Kevin Yen


2022

pdf
Perturbations in the Wild: Leveraging Human-Written Text Perturbations for Realistic Adversarial Attack and Defense
Thai Le | Jooyoung Lee | Kevin Yen | Yifan Hu | Dongwon Lee
Findings of the Association for Computational Linguistics: ACL 2022

We proposes a novel algorithm, ANTHRO, that inductively extracts over 600K human-written text perturbations in the wild and leverages them for realistic adversarial attack. Unlike existing character-based attacks which often deductively hypothesize a set of manipulation strategies, our work is grounded on actual observations from real-world texts. We find that adversarial texts generated by ANTHRO achieve the best trade-off between (1) attack success rate, (2) semantic preservation of the original text, and (3) stealthiness–i.e. indistinguishable from human writings hence harder to be flagged as suspicious. Specifically, our attacks accomplished around 83% and 91% attack success rates on BERT and RoBERTa, respectively. Moreover, it outperformed the TextBugger baseline with an increase of 50% and 40% in terms of semantic preservation and stealthiness when evaluated by both layperson and professional human workers. ANTHRO can further enhance a BERT classifier’s performance in understanding different variations of human-written toxic texts via adversarial training when compared to the Perspective API.

2021

pdf
BERT-Beta: A Proactive Probabilistic Approach to Text Moderation
Fei Tan | Yifan Hu | Kevin Yen | Changwei Hu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Text moderation for user generated content, which helps to promote healthy interaction among users, has been widely studied and many machine learning models have been proposed. In this work, we explore an alternative perspective by augmenting reactive reviews with proactive forecasting. Specifically, we propose a new concept text toxicity propensity to characterize the extent to which a text tends to attract toxic comments. Beta regression is then introduced to do the probabilistic modeling, which is demonstrated to function well in comprehensive experiments. We also propose an explanation method to communicate the model decision clearly. Both propensity scoring and interpretation benefit text moderation in a novel manner. Finally, the proposed scaling mechanism for the linear model offers useful insights beyond this work.

2020

pdf
TNT: Text Normalization based Pre-training of Transformers for Content Moderation
Fei Tan | Yifan Hu | Changwei Hu | Keqian Li | Kevin Yen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this work, we present a new language pre-training model TNT (Text Normalization based pre-training of Transformers) for content moderation. Inspired by the masking strategy and text normalization, TNT is developed to learn language representation by training transformers to reconstruct text from four operation types typically seen in text manipulation: substitution, transposition, deletion, and insertion. Furthermore, the normalization involves the prediction of both operation types and token labels, enabling TNT to learn from more challenging tasks than the standard task of masked word recovery. As a result, the experiments demonstrate that TNT outperforms strong baselines on the hate speech classification task. Additional text normalization experiments and case studies show that TNT is a new potential approach to misspelling correction.

pdf
HABERTOR: An Efficient and Effective Deep Hatespeech Detector
Thanh Tran | Yifan Hu | Changwei Hu | Kevin Yen | Fei Tan | Kyumin Lee | Se Rim Park
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present our HABERTOR model for detecting hatespeech in large scale user-generated content. Inspired by the recent success of the BERT model, we propose several modifications to BERT to enhance the performance on the downstream hatespeech classification task. HABERTOR inherits BERT’s architecture, but is different in four aspects: (i) it generates its own vocabularies and is pre-trained from the scratch using the largest scale hatespeech dataset; (ii) it consists of Quaternion-based factorized components, resulting in a much smaller number of parameters, faster training and inferencing, as well as less memory usage; (iii) it uses our proposed multi-source ensemble heads with a pooling layer for separate input sources, to further enhance its effectiveness; and (iv) it uses a regularized adversarial training with our proposed fine-grained and adaptive noise magnitude to enhance its robustness. Through experiments on the large-scale real-world hatespeech dataset with 1.4M annotated comments, we show that HABERTOR works better than 15 state-of-the-art hatespeech detection methods, including fine-tuning Language Models. In particular, comparing with BERT, our HABERTOR is 4 5 times faster in the training/inferencing phase, uses less than 1/3 of the memory, and has better performance, even though we pre-train it by using less than 1% of the number of words. Our generalizability analysis shows that HABERTOR transfers well to other unseen hatespeech datasets and is a more efficient and effective alternative to BERT for the hatespeech classification.