Junwei Yang


2022

pdf
Pathway2Text: Dataset and Method for Biomedical Pathway Description Generation
Junwei Yang | Zequn Liu | Ming Zhang | Sheng Wang
Findings of the Association for Computational Linguistics: NAACL 2022

Biomedical pathways have been extensively used to characterize the mechanism of complex diseases. One essential step in biomedical pathway analysis is to curate the description of a pathway based on its graph structure and node features. Neural text generation could be a plausible technique to circumvent the tedious manual curation. In this paper, we propose a new dataset Pathway2Text, which contains 2,367 pairs of biomedical pathways and textual descriptions. All pathway graphs are experimentally derived or manually curated. All textual descriptions are written by domain experts. We form this problem as a Graph2Text task and propose a novel graph-based text generation approach kNN-Graph2Text, which explicitly exploited descriptions of similar graphs to generate new descriptions. We observed substantial improvement of our method on both Graph2Text and the reverse task of Text2Graph. We further illustrated how our dataset can be used as a novel benchmark for biomedical named entity recognition. Collectively, we envision our method will become an important benchmark for evaluating Graph2Text methods and advance biomedical research for complex diseases.

pdf
MetaFill: Text Infilling for Meta-Path Generation on Heterogeneous Information Networks
Zequn Liu | Kefei Duan | Junwei Yang | Hanwen Xu | Ming Zhang | Sheng Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Heterogeneous information network (HIN) is essential to study complicated networks containing multiple edge types and node types. Meta-path, a sequence of node types and edge types, is the core technique to embed HINs. Since manually curating meta-paths is time-consuming, there is a pressing need to develop automated meta-path generation approaches. Existing meta-path generation approaches cannot fully exploit the rich textual information in HINs, such as node names and edge type names. To address this problem, we propose MetaFill, a text-infilling-based approach for meta-path generation. The key idea of MetaFill is to formulate meta-path identification problem as a word sequence infilling problem, which can be advanced by pretrained language models (PLMs). We observed the superior performance of MetaFill against existing meta-path generation methods and graph embedding methods that do not leverage meta-paths in both link prediction and node classification on two real-world HIN datasets. We further demonstrated how MetaFill can accurately classify edges in the zero-shot setting, where existing approaches cannot generate any meta-paths. MetaFill exploits PLMs to generate meta-paths for graph embedding, opening up new avenues for language model applications in graph analysis.