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Abstract

We test both bottom-up and top-down ap-
proaches in learning the phonemic status
of the sounds of English and Japanese. We
used large corpora of spontaneous speech
to provide the learner with an input that
models both the linguistic properties and
statistical regularities of each language.
We found both approaches to help dis-
criminate between allophonic and phone-
mic contrasts with a high degree of accu-
racy, although top-down cues proved to be
effective only on an interesting subset of
the data.

1 Introduction

Developmental studies have shown that, during
their first year, infants tune in on the phonemic cat-
egories (consonants and vowels) of their language,
i.e., they lose the ability to distinguish some
within-category contrasts (Werker and Tees, 1984)
and enhance their ability to distinguish between-
category contrasts (Kuhl et al., 2006). Current
work in early language acquisition has proposed
two competing hypotheses that purport to account
for the acquisition of phonemes. The bottom-up
hypothesis holds that infants converge on the lin-
guistic units of their language through a similarity-
based distributional analysis of their input (Maye
et al., 2002; Vallabha et al., 2007). In contrast,
the top-down hypothesis emphasizes the role of
higher level linguistic structures in order to learn
the lower level units (Feldman et al., 2013; Mar-
tin et al., 2013). The aim of the present work is
to explore how much information can ideally be
derived from both hypotheses.

The paper is organized as follows. First we de-
scribe how we modeled phonetic variation from
audio recordings, second we introduce a bottom-
up cue based on acoustic similarity and top-
down cues based of the properties of the lexicon.

We test their performance in a task that consists
in discriminating within-category contrasts from
between-category contrasts. Finally we discuss
the role and scope of each cue for the acquisition
of phonemes.

2 Modeling phonetic variation

In this section, we describe how we modeled the
representation of speech sounds putatively pro-
cessed by infants, before they learn the relevant
phonemic categories of their language. Following
Peperkamp et al. (2006), we make the assumption
that this input is quantized into context-dependent
phone-sized unit we call allophones. Consider the
example of the allophonic rule that applies to the
French /r/:

/r/→
{

[X] / before a voiceless obstruent
[K] elsewhere

Figure 1: Allophonic variation of French /r/

The phoneme /r/ surfaces as voiced ([K]) before
a voiced obstruent like in [kanaK Zon] (“canard
jaune”, yellow duck) and as voiceless ([X]) before
a voiceless obstruent as in [kanaX puXpK] (“ca-
nard pourpre”, purple duck). Assuming speech
sounds are coded as allophones, the challenge fac-
ing the learner is to distinguish the allophonic vari-
ation ([K], [X]) from the phonemic variation (re-
lated to a difference in the meaning) like the con-
trast ([K],[l]).

Previous work has generated allophonic varia-
tion using random contexts (Martin et al., 2013).
This procedure does not take into account the fact
that contexts belong to natural classes. In addition,
it does not enable to compute an acoustic distance.
Here, we generate linguistically and acoustically
controlled allophones using Hidden Markov Mod-
els (HMMs) trained on audio recordings.
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2.1 Corpora

We use two speech corpora: the Buckeye Speech
corpus (Pitt et al., 2007), which consists of 40
hours of spontaneous conversations with 40 speak-
ers of American English, and the core of the Cor-
pus of Spontaneous Japanese (Maekawa et al.,
2000) which also consists of about 40 hours of
recorded spontaneous conversations and public
speeches in different fields. Both corpora are time-
aligned with phonetic labels. Following Boruta
(2012), we relabeled the japanese corpus using 25
phonemes. For English, we used the phonemic
version which consists of 45 phonemes.

2.2 Input generation

2.2.1 HMM-based allophones

In order to generate linguistically and acoustically
plausible allophones, we apply a standard Hidden
Markov Model (HMM) phoneme recognizer with
a three-state per phone architecture to the signal,
as follows.

First, we convert the raw speech waveform of
the corpora into successive vectors of Mel Fre-
quency Cepstrum Coefficients (MFCC), computed
over 25 ms windows, using a period of 10 ms
(the windows overlap). We use 12 MFCC coeffi-
cients, plus the energy, plus the first and second or-
der derivatives, yielding 39 dimensions per frame.
Second, we start HMM training using one three-
state model per phoneme. Third, each phoneme
model is cloned into context-dependent triphone
models, for each context in which the phoneme
actually occurs (for example, the phoneme /A/ oc-
curs in the context [d–A–g] as in the word /dAg/
(“dog”). The triphone models are then retrained on
only the relevant subset of the data, corresponding
to the given triphone context. These detailed mod-
els are clustered back into inventories of various
sizes (from 2 to 20 times the size of the phone-
mic inventory) using a linguistic feature-based de-
cision tree, and the HMM states of linguistically
similar triphones are tied together so as to max-
imize the likelihood of the data. Finally, the tri-
phone models are trained again while the initial
gaussian emission models are replaced by mix-
ture of gaussians with a progressively increasing
number of components, until each HMM state is
modeled by a mixture of 17 diagonal-covariance
gaussians. The HMM were built using the HMM
Toolkit (HTK: Young et al., 2006).

2.2.2 Random allophones
As a control, we also reproduce the random al-
lophones of Martin et al. (2013), in which allo-
phonic contexts are determined randomly: for a
given phoneme /p/, the set of all possible con-
texts is randomly partitioned into a fixed number
n of subsets. In the transcription, the phoneme /p/
is converted into one of its allophones (p1,p2,..,pn)
depending on the subset to which the current con-
text belongs.

3 Bottom-up and top-down hypotheses

3.1 Acoustic cue
The bottom-up cue is based on the hypothesis that
instances of the same phoneme are likely to be
acoustically more similar than instances of two
different phonemes (see Cristia and Seidl, in press)
for a similar proposition). In order to provide
a proxy for the perceptual distance between al-
lophones, we measure the information theoretic
distance between the acoustic HMMs of these al-
lophones. The 3-state HMMs of the two allo-
phones were aligned with Dynamic Time Warping
(DTW), using as a distance between pairs of emit-
ting states, a symmetrized version of the Kullback-
Leibler (KL) divergence measure (each state was
approximated by a single non-diagonal Gaussian):

A(x, y) =∑
(i,j)∈DTW (x,y)

KL(Nxi ||Nyj ) + KL(Nyj ||Nxi)

Where {(i, j) ∈ DTW (x, y)} is the set of in-
dex pairs over the HMM states that correspond to
the optimal DTW path in the comparison between
phone model x and y, and Nxi the full covariance
Gaussian distribution for state i of phone x. For
obvious reasons, the acoustic distance cue cannot
be computed for Random allophones.

3.2 Lexical cues
The top-down information we use in this study, is
based on the insight of Martin et al. (2013). It rests
on the idea that true lexical minimal pairs are not
very frequent in human languages, as compared to
minimal pairs due to mere phonological processes.
In fact, the latter creates variants (alternants) of the
same lexical item since adjacent sounds condition
the realization of the first and final phoneme. For
example, as shown in figure 1, the phoneme /r/ sur-
faces as [X] or [K] depending on whether or not the
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next sound is a voiceless obstruent. Therefore, the
lexical item /kanar/ surfaces as [kanaX] or [kanaK].
The lexical cue assumes that a pair of words dif-
fering in the first or last segment (like [kanaX] and
[kanaK]) is more likely to be the result of a phono-
logical process triggered by adjacent sounds, than
a true semantic minimal pair.

However, this strategy clearly gives rise to false
alarms in the (albeit relatively rare) case of true
minimal pairs like [kanaX] (“duck”) and [kanal]
(“canal”), where ([X], [l]) will be mistakenly la-
beled as allophonic.

In order to mitigate the problem of false alarms,
we also use Boruta (2011)’s continuous version,
where each pair of phones is characterized by the
number of lexical minimal pairs it forms.

B(x, y) = |(Ax,Ay) ∈ L2|+ |(xA, yA) ∈ L2|

where {Ax ∈ L} is the set of words in the lex-
icon L that end in the phone x, and {(Ax,Ay) ∈
L2} is the set of phonological minimal pairs in
L× L that vary on the final segment.

In addition, we introduce another cue that could
be seen as a normalization of Boruta’s cue:

N (x, y) = |(Ax,Ay)∈L2|+|(xA,yA)∈L2|
|{Ax∈L}|+|{Ay∈L}|+|{xA∈L}|+|{yA∈L}|

4 Experiment

4.1 Task
For each corpus we list all the possible pairs of
attested allophones. Some of these pairs are allo-
phones of the same phoneme (allophonic pair) and
others are allophones of different phonemes (non-
allophonic pairs). The task is a same-different
classification, whereby each of these pairs is given
a score from the cue that is being tested. A good
cue gives higher scores to allophonic pairs.

4.2 Evaluation
We use the same evaluation procedure as in Mar-
tin et al. (2013). It is carried out by computing
the area under the curve of the Receiver Operat-
ing Characteristic (ROC). A value of 0.5 repre-
sents chance and a value of 1 represents perfect
performance.

In order to lessen the potential influence of the
structure of the corpus (mainly the order of the ut-
terances) on the results, we use a statistical resam-
pling scheme. The corpus is divided into small
blocks (of 20 utterances each). In each run, we
draw randomly with replacement from this set of

blocks a sample of the same size as the original
corpus. This sample is then used to retrain the
acoustic models and generate a phonetic inven-
tory that we use to re-transcribe the corpus and
re-compute the cues. We report scores averaged
over 5 such runs.

4.3 Results
Table 1 shows the classification scores for the lex-
ical cues when we vary the inventory size from
2 allophones per phoneme in average, to 20 al-
lophones per phoneme, using the Random allo-
phones. The top-down scores are very high, repli-
cating Martin et al.’s results, and even improving
the performance using Boruta’s cue and our new
Normalized cue.

— English Japanese
Allo./phon. M B N M B N
2 0.784 0.935 0.951 0.580 0.989 1.00
5 0.845 0.974 0.982 0.653 0.978 0.991
10 0.886 0.974 0.981 0.733 0.944 0.971
20 0.918 0.961 0.966 0.785 0.869 0.886

Table 1 : Same-different scores for top-down cues on

Random allophones, as a function of the average number of

allophones per phoneme. M=Martin et al., B=Boruta, N=

Normalized

Table 2 shows the results for HMM-based allo-
phones. The acoustic score is very accurate for
both languages and is quite robust to variation.
Top-down cues, on the other hand, perform, sur-
prisingly, almost at chance level in distinguish-
ing between allophonic and non-allophonic pairs.
A similar discrepancy for the case of Japanese
was actually noted, but not explained, in Boruta
(2012).

— English Japanese
Allo./phon. A M B N A M B N
2 0.916 0.592 0.632 0.643 0.885 0.422 0.524 0.537
5 0.918 0.592 0.607 0.611 0.908 0.507 0.542 0.551
10 0.893 0.569 0.571 0.571 0.827 0.533 0.546 0.548
20 0.879 0.560 0.560 0.559 0.876 0.541 0.543 0.543

Table 2 : Same-different scores for bottom-up and top-down

cues on HMM-based allophones, as a function of the

average number of allophones per phoneme. A=Acoustic,

M=Martin et al., B=Boruta, N= Normalized

5 Analysis

5.1 Why does the performance drop for
realistic allophones?

When we list all possible pairs of allophones in
the inventory, some of them correspond to lexi-
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cal alternants ([X], [K]) → ([kanaX] and [kanaK]),
others to true minimal pairs ([K], [l]) → ([kanaK]
and [kanal]), and yet others will simply not gen-
erate lexical variation at all, we will call those:
invisible pairs. For instance, in English, /h/ and
/N/ occur in different syllable positions and thus
cannot appear in any minimal pair. As defined
above, top-down cues are set to 0 in such pairs
(which means that they are systematically classi-
fied as non-allophonic). This is a correct decision
for /h/ vs. /N/, but not for invisible pairs that also
happen to be allophonic, resulting in false nega-
tives. In tables 3, we show that, indeed, invisible
pairs is a major issue, and could explain to a large
extent the pattern of results found above. In fact,
the proportion of visible allophonic pairs (“allo”
column) is way lower for HMM-based allophones.
This means that the majority of allophonic pairs in
the HMM case are invisible, and therefore, will be
mistakenly classified as non-allophonic.

— Random HMM
— English Japanese English Japanese
Allo./phon. allo ¬ allo allo ¬ allo allo ¬ allo allo ¬ allo
2 92.9 36.3 100 83.9 48.9 25.3 37.1 53.2
5 97.2 28.4 99.6 69.0 31.1 14.3 25.0 25.9
10 96.8 19.9 96.7 50.1 19.8 4.23 21.0 14.4
20 94.3 10.8 83.4 26.4 14.0 1.89 12.4 4.04

Table 3 : Proportion (in %) of allophonic pairs (allo), and

non-allophonic pairs (¬ allo) associated with at least one

lexical minimal pair, in Random and HMM allophones.

There are basically two reasons why an allo-
phonic pair would be invisible ( will not generate
lexical alternants). The first one is the absence of
evidence, e.g., if the edges of the word with the
underlying phoneme do not appear in enough con-
texts to generate the corresponding variants. This
happens when the corpus is so small that no word
ending with, say, /r/ appears in both voiced and
voiceless contexts. The second, is when the allo-
phones are triggered on maximally different con-
texts (on the right and the left) as illustrated below:

/p/→
{

[p1] / A B
[p2] / C D

When A doesn’t overlap with C and B does not
overlap with D, it becomes impossible for the pair
([p1], [p2]) to generate a lexical minimal pair. This
is simply because a pair of allophones needs to
share at least one context to be able to form vari-
ants of a word (the second or penultimate segment
of this word).

When asked to split the set of contexts in two
distinct categories that trigger [p1] and [p2] (i.e.,
A B and C D), the random procedure will of-
ten make A overlap with B and C overlap with D
because it is completely oblivious to any acous-
tic or linguistic similarity, thus making it always
possible for the pair of allophones to generate lex-
ical alternants. A more realistic categorization
(like the HMM-based one), will naturally tend to
minimize within-category distance, and maximize
between-category distance. Therefore, we will
have less overlap, making the chances of the pair
to generate a lexical pair smaller. The more al-
lophones we have, the bigger is the chance to end
up with non-overlapping categories (invisible allo-
phonic pairs), and the more mistakes will be made,
as shown in Table 3.

5.2 Restricting the role of top-down cues

The analysis above shows that top-down cues can-
not be used to classify all contrasts. The approxi-
mation that consists in considering all pairs that do
not generate lexical pairs as non-allophonic, does
not scale up to realistic input. A more intuitive,
but less ambitious, assumption is to restrict the
scope of top-down cues to contrasts that do gen-
erate lexical variation (lexical alternants or true
minimal pairs). Thus, they remain completely ag-
nostic to the status of invisible pairs. This restric-
tion makes sense since top-down information boils
down to knowing whether two word forms belong
to the same lexical category (reducing variation to
allophony), or to two different categories (varia-
tion is then considered non-allophonic). Phonetic
variation that does not cause lexical variation is, in
this particular sense, orthogonal to our knowledge
about the lexicon.

We test this hypothesis by applying the cues
only to the subset of pairs that are associated with
at least one lexical minimal pair. We vary the num-
ber of allophones per phoneme on the one hand
(Table 4) and the size of the input on the other
hand (Table 5). We refer to this subset by an aster-
isk (*), by which we also mark the cues that apply
to it. Notice that, in this new framing, the M cue is
completely uninformative since it assigns the same
value to all pairs.

As predicted, the cues perform very well on this
subset, especially the N cue. The combination of
top-down and bottom-up cues shows that the for-
mer is always useful, and that these two sources of
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— English Japanese
— — Individual cues Combination — Individual cues Combination
Allo./phon. * (%) A A* B* N* A*+B* A*+N* * (%) A A* B* N* A*+B* A*+N*
2 26.6 0.916 0.965 0.840 0.950 0.971 0.994 60.92 0.885 0.909 0.859 0.906 0.918 0.946
4 14.3 0.918 0.964 0.858 0.951 0.975 0.991 30.88 0.908 0.917 0.850 0.936 0.934 0.976
10 4.24 0.893 0.937 0.813 0.939 0.960 0.968 16.06 0.827 0.839 0.899 0.957 0.904 0.936
20 1.67 0.879 0.907 0.802 0.907 0.942 0.940 5.02 0.876 0.856 0.882 0.959 0.913 0.950

Table 4 : Same-different scores for different cues and their combinations with HMM-allophones, as a function of average

number of allophones per phonemes.

— English Japanese
— — Individual cues Combination — Individual cues Combination
Size (hours) * (%) A A* B* N* A*+B* A*+N* * (%) A A* B* N* A*+B* A*+N*
1 9.87 0.885 0.907 0.741 0.915 0.927 0.969 34.78 0.890 0.883 0.835 0.915 0.889 0.934
4 18.3 0.918 0.958 0.798 0.917 0.967 0.989 48.00 0.917 0.939 0.860 0.937 0.938 0.973
8 21.3 0.916 0.964 0.837 0.942 0.971 0.992 51.71 0.915 0.940 0.889 0.937 0.954 0.977
20 24.4 0.911 0.960 0.827 0.936 0.969 0.994 58.12 0.921 0.954 0.865 0.912 0.945 0.971
40 26.6 0.916 0.965 0.840 0.950 0.971 0.994 60.92 0.885 0.909 0.859 0.906 0.918 0.946
∞ 34.82 — — — — — — 72.16 — — — — — —

Table 5 : Same-different scores for different cues and their combinations with HMM-allophones, as a function of corpus size.

* (%) refers to the proportion of the subset of contrasts associated with at least one minimal pair. The cues applied to this

subset are marked with an asterisk (*)

information are not completely redundant. How-
ever, the scope of top-down cues (the proportion of
the subset * ) shrinks as we increase the number of
allophones. Table 5 shows that this problem can,
in principle, be mitigated by increasing the amount
of data available to the learner. As we were limited
to only 40 hours of speech, we generated an artifi-
cial corpus that uses the same lexicon but with all
possible word orders so as to maximize the num-
ber of contexts in which words appear. This artifi-
cial corpus increases the proportion of the subset,
but we are still not at 100 % coverage, which ac-
cording the analysis above, is due (at least in part)
to the irreducible set of non-overlapping pairs.

6 Conclusion

In this study we explored the role of both bottom-
up and top-down hypotheses in learning the
phonemic status of the sounds of two typologically
different languages. We introduced a bottom-up
cue based on acoustic similarity, and we used al-
ready existing top-down cues to which we pro-
vided a new extension. We tested these hypothe-
ses on English and Japanese, providing the learner
with an input that mirrors closely the linguistic
and acoustic properties of each language. We
showed, on the one hand, that the bottom-up cue is
a very reliable source of information, across differ-
ent levels of variation and even with small amount
of data. Top-down cues, on the other hand, were
found to be effective only on a subset of the data,

which corresponds to the interesting contrasts that
cause lexical variation. Their role becomes more
relevant as the learner gets more linguistic experi-
ence, and their combination with bottom-up cues
shows that they can provide non-redundant infor-
mation. Note, finally, that even if this work is
based on a more realistic input compared to previ-
ous studies, it still uses simplifying assumptions,
like ideal word segmentation, and no low-level
acoustic variability. Those assumptions are, how-
ever, useful in quantifying the information that can
ideally be extracted from the input, which is a nec-
essary preliminary step before modeling how this
input is used in a cognitively plausible way. Inter-
ested readers may refer to (Fourtassi and Dupoux,
2014; Fourtassi et al., 2014) for a more learning-
oriented approach, where some of the assumptions
made here about high level representations are re-
laxed.
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Paris-Diderot - Paris VII.

A. Cristia and A. Seidl. In press. The hyperarticula-
tion hypothesis of infant-directed speech. Journal
of Child Language.

Naomi H. Feldman, Thomas L. Griffiths, Sharon Gold-
water, and James L. Morgan. 2013. A role for the
developing lexicon in phonetic category acquisition.
Psychological Review, 120(4):751–778.

Abdellah Fourtassi and Emmanuel Dupoux. 2014. A
rudimentary lexicon and semantics help bootstrap
phoneme acquisition. In Proceedings of the 18th
Conference on Computational Natural Language
Learning (CoNLL).

Abdellah Fourtassi, Ewan Dunbar, and Emmanuel
Dupoux. 2014. Self-consistency as an inductive
bias in early language acquisition. In Proceedings
of the 36th Annual Meeting of the Cognitive Science
Society.

Patricia K. Kuhl, Erica Stevens, Akiko Hayashi,
Toshisada Deguchi, Shigeru Kiritani, and Paul Iver-
son. 2006. Infants show a facilitation effect for na-
tive language phonetic perception between 6 and 12
months. Developmental Science, 9(2):F13–F21.

Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hi-
toshi Isahara. 2000. Spontaneous speech corpus of
japanese. In LREC, pages 947–952, Athens, Greece.

Andrew Martin, Sharon Peperkamp, and Emmanuel
Dupoux. 2013. Learning phonemes with a proto-
lexicon. Cognitive Science, 37(1):103–124.

J. Maye, J. F. Werker, and L. Gerken. 2002. Infant sen-
sitivity to distributional information can affect pho-
netic discrimination. Cognition, 82:B101–B111.

Sharon Peperkamp, Rozenn Le Calvez, Jean-Pierre
Nadal, and Emmanuel Dupoux. 2006. The acqui-
sition of allophonic rules: Statistical learning with
linguistic constraints. Cognition, 101(3):B31–B41.

M. A. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Ray-
mond, E. Hume, and Fosler-Lussier. 2007. Buckeye
corpus of conversational speech.

G.K. Vallabha, J.L. McClelland, F. Pons, J.F. Werker,
and S. Amano. 2007. Unsupervised learning
of vowel categories from infant-directed speech.
Proceedings of the National Academy of Sciences,
104(33):13273.

Janet F. Werker and Richard C. Tees. 1984. Cross-
language speech perception: Evidence for percep-
tual reorganization during the first year of life. In-
fant Behavior and Development, 7(1):49 – 63.

Steve J. Young, D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland. 2006. The HTK Book
Version 3.4. Cambridge University Press.

6



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 7–12,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Biases in Predicting the Human Language Model

Alex B. Fine
University of Illinois at Urbana-Champaign

abfine@illinois.edu

Austin F. Frank
Riot Games

aufrank@riotgames.com

T. Florian Jaeger
University of Rochester

fjaeger@bcs.rochester.edu

Benjamin Van Durme
Johns Hopkins University
vandurme@cs.jhu.edu

Abstract

We consider the prediction of three hu-
man behavioral measures – lexical deci-
sion, word naming, and picture naming –
through the lens of domain bias in lan-
guage modeling. Contrasting the predic-
tive ability of statistics derived from 6 dif-
ferent corpora, we find intuitive results
showing that, e.g., a British corpus over-
predicts the speed with which an Amer-
ican will react to the words ward and
duke, and that the Google n-grams over-
predicts familiarity with technology terms.
This study aims to provoke increased con-
sideration of the human language model
by NLP practitioners: biases are not lim-
ited to differences between corpora (i.e.
“train” vs. “test”); they can exist as well
between corpora and the intended user of
the resultant technology.

1 Introduction

Computational linguists build statistical language
models for aiding in natural language processing
(NLP) tasks. Computational psycholinguists build
such models to aid in their study of human lan-
guage processing. Errors in NLP are measured
with tools like precision and recall, while errors in
psycholinguistics are defined as failures to model
a target phenomenon.

