Benjamin K. Bergen


2024

pdf
Language Model Behavior: A Comprehensive Survey
Tyler A. Chang | Benjamin K. Bergen
Computational Linguistics, Volume 50, Issue 1 - March 2024

Transformer language models have received widespread public attention, yet their generated text is often surprising even to NLP researchers. In this survey, we discuss over 250 recent studies of English language model behavior before task-specific fine-tuning. Language models possess basic capabilities in syntax, semantics, pragmatics, world knowledge, and reasoning, but these capabilities are sensitive to specific inputs and surface features. Despite dramatic increases in generated text quality as models scale to hundreds of billions of parameters, the models are still prone to unfactual responses, commonsense errors, memorized text, and social biases. Many of these weaknesses can be framed as over-generalizations or under-generalizations of learned patterns in text. We synthesize recent results to highlight what is currently known about large language model capabilities, thus providing a resource for applied work and for research in adjacent fields that use language models.

2022

pdf bib
Word Acquisition in Neural Language Models
Tyler A. Chang | Benjamin K. Bergen
Transactions of the Association for Computational Linguistics, Volume 10

We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words on the MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007). Drawing on studies of word acquisition in children, we evaluate multiple predictors for words’ ages of acquisition in LSTMs, BERT, and GPT-2. We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models, reinforcing the importance of interaction and sensorimotor experience in child language acquisition. Language models rely far more on word frequency than children, but, like children, they exhibit slower learning of words in longer utterances. Interestingly, models follow consistent patterns during training for both unidirectional and bidirectional models, and for both LSTM and Transformer architectures. Models predict based on unigram token frequencies early in training, before transitioning loosely to bigram probabilities, eventually converging on more nuanced predictions. These results shed light on the role of distributional learning mechanisms in children, while also providing insights for more human-like language acquisition in language models.

pdf bib
Do Language Models Make Human-like Predictions about the Coreferents of Italian Anaphoric Zero Pronouns?
James A. Michaelov | Benjamin K. Bergen
Proceedings of the 29th International Conference on Computational Linguistics

Some languages allow arguments to be omitted in certain contexts. Yet human language comprehenders reliably infer the intended referents of these zero pronouns, in part because they construct expectations about which referents are more likely. We ask whether Neural Language Models also extract the same expectations. We test whether 12 contemporary language models display expectations that reflect human behavior when exposed to sentences with zero pronouns from five behavioral experiments conducted in Italian by Carminati (2005). We find that three models - XGLM 2.9B, 4.5B, and 7.5B - capture the human behavior from all the experiments, with others successfully modeling some of the results. This result suggests that human expectations about coreference can be derived from exposure to language, and also indicates features of language models that allow them to better reflect human behavior.