Open Information Extraction from Question-Answer Pairs
Nikita Bhutani, Yoshihiko Suhara, Wang-Chiew Tan, Alon Halevy, H. V. Jagadish
Abstract
Open Information Extraction (OpenIE) extracts meaningful structured tuples from free-form text. Most previous work on OpenIE considers extracting data from one sentence at a time. We describe NeurON, a system for extracting tuples from question-answer pairs. One of the main motivations for NeurON is to be able to extend knowledge bases in a way that considers precisely the information that users care about. NeurON addresses several challenges. First, an answer text is often hard to understand without knowing the question, and second, relevant information can span multiple sentences. To address these, NeurON formulates extraction as a multi-source sequence-to-sequence learning task, wherein it combines distributed representations of a question and an answer to generate knowledge facts. We describe experiments on two real-world datasets that demonstrate that NeurON can find a significant number of new and interesting facts to extend a knowledge base compared to state-of-the-art OpenIE methods.- Anthology ID:
- N19-1239
- Volume:
- Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
- Month:
- June
- Year:
- 2019
- Address:
- Minneapolis, Minnesota
- Editors:
- Jill Burstein, Christy Doran, Thamar Solorio
- Venue:
- NAACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 2294–2305
- Language:
- URL:
- https://aclanthology.org/N19-1239
- DOI:
- 10.18653/v1/N19-1239
- Cite (ACL):
- Nikita Bhutani, Yoshihiko Suhara, Wang-Chiew Tan, Alon Halevy, and H. V. Jagadish. 2019. Open Information Extraction from Question-Answer Pairs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2294–2305, Minneapolis, Minnesota. Association for Computational Linguistics.
- Cite (Informal):
- Open Information Extraction from Question-Answer Pairs (Bhutani et al., NAACL 2019)
- PDF:
- https://preview.aclanthology.org/naacl-24-ws-corrections/N19-1239.pdf