In the current study, we exploit errors of the lat-
ter variety—failure of a language model to predict
human performance—to investigate bias across
several frequently used corpora in computational
linguistics. The human data is revealing because
it trades on the fact that human language process-
ing is probability-sensitive: language processing

reflects implicit knowledge of probabilities com-
puted over linguistic units (e.g., words). For ex-
ample, the amount of time required to read a word
varies as a function of how predictable that word is
(McDonald and Shillcock, 2003). Thus, failure of
a language model to predict human performance
reveals a mismatch between the language model
and the human language model, i.e., bias.

Psycholinguists have known for some time that
the ability of a corpus to explain behavior depends
on properties of the corpus and the subjects (cf.
Balota et al. (2004)). We extend that line of work
by directly analyzing and quantifying this bias,
and by linking the results to methodological con-
cerns in both NLP and psycholinguistics.

Specifically, we predict human data from
three widely used psycholinguistic experimental
paradigms—lexical decision, word naming, and
picture naming—using unigram frequency esti-
mates from Google n-grams (Brants and Franz,
2006), Switchboard (Godfrey et al., 1992), spoken
and written English portions of CELEX (Baayen
et al., 1995), and spoken and written portions
of the British National Corpus (BNC Consor-
tium, 2007). While we find comparable overall
fits of the behavioral data from all corpora un-
der consideration, our analyses also reveal spe-
cific domain biases. For example, Google n-
grams overestimates the ease with which humans
will process words related to the web (tech, code,
search, site), while the Switchboard corpus—a
collection of informal telephone conversations be-
tween strangers—overestimates how quickly hu-
mans will react to colloquialisms (heck, darn) and
backchannels (wow, right).
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Figure 1: Pairwise correlations between log frequency es-
timates from each corpus. Histograms show distribution over
frequency values from each corpus. Lower left panels give
Pearson (top) and Spearman (bottom) correlation coefficients
and associated p-values for each pair. Upper right panels plot
correlations

2 Fitting Behavioral Data

2.1 Data
Pairwise Pearson correlation coefficients for log
frequency were computed for all corpora under
consideration. Significant correlations were found
between log frequency estimates for all pairs (Fig-
ure 1). Intuitive biases are apparent in the corre-
lations, e.g.: BNCw correlates heavily with BNCs
(0.91), but less with SWBD (0.79), while BNCs
correlates more with SWBD (0.84).1

Corpus Size (tokens)

Google n-grams (web release) ∼ 1 trillion
British National Corpus (written, BNCw) ∼ 90 million
British National Corpus (spoken, BNCs) ∼ 10 million
CELEX (written, CELEXw) ∼ 16.6 million
CELEX (spoken, CELEXs) ∼ 1.3 million
Switchboard (Penn Treebank subset 3) ∼ 800,000

Table 1: Summary of the corpora under consideration.

2.2 Approach
We ask whether domain biases manifest as sys-
tematic errors in predicting human behavior. Log
unigram frequency estimates were derived from
each corpus and used to predict reaction times
(RTs) from three experiments employing lexical

1BNCw and BNCs are both British, while BNCs and
SWBD are both spoken.

decision (time required by subjects to correctly
identify a string of letters as a word of English
(Balota et al., 1999)); word naming (time required
to read aloud a visually presented word (Spieler
and Balota, 1997); (Balota and Spieler, 1998));
and picture naming (time required to say a pic-
ture’s name (Bates et al., 2003)). Previous work
has shown that more frequent words lead to faster
RTs. These three measures provide a strong test
for the biases present in these corpora, as they
span written and spoken lexical comprehension
and production.

To compare the predictive strength of log fre-
quency estimates from each corpus, we fit mixed
effects regression models to the data from each
experiment. As controls, all models included (1)
mean log bigram frequency for each word, (2)
word category (noun, verb, etc.), (3) log mor-
phological family size (number of inflectional and
derivational morphological family members), (4)
number of synonyms, and (5) the first principal
component of a host of orthographic and phono-
logical features capturing neighborhood effects
(type and token counts of orthographic and phono-
logical neighbors as well as forward and backward
inconsistent words; (Baayen et al., 2006)). Mod-
els of lexical decision and word naming included
random intercepts of participant age to adjust for
differences in mean RTs between old (mean age
= 72) vs. young (mean age = 23) subjects, given
differences between younger vs. older adults’ pro-
cessing speed (cf. (Ramscar et al., 2014)). (All
participants in the picture naming study were col-
lege students.)

2.3 Results

For each of the six panels corresponding to fre-
quency estimates from a corpus A, Figure 2 gives
the χ2 value resulting from the log-likelihood ra-
tio of (1) a model containing A and an estimate
from one of the five remaining corpora (given on
the x axis) and (2) a model containing just the cor-
pus indicated on the x axis. Thus, for each panel,
each bar in Figure 2 shows the explanatory power
of estimates from the corpus given at the top of the
panel after controlling for estimates from each of
the other corpora.

Model fits reveal intuitive, previously undocu-
mented biases in the ability of each corpus to pre-
dict human data. For example, corpora of British
English tend to explain relatively little after con-
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trolling for other British corpora in modeling lexi-
cal decision RTs (yellow). Similarly, Switchboard
provides relatively little explanatory power over
the other corpora in predicting picture naming
RTs (blue bars), possibly because highly image-
able nouns and verbs frequent in everyday interac-
tions are underrepresented in telephone conversa-
tions between people with no common visual ex-
perience. In other words, idiosyncratic facts about
the topics, dialects, etc. represented in each cor-
pus lead to systematic patterns in how well each
corpus can predict human data relative to the oth-
ers. In some cases, the predictive value of one
corpus after controlling for another—apparently
for reasons related to genre, dialect—can be quite
large (cf. the χ2 difference between a model with
both Google and Switchboard frequency estimates
compared to one with only Switchboard [top right
yellow bar]).

In addition to comparing the overall predictive
power of the corpora, we examined the words
for which behavioral predictions derived from the
corpora deviated most from the observed behav-
ior (word frequencies strongly over- or under-
estimated by each corpora). First, in Table 2 we
give the ten words with the greatest relative differ-
ence in frequency for each corpus pair. For exam-
ple, fife is deemed more frequent according to the
BNC than to Google.2

These results suggest that particular corpora
may be genre-biased in systematic ways. For in-
stance, Google appears to be biased towards termi-
nology dealing with adult material and technology.
Similarly, BNCw is biased, relative to Google, to-
wards Britishisms. For these words in the BNC
and Google, we examined errors in predicted lexi-
cal decision times. Figure 3 plots errors in the lin-
ear model’s prediction of RTs for older (top) and
younger (bottom) subjects.

The figure shows a positive correlation between
how large the difference is between the lexical de-
cision RT predicted by the model and the actu-
ally observed RT, and how over-estimated the log
frequency of that word is in the BNC relative to
Google (left panel) or in Google relative to the
BNC (right panel). The left panel shows that BNC
produces a much greater estimate of the log fre-

2Surprisingly, fife was determined to be one of the words
with the largest frequency asymmetry between Switchboard
and the Google n-grams corpus. This was a result of lower-
casing all of the words in in the analyses, and the fact that
Barney Fife was mentioned several times in the BNC.

quency of the word lee relative to Google, which
leads the model to predict a lower RT for this word
than is observed (i.e., the error is positive; though
note that the error is less severe for older relative to
younger subjects). By contrast, the asymmetry be-
tween the two corpora in the estimated frequency
of sir is less severe, so the observed RT deviates
less from the predicted RT. In the right panel, we
see that Google assigns a much greater estimate
of log frequency to the word tech than the BNC,
which leads a model predicting RTs from Google-
derived frequency estimates to predict a far lower
RT for this word than observed.

3 Discussion

Researchers in computational linguistics often as-
sume that more data is always better than less
data (Banko and Brill, 2001). This is true in-
sofar as larger corpora allow computational lin-
guists to generate less noisy estimates of the av-
erage language experience of the users of compu-
tational linguistics applications. However, corpus
size does not necessarily eliminate certain types of
biases in estimates of human linguistic experience,
as demonstrated in Figure 3.

Our analyses reveal that 6 commonly used cor-
pora fail to reflect the human language model in
various ways related to dialect, modality, and other
properties of each corpus. Our results point to
a type of bias in commonly used language mod-
els that has been previously overlooked. This bias
may limit the effectiveness of NLP algorithms in-
tended to generalize to a linguistic domains whose
statistical properties are generated by humans.

For psycholinguists these results support an im-
portant methodological point: while each corpus
presents systematic biases in how well it predicts
human behavior, all six corpora are, on the whole,
of comparable predictive value and, specifically,
the results suggest that the web performs as well
as traditional instruments in predicting behavior.
This has two implications for psycholinguistic re-
search. First, as argued by researchers such as
Lew (2009), given the size of the Web compared to
other corpora, research focusing on low-frequency
linguistic events—or requiring knowledge of the
distributional characteristics of varied contexts—
is now more tractable. Second, the viability of
the web in predicting behavior opens up possibil-
ities for computational psycholinguistic research
in languages for which no corpora exist (i.e., most
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Greater Lesser Top-10
google bnc.s web, ass, gay, tire, text, tool, code, woe, site, zip
google bnc.w ass, teens, tech, gay, bug, suck, site, cart, log, search
google celex.s teens, cart, gay, zip, mail, bin, tech, click, pee, site
google celex.w web, full, gay, bin, mail, zip, site, sake, ass, log
google swbd gay, thread, text, search, site, link, teens, seek, post, sex
bnc.w google fife, lord, duke, march, dole, god, cent, nick, dame, draught
bnc.w bnc.s pact, corps, foe, tract, hike, ridge, dine, crest, aide, whim
bnc.w celex.s staff, nick, full, waist, ham, lap, knit, sheer, bail, march
bnc.w celex.w staff, lord, last, nick, fair, glen, low, march, should, west
bnc.w swbd rose, prince, seek, cent, text, clause, keen, breach, soul, rise
celex.s google art, yes, pound, spoke, think, mean, say, thing, go, drove
celex.s bnc.s art, hike, pact, howl, ski, corps, peer, spoke, jazz, are
celex.s bnc.w art, yes, dike, think, thing, sort, mean, write, pound, lot
celex.s celex.w yes, sort, thank, think, jazz, heck, tape, well, fife, get
celex.s swbd art, cell, rose, spoke, aim, seek, shall, seed, text, knight
celex.w google art, plod, pound, shake, spoke, dine, howl, sit, say, draught
celex.w bnc.s hunch, stare, strife, hike, woe, aide, rout, yell, glaze, flee
celex.w bnc.w dike, whiz, dine, shake, grind, jerk, whoop, say, are, cram
celex.w celex.s wrist, pill, lawn, clutch, stare, spray, jar, shark, plead, horn
celex.w swbd art, rose, seek, aim, rise, burst, seed, cheek, grin, lip
swbd google mow, kind, lot, think, fife, corps, right, cook, sort, do
swbd bnc.s creek, mow, guess, pact, strife, tract, hank, howl, foe, nap
swbd bnc.w stuff, whiz, tech, lot, kind, creek, darn, dike, bet, kid
swbd celex.s wow, sauce, mall, deck, full, spray, flute, rib, guy, bunch
swbd celex.w heck, guess, right, full, stuff, lot, last, well, guy, fair

Table 2: Examples of words with largest difference in z-transformed log frequencies (e.g., the relative frequencies of fife,
lord, and duke, in the BNC are far greater than in Google).

languages). This furthers the arguments of the “the
web as corpus” community (Kilgarriff and Grefen-
stette, 2003) with respect to psycholinguistics.

Finally, combining multiple sources of fre-
quency estimates is one way researchers may be
able to reduce the prediction bias from any sin-
gle corpus. This relates to work in automatically
building domain specific corpora (e.g., Moore and
Lewis (2010), Axelrod et al. (2011), Daumé III
and Jagarlamudi (2011), Wang et al. (2014), Gao
et al. (2002), and Lin et al. (1997)). Those efforts
focus on building representative document collec-
tions for a target domain, usually based on a seed
set of initial documents. Our results prompt the
question: can one use human behavior as the tar-
get in the construction of such a corpus? Con-
cretely, can we build corpora by optimizing an ob-
jective measure that minimizes error in predicting
human reaction times? Prior work in building bal-
anced corpora used either rough estimates of the
ratio of genre styles a normal human is exposed to
daily (e.g., the Brown corpus (Kucera and Fran-
cis, 1967)), or simply sampled text evenly across
genres (e.g., COCA: the Corpus of Contemporary
American English (Davies, 2009)). Just as lan-
guage models have been used to predict reading
grade-level of documents (Collins-Thompson and
Callan, 2004), human language models could be

used to predict the appropriateness of a document
for inclusion in an “automatically balanced” cor-
pus.

4 Conclusion

We have shown intuitive, domain-specific biases
in the prediction of human behavioral measures
via corpora of various genres. While some psy-
cholinguists have previously acknowledged that
different corpora carry different predictive power,
this is the first work to our knowledge to system-
atically document these biases across a range of
corpora, and to relate these predictive errors to do-
main bias, a pressing issue in the NLP community.
With these results in hand, future work may now
consider the automatic construction of a “prop-
erly” balanced text collection, such as originally
desired by the creators of the Brown corpus.
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Abstract

When humans and artificial agents (e.g.
robots) have mismatched perceptions of
the shared environment, referential com-
munication between them becomes diffi-
cult. To mediate perceptual differences,
this paper presents a new approach us-
ing probabilistic labeling for referential
grounding. This approach aims to inte-
grate different types of evidence from the
collaborative referential discourse into a
unified scheme. Its probabilistic labeling
procedure can generate multiple ground-
ing hypotheses to facilitate follow-up dia-
logue. Our empirical results have shown
the probabilistic labeling approach sig-
nificantly outperforms a previous graph-
matching approach for referential ground-
ing.

1 Introduction

In situated human-robot dialogue, humans and
robots have mismatched capabilities of perceiving
the shared environment. Thus referential commu-
nication between them becomes extremely chal-
lenging. To address this problem, our previous
work has conducted a simulation-based study to
collect a set of human-human conversation data
that explain how partners with mismatched per-
ceptions strive to succeed in referential commu-
nication (Liu et al., 2012; Liu et al., 2013). Our
data have shown that, when conversation partners
have mismatched perceptions, they tend to make
extra collaborative effort in referential commu-
nication. For example, the speaker often refers
to the intended object iteratively: first issuing an
initial installment, and then refashioning till the
hearer identifies the referent correctly. The hearer,
on the other hand, often provides useful feedback
based on which further refashioning can be made.

This data has demonstrated the importance of in-
corporating collaborative discourse for referential
grounding.

Based on this data, as a first step we developed
a graph-matching approach for referential ground-
ing (Liu et al., 2012; Liu et al., 2013). This ap-
proach uses Attributed Relational Graph to cap-
ture collaborative discourse and employs a state-
space search algorithm to find proper ground-
ing results. Although it has made meaning-
ful progress in addressing collaborative referen-
tial grounding under mismatched perceptions, the
state-space search based approach has two ma-
jor limitations. First, it is neither flexible to ob-
tain multiple grounding hypotheses, nor flexible
to incorporate different hypotheses incrementally
for follow-up grounding. Second, the search al-
gorithm tends to have a high time complexity for
optimal solutions. Thus, the previous approach
is not ideal for collaborative and incremental di-
alogue systems that interact with human users in
real time.

To address these limitations, this paper de-
scribes a new approach to referential grounding
based on probabilistic labeling. This approach
aims to integrate different types of evidence from
the collaborative referential discourse into a uni-
fied probabilistic scheme. It is formulated un-
der the Bayesian reasoning framework to easily
support generation and incorporation of multi-
ple grounding hypotheses for follow-up processes.
Our empirical results have shown that the prob-
abilistic labeling approach significantly outper-
forms the state-space search approach in both
grounding accuracy and efficiency. This new ap-
proach provides a good basis for processing col-
laborative discourse and enabling collaborative di-
alogue system in situated referential communica-
tion.
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2 Related Work

Previous works on situated referential grounding
have mainly focused on computational models that
connect linguistic referring expressions to the per-
ceived environment (Gorniak and Roy, 2004; Gor-
niak and Roy, 2007; Siebert and Schlangen, 2008;
Matuszek et al., 2012; Jayant and Thomas, 2013).
These works have provided valuable insights on
how to manually and/or automatically build key
components (e.g., semantic parsing, grounding
functions between visual features and words, map-
ping procedures) for a situated referential ground-
ing system. However, most of these works only
dealt with the interpretation of single referring ex-
pressions, rather than interrelated expressions in
collaborative dialogue.

Some earlier work (Edmonds, 1994; Heeman
and Hirst, 1995) proposed a symbolic reasoning
(i.e. planning) based approach to incorporate col-
laborative dialogue. However, in situated settings
pure symbolic approaches will not be sufficient
and new approaches that are robust to uncertain-
ties need to be pursued. DeVault and Stone (2009)
proposed a hybrid approach which combined sym-
bolic reasoning and machine learning for inter-
preting referential grounding dialogue. But their
“environment” was a simplistic block world and
the issue of mismatched perceptions was not ad-
dressed.

3 Data

Previously, we have collected a set of human-
human dialogues on an object-naming task (Liu
et al., 2012). To simulate mismatched perceptions
between a human and an artificial agent, two par-
ticipants were shown different versions of an im-
age: the director was shown the original image
containing some randomly placed objects (e.g.,
fruits), and the matcher was shown an impov-
erished version of the image generated by com-
puter vision. They were instructed to communi-
cate with each other to figure out the identities of
some “named” objects (only known to the direc-
tor), such that the matcher could also know which
object has what name.

Here is an example excerpt from this dataset:

D1: there is basically a cluster of four objects in the upper
left, do you see that (1)

M: yes (2)
D: ok, so the one in the corner is a blue cup (3)

1D stands for the director; M stands for the matcher.

M: I see there is a square, but fine, it is blue (4)
D: alright, I will just go with that, so and then right under

that is a yellow pepper (5)
M: ok, I see apple but orangish yellow (6)
D: ok, so that yellow pepper is named Brittany (7)
M: uh, the bottom left of those four? Because I do see a

yellow pepper in the upper right (8)
D: the upper right of the four of them? (9)
M: yes (10)
D: ok, so that is basically the one to the right of the blue

cup (11)
M: yeah (12)
D: that is actually an apple (13)

As we can see from this example, both the direc-
tor and the matcher make extra efforts to overcome
the mismatched perceptions through collaborative
dialogue. Our ultimate goal is to develop com-
putational approaches that can ground interrelated
referring expressions to the physical world, and
enable collaborative actions of the dialogue agent
(similar to the active role that the matcher played
in the human-human dialogue). For the time be-
ing, we use this data to evaluate our computa-
tional approach for referential grounding, namely,
replacing the matcher by our automatic system to
ground the director’s referring expressions.

4 Probabilistic Labeling for Reference
Grounding

4.1 System Overview

Our system first processes the data using auto-
matic semantic parsing and coreference resolu-
tion. For semantic parsing, we use a rule-based
CCG parser (Bozsahin et al., 2005) to parse each
utterance into a formal semantic representation.
For example, the utterance “a pear is to the right
of the apple” is parsed as

[a1, a2] , [Pear(a1), Apple(a2), RightOf(a1, a2)]

which consists of a list of discourse entities (e.g.,
a1 and a2) and a list of first-order-logic predicates
that specify the unary attributes of these entities
and the binary relations between them.

We then perform pairwise coreference resolu-
tion on the discourse entities to find out the dis-
course relations between entities from different ut-
terances. Formally, let ai be a discourse entity ex-
tracted from the current utterance, and aj a dis-
course entity from a previous utterance. We train a
maximum entropy classifier2 (Manning and Klein,

2The features we use for the classification include the dis-
tance between ai and aj , the determiners associated with
them, the associated pronouns, the syntactic roles, the ex-
tracted unary properties, etc.
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2003) to predict whether ai and aj should refer to
the same object (i.e. positive) or to different ob-
jects (i.e. negative).

Based on the semantic parsing and pairwise
coreference resolution results, our system fur-
ther builds a graph representation to capture the
collaborative discourse and formulate referential
grounding as a probabilistic labeling problem, as
described next.

4.2 Graph Representation
We use an Attributed Relational Graph (Tsai and
Fu, 1979) to represent the referential grounding
discourse (which we call the “dialogue graph”). It
is constructed based on the semantic parsing and
coreference resolution results. The dialogue graph
contains a set A of N nodes:

A = {a1, a2, . . . , aN}

in which each node ai represents a discourse en-
tity from the parsing results. And for each pair
of nodes ai and aj there can be an edge aiaj that
represents the physical or discourse relation (i.e.
coreference) between the two nodes.

Furthermore, each node ai can be assigned a set
of “attributes”:

xi =
{
x

(1)
i , x

(2)
i , . . . , x

(K)
i

}
which are used to specify information about the
unary properties of the corresponding discourse
entity. Similarly, each edge aiaj can also be as-
signed a set of attributes xij to specify informa-
tion about the binary relations between two dis-
course entities. The node attributes are from the
semantic parsing results, i.e., the unary proper-
ties associated to a discourse entity. The edge at-
tributes can be either from parsing results, such
as a spatial relation between two entities (e.g.,
RightOf(a1, a2)); Or from pairwise coreference
resolution results, i.e., two entities are coreferen-
tial (coref = +) or not (coref = −).

Besides the dialogue graph that represents the
linguistic discourse, we build another graph to rep-
resent the perceived environment. This graph is
called the “vision graph” (since this graph is built
based on computer vision’s outputs). It has a set Ω
of M nodes:

Ω = {ω1, ω2, . . . , ωM}

in which each node ωα represents a physical ob-
ject in the scene. Similar to the dialogue graph,

the vision graph also has edges (e.g., ωαωβ), node
attributes (e.g., x̆α) and edge attributes (e.g., x̆αβ).
Note that the attributes in the vision graph mostly
have numeric values extracted by computer vision
algorithms, whereas the attributes in the dialogue
graph have symbolic values extracted from the lin-
guistic discourse. A set of “symbol grounding
functions” are used to bridge between the hetero-
geneous attributes (described later).

Given these two graph representations, referen-
tial grounding then can be formulated as a “node
labeling” process, that is to assign a label θi to
each node ai. The value of θi can be any of the
M node labels from the set Ω.

4.3 Probabilistic Labeling Algorithm
The probabilistic labeling algorithm (Christmas et
al., 1995) is formulated in the Bayesian frame-
work. It provides a unified evidence-combining
scheme to integrate unary attributes, binary rela-
tions and prior knowledge for updating the label-
ing probabilities (i.e. P (θi = ωα)). The algo-
rithm finds proper labelings in an iterative manner:
it first initiates the labeling probabilities by consid-
ering only the unary attributes of each node, and
then updates the labeling probability of each node
based on the labeling of its neighbors and the rela-
tions with them.

