Mao Nakanishi


2019

pdf
Towards Answer-unaware Conversational Question Generation
Mao Nakanishi | Tetsunori Kobayashi | Yoshihiko Hayashi
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Conversational question generation is a novel area of NLP research which has a range of potential applications. This paper is first to presents a framework for conversational question generation that is unaware of the corresponding answers. To properly generate a question coherent to the grounding text and the current conversation history, the proposed framework first locates the focus of a question in the text passage, and then identifies the question pattern that leads the sequential generation of the words in a question. The experiments using the CoQA dataset demonstrate that the quality of generated questions greatly improves if the question foci and the question patterns are correctly identified. In addition, it was shown that the question foci, even estimated with a reasonable accuracy, could contribute to the quality improvement. These results established that our research direction may be promising, but at the same time revealed that the identification of question patterns is a challenging issue, and it has to be largely refined to achieve a better quality in the end-to-end automatic question generation.

2018

pdf
Answerable or Not: Devising a Dataset for Extending Machine Reading Comprehension
Mao Nakanishi | Tetsunori Kobayashi | Yoshihiko Hayashi
Proceedings of the 27th International Conference on Computational Linguistics

Machine-reading comprehension (MRC) has recently attracted attention in the fields of natural language processing and machine learning. One of the problematic presumptions with current MRC technologies is that each question is assumed to be answerable by looking at a given text passage. However, to realize human-like language comprehension ability, a machine should also be able to distinguish not-answerable questions (NAQs) from answerable questions. To develop this functionality, a dataset incorporating hard-to-detect NAQs is vital; however, its manual construction would be expensive. This paper proposes a dataset creation method that alters an existing MRC dataset, the Stanford Question Answering Dataset, and describes the resulting dataset. The value of this dataset is likely to increase if each NAQ in the dataset is properly classified with the difficulty of identifying it as an NAQ. This difficulty level would allow researchers to evaluate a machine’s NAQ detection performance more precisely. Therefore, we propose a method for automatically assigning difficulty level labels, which measures the similarity between a question and the target text passage. Our NAQ detection experiments demonstrate that the resulting dataset, having difficulty level annotations, is valid and potentially useful in the development of advanced MRC models.