Sooji Han


2022

pdf
Hierarchical Attention Network for Explainable Depression Detection on Twitter Aided by Metaphor Concept Mappings
Sooji Han | Rui Mao | Erik Cambria
Proceedings of the 29th International Conference on Computational Linguistics

Automatic depression detection on Twitter can help individuals privately and conveniently understand their mental health status in the early stages before seeing mental health professionals. Most existing black-box-like deep learning methods for depression detection largely focused on improving classification performance. However, explaining model decisions is imperative in health research because decision-making can often be high-stakes and life-and-death. Reliable automatic diagnosis of mental health problems including depression should be supported by credible explanations justifying models’ predictions. In this work, we propose a novel explainable model for depression detection on Twitter. It comprises a novel encoder combining hierarchical attention mechanisms and feed-forward neural networks. To support psycholinguistic studies, our model leverages metaphorical concept mappings as input. Thus, it not only detects depressed individuals, but also identifies features of such users’ tweets and associated metaphor concept mappings.

2020

pdf
RP-DNN: A Tweet Level Propagation Context Based Deep Neural Networks for Early Rumor Detection in Social Media
Jie Gao | Sooji Han | Xingyi Song | Fabio Ciravegna
Proceedings of the Twelfth Language Resources and Evaluation Conference

Early rumor detection (ERD) on social media platform is very challenging when limited, incomplete and noisy information is available. Most of the existing methods have largely worked on event-level detection that requires the collection of posts relevant to a specific event and relied only on user-generated content. They are not appropriate to detect rumor sources in the very early stages, before an event unfolds and becomes widespread. In this paper, we address the task of ERD at the message level. We present a novel hybrid neural network architecture, which combines a task-specific character-based bidirectional language model and stacked Long Short-Term Memory (LSTM) networks to represent textual contents and social-temporal contexts of input source tweets, for modelling propagation patterns of rumors in the early stages of their development. We apply multi-layered attention models to jointly learn attentive context embeddings over multiple context inputs. Our experiments employ a stringent leave-one-out cross-validation (LOO-CV) evaluation setup on seven publicly available real-life rumor event data sets. Our models achieve state-of-the-art(SoA) performance for detecting unseen rumors on large augmented data which covers more than 12 events and 2,967 rumors. An ablation study is conducted to understand the relative contribution of each component of our proposed model.