This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Prior studies in privacy policies frame the question answering (QA) task as identifying the most relevant text segment or a list of sentences from a policy document given a user query. Existing labeled datasets are heavily imbalanced (only a few relevant segments), limiting the QA performance in this domain. In this paper, we develop a data augmentation framework based on ensembling retriever models that captures the relevant text segments from unlabeled policy documents and expand the positive examples in the training set. In addition, to improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascaded them with noise reduction oracles. Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%. Our ablation studies provide further insights into the effectiveness of our approach.
Software developers write a lot of source code and documentation during software development. Intrinsically, developers often recall parts of source code or code summaries that they had written in the past while implementing software or documenting them. To mimic developers’ code or summary generation behavior, we propose a retrieval augmented framework, REDCODER, that retrieves relevant code or summaries from a retrieval database and provides them as a supplement to code generation or summarization models. REDCODER has a couple of uniqueness. First, it extends the state-of-the-art dense retrieval technique to search for relevant code or summaries. Second, it can work with retrieval databases that include unimodal (only code or natural language description) or bimodal instances (code-description pairs). We conduct experiments and extensive analysis on two benchmark datasets of code generation and summarization in Java and Python, and the promising results endorse the effectiveness of our proposed retrieval augmented framework.
Transfer learning that adapts a model trained on data-rich sources to low-resource targets has been widely applied in natural language processing (NLP). However, when training a transfer model over multiple sources, not every source is equally useful for the target. To better transfer a model, it is essential to understand the values of the sources. In this paper, we develop , an efficient source valuation framework for quantifying the usefulness of the sources (e.g., ) in transfer learning based on the Shapley value method. Experiments and comprehensive analyses on both cross-domain and cross-lingual transfers demonstrate that our framework is not only effective in choosing useful transfer sources but also the source values match the intuitive source-target similarity.
We design a generic framework for learning a robust text classification model that achieves high accuracy under different selection budgets (a.k.a selection rates) at test-time. We take a different approach from existing methods and learn to dynamically filter a large fraction of unimportant words by a low-complexity selector such that any high-complexity state-of-art classifier only needs to process a small fraction of text, relevant for the target task. To this end, we propose a data aggregation method to train the classifier, allowing it to achieve competitive performance on fractured sentences. On four benchmark text classification tasks, we demonstrate that the framework gains consistent speedup with little degradation in accuracy on various selection budgets.
Text in many domains involves a significant amount of named entities. Predicting the entity names is often challenging for a language model as they appear less frequent on the training corpus. In this paper, we propose a novel and effective approach to building a language model which can learn the entity names by leveraging their entity type information. We also introduce two benchmark datasets based on recipes and Java programming codes, on which we evaluate the proposed model. Experimental results show that our model achieves 52.2% better perplexity in recipe generation and 22.06% on code generation than state-of-the-art language models.