Initialization:
Compute the initial labeling probabilities:

P (0)(θi = ωα) =
P (ai | θi = ωα) P̂ (θi = ωα)∑

ωλ∈Ω

P (ai | θi = ωλ) P̂ (θi = ωλ)

in which P̂ (θi = ωα) is the prior probability of
labeling ai with ωα. The prior probability can be
used to encode any prior knowledge about possi-
ble labelings. Especially in incremental process-
ing of the dialogue, the prior can encode previ-
ous grounding hypotheses, and other information
from the collaborative dialogue such as confirma-
tion, rejection, or replacement.
P (ai | θi = ωα) is called the “compatibility co-

efficient” between ai and ωα, which is computed
based on the attributes of ai and ωα:

P (ai | θi = ωα) = P (xi | θi = ωα)
≈∏

k

P
(
x

(k)
i | θi = ωα

)
and we further define
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P
(
x

(k)
i | θi = ωα

)
= p

(
x

(k)
i | x̆(k)

α

)
=

p
(
x̆

(k)
α |x(k)

i

)
p
(
x

(k)
i

)
∑

x
(k)
j

∈L(k)

p
(
x̆

(k)
α |x(k)

j

)
p
(
x

(k)
j

)

where L(k) is the “lexicon” for the k-th attribute of
a dialogue graph node, e.g., for the color attribute:

L(k) = {red, green, blue, . . .}

and p
(
x̆

(k)
α | x(k)

i

)
is what we call a “symbol

grounding function”, i.e., the probability of ob-
serving x̆

(k)
α given the word x

(k)
i . It judges the

compatibilities between the symbolic attribute val-
ues from the dialogue graph and the numeric at-
tribute values from the vision graph. These sym-
bol grounding functions can be either manually
defined or automatically learned. In our current
work, we use a set of manually defined ground-
ing functions motivated by previous work (Gor-
niak and Roy, 2004).

Iteration:
Once the initial probabilities are calculated, the

labeling procedure iterates till all the labeling
probabilities have converged or the number of it-
erations has reached a specified limit. At each it-
eration and for each possible labeling, it computes
a “support function” as:

Q(n) (θi = ωα) =
∏
j∈Ni

∑
ωβ∈Ω

P (n) (θj = ωβ)

P (aiaj | θi = ωα, θj = ωβ)

and updates the probability of each possible label-
ing as:

P (n+1)(θi = ωα) = P (n)(θi=ωα)Q(n)(θi=ωα)∑
ωλ∈Ω

P (n)(θi=ωλ)Q(n)(θi=ωλ)

The support function Q(n) (θi = ωα) expresses
how the labeling θi = ωα at the n-th itera-
tion is supported by the labeling of ai’s neigh-
bors3, taking into consideration the binary rela-
tions that exist between ai and them. Similar to
the node compatibility coefficient, the edge com-
patibility coefficient between aiaj and ωαωβ ,

3The set of indices Ni is defined as:

Ni = {1, 2, . . . , i− 1, i+ 1, . . . , N}

Top-1 Top-2 Top-3
Random 7.7% 15.4% 23.1%Guessa

S.S.S. 19.1% 19.7% 21.3%
P.L. 24.9% 36.1% 45.0%

Gainb 5.8% 16.4% 23.7%
(p < 0.01) (p < 0.001) (p < 0.001)

P.L. using
66.4% 74.8% 81.9%annotated

coreference

aEach image contains an average of 13 objects.
bp-value is based on the Wilcoxon signed-rank

test (Wilcoxon et al., 1970) on the 62 dialogues.

Table 1: Comparison of the reference grounding
performances of a random guess baseline, Prob-
abilistic Labeling (P.L.) and State-Space Search
(S.S.S.), and P.L. using manually annotated coref-
erence.

namely the P (aiaj | θi = ωα, θj = ωβ) for com-
puting Q(n) (θi = ωα), is also based on the at-
tributes of the two edges and their corresponding
symbol grounding functions. So we also man-
ually defined a set of grounding functions for
edge attributes such as the spatial relation (e.g.,
RightOf , Above). If an edge is used to encode
the discourse relation between two entities (i.e.,
the pairwise coreference results), the compatibility
coefficient can be defined as (suppose edge aiaj
encodes a positive coreference relation between
entities ai and aj):

P (aiaj = + | θi = ωα, θj = ωβ)

=
P(θi=ωα,θj=ωβ |aiaj=+)P (aiaj=+)

P(θi=ωα,θj=ωβ)

which can be calculated based on the results from
the coreference classifier (Section 4.1).

5 Evaluation and Discussion

Our dataset has 62 dialogues, each of which con-
tains an average of 25 valid utterances from the
director. We first applied the semantic parser and
coreference classifier as described in Section 4.1
to process each dialogue, and then built a graph
representation based on the automatic processing
results at the end of the dialogue. On average, a di-
alogue graph consists of 33 discourse entities from
the director’s utterances that need to be grounded.

We then applied both the probabilistic label-
ing algorithm and the state-space search algorithm
to ground each of the director’s discourse entities
onto an object perceived from the image. The av-
eraged grounding accuracies of the two algorithms
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are shown in the middle part of Table 1. The first
column of Table 1 shows the grounding accura-
cies of the algorithm’s top-1 grounding hypothesis
(i.e., θi = argmax

ωα
P (θi = ωα) for each i). The

second and third column then show the “accura-
cies” of the top-2 and top-3 hypotheses4, respec-
tively.

As shown in Table 1, probabilistic labeling
(i.e. P.L.) significantly outperforms state-space
search (S.S.S.), especially with regard to produc-
ing meaningful multiple grounding hypotheses.
The state-space search algorithm actually only re-
sults in multiple hypotheses for the overall match-
ing, and it fails to produce multiple hypotheses
for many individual discourse entities. Multiple
grounding hypotheses can be very useful to gen-
erate responses such as clarification questions or
nonverbal feedback (e.g. pointing, gazing). For
example, if there are two competing hypotheses,
the dialogue manager can utilize them to gener-
ate a response like “I see two objects there, are
you talking about this one (pointing to) or that one
(pointing to the other)?”. Such proactive feedback
is often an effective way in referential communi-
cation (Clark and Wilkes-Gibbs, 1986; Liu et al.,
2013).

The probabilistic labeling algorithm not only
produces better grounding results, it also runs
much faster (with a running-time complexity of
O
(
MN2

)
,5 comparing to O

(
N4
)

of the state-
space search algorithm6). Figure 1 shows the av-
eraged running time of the state-space search al-
gorithm on a Intel Core i7 1.60GHz CPU with
16G RAM computer (the running time of the prob-
abilistic labeling algorithm is not shown in Fig-
ure 1 since it always takes less than 1 second to
run). As we can see, when the size of the dialogue
graph becomes greater than 15, state-space search
takes more than 1 minute to run. The efficiency of
the probabilistic labeling algorithm thus makes it
more appealing for real-time interaction applica-
tions.

Although probabilistic labeling significantly
outperforms the state-space search, the grounding
performance is still rather poor (less than 50%)

4The accuracy of the top-2/top-3 grounding hypotheses is
measured by whether the ground-truth reference is included
in the top-2/top-3 hypotheses.

5M is the number of nodes in the vision graph and N is
the number of nodes in the dialogue graph.

6Beam search algorithm is applied to reduce the exponen-
tial O

(
MN

)
to O

(
N4

)
.

Figure 1: Average running time of the state-space
search algorithm with respect to the number of
nodes to be grounded in a dialogue graph.

even for the top-3 hypotheses. With no surprise,
the coreference resolution performance plays an
important role in the final grounding performance
(see the grounding performance of using manually
annotated coreference in the bottom part of Ta-
ble 1). Due to the simplicity of our current coref-
erence classifier and the flexibility of the human-
human dialogue in the data, the pairwise coref-
erence resolution only achieves 0.74 in precision
and 0.43 in recall. The low recall of coreference
resolution makes it difficult to link interrelated re-
ferring expressions and resolve them jointly. So it
is important to develop more sophisticated coref-
erence resolution and dialogue management com-
ponents to reliably track the discourse relations
and other dynamics in the dialogue to facilitate ref-
erential grounding.

6 Conclusion

In this paper, we have presented a probabilistic la-
beling based approach for referential grounding in
situated dialogue. This approach provides a uni-
fied scheme for incorporating different sources of
information. Its probabilistic scheme allows each
information source to present multiple hypotheses
to better handle uncertainties. Based on the in-
tegrated information, the labeling procedure then
efficiently generates probabilistic grounding hy-
potheses, which can serve as important guidance
for the dialogue manager’s decision making. In
future work, we will utilize probabilistic labeling
to incorporate information from verbal and non-
verbal communication incrementally as the dia-
logue unfolds, and to enable collaborative dia-
logue agents in the physical world.

Acknowledgments
This work was supported by N00014-11-1-0410
from the Office of Naval Research and IIS-
1208390 from the National Science Foundation.

17



References
Cem Bozsahin, Geert-Jan M Kruijff, and Michael

White. 2005. Specifying grammars for openccg: A
rough guide. Included in the OpenCCG distribution.

William J. Christmas, Josef Kittler, and Maria Petrou.
1995. Structural matching in computer vision
using probabilistic relaxation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
17(8):749–764.

Herbert H Clark and Deanna Wilkes-Gibbs. 1986.
Referring as a collaborative process. Cognition,
22(1):1–39.

David DeVault and Matthew Stone. 2009. Learning to
interpret utterances using dialogue history. In Pro-
ceedings of the 12th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 184–192. Association for Computa-
tional Linguistics.

Philip G Edmonds. 1994. Collaboration on reference
to objects that are not mutually known. In Pro-
ceedings of the 15th conference on Computational
linguistics-Volume 2, pages 1118–1122. Association
for Computational Linguistics.

Peter Gorniak and Deb Roy. 2004. Grounded seman-
tic composition for visual scenes. J. Artif. Intell.
Res.(JAIR), 21:429–470.

Peter Gorniak and Deb Roy. 2007. Situated lan-
guage understanding as filtering perceived affor-
dances. Cognitive Science, 31(2):197–231.

Peter A Heeman and Graeme Hirst. 1995. Collabo-
rating on referring expressions. Computational Lin-
guistics, 21(3):351–382.

Krishnamurthy Jayant and Kollar Thomas. 2013.
Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transac-
tions of the Association of Computational Linguis-
tics, 1:193–206.

Changsong Liu, Rui Fang, and Joyce Chai. 2012. To-
wards mediating shared perceptual basis in situated
dialogue. In Proceedings of the 13th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, pages 140–149, Seoul, South Korea, July.
Association for Computational Linguistics.

Changsong Liu, Rui Fang, Lanbo She, and Joyce Chai.
2013. Modeling collaborative referring for situated
referential grounding. In Proceedings of the SIG-
DIAL 2013 Conference, pages 78–86, Metz, France,
August. Association for Computational Linguistics.

Christopher Manning and Dan Klein. 2003. Opti-
mization, maxent models, and conditional estima-
tion without magic. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology: Tutorials - Volume 5,

NAACL-Tutorials ’03, pages 8–8, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A
joint model of language and perception for grounded
attribute learning. In John Langford and Joelle
Pineau, editors, Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12),
ICML ’12, pages 1671–1678, New York, NY, USA,
July. Omnipress.

Alexander Siebert and David Schlangen. 2008. A
simple method for resolution of definite reference
in a shared visual context. In Proceedings of the
9th SIGdial Workshop on Discourse and Dialogue,
pages 84–87. Association for Computational Lin-
guistics.

Wen-Hsiang Tsai and King-Sun Fu. 1979. Error-
correcting isomorphisms of attributed relational
graphs for pattern analysis. Systems, Man and Cy-
bernetics, IEEE Transactions on, 9(12):757–768.

Frank Wilcoxon, SK Katti, and Roberta A Wilcox.
1970. Critical values and probability levels for the
wilcoxon rank sum test and the wilcoxon signed
rank test. Selected tables in mathematical statistics,
1:171–259.

18



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 19–23,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

A Composite Kernel Approach for Dialog Topic Tracking with
Structured Domain Knowledge from Wikipedia

Seokhwan Kim, Rafael E. Banchs, Haizhou Li
Human Language Technology Department

Institute for Infocomm Research
Singapore 138632

{kims,rembanchs,hli}@i2r.a-star.edu.sg

Abstract

Dialog topic tracking aims at analyzing
and maintaining topic transitions in on-
going dialogs. This paper proposes a com-
posite kernel approach for dialog topic
tracking to utilize various types of do-
main knowledge obtained from Wikipedia.
Two kernels are defined based on history
sequences and context trees constructed
based on the extracted features. The ex-
perimental results show that our compos-
ite kernel approach can significantly im-
prove the performances of topic tracking
in mixed-initiative human-human dialogs.

1 Introduction

Human communications in real world situations
interlace multiple topics which are related to each
other in conversational contexts. This fact sug-
gests that a dialog system should be also capable
of conducting multi-topic conversations with users
to provide them a more natural interaction with the
system. However, the majority of previous work
on dialog interfaces has focused on dealing with
only a single target task. Although some multi-
task dialog systems have been proposed (Lin et al.,
1999; Ikeda et al., 2008; Celikyilmaz et al., 2011),
they have aimed at just choosing the most proba-
ble one for each input from the sub-systems, each
of which is independently operated from others.

To analyze and maintain dialog topics from a
more systematic perspective in a given dialog flow,
some researchers (Nakata et al., 2002; Lagus and
Kuusisto, 2002; Adams and Martell, 2008) have
considered this dialog topic identification as a sep-
arate sub-problem of dialog management and at-
tempted to solve it with text categorization ap-
proaches for the recognized utterances in a given
turn. The major obstacle to the success of these
approaches results from the differences between

written texts and spoken utterances. In most text
categorization tasks, the proper category for each
textual unit can be assigned based only on its own
content. However, the dialog topic at each turn
can be determined not only by the user’s inten-
tions captured from the given utterances, but also
by the system’s decisions for dialog management
purposes. Thus, the text categorization approaches
can only be effective for the user-initiative cases
when users tend to mention the topic-related ex-
pressions explicitly in their utterances.

The other direction of dialog topic tracking ap-
proaches made use of external knowledge sources
including domain models (Roy and Subramaniam,
2006), heuristics (Young et al., 2007), and agen-
das (Bohus and Rudnicky, 2003; Lee et al., 2008).
These knowledge-based methods have an advan-
tage of dealing with system-initiative dialogs, be-
cause dialog flows can be controlled by the sys-
tem based on given resources. However, this as-
pect can limit the flexibility to handle the user’s
responses which are contradictory to the system’s
suggestions. Moreover, these approaches face cost
problems for building a sufficient amount of re-
sources to cover broad states of complex dialogs,
because these resources should be manually pre-
pared by human experts for each specific domain.

In this paper, we propose a composite kernel
to explore various types of information obtained
from Wikipedia for mixed-initiative dialog topic
tracking without significant costs for building re-
sources. Composite kernels have been success-
fully applied to improve the performances in other
NLP problems (Zhao and Grishman, 2005; Zhang
et al., 2006) by integrating multiple individual ker-
nels, which aim to overcome the errors occurring
at one level by information from other levels. Our
composite kernel consists of a history sequence
and a domain context tree kernels, both of which
are composed based on similar textual units in
Wikipedia articles to a given dialog context.
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t Speaker Utterance Topic Transition
0 Guide How can I help you? NONE→NONE

1 Tourist Can you recommend some good places to visit
in Singapore? NONE→ATTR

Guide Well if you like to visit an icon of Singapore,
Merlion park will be a nice place to visit.

2 Tourist Merlion is a symbol for Singapore, right? ATTR→ATTRGuide Yes, we use that to symbolise Singapore.

3 Tourist Okay. ATTR→ATTRGuide The lion head symbolised the founding of the is-
land and the fish body just symbolised the hum-
ble fishing village.

4 Tourist How can I get there from Orchard Road? ATTR→TRSPGuide You can take the north-south line train from Or-
chard Road and stop at Raffles Place station.

5 Tourist Is this walking distance from the station to the
destination? TRSP→TRSP

Guide Yes, it’ll take only ten minutes on foot.

6 Tourist Alright. TRSP→FOODGuide Well, you can also enjoy some seafoods at the
riverside near the place.

7 Tourist What food do you have any recommendations
to try there? FOOD→FOOD

Guide If you like spicy foods, you must try chilli crab
which is one of our favourite dishes here in Sin-
gapore.

8 Tourist Great! I’ll try that. FOOD→FOOD

Figure 1: Examples of dialog topic tracking on
Singapore tour guide dialogs

2 Dialog Topic Tracking

Dialog topic tracking can be considered as a clas-
sification problem to detect topic transitions. The
most probable pair of topics at just before and after
each turn is predicted by the following classifier:
f(xt) = (yt−1, yt), where xt contains the input
features obtained at a turn t, yt ∈ C , and C is a
closed set of topic categories. If a topic transition
occurs at t, yt should be different from yt−1. Oth-
erwise, both yt and yt−1 have the same value.

Figure 1 shows an example of dialog topic
tracking in a given dialog fragment on Singapore
tour guide domain between a tourist and a guide.
This conversation is divided into three segments,
since f detects three topic transitions at t1, t4 and
t6. Then, a topic sequence of ‘Attraction’, ‘Trans-
portation’, and ‘Food’ is obtained from the results.

3 Wikipedia-based Composite Kernel for
Dialog Topic Tracking

The classifier f can be built on the training exam-
ples annotated with topic labels using supervised
machine learning techniques. Although some fun-
damental features extracted from the utterances
mentioned at a given turn or in a certain number of
previous turns can be used for training the model,
this information obtained solely from an ongoing
dialog is not sufficient to identify not only user-
initiative, but also system-initiative topic transi-
tions.

To overcome this limitation, we propose to
leverage on Wikipedia as an external knowledge
source that can be obtained without significant

effort toward building resources for topic track-
ing. Recently, some researchers (Wilcock, 2012;
Breuing et al., 2011) have shown the feasibility
of using Wikipedia knowledge to build dialog sys-
tems. While each of these studies mainly focuses
only on a single type of information including cat-
egory relatedness or hyperlink connectedness, this
work aims at incorporating various knowledge ob-
tained from Wikipedia into the model using a com-
posite kernel method.

Our composite kernel consists of two different
kernels: a history sequence kernel and a domain
context tree kernel. Both represent the current di-
alog context at a given turn with a set of relevant
Wikipedia paragraphs which are selected based on
the cosine similarity between the term vectors of
the recently mentioned utterances and each para-
graph in the Wikipedia collection as follows:

sim (x, pi) =
φ(x) · φ(pi)
|φ(x)||φ(pi)| ,

where x is the input, pi is the i-th paragraph in
the Wikipedia collection, φ(pi) is the term vector
extracted from pi. The term vector for the input x,
φ(x), is computed by accumulating the weights in
the previous turns as follows:

φ(x) =
(
α1, α2, · · · , α|W |

) ∈ R|W |,

where αi =
∑h

j=0

(
λj · tf idf(wi, u(t−j))

)
, ut is

the utterance mentioned in a turn t, tf idf(wi, ut)
is the product of term frequency of a word wi in
ut and inverse document frequency of wi, λ is a
decay factor for giving more importance to more
recent turns, |W | is the size of word dictionary,
and h is the number of previous turns considered
as dialog history features.

After computing this relatedness between the
current dialog context and every paragraph in the
Wikipedia collection, two kernel structures are
constructed using the information obtained from
the highly-ranked paragraphs in the Wikipedia.

3.1 History Sequence Kernel
The first structure to be constructed for our com-
posite kernel is a sequence of the most similar
paragraph IDs of each turn from the beginning of
the session to the current turn. Formally, the se-
quence S at a given turn t is defined as:

S = (s0, · · · , st),

where sj = argmaxi (sim (xj , pi)).
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Since our hypothesis is that the more similar the
dialog histories of the two inputs are, the more
similar aspects of topic transtions occur for them,
we propose a sub-sequence kernel (Lodhi et al.,
2002) to map the data into a new feature space de-
fined based on the similarity of each pair of history
sequences as follows:

Ks(S1, S2) =
∑

u∈An

∑
i:u=S1[i]

∑
j:u=S2[j]

λl(i)+l(j),

where A is a finite set of paragraph IDs, S is a fi-
nite sequence of paragraph IDs, u is a subsequence
of S, S[j] is the subsequence with the i-th charac-
ters ∀i ∈ j, l(i) is the length of the subsequence,
and λ ∈ (0, 1) is a decay factor.

3.2 Domain Context Tree Kernel
The other kernel incorporates more various types
of domain knowledge obtained from Wikipedia
into the feature space. In this method, each in-
stance is encoded in a tree structure constructed
following the rules in Figure 2. The root node of
a tree has few children, each of which is a subtree
rooted at each paragraph node in:

Pt = {pi|sim (xt, pi) > θ},
where θ is a threshold value to select the relevant
paragraphs. Each subtree consists of a set of fea-
tures from a given paragraph in the Wikipedia col-
lection in a hierarchical structure. Figure 3 shows
an example of a constructed tree.

Since this constructed tree structure represents
semantic, discourse, and structural information
extracted from the similar Wikipedia paragraphs
to each given instance, we can explore these more
enriched features to build the topic tracking model
using a subset tree kernel (Collins and Duffy,
2002) which computes the similarity between each
pair of trees in the feature space as follows:

Kt(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

△ (n1, n2) ,

where NT is the set of T ’s nodes, △ (n1, n2) =∑
i Ii (ni) · Ii (n2), and Ii(n) is a function that is

1 iff the i-th tree fragment occurs with root at node
n and 0 otherwise.

3.3 Kernel Composition
In this work, a composite kernel is defined by com-
bining the individual kernels including history se-
quence and domain context tree kernels, as well as

<TREE>:=(ROOT <PAR>...<PAR>)
<PAR>:=(PAR_ID <PARENTS>

<PREV_PAR><NEXT_PAR><LINKS>)
<PARENTS>:=(‘PARENTS’ <ART><SEC>)
<ART>:=(ART_ID <ART_NAME><CAT_LIST>)
<ART_NAME>:=(‘ART_NAME’ ART_NAME)
<CAT_LIST>:=(‘CAT’ <CAT>...<CAT>)
<CAT>:=(CAT_ID *)

<SEC>:=(SEC_ID <SEC_NAME><PARENT_SEC>
<PREV_SEC><NEXT_SEC>)

<SEC_NAME>:=(‘SEC_NAME’ SEC_NAME)
<PARENT_SEC>:=(‘PRN_SEC’, PRN_SEC_ID)
<PREV_SEC>:=(‘PREV_SEC’, PREV_SEC_NAME)
<NEXT_SEC>:=(‘NEXT_SEC’, NEXT_SEC_NAME)

<PREV_PAR>:=(‘PREV_PAR’, PREV_PAR_ID)
<NEXT_PAR>:=(‘NEXT_PAR’, NEXT_PAR_ID)
<LINKS>:=(‘LINKS’ <LINK>...<LINK>)
<LINK>:=(LINK_NAME *)

Figure 2: Rules for constructing a domain context
tree from Wikipedia: PAR, ART, SEC, and CAT
are acronyms for paragraph, article, section, and
category, respectively

Figure 3: An example of domain context tree

the linear kernel between the vectors representing
fundamental features extracted from the utterances
themselves and the results of linguistic preproces-
sors. The composition is performed by linear com-
bination as follows:

K(x1, x2) =α ·Kl(V1, V2) + β ·Ks(S1, S2)
+ γ · Kt(T1, T2),

where Vi, Si, and Ti are the feature vector, his-
tory sequence, and domain context tree of xi, re-
spectively, Kl is the linear kernel computed by in-
ner product of the vectors, α, β, and γ are coeffi-
cients for linear combination of three kernels, and
α + β + γ = 1.

4 Evaluation

To demonstrate the effectiveness of our proposed
kernel method for dialog topic tracking, we per-
formed experiments on the Singapore tour guide
dialogs which consists of 35 dialog sessions col-
lected from real human-human mixed initiative
conversations related to Singapore between guides
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and tourists. All the recorded dialogs with the total
length of 21 hours were manually transcribed, then
these transcribed dialogs with 19,651 utterances
were manually annotated with the following nine
topic categories: Opening, Closing, Itinerary, Ac-
commodation, Attraction, Food, Transportation,
Shopping, and Other.

