Mawdoo3 AI at MADAR Shared Task: Arabic Fine-Grained Dialect Identification with Ensemble Learning
Ahmad Ragab, Haitham Seelawi, Mostafa Samir, Abdelrahman Mattar, Hesham Al-Bataineh, Mohammad Zaghloul, Ahmad Mustafa, Bashar Talafha, Abed Alhakim Freihat, Hussein Al-Natsheh
Abstract
In this paper we discuss several models we used to classify 25 city-level Arabic dialects in addition to Modern Standard Arabic (MSA) as part of MADAR shared task (sub-task 1). We propose an ensemble model of a group of experimentally designed best performing classifiers on a various set of features. Our system achieves an accuracy of 69.3% macro F1-score with an improvement of 1.4% accuracy from the baseline model on the DEV dataset. Our best run submitted model ranked as third out of 19 participating teams on the TEST dataset with only 0.12% macro F1-score behind the top ranked system.- Anthology ID:
- W19-4630
- Volume:
- Proceedings of the Fourth Arabic Natural Language Processing Workshop
- Month:
- August
- Year:
- 2019
- Address:
- Florence, Italy
- Editors:
- Wassim El-Hajj, Lamia Hadrich Belguith, Fethi Bougares, Walid Magdy, Imed Zitouni, Nadi Tomeh, Mahmoud El-Haj, Wajdi Zaghouani
- Venue:
- WANLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 244–248
- Language:
- URL:
- https://aclanthology.org/W19-4630
- DOI:
- 10.18653/v1/W19-4630
- Cite (ACL):
- Ahmad Ragab, Haitham Seelawi, Mostafa Samir, Abdelrahman Mattar, Hesham Al-Bataineh, Mohammad Zaghloul, Ahmad Mustafa, Bashar Talafha, Abed Alhakim Freihat, and Hussein Al-Natsheh. 2019. Mawdoo3 AI at MADAR Shared Task: Arabic Fine-Grained Dialect Identification with Ensemble Learning. In Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 244–248, Florence, Italy. Association for Computational Linguistics.
- Cite (Informal):
- Mawdoo3 AI at MADAR Shared Task: Arabic Fine-Grained Dialect Identification with Ensemble Learning (Ragab et al., WANLP 2019)
- PDF:
- https://preview.aclanthology.org/naacl-24-ws-corrections/W19-4630.pdf