Edward Raff


2023

pdf
BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting
Zheng Xin Yong | Hailey Schoelkopf | Niklas Muennighoff | Alham Fikri Aji | David Ifeoluwa Adelani | Khalid Almubarak | M Saiful Bari | Lintang Sutawika | Jungo Kasai | Ahmed Baruwa | Genta Winata | Stella Biderman | Edward Raff | Dragomir Radev | Vassilina Nikoulina
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages. To extend the benefits of BLOOM to other languages without incurring prohibitively large costs, it is desirable to adapt BLOOM to new languages not seen during pretraining. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages in a resource-constrained setting. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, we find that adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling.

pdf
Crosslingual Generalization through Multitask Finetuning
Niklas Muennighoff | Thomas Wang | Lintang Sutawika | Adam Roberts | Stella Biderman | Teven Le Scao | M Saiful Bari | Sheng Shen | Zheng Xin Yong | Hailey Schoelkopf | Xiangru Tang | Dragomir Radev | Alham Fikri Aji | Khalid Almubarak | Samuel Albanie | Zaid Alyafeai | Albert Webson | Edward Raff | Colin Raffel
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task genrealization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.