Since we aim at developing the system which
acts as a guide communicating with tourist users,
an instance for both training and prediction of
topic transition was created for each turn of
tourists. The annotation of an instance is a pair of
previous and current topics, and the actual number
of labels occurred in the dataset is 65.

For each instance, the term vector was gener-
ated from the utterances in current user turn, previ-
ous system turn, and history turns within the win-
dow sizes h = 10. Then, the history sequence and
tree context structures for our composite kernel
were constructed based on 3,155 articles related
to Singapore collected from Wikipedia database
dump as of February 2013. For the linear ker-
nel baseline, we used the following features: n-
gram words, previous system actions, and current
user acts which were manually annotated. Finally,
8,318 instances were used for training the model.

We trained the SVM models using
SVMlight 1 (Joachims, 1999) with the follow-
ing five different combinations of kernels: Kl

only, Kl withP as features, Kl+Ks, Kl+Kt, and
Kl +Ks +Kt. The threshold value θ for selecting
P was 0.5, and the combinations of kernels were
performed with the same α, β, or γ coefficient
values for all sub-kernels. All the evaluations
were done in five-fold cross validation to the man-
ual annotations with two different metrics: one
is accuracy of the predicted topic label for every
turn, and the other is precision/recall/F-measure
for each event of topic transition occurred either
in the answer or the predicted result.

Table 1 compares the performances of the five
combinations of kernels. When just the para-
graph IDs were included as additional features,
it failed to improve the performances from the
baseline without any external features. However,
our proposed kernels using history sequences and
domain context trees achieved significant perfor-
mances improvements for both evaluation metrics.
While the history sequence kernel enhanced the
coverage of the model to detect topic transitions,

1http://svmlight.joachims.org/

Turn-level Transition-level
Accuracy P R F

Kl 62.45 42.77 24.77 31.37
Kl + P 62.44 42.76 24.77 31.37
Kl + Ks 67.19 39.94 40.59 40.26
Kl + Kt 68.54 45.55 35.69 40.02
All 69.98 44.82 39.83 42.18

Table 1: Experimental Results
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Figure 4: Error distibutions of topic transitions:
FN and FP denotes false negative and false posi-
tive respectively. USR and SYS in the parentheses
indicate the initiativity of the transitions.

the domain context tree kernel contributed to pro-
duce more precise outputs. Finally, the model
combining all the kernels outperformed the base-
line by 7.53% in turn-level accuracy and 10.81%
in transition-level F-measure.

The error distributions in Figure 4 indicate that
these performance improvements were achieved
by resolving the errors not only on user-initiative
topic transitions, but also on system-initiative
cases, which implies the effectiveness of the struc-
tured knowledge from Wikipedia to track the top-
ics in mixed-initiative dialogs.

5 Conclusions

This paper presented a composite kernel approach
for dialog topic tracking. This approach aimed to
represent various types of domain knowledge ob-
tained from Wikipedia as two structures: history
sequences and domain context trees; then incor-
porate them into the model with kernel methods.
Experimental results show that the proposed ap-
proaches helped to improve the topic tracking per-
formances in mixed-initiative human-human di-
alogs with respect to the baseline model.
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Abstract

BLANC is a link-based coreference eval-
uation metric for measuring the qual-
ity of coreference systems on gold men-
tions. This paper extends the original
BLANC (“BLANC-gold” henceforth) to
system mentions, removing the gold men-
tion assumption. The proposed BLANC
falls back seamlessly to the original one if
system mentions are identical to gold men-
tions, and it is shown to strongly correlate
with existing metrics on the 2011 and 2012
CoNLL data.

1 Introduction

Coreference resolution aims at identifying natu-
ral language expressions (or mentions) that refer
to the same entity. It entails partitioning (often
imperfect) mentions into equivalence classes. A
critically important problem is how to measure the
quality of a coreference resolution system. Many
evaluation metrics have been proposed in the past
two decades, including the MUC measure (Vilain
et al., 1995), B-cubed (Bagga and Baldwin, 1998),
CEAF (Luo, 2005) and, more recently, BLANC-
gold (Recasens and Hovy, 2011). B-cubed and
CEAF treat entities as sets of mentions and mea-
sure the agreement between key (or gold standard)
entities and response (or system-generated) enti-
ties, while MUC and BLANC-gold are link-based.

In particular, MUC measures the degree of
agreement between key coreference links (i.e.,
links among mentions within entities) and re-
sponse coreference links, while non-coreference
links (i.e., links formed by mentions from different
entities) are not explicitly taken into account. This
leads to a phenomenon where coreference systems
outputting large entities are scored more favorably

than those outputting small entities (Luo, 2005).
BLANC (Recasens and Hovy, 2011), on the other
hand, considers both coreference links and non-
coreference links. It calculates recall, precision
and F-measure separately on coreference and non-
coreference links in the usual way, and defines
the overall recall, precision and F-measure as the
mean of the respective measures for coreference
and non-coreference links.

The BLANC-gold metric was developed with
the assumption that response mentions and key
mentions are identical. In reality, however, men-
tions need to be detected from natural language
text and the result is, more often than not, im-
perfect: some key mentions may be missing in
the response, and some response mentions may be
spurious—so-called “twinless” mentions by Stoy-
anov et al. (2009). Therefore, the identical-
mention-set assumption limits BLANC-gold’s ap-
plicability when gold mentions are not available,
or when one wants to have a single score mea-
suring both the quality of mention detection and
coreference resolution. The goal of this paper is
to extend the BLANC-gold metric to imperfect re-
sponse mentions.

We first briefly review the original definition of
BLANC, and rewrite its definition using set nota-
tion. We then argue that the gold-mention assump-
tion in Recasens and Hovy (2011) can be lifted
without changing the original definition. In fact,
the proposed BLANC metric subsumes the origi-
nal one in that its value is identical to the original
one when response mentions are identical to key
mentions.

The rest of the paper is organized as follows.
We introduce the notions used in this paper in
Section 2. We then present the original BLANC-
gold in Section 3 using the set notation defined in
Section 2. This paves the way to generalize it to
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imperfect system mentions, which is presented in
Section 4. The proposed BLANC is applied to the
CoNLL 2011 and 2012 shared task participants,
and the scores and its correlations with existing
metrics are shown in Section 5.

2 Notations

To facilitate the presentation, we define the nota-
tions used in the paper.

We use key to refer to gold standard mentions or
entities, and response to refer to system mentions
or entities. The collection of key entities is denoted
by K = {ki}|K|

i=1, where ki is the ith key entity;
accordingly, R = {rj}|R|

j=1 is the set of response
entities, and rj is the jth response entity. We as-
sume that mentions in {ki} and {rj} are unique;
in other words, there is no duplicate mention.

Let Ck(i) and Cr(j) be the set of coreference
links formed by mentions in ki and rj :

Ck(i) = {(m1,m2) : m1 ∈ ki,m2 ∈ ki,m1 6= m2}
Cr(j) = {(m1,m2) : m1 ∈ rj ,m2 ∈ rj ,m1 6= m2}

As can be seen, a link is an undirected edge be-
tween two mentions, and it can be equivalently
represented by a pair of mentions. Note that when
an entity consists of a single mention, its corefer-
ence link set is empty.

Let Nk(i, j) (i 6= j) be key non-coreference
links formed between mentions in ki and those
in kj , and let Nr(i, j) (i 6= j) be response non-
coreference links formed between mentions in ri
and those in rj , respectively:

Nk(i, j) = {(m1,m2) : m1 ∈ ki,m2 ∈ kj}
Nr(i, j) = {(m1,m2) : m1 ∈ ri,m2 ∈ rj}

Note that the non-coreference link set is empty
when all mentions are in the same entity.

We use the same letter and subscription with-
out the index in parentheses to denote the union of
sets, e.g.,

Ck = ∪iCk(i), Nk = ∪i 6=jNk(i, j)

Cr = ∪jCr(j), Nr = ∪i6=jNr(i, j)

We use Tk = Ck ∪ Nk and Tr = Cr ∪ Nr to
denote the total set of key links and total set of
response links, respectively. Clearly, Ck and Nk

form a partition of Tk since Ck ∩ Nk = ∅, Tk =
Ck ∪Nk. Likewise, Cr and Nr form a partition of
Tr.

We say that a key link l1 ∈ Tk equals a response
link l2 ∈ Tr if and only if the pair of mentions
from which the links are formed are identical. We
write l1 = l2 if two links are equal. It is easy to
see that the gold mention assumption—same set
of response mentions as the set of key mentions—
can be equivalently stated as Tk = Tr (this does
not necessarily mean that Ck = Cr or Nk = Nr).

We also use | · | to denote the size of a set.

3 Original BLANC

BLANC-gold is adapted from Rand Index (Rand,
1971), a metric for clustering objects. Rand Index
is defined as the ratio between the number of cor-
rect within-cluster links plus the number of correct
cross-cluster links, and the total number of links.

When Tk = Tr, Rand Index can be applied di-
rectly since coreference resolution reduces to a
clustering problem where mentions are partitioned
into clusters (entities):

Rand Index =
|Ck ∩ Cr|+ |Nk ∩Nr|

1
2

(|Tk|(|Tk| − 1)
) (1)

In practice, though, the simple-minded adoption
of Rand Index is not satisfactory since the number
of non-coreference links often overwhelms that of
coreference links (Recasens and Hovy, 2011), or,
|Nk| � |Ck| and |Nr| � |Cr|. Rand Index, if
used without modification, would not be sensitive
to changes of coreference links.

BLANC-gold solves this problem by averaging
the F-measure computed over coreference links
and the F-measure over non-coreference links.
Using the notations in Section 2, the recall, pre-
cision, and F-measure on coreference links are:

R(g)
c =

|Ck ∩ Cr|
|Ck ∩ Cr|+ |Ck ∩Nr| (2)

P (g)
c =

|Ck ∩ Cr|
|Cr ∩ Ck|+ |Cr ∩Nk| (3)

F (g)
c =

2R
(g)
c P

(g)
c

R
(g)
c + P

(g)
c

; (4)

Similarly, the recall, precision, and F-measure on
non-coreference links are computed as:

R(g)
n =

|Nk ∩Nr|
|Nk ∩ Cr|+ |Nk ∩Nr| (5)

P (g)
n =

|Nk ∩Nr|
|Nr ∩ Ck|+ |Nr ∩Nk| (6)

F (g)
n =

2R
(g)
n P

(g)
n

R
(g)
n + P

(g)
n

. (7)
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Finally, the BLANC-gold metric is the arithmetic
average of F (g)

c and F (g)
n :

BLANC(g) =
F

(g)
c + F

(g)
n

2
. (8)

Superscript g in these equations highlights the fact
that they are meant for coreference systems with
gold mentions.

Eqn. (8) indicates that BLANC-gold assigns
equal weight to F (g)

c , the F-measure from coref-
erence links, and F (g)

n , the F-measure from non-
coreference links. This avoids the problem that
|Nk| � |Ck| and |Nr| � |Cr|, should the original
Rand Index be used.

In Eqn. (2) - (3) and Eqn. (5) - (6), denominators
are written as a sum of disjoint subsets so they can
be related to the contingency table in (Recasens
and Hovy, 2011). Under the assumption that Tk =
Tr, it is clear that Ck = (Ck ∩ Cr) ∪ (Ck ∩Nr),
Cr = (Ck ∩ Cr) ∪ (Nk ∩ Cr), and so on.

4 BLANC for Imperfect Response
Mentions

Under the assumption that the key and response
mention sets are identical (which implies that
Tk = Tr), Equations (2) to (7) make sense. For
example, Rc is the ratio of the number of correct
coreference links over the number of key corefer-
ence links; Pc is the ratio of the number of cor-
rect coreference links over the number of response
coreference links, and so on.

However, when response mentions are not iden-
tical to key mentions, a key coreference link may
not appear in either Cr or Nr, so Equations (2) to
(7) cannot be applied directly to systems with im-
perfect mentions. For instance, if the key entities
are {a,b,c} {d,e}; and the response entities
are {b,c} {e,f,g}, then the key coreference
link (a,b) is not seen on the response side; sim-
ilarly, it is possible that a response link does not
appear on the key side either: (c,f) and (f,g)
are not in the key in the above example.

To account for missing or spurious links, we ob-
serve that
• Ck \ Tr are key coreference links missing in

the response;
• Nk \ Tr are key non-coreference links miss-

ing in the response;
• Cr \ Tk are response coreference links miss-

ing in the key;
• Nr \ Tk are response non-coreference links

missing in the key,
and we propose to extend the coreference F-
measure and non-coreference F-measure as fol-
lows. Coreference recall, precision and F-measure
are changed to:

Rc =
|Ck ∩ Cr|

|Ck ∩ Cr|+ |Ck ∩Nr|+ |Ck \ Tr| (9)

Pc =
|Ck ∩ Cr|

|Cr ∩ Ck|+ |Cr ∩Nk|+ |Cr \ Tk| (10)

Fc =
2RcPc

Rc + Pc
(11)

Non-coreference recall, precision and F-measure
are changed to:

Rn =
|Nk ∩Nr|

|Nk ∩ Cr|+ |Nk ∩Nr|+ |Nk \ Tr| (12)

Pn =
|Nk ∩Nr|

|Nr ∩ Ck|+ |Nr ∩Nk|+ |Nr \ Tk| (13)

Fn =
2RnPn

Rn + Pn
. (14)

The proposed BLANC continues to be the arith-
metic average of Fc and Fn:

BLANC =
Fc + Fn

2
. (15)

We observe that the definition of the proposed
BLANC, Equ. (9)-(14) subsume the BLANC-
gold (2) to (7) due to the following proposition:
If Tk = Tr, then BLANC = BLANC(g).

Proof. We only need to show that Rc = R
(g)
c ,

Pc = P
(g)
c , Rn = R

(g)
n , and Pn = P

(g)
n . We prove

the first one (the other proofs are similar and elided
due to space limitations). Since Tk = Tr and
Ck ⊂ Tk, we haveCk ⊂ Tr; thusCk \Tr = ∅, and
|Ck ∩ Tr| = 0. This establishes that Rc = R

(g)
c .

Indeed, sinceCk is a union of three disjoint sub-
sets: Ck = (Ck ∩ Cr) ∪ (Ck ∩ Nr) ∪ (Ck \ Tr),
R

(g)
c andRc can be unified as |Ck∩Cr|

|CK | . Unification
for other component recalls and precisions can be
done similarly. So the final definition of BLANC
can be succinctly stated as:

Rc =
|Ck ∩ Cr|
|Ck| , Pc =

|Ck ∩ Cr|
|Cr| (16)

Rn =
|Nk ∩Nr|
|Nk| , Pn =

|Nk ∩Nr|
|Nr| (17)

Fc =
2|Ck ∩ Cr|
|Ck|+ |Cr| , Fn =

2|Nk ∩Nr|
|Nk|+ |Nr| (18)

BLANC =
Fc + Fn

2
(19)
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4.1 Boundary Cases

Care has to be taken when counts of the BLANC
definition are 0. This can happen when all key
(or response) mentions are in one cluster or are
all singletons: the former case will lead to Nk = ∅
(or Nr = ∅); the latter will lead to Ck = ∅ (or
Cr = ∅). Observe that as long as |Ck|+ |Cr| > 0,
Fc in (18) is well-defined; as long as |Nk|+|Nr| >
0, Fn in (18) is well-defined. So we only need to
augment the BLANC definition for the following
cases:

(1) If Ck = Cr = ∅ and Nk = Nr = ∅, then
BLANC = I(Mk = Mr), where I(·) is an in-
dicator function whose value is 1 if its argument
is true, and 0 otherwise. Mk and Mr are the key
and response mention set. This can happen when a
document has no more than one mention and there
is no link.

(2) If Ck = Cr = ∅ and |Nk| + |Nr| > 0, then
BLANC = Fn. This is the case where the key
and response side has only entities consisting of
singleton mentions. Since there is no coreference
link, BLANC reduces to the non-coreference F-
measure Fn.

(3) If Nk = Nr = ∅ and |Ck| + |Cr| > 0, then
BLANC = Fc. This is the case where all mentions
in the key and response are in one entity. Since
there is no non-coreference link, BLANC reduces
to the coreference F-measure Fc.

4.2 Toy Examples

We walk through a few examples and show how
BLANC is calculated in detail. In all the examples
below, each lower-case letter represents a mention;
mentions in an entity are closed in {}; two letters
in () represent a link.

Example 1. Key entities are {abc} and {d}; re-
sponse entities are {bc} and {de}. Obviously,

Ck = {(ab), (bc), (ac)};
Nk = {(ad), (bd), (cd)};
Cr = {(bc), (de)};
Nr = {(bd), (be), (cd), (ce)}.

Therefore, Ck ∩ Cr = {(bc)}, Nk ∩ Nr =
{(bd), (cd)}, and Rc = 1

3 , Pc = 1
2 , Fc = 2

5 ; Rn =
2
3 , Pn = 2

4 , Fn = 4
7 . Finally, BLANC = 17

35 .
Example 2. Key entity is {a}; response entity

is {b}. This is boundary case (1): BLANC = 0.
Example 3. Key entities are {a}{b}{c}; re-

sponse entities are {a}{b}{d}. This is boundary
case (2): there are no coreference links. Since

Nk = {(ab), (bc), (ca)},

Participant R P BLANC

lee 50.23 49.28 48.84
sapena 40.68 49.05 44.47
nugues 47.83 44.22 45.95
chang 44.71 47.48 45.49
stoyanov 49.37 29.80 34.58
santos 46.74 37.33 41.33
song 36.88 39.69 30.92
sobha 35.42 39.56 36.31
yang 47.95 29.12 36.09
charton 42.32 31.54 35.65
hao 45.41 32.75 36.98
zhou 29.93 45.58 34.95
kobdani 32.29 33.01 32.57
xinxin 36.83 34.39 35.02
kummerfeld 34.84 29.53 30.98
zhang 30.10 43.96 35.71
zhekova 26.40 15.32 15.37
irwin 3.62 28.28 6.28

Table 1: The proposed BLANC scores of the
CoNLL-2011 shared task participants.

Nr = {(ab), (bd), (ad)},
we have
Nk ∩Nr = {(ab)}, and Rn = 1

3 , Pn = 1
3 .

So BLANC = Fn = 1
3 .

Example 4. Key entity is {abc}; response entity
is {bc}. This is boundary case (3): there are no
non-coreference links. Since

Ck = {(ab), (bc), (ca)}, and Cr = {(bc)},
we have

Ck ∩ Cr = {(bc)}, and Rc = 1
3 , Pc = 1,

So BLANC = Fc = 2
4 = 1

2 .

5 Results

5.1 CoNLL-2011/12
We have updated the publicly available CoNLL
coreference scorer1 with the proposed BLANC,
and used it to compute the proposed BLANC
scores for all the CoNLL 2011 (Pradhan et al.,
2011) and 2012 (Pradhan et al., 2012) participants
in the official track, where participants had to au-
tomatically predict the mentions. Tables 1 and 2
report the updated results.2

5.2 Correlation with Other Measures
Figure 1 shows how the proposed BLANC mea-
sure works when compared with existing met-
rics such as MUC, B-cubed and CEAF, us-
ing the BLANC and F1 scores. The proposed
BLANC is highly positively correlated with the

1http://code.google.com/p/reference-coreference-scorers
2The order is kept the same as in Pradhan et al. (2011) and

Pradhan et al. (2012) for easy comparison.
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Participant R P BLANC

Language: Arabic

fernandes 33.43 44.66 37.99
bjorkelund 32.65 45.47 37.93
uryupina 31.62 35.26 33.02
stamborg 32.59 36.92 34.50
chen 31.81 31.52 30.82
zhekova 11.04 62.58 18.51
li 4.60 56.63 8.42

Language: English

fernandes 54.91 63.66 58.75
martschat 52.00 58.84 55.04
bjorkelund 52.01 59.55 55.42
chang 52.85 55.03 53.86
chen 50.52 56.82 52.87
chunyang 51.19 55.47 52.65
stamborg 54.39 54.88 54.42
yuan 50.58 54.29 52.11
xu 45.99 54.59 46.47
shou 49.55 52.46 50.44
uryupina 44.15 48.89 46.04
songyang 40.60 50.85 45.10
zhekova 41.46 33.13 34.80
xinxin 44.39 32.79 36.54
li 25.17 52.96 31.85

Language: Chinese

chen 48.45 62.44 54.10
yuan 53.15 40.75 43.20
bjorkelund 47.58 45.93 44.22
xu 44.11 36.45 38.45
fernandes 42.36 61.72 49.63
stamborg 39.60 55.12 45.89
uryupina 33.44 56.01 41.88
martschat 27.24 62.33 37.89
chunyang 37.43 36.18 36.77
xinxin 36.46 39.79 37.85
li 21.61 62.94 30.37
chang 18.74 40.76 25.68
zhekova 21.50 37.18 22.89

Table 2: The proposed BLANC scores of the
CoNLL-2012 shared task participants.

R P F1

MUC 0.975 0.844 0.935
B-cubed 0.981 0.942 0.966
CEAF-m 0.941 0.923 0.966
CEAF-e 0.797 0.781 0.919

Table 3: Pearson’s r correlation coefficients be-
tween the proposed BLANC and the other coref-
erence measures based on the CoNLL 2011/2012
results. All p-values are significant at < 0.001.
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Figure 1: Correlation plot between the proposed
BLANC and the other measures based on the
CoNLL 2011/2012 results. All values are F1
scores.

other measures along R, P and F1 (Table 3),
showing that BLANC is able to capture most
entity-based similarities measured by B-cubed and
CEAF. However, the CoNLL data sets come from
OntoNotes (Hovy et al., 2006), where singleton
entities are not annotated, and BLANC has a wider
dynamic range on data sets with singletons (Re-
casens and Hovy, 2011). So the correlations will
likely be lower on data sets with singleton entities.

6 Conclusion

The original BLANC-gold (Recasens and Hovy,
2011) requires that system mentions be identical
to gold mentions, which limits the metric’s utility
since detected system mentions often have missing
key mentions or spurious mentions. The proposed
BLANC is free from this assumption, and we
have shown that it subsumes the original BLANC-
gold. Since BLANC works on imperfect system
mentions, we have used it to score the CoNLL
2011 and 2012 coreference systems. The BLANC
scores show strong correlation with existing met-
rics, especially B-cubed and CEAF-m.
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Abstract

The definitions of two coreference scoring
metrics—B3 and CEAF—are underspeci-
fied with respect to predicted, as opposed
to key (or gold) mentions. Several varia-
tions have been proposed that manipulate
either, or both, the key and predicted men-
tions in order to get a one-to-one mapping.
On the other hand, the metric BLANC was,
until recently, limited to scoring partitions
of key mentions. In this paper, we (i) ar-
gue that mention manipulation for scoring
predicted mentions is unnecessary, and po-
tentially harmful as it could produce unin-
tuitive results; (ii) illustrate the application
of all these measures to scoring predicted
mentions; (iii) make available an open-
source, thoroughly-tested reference imple-
mentation of the main coreference eval-
uation measures; and (iv) rescore the re-
sults of the CoNLL-2011/2012 shared task
systems with this implementation. This
will help the community accurately mea-
sure and compare new end-to-end corefer-
ence resolution algorithms.

