This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We propose a novel RoBERTa-based model, RoPPT, which introduces a target-oriented parse tree structure in metaphor detection. Compared to existing models, RoPPT focuses on semantically relevant information and achieves the state-of-the-art on several main metaphor datasets. We also compare our approach against several popular denoising and pruning methods, demonstrating the effectiveness of our approach in context denoising. Our code and dataset can be found at https://github.com/MajiBear000/RoPPT.
In this paper, we propose FrameBERT, a BERT-based model that can explicitly learn and incorporate FrameNet Embeddings for concept-level metaphor detection. FrameBERT not only achieves better or comparable performance to the state-of-the-art, but also is more explainable and interpretable compared to existing models, attributing to its ability of accounting for external knowledge of FrameNet.
One noticeable trend in metaphor detection is the embrace of linguistic theories such as the metaphor identification procedure (MIP) for model architecture design. While MIP clearly defines that the metaphoricity of a lexical unit is determined based on the contrast between its contextual meaning and its basic meaning, existing work does not strictly follow this principle, typically using the aggregated meaning to approximate the basic meaning of target words. In this paper, we propose a novel metaphor detection method, which models the basic meaning of the word based on literal annotation from the training set, and then compares this with the contextual meaning in a target sentence to identify metaphors. Empirical results show that our method outperforms the state-of-the-art method significantly by 1.0% in F1 score. Moreover, our performance even reaches the theoretical upper bound on the VUA18 benchmark for targets with basic annotations, which demonstrates the importance of modelling basic meanings for metaphor detection.
Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM’s fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50% reduction in context cost, resulting in a 36% reduction in inference memory usage and a 32% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.
Metaphors are proven to have stronger emotional impact than literal expressions. Although this conclusion is shown to be promising in benefiting various NLP applications, the reasons behind this phenomenon are not well studied. This paper conducts the first study in exploring how metaphors convey stronger emotion than their literal counterparts. We find that metaphors are generally more specific than literal expressions. The more specific property of metaphor can be one of the reasons for metaphors’ superiority in emotion expression. When we compare metaphors with literal expressions with the same specificity level, the gap of emotion expressing ability between both reduces significantly. In addition, we observe specificity is crucial in literal language as well, as literal language can express stronger emotion by making it more specific.
Nominal metaphors are frequently used in human language and have been shown to be effective in persuading, expressing emotion, and stimulating interest. This paper tackles the problem of Chinese Nominal Metaphor (NM) generation. We introduce a novel multitask framework, which jointly optimizes three tasks: NM identification, NM component identification, and NM generation. The metaphor identification module is able to perform a self-training procedure, which discovers novel metaphors from a large-scale unlabeled corpus for NM generation. The NM component identification module emphasizes components during training and conditions the generation on these NM components for more coherent results. To train the NM identification and component identification modules, we construct an annotated corpus consisting of 6.3k sentences that contain diverse metaphorical patterns. Automatic metrics show that our method can produce diverse metaphors with good readability, where 92% of them are novel metaphorical comparisons. Human evaluation shows our model significantly outperforms baselines on consistency and creativity.
Named Entity Recognition (NER) is deeply explored and widely used in various tasks. Usually, some entity mentions are nested in other entities, which leads to the nested NER problem. Leading region based models face both the efficiency and effectiveness challenge due to the high subsequence enumeration complexity. To tackle these challenges, we propose a hierarchical region learning framework to automatically generate a tree hierarchy of candidate regions with nearly linear complexity and incorporate structure information into the region representation for better classification. Experiments on benchmark datasets ACE-2005, GENIA and JNLPBA demonstrate competitive or better results than state-of-the-art baselines.