Liang Tan


2023

pdf
Learning Easily Updated General Purpose Text Representations with Adaptable Task-Specific Prefix
Kuan-Hao Huang | Liang Tan | Rui Hou | Sinong Wang | Amjad Almahairi | Ruty Rinott
Findings of the Association for Computational Linguistics: EMNLP 2023

Many real-world applications require making multiple predictions from the same text. Fine-tuning a large pre-trained language model for each downstream task causes computational burdens in the inference time due to several times of forward passes. To amortize the computational cost, freezing the language model and building lightweight models for downstream tasks based on fixed text representations are common solutions. Accordingly, how to learn fixed but general text representations that can generalize well to unseen downstream tasks becomes a challenge. Previous works have shown that the generalizability of representations can be improved by fine-tuning the pre-trained language model with some source tasks in a multi-tasking way. In this work, we propose a prefix-based method to learn the fixed text representations with source tasks. We learn a task-specific prefix for each source task independently and combine them to get the final representations. Our experimental results show that prefix-based training performs better than multi-tasking training and can update the text representations at a smaller computational cost than multi-tasking training.

2022

pdf
UNIREX: A Unified Learning Framework for Language Model Rationale Extraction
Aaron Chan | Maziar Sanjabi | Lambert Mathias | Liang Tan | Shaoliang Nie | Xiaochang Peng | Xiang Ren | Hamed Firooz
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

An extractive rationale explains a language model’s (LM’s) prediction on a given task instance by highlighting the text inputs that most influenced the prediction. Ideally, rationale extraction should be faithful (reflective of LM’s actual behavior) and plausible (convincing to humans), without compromising the LM’s (i.e., task model’s) task performance. Although attribution algorithms and select-predict pipelines are commonly used in rationale extraction, they both rely on certain heuristics that hinder them from satisfying all three desiderata. In light of this, we propose UNIREX, a flexible learning framework which generalizes rationale extractor optimization as follows: (1) specify architecture for a learned rationale extractor; (2) select explainability objectives (i.e., faithfulness and plausibility criteria); and (3) jointly the train task model and rationale extractor on the task using selected objectives. UNIREX enables replacing prior works’ heuristic design choices with a generic learned rationale extractor in (1) and optimizing it for all three desiderata in (2)-(3). To facilitate comparison between methods w.r.t. multiple desiderata, we introduce the Normalized Relative Gain (NRG) metric. Across five English text classification datasets, our best UNIREX configuration outperforms the strongest baselines by an average of 32.9% NRG. Plus, we find that UNIREX-trained rationale extractors’ faithfulness can even generalize to unseen datasets and tasks.

2021

pdf
MSD: Saliency-aware Knowledge Distillation for Multimodal Understanding
Woojeong Jin | Maziar Sanjabi | Shaoliang Nie | Liang Tan | Xiang Ren | Hamed Firooz
Findings of the Association for Computational Linguistics: EMNLP 2021

To reduce a model size but retain performance, we often rely on knowledge distillation (KD) which transfers knowledge from a large “teacher” model to a smaller “student” model. However, KD on multimodal datasets such as vision-language tasks is relatively unexplored, and digesting multimodal information is challenging since different modalities present different types of information. In this paper, we perform a large-scale empirical study to investigate the importance and effects of each modality in knowledge distillation. Furthermore, we introduce a multimodal knowledge distillation framework, modality-specific distillation (MSD), to transfer knowledge from a teacher on multimodal tasks by learning the teacher’s behavior within each modality. The idea aims at mimicking a teacher’s modality-specific predictions by introducing auxiliary loss terms for each modality. Furthermore, because each modality has different saliency for predictions, we define saliency scores for each modality and investigate saliency-based weighting schemes for the auxiliary losses. We further study a weight learning approach to learn the optimal weights on these loss terms. In our empirical analysis, we examine the saliency of each modality in KD, demonstrate the effectiveness of the weighting scheme in MSD, and show that it achieves better performance than KD on four multimodal datasets.

pdf
Modality-specific Distillation
Woojeong Jin | Maziar Sanjabi | Shaoliang Nie | Liang Tan | Xiang Ren | Hamed Firooz
Proceedings of the Third Workshop on Multimodal Artificial Intelligence

Large neural networks are impractical to deploy on mobile devices due to their heavy computational cost and slow inference. Knowledge distillation (KD) is a technique to reduce the model size while retaining performance by transferring knowledge from a large “teacher” model to a smaller “student” model. However, KD on multimodal datasets such as vision-language datasets is relatively unexplored and digesting such multimodal information is challenging since different modalities present different types of information. In this paper, we propose modality-specific distillation (MSD) to effectively transfer knowledge from a teacher on multimodal datasets. Existing KD approaches can be applied to multimodal setup, but a student doesn’t have access to modality-specific predictions. Our idea aims at mimicking a teacher’s modality-specific predictions by introducing an auxiliary loss term for each modality. Because each modality has different importance for predictions, we also propose weighting approaches for the auxiliary losses; a meta-learning approach to learn the optimal weights on these loss terms. In our experiments, we demonstrate the effectiveness of our MSD and the weighting scheme and show that it achieves better performance than KD.