1 Introduction
Coreference resolution is a key task in natural
language processing (Jurafsky and Martin, 2008)
aiming to detect the referential expressions (men-
tions) in a text that point to the same entity.
Roughly over the past two decades, research in
coreference (for the English language) had been
plagued by individually crafted evaluations based
on two central corpora—MUC (Hirschman and
Chinchor, 1997; Chinchor and Sundheim, 2003;
Chinchor, 2001) and ACE (Doddington et al.,
2004). Experimental parameters ranged from us-
ing perfect (gold, or key) mentions as input for

purely testing the quality of the entity linking al-
gorithm, to an end-to-end evaluation where pre-
dicted mentions are used. Given the range of
evaluation parameters and disparity between the
annotation standards for the two corpora, it was
very hard to grasp the state of the art for the
task of coreference. This has been expounded in
Stoyanov et al. (2009). The activity in this sub-
field of NLP can be gauged by: (i) the contin-
ual addition of corpora manually annotated for
coreference—The OntoNotes corpus (Pradhan et
al., 2007; Weischedel et al., 2011) in the general
domain, as well as the i2b2 (Uzuner et al., 2012)
and THYME (Styler et al., 2014) corpora in the
clinical domain would be a few examples of such
emerging corpora; and (ii) ongoing proposals for
refining the existing metrics to make them more
informative (Holen, 2013; Chen and Ng, 2013).

The CoNLL-2011/2012 shared tasks on corefer-
ence resolution using the OntoNotes corpus (Prad-
han et al., 2011; Pradhan et al., 2012) were an
attempt to standardize the evaluation settings by
providing a benchmark annotated corpus, scorer,
and state-of-the-art system results that would al-
low future systems to compare against them. Fol-
lowing the timely emphasis on end-to-end evalu-
ation, the official track used predicted mentions
and measured performance using five coreference
measures: MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAFe (Luo, 2005), CEAFm

(Luo, 2005), and BLANC (Recasens and Hovy,
2011). The arithmetic mean of the first three was
the task’s final score.

An unfortunate setback to these evaluations had
its root in three issues: (i) the multiple variations
of two of the scoring metrics—B3 and CEAF—
used by the community to handle predicted men-
tions; (ii) a buggy implementation of the Cai and
Strube (2010) proposal that tried to reconcile these
variations; and (iii) the erroneous computation of
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the BLANC metric for partitions of predicted men-
tions. Different interpretations as to how to com-
pute B3 and CEAF scores for coreference systems
when predicted mentions do not perfectly align
with key mentions—which is usually the case—
led to variations of these metrics that manipulate
the gold standard and system output in order to
get a one-to-one mention mapping (Stoyanov et
al., 2009; Cai and Strube, 2010). Some of these
variations arguably produce rather unintuitive re-
sults, while others are not faithful to the original
measures.

In this paper, we address the issues in scor-
ing coreference partitions of predicted mentions.
Specifically, we justify our decision to go back
to the original scoring algorithms by arguing that
manipulation of key or predicted mentions is un-
necessary and could in fact produce unintuitive re-
sults. We demonstrate the use of our recent ex-
tension of BLANC that can seamlessly handle pre-
dicted mentions (Luo et al., 2014). We make avail-
able an open-source, thoroughly-tested reference
implementation of the main coreference evalua-
tion measures that do not involve mention manip-
ulation and is faithful to the original intentions of
the proposers of these metrics. We republish the
CoNLL-2011/2012 results based on this scorer, so
that future systems can use it for evaluation and
have the CoNLL results available for comparison.

The rest of the paper is organized as follows.
Section 2 provides an overview of the variations
of the existing measures. We present our newly
updated coreference scoring package in Section 3
together with the rescored CoNLL-2011/2012 out-
puts. Section 4 walks through a scoring example
for all the measures, and we conclude in Section 5.

2 Variations of Scoring Measures

Two commonly used coreference scoring metrics
—B3 and CEAF—are underspecified in their ap-
plication for scoring predicted, as opposed to key
mentions. The examples in the papers describing
these metrics assume perfect mentions where pre-
dicted mentions are the same set of mentions as
key mentions. The lack of accompanying refer-
ence implementation for these metrics by its pro-
posers made it harder to fill the gaps in the speci-
fication. Subsequently, different interpretations of
how one can evaluate coreference systems when
predicted mentions do not perfectly align with key
mentions led to variations of these metrics that ma-
nipulate the gold and/or predicted mentions (Stoy-

anov et al., 2009; Cai and Strube, 2010). All these
variations attempted to generate a one-to-one map-
ping between the key and predicted mentions, as-
suming that the original measures cannot be ap-
plied to predicted mentions. Below we first pro-
vide an overview of these variations and then dis-
cuss the unnecessity of this assumption.

Coining the term twinless mentions for those
mentions that are either spurious or missing from
the predicted mention set, Stoyanov et al. (2009)
proposed two variations to B3 — B3

all and B3
0—to

handle them. In the first variation, all predicted
twinless mentions are retained, whereas the lat-
ter discards them and penalizes recall for twin-
less predicted mentions. Rahman and Ng (2009)
proposed another variation by removing “all and
only those twinless system mentions that are sin-
gletons before applying B3 and CEAF.” Follow-
ing upon this line of research, Cai and Strube
(2010) proposed a unified solution for both B3 and
CEAFm, leaving the question of handling CEAFe

as future work because “it produces unintuitive
results.” The essence of their solution involves
manipulating twinless key and predicted mentions
by adding them either from the predicted parti-
tion to the key partition or vice versa, depend-
ing on whether one is computing precision or re-
call. The Cai and Strube (2010) variation was used
by the CoNLL-2011/2012 shared tasks on corefer-
ence resolution using the OntoNotes corpus, and
by the i2b2 2011 shared task on coreference res-
olution using an assortment of clinical notes cor-
pora (Uzuner et al., 2012).1 It was later identified
by Recasens et al. (2013) that there was a bug in
the implementation of this variation in the scorer
used for the CoNLL-2011/2012 tasks. We have
not tested the correctness of this variation in the
scoring package used for the i2b2 shared task.

However, it turns out that the CEAF metric (Luo,
2005) was always intended to work seamlessly on
predicted mentions, and so has been the case with
the B3 metric.2 In a latter paper, Rahman and Ng
(2011) correctly state that “CEAF can compare par-
titions with twinless mentions without any modifi-
cation.” We will look at this further in Section 4.3.

We argue that manipulations of key and re-
sponse mentions/entities, as is done in the exist-
ing B3 variations, not only confound the evalu-
ation process, but are also subject to abuse and
can seriously jeopardize the fidelity of the evalu-

1Personal communication with Andreea Bodnari, and
contents of the i2b2 scorer code.

2Personal communication with Breck Baldwin.
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ation. Given space constraints we use an exam-
ple worked out in Cai and Strube (2010). Let
the key contain an entity with mentions {a, b, c}
and the prediction contain an entity with mentions
{a, b, d}. As detailed in Cai and Strube (2010,
p. 29-30, Tables 1–3), B3

0 assigns a perfect pre-
cision of 1.00 which is unintuitive as the system
has wrongly predicted a mention d as belonging to
the entity. For the same prediction, B3

all assigns a
precision of 0.556. But, if the prediction contains
two entities {a, b, d} and {c} (i.e., the mention c
is added as a spurious singleton), then B3

all preci-
sion increases to 0.667 which is counter-intuitive
as it does not penalize the fact that c is erroneously
placed in its own entity. The version illustrated in
Section 4.2, which is devoid of any mention ma-
nipulations, gives a precision of 0.444 in the first
scenario and the precision drops to 0.333 in the
second scenario with the addition of a spurious
singleton entity {c}. This is a more intuitive be-
havior.

Contrary to both B3 and CEAF, the BLANC mea-
sure (Recasens and Hovy, 2011) was never de-
signed to handle predicted mentions. However, the
implementation used for the SemEval-2010 shared
task as well as the one for the CoNLL-2011/2012
shared tasks accepted predicted mentions as input,
producing undefined results. In Luo et al. (2014)
we have extended the BLANC metric to deal with
predicted mentions

3 Reference Implementation
Given the potential unintuitive outcomes of men-
tion manipulation and the misunderstanding that
the original measures could not handle twinless
predicted mentions (Section 2), we redesigned the
CoNLL scorer. The new implementation:

• is faithful to the original measures;
• removes any prior mention manipulation,

which might depend on specific annotation
guidelines among other problems;
• has been thoroughly tested to ensure that it

gives the expected results according to the
original papers, and all test cases are included
as part of the release;
• is free of the reported bugs that the CoNLL

scorer (v4) suffered (Recasens et al., 2013);
• includes the extension of BLANC to handle

predicted mentions (Luo et al., 2014).

This is the open source scoring package3 that
we present as a reference implementation for the

3
http://code.google.com/p/reference-coreference-scorers/

SYSTEM MD MUC B3 CEAF BLANC CONLL
m e AVERAGE

F1 F11 F21 F1 F31

CoNLL-2011; English

lee 70.7 59.6 48.9 53.0 46.1 48.8 51.5
sapena 68.4 59.5 46.5 51.3 44.0 44.5 50.0
nugues 69.0 58.6 45.0 48.4 40.0 46.0 47.9
chang 64.9 57.2 46.0 50.7 40.0 45.5 47.7
stoyanov 67.8 58.4 40.1 43.3 36.9 34.6 45.1
santos 65.5 56.7 42.9 45.1 35.6 41.3 45.0
song 67.3 60.0 41.4 41.0 33.1 30.9 44.8
sobha 64.8 50.5 39.5 44.2 39.4 36.3 43.1
yang 63.9 52.3 39.4 43.2 35.5 36.1 42.4
charton 64.3 52.5 38.0 42.6 34.5 35.7 41.6
hao 64.3 54.5 37.7 41.9 31.6 37.0 41.3
zhou 62.3 49.0 37.0 40.6 35.0 35.0 40.3
kobdani 61.0 53.5 34.8 38.1 34.1 32.6 38.7
xinxin 61.9 46.6 34.9 37.7 31.7 35.0 37.7
kummerfeld 62.7 42.7 34.2 38.8 35.5 31.0 37.5
zhang 61.1 47.9 34.4 37.8 29.2 35.7 37.2
zhekova 48.3 24.1 23.7 23.4 20.5 15.4 22.8
irwin 26.7 20.0 11.7 18.5 14.7 6.3 15.5

CoNLL-2012; English

fernandes 77.7 70.5 57.6 61.4 53.9 58.8 60.7
martschat 75.2 67.0 54.6 58.8 51.5 55.0 57.7
bjorkelund 75.4 67.6 54.5 58.2 50.2 55.4 57.4
chang 74.3 66.4 53.0 57.1 48.9 53.9 56.1
chen 73.8 63.7 51.8 55.8 48.1 52.9 54.5
chunyang 73.7 63.8 51.2 55.1 47.6 52.7 54.2
stamborg 73.9 65.1 51.7 55.1 46.6 54.4 54.2
yuan 72.5 62.6 50.1 54.5 46.0 52.1 52.9
xu 72.0 66.2 50.3 51.3 41.3 46.5 52.6
shou 73.7 62.9 49.4 53.2 46.7 50.4 53.0
uryupina 70.9 60.9 46.2 49.3 42.9 46.0 50.0
songyang 68.8 59.8 45.9 49.6 42.4 45.1 49.4
zhekova 67.1 53.5 35.7 39.7 32.2 34.8 40.5
xinxin 62.8 48.3 35.7 38.0 31.9 36.5 38.6
li 59.9 50.8 32.3 36.3 25.2 31.9 36.1

CoNLL-2012; Chinese

chen 71.6 62.2 55.7 60.0 55.0 54.1 57.6
yuan 68.2 60.3 52.4 55.8 50.2 43.2 54.3
bjorkelund 66.4 58.6 51.1 54.2 47.6 44.2 52.5
xu 65.2 58.1 49.5 51.9 46.6 38.5 51.4
fernandes 66.1 60.3 49.6 54.4 44.5 49.6 51.5
stamborg 64.0 57.8 47.4 51.6 41.9 45.9 49.0
uryupina 59.0 53.0 41.7 46.9 37.6 41.9 44.1
martschat 58.6 52.4 40.8 46.0 38.2 37.9 43.8
chunyang 61.6 49.8 39.6 44.2 37.3 36.8 42.2
xinxin 55.9 48.1 38.8 42.9 34.5 37.9 40.5
li 51.5 44.7 31.5 36.7 25.3 30.4 33.8
chang 47.6 37.9 28.8 36.1 29.6 25.7 32.1
zhekova 47.3 40.6 28.1 31.4 21.2 22.9 30.0

CoNLL-2012; Arabic

fernandes 64.8 46.5 42.5 49.2 46.5 38.0 45.2
bjorkelund 60.6 47.8 41.6 46.7 41.2 37.9 43.5
uryupina 55.4 41.5 36.1 41.4 35.0 33.0 37.5
stamborg 59.5 41.2 35.9 40.0 32.9 34.5 36.7
chen 59.8 39.0 32.1 34.7 26.0 30.8 32.4
zhekova 41.0 29.9 22.7 31.1 25.9 18.5 26.2
li 29.7 18.1 13.1 21.0 17.3 8.4 16.2

Table 1: Performance on the official, closed track
in percentages using all predicted information for
the CoNLL-2011 and 2012 shared tasks.

community to use. It is written in perl and stems
from the scorer that was initially used for the
SemEval-2010 shared task (Recasens et al., 2010)
and later modified for the CoNLL-2011/2012
shared tasks.4

Partitioning detected mentions into entities (or
equivalence classes) typically comprises two dis-
tinct tasks: (i) mention detection; and (ii) coref-
erence resolution. A typical two-step coreference
algorithm uses mentions generated by the best

4We would like to thank Emili Sapena for writing the first
version of the scoring package.
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Figure 1: Example key and response entities along
with the partitions for computing the MUC score.

possible mention detection algorithm as input to
the coreference algorithm. Therefore, ideally one
would want to score the two steps independently
of each other. A peculiarity of the OntoNotes
corpus is that singleton referential mentions are
not annotated, thereby preventing the computation
of a mention detection score independently of the
coreference resolution score. In corpora where all
referential mentions (including singletons) are an-
notated, the mention detection score generated by
this implementation is independent of the corefer-
ence resolution score.

We used this reference implementation to
rescore the CoNLL-2011/2012 system outputs for
the official task to enable future comparisons with
these benchmarks. The new CoNLL-2011/2012
results are in Table 1. We found that the over-
all system ranking remained largely unchanged for
both shared tasks, except for some of the lower
ranking systems that changed one or two places.
However, there was a considerable drop in the
magnitude of all B3 scores owing to the combi-
nation of two things: (i) mention manipulation, as
proposed by Cai and Strube (2010), adds single-
tons to account for twinless mentions; and (ii) the
B3 metric allows an entity to be used more than
once as pointed out by Luo (2005). This resulted
in a drop in the CoNLL averages (B3 is one of the
three measures that make the average).

4 An Illustrative Example

This section walks through the process of com-
puting each of the commonly used metrics for
an example where the set of predicted mentions
has some missing key mentions and some spu-
rious mentions. While the mathematical formu-
lae for these metrics can be found in the original
papers (Vilain et al., 1995; Bagga and Baldwin,

1998; Luo, 2005), many misunderstandings dis-
cussed in Section 2 are due to the fact that these
papers lack an example showing how a metric is
computed on predicted mentions. A concrete ex-
ample goes a long way to prevent similar misun-
derstandings in the future. The example is adapted
from Vilain et al. (1995) with some slight modifi-
cations so that the total number of mentions in the
key is different from the number of mentions in
the prediction. The key (K) contains two entities
with mentions {a, b, c} and {d, e, f, g} and the re-
sponse (R) contains three entities with mentions
{a, b}; {c, d} and {f, g, h, i}:

K =

K1︷ ︸︸ ︷
{a, b, c}

K2︷ ︸︸ ︷
{d, e, f, g} (1)

R =

R1︷ ︸︸ ︷
{a, b}

R2︷ ︸︸ ︷
{c, d}

R3︷ ︸︸ ︷
{f, g, h, i}. (2)

Mention e is missing from the response, and men-
tions h and i are spurious in the response. The fol-
lowing sections use R to denote recall and P for
precision.

4.1 MUC

The main step in the MUC scoring is creating the
partitions with respect to the key and response re-
spectively, as shown in Figure 1. Once we have
the partitions, then we compute the MUC score by:

R =

∑Nk
i=1(|Ki| − |p(Ki)|)∑Nk

i=1(|Ki| − 1)

=
(3− 2) + (4− 3)

(3− 1) + (4− 1)
= 0.40

P =

∑Nr
i=1(|Ri| − |p′(Ri)|)∑Nr

i=1(|Ri| − 1)

=
(2− 1) + (2− 2) + (4− 3)

(2− 1) + (2− 1) + (4− 1)
= 0.40,

where Ki is the ith key entity and p(Ki) is the
set of partitions created by intersecting Ki with
response entities (cf. the middle sub-figure in Fig-
ure 1); Ri is the ith response entity and p′(Ri) is
the set of partitions created by intersectingRi with
key entities (cf. the right-most sub-figure in Fig-
ure 1); and Nk and Nr are the number of key and
response entities, respectively.

The MUC F1 score in this case is 0.40.

4.2 B3

For computing B3 recall, each key mention is as-
signed a credit equal to the ratio of the number of
correct mentions in the predicted entity contain-
ing the key mention to the size of the key entity to
which the mention belongs, and the recall is just
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the sum of credits over all key mentions normal-
ized over the number of key mentions. B3 preci-
sion is computed similarly, except switching the
role of key and response. Applied to the example:

R =

∑Nk
i=1

∑Nr
j=1

|Ki∩Rj |2
|Ki|∑Nk

i=1 |Ki|

=
1

7
× (

22

3
+

12

3
+

12

4
+

22

4
) =

1

7
× 35

12
≈ 0.42

P =

∑Nk
i=1

∑Nr
j=1

|Ki∩Rj |2
|Rj |∑Nr

i=1 |Rj |

=
1

8
× (

22

2
+

12

2
+

12

2
+

22

4
) =

1

8
× 4

1
= 0.50

Note that terms with 0 value are omitted. The B3

F1 score is 0.46.

4.3 CEAF

The first step in the CEAF computation is getting
the best scoring alignment between the key and
response entities. In this case the alignment is
straightforward. Entity R1 aligns with K1 and R3

aligns with K2. R2 remains unaligned.

CEAFm

CEAFm recall is the number of aligned mentions
divided by the number of key mentions, and preci-
sion is the number of aligned mentions divided by
the number of response mentions:

R =
|K1 ∩ R1|+ |K2 ∩ R3|

|K1|+ |K2|
=

(2 + 2)

(3 + 4)
≈ 0.57

P =
|K1 ∩ R1|+ |K2 ∩ R3|
|R1|+ |R2|+ |R3|

=
(2 + 2)

(2 + 2 + 4)
= 0.50

The CEAFm F1 score is 0.53.

CEAFe

We use the same notation as in Luo (2005):
φ4(Ki, Rj) to denote the similarity between a key
entity Ki and a response entity Rj . φ4(Ki, Rj) is
defined as:

φ4(Ki, Rj) =
2× |Ki ∩ Rj |
|Ki|+ |Rj |

.

CEAFe recall and precision, when applied to this
example, are:

R =
φ4(K1, R1) + φ4(K2, R3)

Nk

=

(2×2)
(3+2) +

(2×2)
(4+4)

2
= 0.65

P =
φ4(K1, R1) + φ4(K2, R3)

Nr

=

(2×2)
(3+2) +

(2×2)
(4+4)

3
≈ 0.43

The CEAFe F1 score is 0.52.

4.4 BLANC

The BLANC metric illustrated here is the one in
our implementation which extends the original

BLANC (Recasens and Hovy, 2011) to predicted
mentions (Luo et al., 2014).

Let Ck and Cr be the set of coreference links
in the key and response respectively, and Nk and
Nr be the set of non-coreference links in the key
and response respectively. A link between a men-
tion pair m and n is denoted by mn; then for the
example in Figure 1, we have

Ck = {ab, ac, bc, de, df, dg, ef, eg, fg}
Nk = {ad, ae, af, ag, bd, be, bf, bg, cd, ce, cf, cg}
Cr = {ab, cd, fg, fh, fi, gh, gi, hi}
Nr = {ac, ad, af, ag, ah, ai, bc, bd, bf, bg, bh, bi,

cf, cg, ch, ci, df, dg, dh, di}.

Recall and precision for coreference links are:

Rc =
|Ck ∩ Cr|
|Ck|

=
2

9
≈ 0.22

Pc =
|Ck ∩ Cr|
|Cr|

=
2

8
= 0.25

and the coreference F-measure, Fc ≈ 0.23. Sim-
ilarly, recall and precision for non-coreference
links are:

Rn =
|Nk ∩Nr|
|Nk|

=
8

12
≈ 0.67

Pn =
|Nk ∩Nr|
|Nr|

=
8

20
= 0.40,

and the non-coreference F-measure, Fn = 0.50.
So the BLANC score is Fc+Fn

2 ≈ 0.36.

5 Conclusion
We have cleared several misunderstandings about
coreference evaluation metrics, especially when a
response contains imperfect predicted mentions,
and have argued against mention manipulations
during coreference evaluation. These misunder-
standings are caused partially by the lack of il-
lustrative examples to show how a metric is com-
puted on predicted mentions not aligned perfectly
with key mentions. Therefore, we provide detailed
steps for computing all four metrics on a represen-
tative example. Furthermore, we have a reference
implementation of these metrics that has been rig-
orously tested and has been made available to the
public as open source software. We reported new
scores on the CoNLL 2011 and 2012 data sets,
which can serve as the benchmarks for future re-
search work.
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Abstract

The effort required for a human annota-
tor to detect sentiment is not uniform for
all texts, irrespective of his/her expertise.
We aim to predict a score that quantifies
this effort, using linguistic properties of
the text. Our proposed metric is called
Sentiment Annotation Complexity (SAC).
As for training data, since any direct judg-
ment of complexity by a human annota-
tor is fraught with subjectivity, we rely on
cognitive evidence from eye-tracking. The
sentences in our dataset are labeled with
SAC scores derived from eye-fixation du-
ration. Using linguistic features and anno-
tated SACs, we train a regressor that pre-
dicts the SAC with a best mean error rate of
22.02% for five-fold cross-validation. We
also study the correlation between a hu-
man annotator’s perception of complexity
and a machine’s confidence in polarity de-
termination. The merit of our work lies in
(a) deciding the sentiment annotation cost
in, for example, a crowdsourcing setting,
(b) choosing the right classifier for senti-
ment prediction.

1 Introduction

The effort required by a human annotator to de-
tect sentiment is not uniform for all texts. Com-
pare the hypothetical tweet “Just what I wanted: a
good pizza.” with “Just what I wanted: a cold
pizza.”. The two are lexically and structurally
similar. However, because of the sarcasm in the
second tweet (in “cold” pizza, an undesirable sit-
uation followed by a positive sentiment phrase
“just what I wanted”, as discussed in Riloff et al.
(2013)), it is more complex than the first for senti-
ment annotation. Thus, independent of how good

∗- Aditya is funded by the TCS Research Fellowship Pro-
gram.

the annotator is, there are sentences which will be
perceived to be more complex than others. With
regard to this, we introduce a metric called senti-
ment annotation complexity (SAC). The SAC of a
given piece of text (sentences, in our case) can be
predicted using the linguistic properties of the text
as features.

