Speech-to-Speech and Speech-to-Text translation are currently dynamic areas of research. In our commitment to advance these fields, we present SpeechAlign, a framework designed to evaluate the underexplored field of source-target alignment in speech models. The SpeechAlign framework has two core components. First, to tackle the absence of suitable evaluation datasets, we introduce the Speech Gold Alignment dataset, built upon a English-German text translation gold alignment dataset. Secondly, we introduce two novel metrics, Speech Alignment Error Rate (SAER) and Time-weighted Speech Alignment Error Rate (TW-SAER), which enable the evaluation of alignment quality within speech models. While the former gives equal importance to each word, the latter assigns weights based on the length of the words in the speech signal. By publishing SpeechAlign we provide an accessible evaluation framework for model assessment, and we employ it to benchmark open-source Speech Translation models. In doing so, we contribute to the ongoing research progress within the fields of Speech-to-Speech and Speech-to-Text translation.
This paper presents a comprehensive evaluation of gender bias in English-Catalan machine translation, encompassing the creation of a novel language resource and an analysis of translation quality across four different tokenization models. The study introduces a new dataset derived from the MuST-SHE corpus, focusing on gender-neutral terms that necessitate gendered translations in Catalan. The results reveal noteworthy gender bias across all translation models, with a consistent preference for masculine forms. Notably, the study finds that when context is available, BPE and Sentencepiece Unigram tokenization methods outperform others, achieving higher accuracy in gender translation. However, when no context is provided, Morfessor outputs more feminine forms than other tokenization methods, albeit still a small percentage. The study also reflects that stereotypes present in the data are amplified in the translation output. Ultimately, this work serves as a valuable resource for addressing and mitigating gender bias in machine translation, emphasizing the need for improved awareness and sensitivity to gender issues in natural language processing applications.
This paper describes the BSC’s submission to the AmericasNLP 2024 Shared Task. We participated in the Spanish to Quechua and Spanish to Guarani tasks. In this paper we show that by using LoRA adapters we can achieve similar performance as a full parameter fine-tuning by only training 14.2% of the total number of parameters. Our systems achieved the highest ChrF++ scores and ranked first for both directions in the final results outperforming strong baseline systems in the provided development and test datasets.