PCBERT: Parent and Child BERT for Chinese Few-shot NER
Peichao Lai, Feiyang Ye, Lin Zhang, Zhiwei Chen, Yanggeng Fu, Yingjie Wu, Yilei Wang
Abstract
Achieving good performance on few-shot or zero-shot datasets has been a long-term challenge for NER. The conventional semantic transfer approaches on NER will decrease model performance when the semantic distribution is quite different, especially in Chinese few-shot NER. Recently, prompt-tuning has been thoroughly considered for low-resource tasks. But there is no effective prompt-tuning approach for Chinese few-shot NER. In this work, we propose a prompt-based Parent and Child BERT (PCBERT) for Chinese few-shot NER. To train an annotating model on high-resource datasets and then discover more implicit labels on low-resource datasets. We further design a label extension strategy to achieve label transferring from high-resource datasets. We evaluated our model on Weibo and the other three sampling Chinese NER datasets, and the experimental result demonstrates our approach’s effectiveness in few-shot learning.- Anthology ID:
- 2022.coling-1.192
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 2199–2209
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.192
- DOI:
- Cite (ACL):
- Peichao Lai, Feiyang Ye, Lin Zhang, Zhiwei Chen, Yanggeng Fu, Yingjie Wu, and Yilei Wang. 2022. PCBERT: Parent and Child BERT for Chinese Few-shot NER. In Proceedings of the 29th International Conference on Computational Linguistics, pages 2199–2209, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- PCBERT: Parent and Child BERT for Chinese Few-shot NER (Lai et al., COLING 2022)
- PDF:
- https://preview.aclanthology.org/naacl-24-ws-corrections/2022.coling-1.192.pdf