The primary question is whether such complex-
ity measurement is necessary at all. Fort et al
(2012) describe the necessity of annotation com-
plexity measurement in manual annotation tasks.
Measuring annotation complexity is beneficial in
annotation crowdsourcing. If the complexity of
the text can be estimated even before the annota-
tion begins, the pricing model can be fine-tuned
(pay less for sentences that are easy to annotate,
for example). Also, in terms of an automatic SA
engine which has multiple classifiers in its ensem-
ble, a classifier may be chosen based on the com-
plexity of sentiment annotation (for example, use
a rule-based classifier for simple sentences and a
more complex classifier for other sentences). Our
metric adds value to sentiment annotation and sen-
timent analysis, in these two ways. The fact that
sentiment expression may be complex is evident
from a study of comparative sentences by Gana-
pathibhotla and Liu (2008), sarcasm by Riloff et
al. (2013), thwarting by Ramteke et al. (2013) or
implicit sentiment by Balahur et al. (2011). To
the best of our knowledge, there is no general ap-
proach to “measure” how complex a piece of text
is, in terms of sentiment annotation.

The central challenge here is to annotate a data
set with SAC. To measure the “actual” time spent
by an annotator on a piece of text, we use an eye-
tracker to record eye-fixation duration: the time
for which the annotator has actually focused on
the sentence during annotation. Eye-tracking an-
notations have been used to study the cognitive as-
pects of language processing tasks like translation
by Dragsted (2010) and sense disambiguation by
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Joshi et al. (2011). Mishra et al. (2013) present a
technique to determine translation difficulty index.
The work closest to ours is by Scott et al. (2011)
who use eye-tracking to study the role of emotion
words in reading.

The novelty of our work is three-fold: (a) The
proposition of a metric to measure complexity of
sentiment annotation, (b) The adaptation of past
work that uses eye-tracking for NLP in the con-
text of sentiment annotation, (c) The learning of
regressors that automatically predict SAC using
linguistic features.

2 Understanding Sentiment Annotation
Complexity

The process of sentiment annotation consists of
two sub-processes: comprehension (where the an-
notator understands the content) and sentiment
judgment (where the annotator identifies the sen-
timent). The complexity in sentiment annotation
stems from an interplay of the two and we expect
SAC to capture the combined complexity of both
the sub-processes. In this section, we describe
how complexity may be introduced in sentiment
annotation in different classical layers of NLP.

The simplest form of sentiment annotation com-
plexity is at the lexical level. Consider the sen-
tence “It is messy, uncouth, incomprehensible, vi-
cious and absurd”. The sentiment words used
in this sentence are uncommon, resulting in com-
plexity.

The next level of sentiment annotation com-
plexity arises due to syntactic complexity. Con-
sider the review: “A somewhat crudely con-
structed but gripping, questing look at a person so
racked with self-loathing, he becomes an enemy to
his own race.”. An annotator will face difficulty
in comprehension as well as sentiment judgment
due to the complicated phrasal structure in this re-
view. Implicit expression of sentiment introduces
complexity at the semantic and pragmatic level.
Sarcasm expressed in “It’s like an all-star salute to
disney’s cheesy commercialism” leads to difficulty
in sentiment annotation because of positive words
like “an all-star salute”.

Manual annotation of complexity scores may
not be intuitive and reliable. Hence, we use a cog-
nitive technique to create our annotated dataset.
The underlying idea is: if we monitor annotation
of two textual units of equal length, the more com-
plex unit will take longer to annotate, and hence,

should have a higher SAC. Using the idea of “an-
notation time” linked with complexity, we devise a
technique to create a dataset annotated with SAC.

It may be thought that inter-annotator agree-
ment (IAA) provides implicit annotation: the
higher the agreement, the easier the piece of text
is for sentiment annotation. However, in case of
multiple expert annotators, this agreement is ex-
pected to be high for most sentences, due to the
expertise. For example, all five annotators agree
with the label for 60% sentences in our data set.
However, the duration for these sentences has a
mean of 0.38 seconds and a standard deviation of
0.27 seconds. This indicates that although IAA is
easy to compute, it does not determine sentiment
annotation complexity of text in itself.

3 Creation of dataset annotated with
SAC

We wish to predict sentiment annotation complex-
ity of the text using a supervised technique. As
stated above, the time-to-annotate is one good can-
didate. However, “simple time measurement” is
not reliable because the annotator may spend time
not doing any annotation due to fatigue or distrac-
tion. To accurately record the time, we use an
eye-tracking device that measures the “duration of
eye-fixations1”. Another attribute recorded by the
eye-tracker that may have been used is “saccade
duration2”. However, saccade duration is not sig-
nificant for annotation of short text, as in our case.
Hence, the SAC labels of our dataset are fixation
durations with appropriate normalization.

It may be noted that the eye-tracking device is
used only to annotate training data. The actual
prediction of SAC is done using linguistic features
alone.

3.1 Eye-tracking Experimental Setup

We use a sentiment-annotated data set consisting
of movie reviews by (Pang and Lee, 2005) and
tweets from http://help.sentiment140.
com/for-students. A total of 1059 sen-
tences (566 from a movie corpus, 493 from a twit-
ter corpus) are selected.

We then obtain two kinds of annotation from
five paid annotators: (a) sentiment (positive, nega-
tive and objective), (b) eye-movement as recorded

1A long stay of the visual gaze on a single location.
2A rapid movement of the eyes between positions of rest

on the sentence.
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Figure 1: Gaze-data recording using Translog-II

by an eye-tracker. They are given a set of instruc-
tions beforehand and can seek clarifications. This
experiment is conducted as follows:

1. A sentence is displayed to the annotator on
the screen. The annotator verbally states the
sentiment of this sentence, before (s)he can
proceed to the next.

2. While the annotator reads the sentence, a
remote eye-tracker (Model: Tobii TX 300,
Sampling rate: 300Hz) records the eye-
movement data of the annotator. The eye-
tracker is linked to a Translog II soft-
ware (Carl, 2012) in order to record the data.
A snapshot of the software is shown in fig-
ure 1. The dots and circles represent position
of eyes and fixations of the annotator respec-
tively.

3. The experiment then continues in modules of
50 sentences at a time. This is to prevent fa-
tigue over a period of time. Thus, each an-
notator participates in this experiment over a
number of sittings.

We ensure the quality of our dataset in different
ways: (a) Our annotators are instructed to avoid
unnecessary head movements and eye-movements
outside the experiment environment. (b) To min-
imize noise due to head movements further, they
are also asked to state the annotation verbally,
which was then manually recorded, (c) Our an-
notators are students between the ages 20-24 with
English as the primary language of academic in-
struction and have secured a TOEFL iBT score of
110 or above.

We understand that sentiment is nuanced- to-
wards a target, through constructs like sarcasm and
presence of multiple entities. However, we want to
capture the most natural form of sentiment anno-
tation. So, the guidelines are kept to a bare mini-
mum of “annotating a sentence as positive, nega-
tive and objective as per the speaker”. This exper-
iment results in a data set of 1059 sentences with

a fixation duration recorded for each sentence-
annotator pair3 The multi-rater kappa IAA for sen-
timent annotation is 0.686.

3.2 Calculating SAC from eye-tracked data
We now need to annotate each sentence with a
SAC. We extract fixation durations of the five an-
notators for each of the annotated sentences. A
single SAC score for sentence s for N annotators
is computed as follows:

SAC(s) = 1
N

N∑
n=1

z(n,dur(s,n))
len(s)

where,

z(n, dur(s, n)) = dur(s,n)−µ(dur(n))
σ(dur(n))

(1)

In the above formula, N is the total number of an-
notators while n corresponds to a specific annota-
tor. dur(s, n) is the fixation duration of annotator
n on sentence s. len(s) is the number of words
in sentence s. This normalization over number
of words assumes that long sentences may have
high dur(s, n) but do not necessarily have high
SACs. µ(dur(n)), σ(dur(n)) is the mean and
standard deviation of fixation durations for anno-
tator n across all sentences. z(n, .) is a function
that z-normalizes the value for annotator n to stan-
dardize the deviation due to reading speeds. We
convert the SAC values to a scale of 1-10 using
min-max normalization. To understand how the
formula records sentiment annotation complexity,
consider the SACs of examples in section 2. The
sentence “it is messy , uncouth , incomprehensi-
ble , vicious and absurd” has a SAC of 3.3. On the
other hand, the SAC for the sarcastic sentence “it’s
like an all-star salute to disney’s cheesy commer-
cialism.” is 8.3.

4 Predictive Framework for SAC

The previous section shows how gold labels for
SAC can be obtained using eye-tracking experi-
ments. This section describes our predictive for
SAC that uses four categories of linguistic fea-
tures: lexical, syntactic, semantic and sentiment-
related in order to capture the subprocesses of an-
notation as described in section 2.

4.1 Experiment Setup
The linguistic features described in Table 3.2 are
extracted from the input sentences. Some of these

3The complete eye-tracking data is available at:http://
www.cfilt.iitb.ac.in/˜cognitive-nlp/.
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Feature Description
Lexical

- Word Count
- Degree of polysemy Average number of Wordnet senses per word
- Mean Word Length Average number of characters per word (commonly used in readability studies

as in the case of Pascual et al. (2005))
- %ge of nouns and adjs.
- %ge of Out-of-
vocabulary words

Syntactic
- Dependency Distance Average distance of all pairs of dependent words in the sentence (Lin, 1996)
- Non-terminal to Ter-
minal ratio

Ratio of the number of non-terminals to the number of terminals in the con-
stituency parse of a sentence

Semantic
- Discourse connectors Number of discourse connectors
- Co-reference distance Sum of token distance between co-referring entities of anaphora in a sentence
- Perplexity Trigram perplexity using language models trained on a mixture of sentences

from the Brown corpus, the Amazon Movie corpus and Stanford twitter corpus
(mentioned in Sections 3 and 5)

Sentiment-related (Computed using SentiWordNet (Esuli et al., 2006))
- Subjective Word
Count
- Subjective Score Sum of SentiWordNet scores of all words
- Sentiment Flip Count A positive word followed in sequence by a negative word, or vice versa counts

as one sentiment flip

Table 1: Linguistic Features for the Predictive Framework

features are extracted using Stanford Core NLP 4

tools and NLTK (Bird et al., 2009). Words that
do not appear in Academic Word List 5 and Gen-
eral Service List 6 are treated as out-of-vocabulary
words. The training data consists of 1059 tuples,
with 13 features and gold labels from eye-tracking
experiments.

To predict SAC, we use Support Vector Regres-
sion (SVR) (Joachims, 2006). Since we do not
have any information about the nature of the rela-
tionship between the features and SAC, choosing
SVR allows us to try multiple kernels. We carry
out a 5-fold cross validation for both in-domain
and cross-domain settings, to validate that the re-
gressor does not overfit. The model thus learned is
evaluated using: (a) Error metrics namely, Mean
Squared Error estimate, Mean Absolute Error esti-
mate and Mean Percentage Error. (b) the Pearson
correlation coefficient between the gold and pre-

4http://nlp.stanford.edu/software/
corenlp.shtml

5www.victoria.ac.nz/lals/resources/academicwordlist/
6www.jbauman.com/gsl.html

dicted SAC.

4.2 Results

The results are tabulated in Table 2. Our obser-
vation is that a quadratic kernel performs slightly
better than linear. The correlation values are pos-
itive and indicate that even if the predicted scores
are not as accurate as desired, the system is capa-
ble of ranking sentences in the correct order based
on their sentiment complexity. The mean percent-
age error (MPE) of the regressors ranges between
22-38.21%. The cross-domain MPE is higher than
the rest, as expected.

To understand how each of the features per-
forms, we conducted ablation tests by con-
sidering one feature at a time. Based on
the MPE values, the best features are: Mean
word length (MPE=27.54%), Degree of Polysemy
(MPE=36.83%) and %ge of nouns and adjectives
(MPE=38.55%). To our surprise, word count per-
forms the worst (MPE=85.44%). This is unlike
tasks like translation where length has been shown
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Kernel Linear Quadratic Cross Domain Linear
Domain Mixed Movie Twitter Mixed Movie Twitter Movie Twitter
MSE 1.79 1.55 1.99 1.68 1.53 1.88 3.17 2.24
MAE 0.93 0.89 0.95 0.91 0.88 0.93 1.39 1.19
MPE 22.49% 23.8% 25.45% 22.02% 23.8% 25% 35.01% 38.21%
Correlation 0.54 0.38 0.56 0.57 0.37 0.6 0.38 0.46

Table 2: Performance of Predictive Framework for 5-fold in-domain and cross-domain validation using
Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Percentage Error (MPE) estimates
and correlation with the gold labels.

to be one of the best predictors in translation dif-
ficulty (Mishra et al., 2013). We believe that for
sentiment annotation, longer sentences may have
more lexical clues that help detect the sentiment
more easily. Note that some errors may be intro-
duced in feature extraction due to limitations of
the NLP tools.

5 Discussion

Our proposed metric measures complexity of sen-
timent annotation, as perceived by human annota-
tors. It would be worthwhile to study the human-
machine correlation to see if what is difficult for
a machine is also difficult for a human. In other
words, the goal is to show that the confidence
scores of a sentiment classifier are negatively cor-
related with SAC.

We use three sentiment classification tech-
niques: Naı̈ve Bayes, MaxEnt and SVM with un-
igrams, bigrams and trigrams as features. The
training datasets used are: a) 10000 movie reviews
from Amazon Corpus (McAuley et. al, 2013) and
b) 20000 tweets from the twitter corpus (same as
mentioned in section 3). Using NLTK and Scikit-
learn7 with default settings, we generate six posi-
tive/negative classifiers, for all possible combina-
tions of the three models and two datasets.

The confidence score of a classifier8 for given
text t is computed as follows:

P : Probability of predicted class

Confidence(t) =


P if predicted
polarity is correct
1− P otherwise

(2)

7http://scikit-learn.org/stable/
8In case of SVM, the probability of predicted class is com-

puted as given in Platt (1999).

Classifier (Corpus) Correlation
Naı̈ve Bayes (Movie) -0.06 (73.35)
Naı̈ve Bayes (Twitter) -0.13 (71.18)
MaxEnt (Movie) -0.29 (72.17)
MaxEnt (Twitter) -0.26 (71.68)
SVM (Movie) -0.24 (66.27)
SVM (Twitter) -0.19 (73.15)

Table 3: Correlation between confidence of the
classifiers with SAC; Numbers in parentheses in-
dicate classifier accuracy (%)

Table 3 presents the accuracy of the classifiers
along with the correlations between the confidence
score and observed SAC values. MaxEnt has the
highest negative correlation of -0.29 and -0.26.
For both domains, we observe a weak yet nega-
tive correlation which suggests that the perception
of difficulty by the classifiers are in line with that
of humans, as captured through SAC.

6 Conclusion & Future Work

We presented a metric called Sentiment Annota-
tion Complexity (SAC), a metric in SA research
that has been unexplored until now. First, the pro-
cess of data preparation through eye tracking, la-
beled with the SAC score was elaborated. Using
this data set and a set of linguistic features, we
trained a regression model to predict SAC. Our
predictive framework for SAC resulted in a mean
percentage error of 22.02%, and a moderate corre-
lation of 0.57 between the predicted and observed
SAC values. Finally, we observe a negative corre-
lation between the classifier confidence scores and
a SAC, as expected. As a future work, we would
like to investigate how SAC of a test sentence can
be used to choose a classifier from an ensemble,
and to determine the pre-processing steps (entity-
relationship extraction, for example).
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Fort, Karën and Nazarenko, Adeline and Rosset, So-
phie et al 2012. Modeling the complexity of manual
annotation tasks: A grid of analysis Proceedings of
the International Conference on Computational Lin-
guistics.

Ganapathibhotla, G and Liu, Bing. 2008. Identifying
preferred entities in comparative sentences. 22nd In-
ternational Conference on Computational Linguis-
tics (COLING).
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Abstract

Recent work classifying citations in scien-
tific literature has shown that it is possi-
ble to improve classification results with
extensive feature engineering. While this
result confirms that citation classification
is feasible, there are two drawbacks to
this approach: (i) it requires a large anno-
tated corpus for supervised classification,
which in the case of scientific literature
is quite expensive; and (ii) feature engi-
neering that is too specific to one area of
scientific literature may not be portable to
other domains, even within scientific liter-
ature. In this paper we address these two
drawbacks. First, we frame citation clas-
sification as a domain adaptation task and
leverage the abundant labeled data avail-
able in other domains. Then, to avoid
over-engineering specific citation features
for a particular scientific domain, we ex-
plore a deep learning neural network ap-
proach that has shown to generalize well
across domains using unigram and bigram
features. We achieve better citation clas-
sification results with this cross-domain
approach than using in-domain classifica-
tion.

1 Introduction

Citations have been categorized and studied for
a half-century (Garfield, 1955) to better under-
stand when and how citations are used, and
to record and measure how information is ex-
changed (e.g., networks of co-cited papers or au-
thors (Small and Griffith, 1974)). Recently, the
value of this information has been shown in practi-
cal applications such as information retrieval (IR)

∗ This work was primarily conducted at the IMS – Uni-
versity of Stuttgart.

(Ritchie et al., 2008), summarization (Qazvinian
and Radev, 2008), and even identifying scientific
breakthroughs (Small and Klavans, 2011). We ex-
pect that by identifying and labeling the function
of citations we can improve the effectiveness of
these applications.

There has been no consensus on what aspects
or functions of a citation should be annotated and
how. Early citation classification focused more on
citation motivation (Garfield, 1964), while later
classification considered more the citation func-
tion (Chubin and Moitra, 1975). Recent stud-
ies using automatic classification have continued
this tradition of introducing a new classification
scheme with each new investigation into the use
of citations (Nanba and Okumura, 1999; Teufel
et al., 2006a; Dong and Schäfer, 2011; Abu-Jbara
et al., 2013). One distinction that has been more
consistently annotated across recent citation clas-
sification studies is between positive and negative
citations (Athar, 2011; Athar and Teufel, 2012;
Abu-Jbara et al., 2013).1 The popularity of this
distinction likely owes to the prominence of sen-
timent analysis in NLP (Liu, 2010). We follow
much of the recent work on citation classification
and concentrate on citation polarity.

2 Domain Adaptation

By concentrating on citation polarity we are able
to compare our classification to previous citation
polarity work. This choice also allows us to access
the wealth of existing data containing polarity an-
notation and then frame the task as a domain adap-
tation problem. Of course the risk in approaching
the problem as domain adaptation is that the do-
mains are so different that the representation of
a positive instance of a movie or product review,
for example, will not coincide with that of a posi-

1Dong and Schäfer (2011) also annotate polarity, which
can be found in their dataset (described later), but this is not
discussed in their paper.
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tive scientific citation. On the other hand, because
there is a limited amount of annotated citation data
available, by leveraging large amounts of anno-
tated polarity data we could potentially even im-
prove citation classification.

We treat citation polarity classification as a sen-
timent analysis domain adaptation task and there-
fore must be careful not to define features that are
too domain specific. Previous work in citation po-
larity classification focuses on finding new cita-
tion features to improve classification, borrowing
a few from text classification in general (e.g., n-
grams), and perhaps others from sentiment analy-
sis problems (e.g., the polarity lexicon from Wil-
son et al. (2005)). We would like to do as little
feature engineering as possible to ensure that the
features we use are meaningful across domains.
However, we do still want features that somehow
capture the inherent positivity or negativity of our
labeled instances, i.e., citations or Amazon prod-
uct reviews. Currently a popular approach for ac-
complishing this is to use deep learning neural net-
works (Bengio, 2009), which have been shown
to perform well on a variety of NLP tasks us-
ing only bag-of-word features (Collobert et al.,
2011). More specifically related to our work, deep
learning neural networks have been successfully
employed for sentiment analysis (Socher et al.,
2011) and for sentiment domain adaptation (Glo-
rot et al., 2011). In this paper we examine one
of these approaches, marginalized stacked denois-
ing autoencoders (mSDA) from Chen et al. (2012),
which has been successful in classifying the po-
larity of Amazon product reviews across product
domains. Since mSDA achieved state-of-the-art
performance in Amazon product domain adapta-
tion, we are hopeful it will also be effective when
switching to a more distant domain like scientific
citations.

3 Experimental Setup

3.1 Corpora

We are interested in domain adaptation for citation
classification and therefore need a target dataset of
citations and a non-citation source dataset. There
are two corpora available that contain citation
function annotation, the DFKI Citation Corpus
(Dong and Schäfer, 2011) and the IMS Citation
Corpus (Jochim and Schütze, 2012). Both corpora
have only about 2000 instances; unfortunately,
there are no larger corpora available with citation

annotation and this task would benefit from more
annotated data. Due to the infrequent use of neg-
ative citations, a substantial annotation effort (an-
notating over 5 times more data) would be nec-
essary to reach 1000 negative citation instances,
which is the number of negative instances in a sin-
gle domain in the multi-domain corpus described
below.

The DFKI Citation Corpus2 has been used for
classifying citation function (Dong and Schäfer,
2011), but the dataset also includes polarity an-
notation. The dataset has 1768 citation sentences
with polarity annotation: 190 are labeled as pos-
itive, 57 as negative, and the vast majority, 1521,
are left neutral. The second citation corpus, the
IMS Citation Corpus3 contains 2008 annotated ci-
tations: 1836 are labeled positive and 172 are la-
beled negative. Jochim and Schütze (2012) use
annotation labels from Moravcsik and Murugesan
(1975) where positive instances are labeled confir-
mative, negative instances are labeled negational,
and there is no neutral class. Because each of
the citation corpora is of modest size we combine
them to form one citation dataset, which we will
refer to as CITD. The two citation corpora com-
prising CITD both come from the ACL Anthol-
ogy (Bird et al., 2008): the IMS corpus uses the
ACL proceedings from 2004 and the DFKI corpus
uses parts of the proceedings from 2007 and 2008.
Since mSDA also makes use of large amounts of
unlabeled data, we extend our CITD corpus with
citations from the proceedings of the remaining
years of the ACL, 1979–2003, 2005–2006, and
2009.

There are a number of non-citation corpora
available that contain polarity annotation. For
these experiments we use the Multi-Domain Senti-
ment Dataset4 (henceforth MDSD), introduced by
Blitzer et al. (2007). We use the version of the
MDSD that includes positive and negative labels
for product reviews taken from Amazon.com in
the following domains: books, dvd, electronics,
and kitchen. For each domain there are 1000 pos-
itive reviews and 1000 negative reviews that com-
prise the “labeled” data, and then roughly 4000
more reviews in the “unlabeled”5 data. Reviews

2https://aclbib.opendfki.de/repos/
trunk/citation_classification_dataset/

3http://www.ims.uni-stuttgart.de/
˜jochimcs/citation-classification/

4http://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

5It is usually treated as unlabeled data even though it ac-
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Corpus Instances Pos. Neg. Neut.

DFKI 1768 190 57 1521
IMS 2008 1836 172 –
MDSD 27,677 13,882 13,795 –

Table 1: Polarity corpora.

were preprocessed so that for each review you find
a list of unigrams and bigrams with their frequency
within the review. Unigrams from a stop list of 55
stop words are removed, but stop words in bigrams
remain.

Table 1 shows the distribution of polarity labels
in the corpora we use for our experiments. We
combine the DFKI and IMS corpora into the CITD
corpus. We omit the citations labeled neutral from
the DFKI corpus because the IMS corpus does not
contain neutral annotation nor does the MDSD. It
is the case in many sentiment analysis corpora that
only positive and negative instances are included,
e.g., (Pang et al., 2002).

