This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Core to the vision-and-language navigation (VLN) challenge is building robust instruction representations and action decoding schemes, which can generalize well to previously unseen instructions and environments. In this paper, we report two simple but highly effective methods to address these challenges and lead to a new state-of-the-art performance. First, we adapt large-scale pretrained language models to learn text representations that generalize better to previously unseen instructions. Second, we propose a stochastic sampling scheme to reduce the considerable gap between the expert actions in training and sampled actions in test, so that the agent can learn to correct its own mistakes during long sequential action decoding. Combining the two techniques, we achieve a new state of the art on the Room-to-Room benchmark with 6% absolute gain over the previous best result (47% -> 53%) on the Success Rate weighted by Path Length metric.
The goal of Word Sense Disambiguation (WSD) is to identify the correct meaning of a word in the particular context. Traditional supervised methods only use labeled data (context), while missing rich lexical knowledge such as the gloss which defines the meaning of a word sense. Recent studies have shown that incorporating glosses into neural networks for WSD has made significant improvement. However, the previous models usually build the context representation and gloss representation separately. In this paper, we find that the learning for the context and gloss representation can benefit from each other. Gloss can help to highlight the important words in the context, thus building a better context representation. Context can also help to locate the key words in the gloss of the correct word sense. Therefore, we introduce a co-attention mechanism to generate co-dependent representations for the context and gloss. Furthermore, in order to capture both word-level and sentence-level information, we extend the attention mechanism in a hierarchical fashion. Experimental results show that our model achieves the state-of-the-art results on several standard English all-words WSD test datasets.
Word Sense Disambiguation (WSD) aims to identify the correct meaning of polysemous words in the particular context. Lexical resources like WordNet which are proved to be of great help for WSD in the knowledge-based methods. However, previous neural networks for WSD always rely on massive labeled data (context), ignoring lexical resources like glosses (sense definitions). In this paper, we integrate the context and glosses of the target word into a unified framework in order to make full use of both labeled data and lexical knowledge. Therefore, we propose GAS: a gloss-augmented WSD neural network which jointly encodes the context and glosses of the target word. GAS models the semantic relationship between the context and the gloss in an improved memory network framework, which breaks the barriers of the previous supervised methods and knowledge-based methods. We further extend the original gloss of word sense via its semantic relations in WordNet to enrich the gloss information. The experimental results show that our model outperforms the state-of-the-art systems on several English all-words WSD datasets.
Previous studies on Chinese semantic role labeling (SRL) have concentrated on a single semantically annotated corpus. But the training data of single corpus is often limited. Whereas the other existing semantically annotated corpora for Chinese SRL are scattered across different annotation frameworks. But still, Data sparsity remains a bottleneck. This situation calls for larger training datasets, or effective approaches which can take advantage of highly heterogeneous data. In this paper, we focus mainly on the latter, that is, to improve Chinese SRL by using heterogeneous corpora together. We propose a novel progressive learning model which augments the Progressive Neural Network with Gated Recurrent Adapters. The model can accommodate heterogeneous inputs and effectively transfer knowledge between them. We also release a new corpus, Chinese SemBank, for Chinese SRL. Experiments on CPB 1.0 show that our model outperforms state-of-the-art methods.