Donghyun Kwak


2023

pdf
Aligning Large Language Models through Synthetic Feedback
Sungdong Kim | Sanghwan Bae | Jamin Shin | Soyoung Kang | Donghyun Kwak | Kang Yoo | Minjoon Seo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Aligning large language models (LLMs) to human values has become increasingly important as it enables sophisticated steering of LLMs. However, it requires significant human demonstrations and feedback or distillation from proprietary LLMs such as ChatGPT. In this work, we propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations and proprietary LLMs. First, we perform reward modeling (RM) with synthetic feedback by contrasting responses from vanilla LLMs with various sizes and prompts. Then, we use the RM to simulate high-quality demonstrations to train a supervised policy and further optimize the model with reinforcement learning. Our resulting model, Aligned Language Model with Synthetic Training dataset (ALMoST), outperforms recent open-sourced models, which are trained on the outputs of InstructGPT or human-annotated demonstrations, in alignment benchmarks. In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively. Further analyses demonstrate the efficacy and importance of synthetic feedback in our framework.

2022

pdf
Keep Me Updated! Memory Management in Long-term Conversations
Sanghwan Bae | Donghyun Kwak | Soyoung Kang | Min Young Lee | Sungdong Kim | Yuin Jeong | Hyeri Kim | Sang-Woo Lee | Woomyoung Park | Nako Sung
Findings of the Association for Computational Linguistics: EMNLP 2022

Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.

pdf
Building a Role Specified Open-Domain Dialogue System Leveraging Large-Scale Language Models
Sanghwan Bae | Donghyun Kwak | Sungdong Kim | Donghoon Ham | Soyoung Kang | Sang-Woo Lee | Woomyoung Park
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent open-domain dialogue models have brought numerous breakthroughs. However, building a chat system is not scalable since it often requires a considerable volume of human-human dialogue data, especially when enforcing features such as persona, style, or safety. In this work, we study the challenge of imposing roles on open-domain dialogue systems, with the goal of making the systems maintain consistent roles while conversing naturally with humans. To accomplish this, the system must satisfy a role specification that includes certain conditions on the stated features as well as a system policy on whether or not certain types of utterances are allowed. For this, we propose an efficient data collection framework leveraging in-context few-shot learning of large-scale language models for building role-satisfying dialogue dataset from scratch. We then compare various architectures for open-domain dialogue systems in terms of meeting role specifications while maintaining conversational abilities. Automatic and human evaluations show that our models return few out-of-bounds utterances, keeping competitive performance on general metrics. We release a Korean dialogue dataset we built for further research.

2021

pdf
What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers
Boseop Kim | HyoungSeok Kim | Sang-Woo Lee | Gichang Lee | Donghyun Kwak | Jeon Dong Hyeon | Sunghyun Park | Sungju Kim | Seonhoon Kim | Dongpil Seo | Heungsub Lee | Minyoung Jeong | Sungjae Lee | Minsub Kim | Suk Hyun Ko | Seokhun Kim | Taeyong Park | Jinuk Kim | Soyoung Kang | Na-Hyeon Ryu | Kang Min Yoo | Minsuk Chang | Soobin Suh | Sookyo In | Jinseong Park | Kyungduk Kim | Hiun Kim | Jisu Jeong | Yong Goo Yeo | Donghoon Ham | Dongju Park | Min Young Lee | Jaewook Kang | Inho Kang | Jung-Woo Ha | Woomyoung Park | Nako Sung
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.