The citation corpora presented above are both
unbalanced and both have a highly skewed distri-
bution. The MDSD on the other hand is evenly
balanced and an effort was even made to keep
the data treated as “unlabeled” rather balanced.
For this reason, in line with previous work us-
ing MDSD, we balance the labeled portion of the
CITD corpus. This is done by taking 179 unique
negative sentences in the DFKI and IMS corpora
and randomly selecting an equal number of posi-
tive sentences. The IMS corpus can have multiple
labeled citations per sentence: there are 122 sen-
tences containing the 172 negative citations from
Table 1. The final CITD corpus comprises this
balanced corpus of 358 labeled citation sentences
plus another 22,093 unlabeled citation sentences.

3.2 Features
In our experiments, we restrict our features to un-
igrams and bigrams from the product review or
citation context (i.e., the sentence containing the
citation). This follows previous studies in do-
main adaptation (Blitzer et al., 2007; Glorot et al.,
2011). Chen et al. (2012) achieve state-of-the-art
results on MDSD by testing the 5000 and 30,000
most frequent unigram and bigram features.

Previous work in citation classification has
largely focused on identifying new features for

tually contains positive and negative labels, which have been
used, e.g., in (Chen et al., 2012).

improving classification accuracy. A significant
amount of effort goes into engineering new fea-
tures, in particular for identifying cue phrases,
e.g., (Teufel et al., 2006b; Dong and Schäfer,
2011). However, there seems to be little consen-
sus on which features help most for this task. For
example, Abu-Jbara et al. (2013) and Jochim and
Schütze (2012) find the list of polar words from
Wilson et al. (2005) to be useful, and neither study
lists dependency relations as significant features.
Athar (2011) on the other hand reported significant
improvement using dependency relation features
and found that the same list of polar words slightly
hurt classification accuracy. The classifiers and
implementation of features varies between these
studies, but the problem remains that there seems
to be no clear set of features for citation polarity
classification.

The lack of consensus on the most useful cita-
tion polarity features coupled with the recent suc-
cess of deep learning neural networks (Collobert et
al., 2011) further motivate our choice to limit our
features to the n-grams available in the product re-
view or citation context and not rely on external
resources or tools for additional features.

3.3 Classification with mSDA

For classification we use marginalized stacked de-
noising autoencoders (mSDA) from Chen et al.
(2012)6 plus a linear SVM. mSDA takes the con-
cept of denoising – introducing noise to make the
autoencoder more robust – from Vincent et al.
(2008), but does the optimization in closed form,
thereby avoiding iterating over the input vector to
stochastically introduce noise. The result of this
is faster run times and currently state-of-the-art
performance on MDSD, which makes it a good
choice for our domain adaptation task. The mSDA
implementation comes with LIBSVM, which we
replace with LIBLINEAR (Fan et al., 2008) for
faster run times with no decrease in accuracy. LIB-
LINEAR, with default settings, also serves as our
baseline.

3.4 Outline of Experiments

Our initial experiments simply extend those of
Chen et al. (2012) (and others who have used
MDSD) by adding another domain, citations. We
train on each of the domains from the MDSD –

6We use their MATLAB implementation available at
http://www.cse.wustl.edu/˜mchen/code/
mSDA.tar.
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Figure 1: Cross domain macro-F1 results train-
ing on Multi-Domain Sentiment Dataset and test-
ing on citation dataset (CITD). The horizontal line
indicates macro-F1 for in-domain citation classifi-
cation.

books, dvd, electronics, and kitchen – and test on
the citation data. We split the labeled data 80/20
following Blitzer et al. (2007) (cf. Chen et al.
(2012) train on all “labeled” data and test on the
“unlabeled” data). These experiments should help
answer two questions: does a larger amount of
training data, even if out of domain, improve ci-
tation classification; and how well do the differ-
ent product domains generalize to citations (i.e.,
which domains are most similar to citations)?

In contrast to previous work using MDSD, a lot
of the work in domain adaptation also leverages a
small amount of labeled target data. In our second
set of experiments, we follow the domain adap-
tation approaches described in (Daumé III, 2007)
and train on product review and citation data be-
fore testing on citations.

4 Results and Discussion

4.1 Citation mSDA
Our initial results show that using mSDA for do-
main adaptation to citations actually outperforms
in-domain classification. In Figure 1 we com-
pare citation classification with mSDA to the SVM
baseline. Each pair of vertical bars represents
training on a domain from MDSD (e.g., books)
and testing on CITD. The dark gray bar indicates
the F1 scores for the SVM baseline using the

30,000 features and the lighter gray bar shows the
mSDA results. The black horizontal line indicates
the F1 score for in-domain citation classification,
which sometimes represents the goal for domain
adaptation. We can see that using a larger dataset,
even if out of domain, does improve citation clas-
sification. For books, dvd, and electronics, even
the SVM baseline improves on in-domain classifi-
cation. mSDA does better than the baseline for all
domains except dvd. Using a larger training set,
along with mSDA, which makes use of the un-
labeled data, leads to the best results for citation
classification.

In domain adaptation we would expect the do-
mains most similar to the target to lead to the
highest results. Like Dai et al. (2007), we mea-
sure the Kullback-Leibler divergence between the
source and target domains’ distributions. Accord-
ing to this measure, citations are most similar to
the books domain. Therefore, it is not surprising
that training on books performs well on citations,
and intuitively, among the domains in the Amazon
dataset, a book review is most similar to a scien-
tific citation. This makes the good mSDA results
for electronics a bit more surprising.

4.2 Easy Domain Adaptation

The results in Section 4.1 are for semi-supervised
domain adaptation: the case where we have some
large annotated corpus (Amazon product reviews)
and a large unannotated corpus (citations). There
have been a number of other successful attempts at
fully supervised domain adaptation, where it is as-
sumed that some small amount of data is annotated
in the target domain (Chelba and Acero, 2004;
Daumé III, 2007; Jiang and Zhai, 2007). To see
how mSDA compares to supervised domain adap-
tation we take the various approaches presented by
Daumé III (2007). The results of this comparison
can be seen in Table 2. Briefly, “All” trains on
source and target data; “Weight” is the same as
“All” except that instances may be weighted dif-
ferently based on their domain (weights are chosen
on a development set); “Pred” trains on the source
data, makes predictions on the target data, and
then trains on the target data with the predictions;
“LinInt” linearly interpolates predictions using the
source-only and target-only models (the interpola-
tion parameter is chosen on a development set);
“Augment” uses a larger feature set with source-
specific and target-specific copies of features; see
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Domain Baseline All Weight Pred LinInt Augment mSDA

books 54.5 54.8 52.0 51.9 53.4 53.4 57.1
dvd 53.2 50.9 56.0 53.4 51.9 47.5 51.6
electronics 53.4 49.0 50.5 53.4 54.8 51.9 59.2
kitchen 47.9 48.8 50.7 53.4 52.6 49.2 50.1
citations 51.9 – – – – – 54.9

Table 2: Macro-F1 results on CITD using different domain adaptation approaches.

(Daumé III, 2007) for further details.
We are only interested in citations as the tar-

get domain. Daumé’s source-only baseline cor-
responds to the “Baseline” column for domains:
books, dvd, electronics, and kitchen; while his
target-only baseline can be seen for citations in the
last row of the “Baseline” column in Table 2.

The semi-supervised mSDA performs quite
well with respect to the fully supervised ap-
proaches, obtaining the best results for books and
electronics, which are also the highest scores over-
all. Weight and Pred have the highest F1 scores for
dvd and kitchen respectively. Daumé III (2007)
noted that the “Augment” algorithm performed
best when the target-only results were better than
the source-only results. When this was not the
case in his experiments, i.e., for the treebank
chunking task, both Weight and Pred were among
the best approaches. In our experiments, training
on source-only outperforms target-only, with the
exception of the kitchen domain.

We have included the line for citations to see the
results training only on the target data (F1 = 51.9)
and to see the improvement when using all of the
unlabeled data with mSDA (F1 = 54.9).

4.3 Discussion

These results are very promising. Although they
are not quite as high as other published results
for citation polarity (Abu-Jbara et al., 2013)7, we
have shown that you can improve citation polarity
classification by leveraging large amounts of an-
notated data from other domains and using a sim-
ple set of features.

mSDA and fully supervised approaches can also
be straightforwardly combined. We do not present
those results here due to space constraints. The

7Their work included a CRF model to identify the citation
context that gave them an increase of 9.2 percent F1 over a
single sentence citation context. Our approach achieves sim-
ilar macro-F1 on only the citation sentence, but using a dif-
ferent corpus.

combination led to mixed results: adding mSDA
to the supervised approaches tended to improve F1

over those approaches but results never exceeded
the top mSDA numbers in Table 2.

5 Related Work

Teufel et al. (2006b) introduced automatic citation
function classification, with classes that could be
grouped as positive, negative, and neutral. They
relied in part on a manually compiled list of cue
phrases that cannot easily be transferred to other
classification schemes or other scientific domains.
Athar (2011) followed this and was the first to
specifically target polarity classification on scien-
tific citations. He found that dependency tuples
contributed the most significant improvement in
results. Abu-Jbara et al. (2013) also looks at both
citation function and citation polarity. A big con-
tribution of this work is that they also train a CRF
sequence tagger to find the citation context, which
significantly improves results over using only the
citing sentence. Their feature analysis indicates
that lexicons for negation, speculation, and po-
larity were most important for improving polarity
classification.

6 Conclusion

Robust citation classification has been hindered by
the relative lack of annotated data. In this pa-
per we successfully use a large, out-of-domain,
annotated corpus to improve the citation polarity
classification. Our approach uses a deep learning
neural network for domain adaptation with labeled
out-of-domain data and unlabeled in-domain data.
This semi-supervised domain adaptation approach
outperforms the in-domain citation polarity classi-
fication and other fully supervised domain adapta-
tion approaches.
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Abstract

We propose Adaptive Recursive Neural
Network (AdaRNN) for target-dependent
Twitter sentiment classification. AdaRNN
adaptively propagates the sentiments of
words to target depending on the context
and syntactic relationships between them.
It consists of more than one composition
functions, and we model the adaptive sen-
timent propagations as distributions over
these composition functions. The experi-
mental studies illustrate that AdaRNN im-
proves the baseline methods. Further-
more, we introduce a manually annotated
dataset for target-dependent Twitter senti-
ment analysis.

1 Introduction

Twitter becomes one of the most popular social
networking sites, which allows the users to read
and post messages (i.e. tweets) up to 140 charac-
ters. Among the great varieties of topics, people
in Twitter tend to express their opinions for the
brands, celebrities, products and public events. As
a result, it attracts much attention to estimate the
crowd’s sentiments in Twitter.

For the tweets, our task is to classify their senti-
ments for a given target as positive, negative, and
neutral. People may mention several entities (or
targets) in one tweet, which affects the availabil-
ities for most of existing methods. For example,
the tweet “@ballmer: windows phone is better
than ios!” has three targets (@ballmer, windows
phone, and ios). The user expresses neutral, pos-
itive, and negative sentiments for them, respec-
tively. If target information is ignored, it is diffi-
cult to obtain the correct sentiment for a specified
target. For target-dependent sentiment classifica-
tion, the manual evaluation of Jiang et al. (2011)

∗Contribution during internship at Microsoft Research.

show that about 40% of errors are caused by not
considering the targets in classification.

The features used in traditional learning-based
methods (Pang et al., 2002; Nakagawa et al., 2010)
are independent to the targets, hence the results
are computed despite what the targets are. Hu and
Liu (2004) regard the features of products as tar-
gets, and sentiments for them are heuristically de-
termined by the dominant opinion words. Jiang
et al. (2011) combine the target-independent fea-
tures (content and lexicon) and target-dependent
features (rules based on the dependency parsing
results) together in subjectivity classification and
polarity classification for tweets.

In this paper, we mainly focus on integrating
target information with Recursive Neural Network
(RNN) to leverage the ability of deep learning
models. The neural models use distributed repre-
sentation (Hinton, 1986; Rumelhart et al., 1986;
Bengio et al., 2003) to automatically learn fea-
tures for target-dependent sentiment classification.
RNN utilizes the recursive structure of text, and it
has achieved state-of-the-art sentiment analysis re-
sults for movie review dataset (Socher et al., 2012;
Socher et al., 2013). The recursive neural mod-
els employ the semantic composition functions,
which enables them to handle the complex com-
positionalities in sentiment analysis.

Specifically, we propose a framework which
learns to propagate the sentiments of words to-
wards the target depending on context and syn-
tactic structure. We employ a novel adaptive
multi-compositionality layer in recursive neural
network, which is named as AdaRNN (Dong et
al., 2014). It consists of more than one compo-
sition functions, and we model the adaptive sen-
timent propagations as learning distributions over
these composition functions. We automatically
learn the composition functions and how to select
them from supervisions, instead of choosing them
heuristically or by hand-crafted rules. AdaRNN
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determines how to propagate the sentiments to-
wards the target and handles the negation or in-
tensification phenomena (Taboada et al., 2011) in
sentiment analysis. In addition, we introduce a
manually annotated dataset, and conduct extensive
experiments on it. The experimental results sug-
gest that our approach yields better performances
than the baseline methods.

2 RNN: Recursive Neural Network

RNN (Socher et al., 2011) represents the phrases
and words as D-dimensional vectors. It performs
compositions based on the binary trees, and obtain
the vector representations in a bottom-up way.

not very good

Negative

Softmax

very good

not very good

Figure 1: The composition process for “not very
good” in Recursive Neural Network.

As illustrated in Figure 1, we obtain the repre-
sentation of “very good” by the composition of
“very” and “good”, and the representation of tri-
gram “not very good” is recursively obtained by
the vectors of “not” and “very good”. The di-
mensions of parent node are calculated by linear
combination of the child vectors’ dimensions. The
vector representation v is obtained via:

v = f (g (vl,vr)) = f

(
W
[
vl
vr

]
+ b

)
(1)

where vl,vr are the vectors of its left and right
child, g is the composition function, f is the non-
linearity function (such as tanh, sigmoid, softsign,
etc.), W ∈ RD×2D is the composition matrix, and
b is the bias vector. The dimension of v is the
same as its child vectors, and it is recursively used
in the next step. Notably, the word vectors in the
leaf nodes are regarded as the parameters, and will
be updated according to the supervisions.

The vector representation of root node is then
fed into a softmax classifier to predict the label.
The k-th element of softmax(x) is exp{xk}∑

j exp{xj} . For
a vector, the softmax obtains the distribution over
K classes. Specifically, the predicted distribution
is y = softmax (Uv), where y is the predicted
distribution, U ∈ RK×D is the classification ma-
trix, and v is the vector representation of node.

3 Our Approach

We use the dependency parsing results to find the
words syntactically connected with the interested
target. Adaptive Recursive Neural Network is pro-
posed to propagate the sentiments of words to the
target node. We model the adaptive sentiment
propagations as semantic compositions. The com-
putation process is conducted in a bottom-up man-
ner, and the vector representations are computed
recursively. After we obtain the representation of
target node, a classifier is used to predict the sen-
timent label according to the vector.

In Section 3.1, we show how to build recur-
sive structure for target using the dependency pars-
ing results. In Section 3.2, we propose Adaptive
Recursive Neural Network and use it for target-
dependent sentiment analysis.

3.1 Build Recursive Structure

The dependency tree indicates the dependency re-
lations between words. As described above, we
propagate the sentiments of words to the target.
Hence the target is placed at the root node to com-
bine with its connected words recursively. The de-
pendency relation types are remained to guide the
sentiment propagations in our model.

Algorithm 1 Convert Dependency Tree
Input: Target node, Dependency tree
Output: Converted tree

1: function CONV(r)
2: Er ← SORT(dep edges connected with r)
3: v← r
4: for (r t−→ u/u

t−→ r) in Er do
5: if r is head of u then
6: w← node with CONV(u), v as children
7: else
8: w← node with v, CONV(u) as children
9: v← w

10: return v
11: Call CONV(target node) to get converted tree

As illustrated in the Algorithm 1, we recursively
convert the dependency tree starting from the tar-
get node. We find all the words connected to the
target, and these words are combined with target
node by certain order. Every combination is con-
sidered as once propagation of sentiments. If the
target is head of the connected words, the target
vector is combined as the right node; if otherwise,
it is combined as the left node. This ensures the
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child nodes in a certain order. We use two rules
to determine the order of combinations: (1) the
words whose head is the target in dependency tree
are first combined, and then the rest of connected
words are combined; (2) if the first rule cannot de-
termine the order, the connected words are sorted
by their positions in sentence from right to left.
Notably, the conversion is performed recursively
for the connected words and the dependency rela-
tion types are remained. Figure 2 shows the con-
verted results for different targets in one sentence.

3.2 AdaRNN: Adaptive Recursive Neural
Network

RNN employs one global matrix to linearly com-
bine the elements of vectors. Sometimes it is
challenging to obtain a single powerful function
to model the semantic composition, which moti-
vates us to propose AdaRNN. The basic idea of
AdaRNN is to use more than one composition
functions and adaptively select them depending on
the linguistic tags and the combined vectors. The
model learns to propagate the sentiments of words
by using the different composition functions.

Figure 2 shows the computation process for the
example sentence “windows is better than ios”,
where the user expresses positive sentiment to-
wards windows and negative sentiment to ios. For
the targets, the order of compositions and the de-
pendency types are different. AdaRNN adap-
tively selects the composition functions g1 . . . gC
depending on the child vectors and the linguistic
types. Thus it is able to determine how to propa-
gate the sentiments of words towards the target.

Based on RNN described in Section 2, we de-
fine the composition result v in AdaRNN as:

v = f

(
C∑
h=1

P (gh|vl,vr, e) gh (vl,vr)

)
(2)

where g1, . . . , gC are the composition functions,
P (gh|vl,vr, e) is the probability of employing gh
given the child vectors vl,vr and external feature
vector e, and f is the nonlinearity function. For
the composition functions, we use the same forms
as in Equation (1), i.e., we have C composition
matrices W1 . . .WC . We define the distribution
over these composition functions as:P (g1|vl,vr, e)

...
P (gC |vl,vr, e)

 = softmax

βS
vl
vr
e


(3)

where β is the hyper-parameter, S ∈ RC×(2D+|e|)

is the matrix used to determine which composition
function we use, vl,vr are the left and right child
vectors, and e are external feature vector. In this
work, e is a one-hot binary feature vector which
indicates what the dependency type is. If relation
is the k-th type, we set ek to 1 and the others to 0.

Adding β in softmax function is a widely used
parametrization method in statistical mechanics,
which is known as Boltzmann distribution and
Gibbs measure (Georgii, 2011). When β = 0, this
function produces a uniform distribution; when
β = 1, it is the same as softmax function; when
β →∞, it only activates the dimension with max-
imum weight, and sets its probability to 1.

3.3 Model Training
We use the representation of root node as the fea-
tures, and feed them into the softmax classifier to
predict the distribution over classes. We define the
ground truth vector t as a binary vector. If the k-th
class is the label, only tk is 1 and the others are
0. Our goal is to minimize the cross-entropy error
between the predicted distribution y and ground
truth distribution t. For each training instance, we
define the objective function as:

min
Θ
−
∑
j

tj log yj +
∑
θ∈Θ

λθ‖θ‖22 (4)

where Θ represents the parameters, and the L2-
regularization penalty is used.

Based on the converted tree, we employ back-
propagation algorithm (Rumelhart et al., 1986) to
propagate the errors from root node to the leaf
nodes. We calculate the derivatives to update the
parameters. The AdaGrad (Duchi et al., 2011) is
employed to solve this optimization problem.

4 Experiments

As people tend to post comments for the celebri-
ties, products, and companies, we use these key-
words (such as “bill gates”, “taylor swift”, “xbox”,
“windows 7”, “google”) to query the Twitter API.
After obtaining the tweets, we manually anno-
tate the sentiment labels (negative, neutral, posi-
tive) for these targets. In order to eliminate the
effects of data imbalance problem, we randomly
sample the tweets and make the data balanced.
The negative, neutral, positive classes account for
25%, 50%, 25%, respectively. Training data con-
sists of 6,248 tweets, and testing data has 692
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Dependency tree:
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Figure 2: For the sentence “windows is better than ios”, we convert its dependency tree for the different
targets (windows and ios). AdaRNN performs semantic compositions in bottom-up manner and forward
propagates sentiment information to the target node. The g1, . . . , gC are different composition functions,
and the combined vectors and dependency types are used to select them adaptively. These composition
functions decide how to propagate the sentiments to the target.

tweets. We randomly sample some tweets, and
they are assigned with sentiment labels by two an-
notators. About 82.5% of them have the same la-
bels. The agreement percentage of polarity clas-
sification is higher than subjectivity classification.
To the best of our knowledge, this is the largest
target-dependent Twitter sentiment classification
dataset which is annotated manually. We make the
dataset publicly available 1 for research purposes.

We preprocess the tweets by replacing the tar-
gets with $T$ and setting their POS tags to NN.
Liblinear (Fan et al., 2008) is used for baselines.
A tweet-specific tokenizer (Gimpel et al., 2011)
is employed, and the dependency parsing results
are computed by Stanford Parser (Klein and Man-
ning, 2003). The hyper-parameters are chosen by
cross-validation on the training split, and the test
accuracy and macro-average F1-score score are re-
ported. For recursive neural models, the dimen-
sion of word vector is set to 25, and f = tanh
is used as the nonlinearity function. We employ
10 composition matrices in AdaRNN. The param-
eters are randomly initialized. Notably, the word
vectors will also be updated.

SVM-indep: It uses the uni-gram, bi-gram,
punctuations, emoticons, and #hashtags as the
content features, and the numbers of positive or
negative words in General Inquirer as lexicon fea-
tures. These features are all target-independent.

SVM-dep: We re-implement the method pro-
posed by Jiang et al. (2011). It combines both

1http://goo.gl/5Enpu7

the target-independent (SVM-indep) and target-
dependent features and uses SVM as the classifier.
There are seven rules to extract target-sensitive
features. We do not implement the social graph
optimization and target expansion tricks in it.

SVM-conn: The words, punctuations, emoti-
cons, and #hashtags included in the converted de-
pendency tree are used as the features for SVM.

RNN: It is performed on the converted depen-
dency tree without adaptive composition selection.

AdaRNN-w/oE: Our approach without using
the dependency types as features in adaptive se-
lection for the composition functions.

AdaRNN-w/E: Our approach with employing
the dependency types as features in adaptive se-
lection for the composition functions.

AdaRNN-comb: We combine the root vectors
obtained by AdaRNN-w/E with the uni/bi-gram
features, and they are fed into a SVM classifier.

Method Accuracy Macro-F1
SVM-indep 62.7 60.2
SVM-dep 63.4 63.3
SVM-conn 60.0 59.6
RNN 63.0 62.8
AdaRNN-w/oE 64.9 64.4
AdaRNN-w/E 65.8 65.5
AdaRNN-comb 66.3 65.9

Table 1: Evaluation results on target-dependent
Twitter sentiment classification dataset. Our ap-
proach outperforms the baseline methods.
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As shown in the Table 1, AdaRNN achieves bet-
ter results than the baselines. Specifically, we find
that the performances of SVM-dep increase than
SVM-indep. It indicates that target-dependent fea-
tures help improve the results. However, the accu-
racy and F1-score do not gain significantly. This
is caused by mismatch of the rules (Jiang et al.,
2011) used to extract the target-dependent fea-
tures. The POS tagging and dependency parsing
results are not precise enough for the Twitter data,
so these hand-crafted rules are rarely matched.
Further, the results of SVM-conn illustrate that us-
ing the words which have paths to target as bag-of-
words features does not perform well.

