Junyi Ao


2022

pdf
SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
Junyi Ao | Rui Wang | Long Zhou | Chengyi Wang | Shuo Ren | Yu Wu | Shujie Liu | Tom Ko | Qing Li | Yu Zhang | Zhihua Wei | Yao Qian | Jinyu Li | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.

pdf
The YiTrans Speech Translation System for IWSLT 2022 Offline Shared Task
Ziqiang Zhang | Junyi Ao
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes the submission of our end-to-end YiTrans speech translation system for the IWSLT 2022 offline task, which translates from English audio to German, Chinese, and Japanese. The YiTrans system is built on large-scale pre-trained encoder-decoder models. More specifically, we first design a multi-stage pre-training strategy to build a multi-modality model with a large amount of labeled and unlabeled data. We then fine-tune the corresponding components of the model for the downstream speech translation tasks. Moreover, we make various efforts to improve performance, such as data filtering, data augmentation, speech segmentation, model ensemble, and so on. Experimental results show that our YiTrans system obtains a significant improvement than the strong baseline on three translation directions, and it achieves +5.2 BLEU improvements over last year’s optimal end-to-end system on tst2021 English-German.

pdf
SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training
Ziqiang Zhang | Long Zhou | Junyi Ao | Shujie Liu | Lirong Dai | Jinyu Li | Furu Wei
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The rapid development of single-modal pre-training has prompted researchers to pay more attention to cross-modal pre-training methods. In this paper, we propose a unified-modal speech-unit-text pre-training model, SpeechUT, to connect the representations of a speech encoder and a text decoder with a shared unit encoder. Leveraging hidden-unit as an interface to align speech and text, we can decompose the speech-to-text model into a speech-to-unit model and a unit-to-text model, which can be jointly pre-trained with unpaired speech and text data respectively. Our proposed SpeechUT is fine-tuned and evaluated on automatic speech recognition (ASR) and speech translation (ST) tasks. Experimental results show that SpeechUT gets substantial improvements over strong baselines, and achieves state-of-the-art performance on both the LibriSpeech ASR and MuST-C ST tasks. To better understand the proposed SpeechUT, detailed analyses are conducted. The code and pre-trained models are available at https://aka.ms/SpeechUT.