Hongjie Cai


2023

pdf
A Sequence-to-Structure Approach to Document-level Targeted Sentiment Analysis
Nan Song | Hongjie Cai | Rui Xia | Jianfei Yu | Zhen Wu | Xinyu Dai
Findings of the Association for Computational Linguistics: EMNLP 2023

Most previous studies on aspect-based sentiment analysis (ABSA) were carried out at the sentence level, while the research of document-level ABSA has not received enough attention. In this work, we focus on the document-level targeted sentiment analysis task, which aims to extract the opinion targets consisting of multi-level entities from a review document and predict their sentiments. We propose a Sequence-to-Structure (Seq2Struct) approach to address the task, which is able to explicitly model the hierarchical structure among multiple opinion targets in a document, and capture the long-distance dependencies among affiliated entities across sentences. In addition to the existing Seq2Seq approach, we further construct four strong baselines with different pretrained models. Experimental results on six domains show that our Seq2Struct approach outperforms all the baselines significantly. Aside from the performance advantage in outputting the multi-level target-sentiment pairs, our approach has another significant advantage - it can explicitly display the hierarchical structure of the opinion targets within a document. Our source code is publicly released at https://github.com/NUSTM/Doc-TSA-Seq2Struct.

2021

pdf
Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions
Hongjie Cai | Rui Xia | Jianfei Yu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Product reviews contain a large number of implicit aspects and implicit opinions. However, most of the existing studies in aspect-based sentiment analysis ignored this problem. In this work, we introduce a new task, named Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction, with the goal to extract all aspect-category-opinion-sentiment quadruples in a review sentence and provide full support for aspect-based sentiment analysis with implicit aspects and opinions. We furthermore construct two new datasets, Restaurant-ACOS and Laptop-ACOS, for this new task, both of which contain the annotations of not only aspect-category-opinion-sentiment quadruples but also implicit aspects and opinions. The former is an extension of the SemEval Restaurant dataset; the latter is a newly collected and annotated Laptop dataset, twice the size of the SemEval Laptop dataset. We finally benchmark the task with four baseline systems. Experiments demonstrate the feasibility of the new task and its effectiveness in extracting and describing implicit aspects and implicit opinions. The two datasets and source code of four systems are publicly released at https://github.com/NUSTM/ACOS.

2020

pdf
Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network
Hongjie Cai | Yaofeng Tu | Xiangsheng Zhou | Jianfei Yu | Rui Xia
Proceedings of the 28th International Conference on Computational Linguistics

Most of the aspect based sentiment analysis research aims at identifying the sentiment polarities toward some explicit aspect terms while ignores implicit aspects in text. To capture both explicit and implicit aspects, we focus on aspect-category based sentiment analysis, which involves joint aspect category detection and category-oriented sentiment classification. However, currently only a few simple studies have focused on this problem. The shortcomings in the way they defined the task make their approaches difficult to effectively learn the inner-relations between categories and the inter-relations between categories and sentiments. In this work, we re-formalize the task as a category-sentiment hierarchy prediction problem, which contains a hierarchy output structure to first identify multiple aspect categories in a piece of text, and then predict the sentiment for each of the identified categories. Specifically, we propose a Hierarchical Graph Convolutional Network (Hier-GCN), where a lower-level GCN is to model the inner-relations among multiple categories, and the higher-level GCN is to capture the inter-relations between aspect categories and sentiments. Extensive evaluations demonstrate that our hierarchy output structure is superior over existing ones, and the Hier-GCN model can consistently achieve the best results on four benchmarks.