As part of a larger project on the use of MT in healthcare settings among migrant communities, this paper investigates if, when, how and with what (potential) challenges migrants use MT based on a survey of 201 non-native speakers of Dutch currently living in the Netherlands. Three main findings stand out from our analysis. First, most migrants use MT to understand health information in Dutch and communicate with health professionals. How MT is used and received varies depending on the context and the L2 language level, as well as age, but not on the educational level. Second, some users face challenges of different kinds, including a lack of trust or perceived inaccuracies. Some of these challenges are related to comprehension, which brings us to our third point. We argue that a more nuanced understanding of medical translation is needed in expert-to-non-expert health communication. This questionnaire helped us identify several topics we hope to explore in the project’s next phase.
We present here the EU-funded project CREAMT that seeks to understand what is meant by creativity in different translation modalities, e.g. machine translation, post-editing or professional translation. Focusing on the textual elements that determine creativity in translated literary texts and the reader experience, CREAMT uses a novel, interdisciplinary approach to assess how effective MT is in literary translation considering creativity in translation and the ultimate user: the reader.
We introduce DivEMT, the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times and pauses were recorded, enabling an in-depth, cross-lingual evaluation of NMT quality and post-editing effectiveness. Using this new dataset, we assess the impact of two state-of-the-art NMT systems, Google Translate and the multilingual mBART-50 model, on translation productivity. We find that post-editing is consistently faster than translation from scratch. However, the magnitude of productivity gains varies widely across systems and languages, highlighting major disparities in post-editing effectiveness for languages at different degrees of typological relatedness to English, even when controlling for system architecture and training data size. We publicly release the complete dataset including all collected behavioral data, to foster new research on the translation capabilities of NMT systems for typologically diverse languages.
This paper reports on a pilot experiment that compares two different machine translation (MT) paradigms in reading comprehension tests. To explore a suitable methodology, we set up a pilot experiment with a group of six users (with English, Spanish and Simplified Chinese languages) using an English Language Testing System (IELTS), and an eye-tracker. The users were asked to read three texts in their native language: either the original English text (for the English speakers) or the machine-translated text (for the Spanish and Simplified Chinese speakers). The original texts were machine-translated via two MT systems: neural (NMT) and statistical (SMT). The users were also asked to rank satisfaction statements on a 3-point scale after reading each text and answering the respective comprehension questions. After all tasks were completed, a post-task retrospective interview took place to gather qualitative data. The findings suggest that the users from the target languages completed more tasks in less time with a higher level of satisfaction when using translations from the NMT system.