriented dialog aims to reach a global target through multi-turn conversation. The key to the task is the global planning towards the target, which flexibly guides the dialog concerning the context. However, existing target-oriented dialog works take a local and greedy strategy for response generation, where global planning is absent. In this work, we propose global planning for target-oriented dialog on a commonsense knowledge graph (KG). We design a global reinforcement learning with the planned paths to flexibly adjust the local response generation model towards the global target. We also propose a KG-based method to collect target-oriented samples automatically from the chit-chat corpus for model training. Experiments show that our method can reach the target with a higher success rate, fewer turns, and more coherent responses.
2021
pdf
abs
CRFR: Improving Conversational Recommender Systems via Flexible Fragments Reasoning on Knowledge Graphs
Jinfeng Zhou
|
Bo Wang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Although paths of user interests shift in knowledge graphs (KGs) can benefit conversational recommender systems (CRS), explicit reasoning on KGs has not been well considered in CRS, due to the complex of high-order and incomplete paths. We propose CRFR, which effectively does explicit multi-hop reasoning on KGs with a conversational context-based reinforcement learning model. Considering the incompleteness of KGs, instead of learning single complete reasoning path, CRFR flexibly learns multiple reasoning fragments which are likely contained in the complete paths of interests shift. A fragments-aware unified model is then designed to fuse the fragments information from item-oriented and concept-oriented KGs to enhance the CRS response with entities and words from the fragments. Extensive experiments demonstrate CRFR’s SOTA performance on recommendation, conversation and conversation interpretability.
2018
pdf
abs
A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis
Shuqin Gu
|
Lipeng Zhang
|
Yuexian Hou
|
Yin Song
Proceedings of the 27th International Conference on Computational Linguistics
Aspect-level sentiment analysis aims to distinguish the sentiment polarity of each specific aspect term in a given sentence. Both industry and academia have realized the importance of the relationship between aspect term and sentence, and made attempts to model the relationship by designing a series of attention models. However, most existing methods usually neglect the fact that the position information is also crucial for identifying the sentiment polarity of the aspect term. When an aspect term occurs in a sentence, its neighboring words should be given more attention than other words with long distance. Therefore, we propose a position-aware bidirectional attention network (PBAN) based on bidirectional GRU. PBAN not only concentrates on the position information of aspect terms, but also mutually models the relation between aspect term and sentence by employing bidirectional attention mechanism. The experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our proposed PBAN model.
2015
pdf
Reinforcing the Topic of Embeddings with Theta Pure Dependence for Text Classification
Ning Xing
|
Yuexian Hou
|
Peng Zhang
|
Wenjie Li
|
Dawei Song
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
2010
pdf
Event-Based Hyperspace Analogue to Language for Query Expansion
Tingxu Yan
|
Tamsin Maxwell
|
Dawei Song
|
Yuexian Hou
|
Peng Zhang
Proceedings of the ACL 2010 Conference Short Papers
2008
pdf
A Novel Feature-based Approach to Chinese Entity Relation Extraction
Wenjie Li
|
Peng Zhang
|
Furu Wei
|
Yuexian Hou
|
Qin Lu
Proceedings of ACL-08: HLT, Short Papers
pdf
abs
Exploiting the Role of Position Feature in Chinese Relation Extraction
Peng Zhang
|
Wenjie Li
|
Furu Wei
|
Qin Lu
|
Yuexian Hou
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)
Relation extraction is the task of finding pre-defined semantic relations between two entities or entity mentions from text. Many methods, such as feature-based and kernel-based methods, have been proposed in the literature. Among them, feature-based methods draw much attention from researchers. However, to the best of our knowledge, existing feature-based methods did not explicitly incorporate the position feature and no in-depth analysis was conducted in this regard. In this paper, we define and exploit nine types of position information between two named entity mentions and then use it along with other features in a multi-class classification framework for Chinese relation extraction. Experiments on the ACE 2005 data set show that the position feature is more effective than the other recognized features like entity type/subtype and character-based N-gram context. Most important, it can be easily captured and does not require as much effort as applying deep natural language processing.