Min Young Lee


2022

pdf
Keep Me Updated! Memory Management in Long-term Conversations
Sanghwan Bae | Donghyun Kwak | Soyoung Kang | Min Young Lee | Sungdong Kim | Yuin Jeong | Hyeri Kim | Sang-Woo Lee | Woomyoung Park | Nako Sung
Findings of the Association for Computational Linguistics: EMNLP 2022

Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.

2021

pdf
What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers
Boseop Kim | HyoungSeok Kim | Sang-Woo Lee | Gichang Lee | Donghyun Kwak | Jeon Dong Hyeon | Sunghyun Park | Sungju Kim | Seonhoon Kim | Dongpil Seo | Heungsub Lee | Minyoung Jeong | Sungjae Lee | Minsub Kim | Suk Hyun Ko | Seokhun Kim | Taeyong Park | Jinuk Kim | Soyoung Kang | Na-Hyeon Ryu | Kang Min Yoo | Minsuk Chang | Soobin Suh | Sookyo In | Jinseong Park | Kyungduk Kim | Hiun Kim | Jisu Jeong | Yong Goo Yeo | Donghoon Ham | Dongju Park | Min Young Lee | Jaewook Kang | Inho Kang | Jung-Woo Ha | Woomyoung Park | Nako Sung
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.