Fabio Alves


2024

pdf
A Persona-Based Corpus in the Diabetes Self-Care Domain - Applying a Human-Centered Approach to a Low-Resource Context
Rossana Cunha | Thiago Castro Ferreira | Adriana Pagano | Fabio Alves
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

While Natural Language Processing (NLP) models have gained substantial attention, only in recent years has research opened new paths for tackling Human-Computer Design (HCD) from the perspective of natural language. We focus on developing a human-centered corpus, more specifically, a persona-based corpus in a particular healthcare domain (diabetes mellitus self-care). In order to follow an HCD approach, we created personas to model interpersonal interaction (expert and non-expert users) in that specific domain. We show that an HCD approach benefits language generation from different perspectives, from machines to humans - contributing with new directions for low-resource contexts (languages other than English and sensitive domains) where the need to promote effective communication is essential.

2020

pdf
Referring to what you know and do not know: Making Referring Expression Generation Models Generalize To Unseen Entities
Rossana Cunha | Thiago Castro Ferreira | Adriana Pagano | Fabio Alves
Proceedings of the 28th International Conference on Computational Linguistics

Data-to-text Natural Language Generation (NLG) is the computational process of generating natural language in the form of text or voice from non-linguistic data. A core micro-planning task within NLG is referring expression generation (REG), which aims to automatically generate noun phrases to refer to entities mentioned as discourse unfolds. A limitation of novel REG models is not being able to generate referring expressions to entities not encountered during the training process. To solve this problem, we propose two extensions to NeuralREG, a state-of-the-art encoder-decoder REG model. The first is a copy mechanism, whereas the second consists of representing the gender and type of the referent as inputs to the model. Drawing on the results of automatic and human evaluation as well as an ablation study using the WebNLG corpus, we contend that our proposal contributes to the generation of more meaningful referring expressions to unseen entities than the original system and related work. Code and all produced data are publicly available.

2014

pdf
Does post-editing increase usability? A study with Brazilian Portuguese as target language
Sheila Castilho | Sharon O’Brien | Fabio Alves | Morgan O’Brien
Proceedings of the 17th Annual Conference of the European Association for Machine Translation

2012

pdf bib
Identifying instances of processing effort in translation through heat maps: an eye-tracking study using multiple input sources
Fabio Alves | José Luiz Gonçalves | Karina Szpak
Proceedings of the First Workshop on Eye-tracking and Natural Language Processing