RNN is also based on the converted depen-
dency tree. It outperforms SVM-indep, and is
comparable with SVM-dep. The performances
of AdaRNN-w/oE are better than the above base-
lines. It shows that multiple composition functions
and adaptive selection help improve the results.
AdaRNN provides more powerful composition
ability, so that it achieves better semantic compo-
sition for recursive neural models. AdaRNN-w/E
obtains best performances among the above meth-
ods. Its macro-average F1-score rises by 5.3%
than the target-independent method SVM-indep.
It employs dependency types as binary features to
select the composition functions adaptively. The
results illustrate that the syntactic tags are helpful
to guide the model propagate sentiments of words
towards target. Although the dependency results
are also not precise enough, the composition se-
lection is automatically learned from data. Hence
AdaRNN is more robust for the imprecision of
parsing results than the hand-crafted rules. The
performances become better after adding the uni-
gram and bi-gram features (target-independent).

4.1 Effects of β

We compare different β for AdaRNN defined in
Equation (3) in this section. Different parameter β
leads to different composition selection schemes.

As illustrated in Figure 3, the AdaRNN-w/oE
and AdaRNN-w/E achieve the best accuracies at
β = 2, and they have a similar trend. Specifi-
cally, β = 0 obtains a uniform distribution over
the composition functions which does not help im-
prove performances. β → ∞ results in a max-
imum probability selection algorithm, i.e., only
the composition function which has the maximum
probability is used. This selection scheme makes
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AdaRNN-w/oE
AdaRNN-w/E

Figure 3: The curve shows the accuracy as the
hyper-parameter β = 0, 20, 21, . . . , 26 increases.
AdaRNN achieves the best results at β = 21.

the optimization instable. The performances of
β = 1, 2 are similar and they are better than
other settings. It indicates that adaptive selection
method is useful to model the compositions. The
hyper-parameter β makes trade-offs between uni-
form selection and maximum selection. It adjusts
the effects of these two perspectives.

5 Conclusion

We propose Adaptive Recursive Neural Network
(AdaRNN) for the target-dependent Twitter senti-
ment classification. AdaRNN employs more than
one composition functions and adaptively chooses
them depending on the context and linguistic tags.
For a given tweet, we first convert its dependency
tree for the interested target. Next, the AdaRNN
learns how to adaptively propagate the sentiments
of words to the target node. AdaRNN enables
the sentiment propagations to be sensitive to both
linguistic and semantic categories by using differ-
ent compositions. The experimental results illus-
trate that AdaRNN improves the baselines without
hand-crafted rules.
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Abstract

Supervised text classification algorithms
require a large number of documents la-
beled by humans, that involve a labor-
intensive and time consuming process.
In this paper, we propose a weakly su-
pervised algorithm in which supervision
comes in the form of labeling of Latent
Dirichlet Allocation (LDA) topics. We
then use this weak supervision to “sprin-
kle” artificial words to the training docu-
ments to identify topics in accordance with
the underlying class structure of the cor-
pus based on the higher order word asso-
ciations. We evaluate this approach to im-
prove performance of text classification on
three real world datasets.

1 Introduction

In supervised text classification learning algo-
rithms, the learner (a program) takes human la-
beled documents as input and learns a decision
function that can classify a previously unseen doc-
ument to one of the predefined classes. Usually a
large number of documents labeled by humans are
used by the learner to classify unseen documents
with adequate accuracy. Unfortunately, labeling
a large number of documents is a labor-intensive
and time consuming process.

In this paper, we propose a text classification
algorithm based on Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) which does not need la-
beled documents. LDA is an unsupervised prob-
abilistic topic model and it is widely used to dis-
cover latent semantic structure of a document col-
lection by modeling words in the documents. Blei
et al. (Blei et al., 2003) used LDA topics as fea-
tures in text classification, but they use labeled
documents while learning a classifier. sLDA (Blei
and McAuliffe, 2007), DiscLDA (Lacoste-Julien

et al., 2008) and MedLDA (Zhu et al., 2009) are
few extensions of LDA which model both class
labels and words in the documents. These models
can be used for text classification, but they need
expensive labeled documents.

An approach that is less demanding in terms
of knowledge engineering is ClassifyLDA (Hing-
mire et al., 2013). In this approach, a topic model
on a given set of unlabeled training documents is
constructed using LDA, then an annotator assigns
a class label to some topics based on their most
probable words. These labeled topics are used
to create a new topic model such that in the new
model topics are better aligned to class labels. A
class label is assigned to a test document on the ba-
sis of its most prominent topics. We extend Clas-
sifyLDA algorithm by “sprinkling” topics to unla-
beled documents.

Sprinkling (Chakraborti et al., 2007) integrates
class labels of documents into Latent Semantic In-
dexing (LSI)(Deerwester et al., 1990). The ba-
sic idea involves encoding of class labels as ar-
tificial words which are “sprinkled” (appended)
to training documents. As LSI uses higher or-
der word associations (Kontostathis and Pottenger,
2006), sprinkling of artificial words gives better
and class-enriched latent semantic structure. How-
ever, Sprinkled LSI is a supervised technique and
hence it requires expensive labeled documents.
The paper revolves around the idea of labeling top-
ics (which are far fewer in number compared to
documents) as in ClassifyLDA, and using these la-
beled topic for sprinkling.

As in ClassifyLDA, we ask an annotator to as-
sign class labels to a set of topics inferred on the
unlabeled training documents. We use the labeled
topics to find probability distribution of each train-
ing document over the class labels. We create a
set of artificial words corresponding to a class la-
bel and add (or sprinkle) them to the document.
The number of such artificial terms is propor-
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tional to the probability of generating the docu-
ment by the class label. We then infer a set of
topics on the sprinkled training documents. As
LDA uses higher order word associations (Lee et
al., 2010) while discovering topics, we hypothe-
size that sprinkling will improve text classification
performance of ClassifyLDA. We experimentally
verify this hypothesis on three real world datasets.

2 Related Work

Several researchers have proposed semi-
supervised text classification algorithms with
the aim of reducing the time, effort and cost
involved in labeling documents. These algorithms
can be broadly categorized into three categories
depending on how supervision is provided. In the
first category, a small set of labeled documents
and a large set of unlabeled documents is used
while learning a classifier. Semi-supervised text
classification algorithms proposed in (Nigam et
al., 2000), (Joachims, 1999), (Zhu and Ghahra-
mani, 2002) and (Blum and Mitchell, 1998) are a
few examples of this type. However, these algo-
rithms are sensitive to initial labeled documents
and hyper-parameters of the algorithm.

In the second category, supervision comes in the
form of labeled words (features). (Liu et al., 2004)
and (Druck et al., 2008) are a few examples of this
type. An important limitation of these algorithms
is coming up with a small set of words that should
be presented to the annotators for labeling. Also
a human annotator may discard or mislabel a pol-
ysemous word, which may affect the performance
of a text classifier.

The third type of semi-supervised text classifi-
cation algorithms is based on active learning. In
active learning, particular unlabeled documents or
features are selected and queried to an oracle (e.g.
human annotator).(Godbole et al., 2004), (Ragha-
van et al., 2006), (Druck et al., 2009) are a few ex-
amples of active learning based text classification
algorithms. However, these algorithms are sensi-
tive to the sampling strategy used to query docu-
ments or features.

In our approach, an annotator does not label
documents or words, rather she labels a small set
of interpretable topics which are inferred in an un-
supervised manner. These topics are very few,
when compared to the number of documents. As
the most probable words of topics are representa-
tive of the dataset, there is no need for the annota-

tor to search for the right set of features for each
class. As LDA topics are semantically more mean-
ingful than individual words and can be acquired
easily, our approach overcomes limitations of the
semi-supervised methods discussed above.

3 Background

3.1 LDA
LDA is an unsupervised probabilistic generative
model for collections of discrete data such as text
documents. The generative process of LDA can be
described as follows:

1. for each topic t, draw a distribution over
words: φt ∼ Dirichlet(βw)

2. for each document d ∈ D
a. Draw a vector of topic proportions:
θd ∼ Dirichlet(αt)

b. for each word w at position n in d
i. Draw a topic assignment:
zd,n ∼ Multinomial(θd)

ii. Draw a word:
wd,n ∼ Multinomial(zd,n)

Where, T is the number of topics, φt is the word
probabilities for topic t, θd is the topic probabil-
ity distribution, zd,n is topic assignment and wd,n

is word assignment for nth word position in docu-
ment d respectively. αt and βw are topic and word
Dirichlet priors.

The key problem in LDA is posterior inference.
The posterior inference involves the inference of
the hidden topic structure given the observed doc-
uments. However, computing the exact posterior
inference is intractable. In this paper we estimate
approximate posterior inference using collapsed
Gibbs sampling (Griffiths and Steyvers, 2004).

The Gibbs sampling equation used to update the
assignment of a topic t to the word w ∈ W at the
position n in document d, conditioned on αt, βw

is:

P (zd,n = t|zd,¬n, wd,n = w,αt, βw) ∝
ψw,t + βw − 1∑

v∈W ψv,t + βv − 1
× (Ωt,d + αt − 1) (1)

where ψw,c is the count of the word w assigned
to the topic c, Ωc,d is the count of the topic c
assigned to words in the document d and W is
the vocabulary of the corpus. We use a subscript
d,¬n to denote the current token, zd,n is ignored
in the Gibbs sampling update. After performing
collapsed Gibbs sampling using equation 1, we
use word topic assignments to compute a point

56



estimate of the distribution over words φw,c and
a point estimate of the posterior distribution over
topics for each document d (θd) is:

φw,t =
ψw,t + βw[ ∑

v∈W

ψv,t + βv

]
(2)

θt,d =
Ωt,d + αt[

T∑
i=1

Ωi,d + αi

]
(3)

Let MD =< Z,Φ,Θ > be the hidden topic
structure, where Z is per word per document topic
assignment, Φ = {φt} and Θ = {θd}.

3.2 Sprinkling

(Chakraborti et al., 2007) propose a simple ap-
proach called “sprinkling” to incorporate class la-
bels of documents into LSI. In sprinkling, a set of
artificial words are appended to a training docu-
ment which are specific to the class label of the
document. Consider a case of binary classification
with classes c1 and c2. If a document d belongs
to the class c1 then a set of artificial words which
represent the class c1 are appended into the doc-
ument d, otherwise a set of artificial words which
represent the class c2 are appended.

Singular Value Decomposition (SVD) is then
performed on the sprinkled training documents
and a lower rank approximation is constructed
by ignoring dimensions corresponding to lower
singular values. Then, the sprinkled terms are
removed from the lower rank approximation.
(Chakraborti et al., 2007) empirically show that
sprinkled words boost higher order word associ-
ations and projects documents with same class la-
bels close to each other in latent semantic space.

4 Topic Sprinkling in LDA

In our text classification algorithm, we first infer a
set of topics on the given unlabeled document cor-
pus. We then ask a human annotator to assign one
or more class labels to the topics based on their
most probable words. We use these labeled topics
to create a new LDA model as follows. If the topic
assigned to the word w at the position n in docu-
ment d is t, then we replace it by the class label
assigned to the topic t. If more than one class la-
bels are assigned to the topic t, then we randomly
select one of the class labels assigned to the topic
t. If the annotator is unable to label a topic then
we randomly select a class label from the set of all
class labels. We then update the new LDA model
using collapsed Gibbs sampling.

We use this new model to infer the probability
distribution of each unlabeled training document
over the class labels. Let, θc,d be the probability of
generating document d by class c. We then sprin-
kle s artificial words of class label c to document
d, such that s = K ∗ θc,d for some constant K.

We then infer a set of |C| number of topics on
the sprinkled dataset using collapsed Gibbs sam-
pling, where C is the set of class labels of the
training documents. We modify collapsed Gibbs
sampling update in Equation 1 to carry class label
information while inferring topics. If a word in a
document is a sprinkled word then while sampling
a class label for it, we sample the class label asso-
ciated with the sprinkled word, otherwise we sam-
ple a class label for the word using Gibbs update
in Equation 1.

We name this model as Topic Sprinkled LDA
(TS-LDA). While classifying a test document, its
probability distribution over class labels is inferred
using TS-LDA model and it is classified to its most
probable class label. Algorithm for TS-LDA is
summarized in Table 1.

5 Experimental Evaluation

We determine the effectiveness of our algorithm
in relation to ClassifyLDA algorithm proposed in
(Hingmire et al., 2013). We evaluate and com-
pare our text classification algorithm by comput-
ing Macro averaged F1. As the inference of LDA
is approximate, we repeat all the experiments for
each dataset ten times and report average Macro-
F1. Similar to (Blei et al., 2003) we also learn
supervised SVM classifier (LDA-SVM) for each
dataset using topics as features and report average
Macro-F1.

5.1 Datasets

We use the following datasets in our experiments.
1. 20 Newsgroups: This dataset contains
messages across twenty newsgroups. In our
experiments, we use bydate version of the
20Newsgroup dataset1. This version of the dataset
is divided into training (60%) and test (40%)
datasets. We construct classifiers on training
datasets and evaluate them on test datasets.
2. SRAA: Simulated/Real/Aviation/Auto
UseNet data2: This dataset contains 73,218

1http://qwone.com/˜jason/20Newsgroups/
2http://people.cs.umass.edu/˜mccallum/

data.html
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• Input: unlabeled document corpus-D, number of
topics-T and number of sprinkled terms-K

1. Infer T number of topics on D for LDA using col-
lapsed Gibbs sampling. Let MD be the hidden
topic structure of this model.

2. Ask an annotator to assign one or more class labels
ci ∈ C to a topic based on its 30 most probable
words.

3. Initialization: For nth word in document d ∈ D
if zd,n = t and the annotator has labeled topic t
with ci then, zd,n = ci

4. Update MD using collapsed Gibbs sampling up-
date in Equation 1.

5. Sprinkling: For each document d ∈ D:

(a) Infer a probability distribution θd over class
labels using MD using Equation 3.

(b) Let, θc,d be probability of generating docu-
ment d by class c.

(c) InsertK ∗θc,d distinct words associated with
the class c to the document d.

6. Infer |C| number of topics on the sprinkled docu-
ment corpus D using collapsed Gibbs sampling up-
date.

7. Let M ′
D be the new hidden topic structure. Let us

call this hidden structure as TS-LDA.

8. Classification of an unlabled document d

(a) Infer θ′d for document d using M ′
D .

(b) k = argmaxi θ
′
i,d

(c) yd = ck

Table 1: Algorithm for sprinkling LDA topics for
text classification

UseNet articles from four discussion groups,
for simulated auto racing (sim auto), simulated
aviation (sim aviation), real autos (real auto), real
aviation (real aviation). Following are the three
classification tasks associated with this dataset.
1. sim auto vs sim aviation vs real auto vs
real aviation
2. auto (sim auto + real auto) vs aviation
(sim aviation + real aviation)
3. simulated (sim auto + sim aviation) vs real
(real auto + real aviation)
We randomly split SRAA dataset such that 80%
is used as training data and remaining is used as
test data.
3. WebKB: The WebKB dataset3 contains 8145
web pages gathered from university computer

3http://www.cs.cmu.edu/˜webkb/

science departments. The task is to classify the
webpages as student, course, faculty or project.
We randomly split this dataset such that 80% is
used as training and 20% is used as test data.

We preprocess these datasets by removing
HTML tags and stop-words.

For various subsets of the 20Newsgroups and
WebKB datasets discussed above, we choose
number of topics as twice the number of classes.
For SRAA dataset we infer 8 topics on the train-
ing dataset and label these 8 topics for all the three
classification tasks. While labeling a topic, we
show its 30 most probable words to the human an-
notator.

Similar to (Griffiths and Steyvers, 2004), we set
symmetric Dirichlet word prior (βw) for each topic
to 0.01 and symmetric Dirichlet topic prior (αt)
for each document to 50/T, where T is number of
topics. We set K i.e. maximum number of words
sprinkled per class to 10.

5.2 Results
Table 2 shows experimental results. We can ob-
serve that, TS-LDA performs better than Classi-
fyLDA in 5 of the total 9 subsets. For the comp-
religion-sci dataset TS-LDA and ClassifyLDA
have the same performance. However, Classi-
fyLDA performs better than TS-LDA for the three
classification tasks of SRAA dataset. We can also
observe that, performance of TS-LDA is close to
supervised LDA-SVM. We should note here that
in TS-LDA, the annotator only labels a few topics
and not a single document. Hence, our approach
exerts a low cognitive load on the annotator, at
the same time achieves text classification perfor-
mance close to LDA-SVM which needs labeled
documents.

5.3 Example
Table 3 shows most prominent words of four
topics inferred on the med-space subset of the
20Newsgroup dataset. We can observe here that
most prominent words of the first topic do not rep-
resent a single class, while other topics represent
either med (medical) or space class. We can say
here that, these topics are not “coherent”.

We use these labeled topics and create a TS-
LDA model using the algorithm described in Table
1. Table 4 shows words corresponding to the top
two topics of the TS-LDA model. We can observe
here that these two topics are more coherent than
the topics in Table 3.
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Text Classification (Macro-F1)
Dataset # Topics ClassifyLDA TS-LDA LDA-SVM
20Newsgroups
med-space 4 0.892 0.938 0.933
politics-religion 4 0.836 0.897 0.901
politics-sci 4 0.887 0.901 0.910
comp-religion-sci 6 0.853 0.853 0.872
politics-rec-religion-sci 8 0.842 0.858 0.862
SRAA
real auto-real aviation-sim auto-
sim aviation

8 0.766 0.741 0.820

auto-aviation 8 0.926 0.910 0.934
real-sim 8 0.918 0.902 0.923
WebKB
WebKB 8 0.627 0.672 0.730

Table 2: Experimental results of text classification on various datasets.

ID Most prominent words in the
topic

Class (med
/ space)

0 science scientific idea large theory
bit pat thought problem isn

med +
space

1 information health research medi-
cal water cancer hiv aids children
institute newsletter

med

2 msg food doctor disease pain
day treatment blood steve dyer
medicine symptoms

med

3 space nasa launch earth orbit
moon shuttle data lunar satellite

space

Table 3: Topic labeling on the med-space subset of the
20Newsgroup dataset

ID Most prominent words in the
topic

Class (med
/ space)

0 msg medical health food disease
years problem information doctor
pain cancer

med

1 space launch earth data orbit
moon program shuttle lunar satel-
lite

space

Table 4: Topics inferred on the med-space subset of the
20Newsgroup dataset after sprinkling labeled topics from Ta-
ble 3.

Hence, we can say here that, in addition to text
classification, sprinkling improves coherence of
topics.

We should note here that, in ClassifyLDA, the
annotator is able to assign a single class label to
a topic. If the annotator assigns a wrong class la-
bel to a topic representing multiple classes (e.g.
first topic in Table 3), then it may affect the perfor-
mance of the resulting classifier. However, in our
approach the annotator can assign multiple class
labels to a topic, hence our approach is more flexi-
ble for the annotator to encode her domain knowl-
edge efficiently.

6 Conclusions and Future Work

In this paper we propose a novel algorithm that
classifies documents based on class labels over
few topics. This reduces the need to label a large
collection of documents. We have used the idea
of sprinkling originally proposed in the context
of supervised Latent Semantic Analysis, but the
setting here is quite different. Unlike the work
in (Chakraborti et al., 2007), we do not assume
that we have class labels over the set of training
documents. Instead, to realize our goal of reduc-
ing knowledge acquisition overhead, we propose a
way of propagating knowledge of few topic labels
to the words and inducing a new topic distribu-
tion that has its topics more closely aligned to the
class labels. The results show that the approach
can yield performance comparable to entirely su-
pervised settings. In future work, we also envi-
sion the possibility of sprinkling knowledge from
background knowledge sources like Wikipedia
(Gabrilovich and Markovitch, 2007) to realize an
alignment of topics to Wikipedia concepts. We
would like to study effect of change in number of
topics on the text classification performance. We
will also explore techniques which will help an-
notators to encode their domain knowledge effi-
ciently when the topics are not well aligned to the
class labels.
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Abstract 

Tree kernel is an effective technique for rela-

tion extraction. However, the traditional syn-

tactic tree representation is often too coarse or 

ambiguous to accurately capture the semantic 

relation information between two entities. In 
this paper, we propose a new tree kernel, 

called feature-enriched tree kernel (FTK), 

which can enhance the traditional tree kernel 

by: 1) refining the syntactic tree representation 

by annotating each tree node with a set of dis-

criminant features; and 2) proposing a new 

tree kernel which can better measure the syn-

tactic tree similarity by taking all features into 

consideration. Experimental results show that 

our method can achieve a 5.4% F-measure im-

provement over the traditional convolution 
tree kernel. 

1 Introduction 

Relation Extraction (RE) aims to identify a set of 

predefined relations between pairs of entities in 

text. In recent years, relation extraction has re-
ceived considerable research attention. An effec-

tive technique is the tree kernel (Zelenko et al., 

2003; Zhou et al., 2007; Zhang et al., 2006; Qian 
et al., 2008), which can exploit syntactic parse tree 

information for relation extraction. Given a pair of 

entities in a sentence, the tree kernel-based RE 

method first represents the relation information 
between them using a proper sub-tree (e.g., SPT – 

the sub-tree enclosed by the shortest path linking 

the two involved entities). For example, the three 
syntactic tree representations in Figure 1. Then the 

similarity between two trees are computed using a 

tree kernel, e.g., the convolution tree kernel pro-
posed by Collins and Duffy (2001). Finally, new 

relation instances are extracted using kernel based 

classifiers, e.g., the SVM classifier. 

Unfortunately, one main shortcoming of the 
traditional tree kernel is that the syntactic tree rep-

resentation usually cannot accurately capture the 

 

Figure 1. The ambiguity of possessive structure 

relation information between two entities. This is 

mainly due to the following two reasons: 

1) The syntactic tree focuses on representing 
syntactic relation/structure, which is often too 

coarse or ambiguous to capture the semantic re-

lation information. In a syntactic tree, each node 

indicates a clause/phrase/word and is only labeled 
with a Treebank tag (Marcus et al., 1993). The 

Treebank tag, unfortunately, is usually too coarse 

or too general to capture semantic information. 
For example, all the three trees in Figure 1 share 

the same possessive syntactic structure, but ex-

press quite different semantic relations: where 

“Mary’s brothers” expresses PER-SOC Family 
relation, “Mary’s toys” expresses Possession rela-

tion, and “New York’s airports” expresses PHYS-

Located relation. 
2) Some critical information may lost during 

sub-tree representation extraction. For example, 

in Figure 2, when extracting SPT representation, 
all nodes outside the shortest-path will be pruned, 

such as the nodes [NN plants] and [POS ’s] in tree 

T1. In this pruning process, the critical infor-

mation “word town is the possessor of the posses-
sive phrase the town’s plants” will be lost, which 

in turn will lead to the misclassification of the 

DISC relation between one and town. 
This paper proposes a new tree kernel, referred 

as feature-enriched tree kernel (FTK), which can 

effectively resolve the above problems by enhanc-
ing the traditional tree kernel in following ways: 

1) We refine the syntactic tree representa-

tion by annotating each tree node with a set of dis-

criminant features. These features are utilized to 
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better capture the semantic relation information 

between two entities. For example, in order to dif-

ferentiate the syntactic tree representations in Fig-

ure 1, FTK will annotate them with several fea-
tures indicating “brother is a male sibling”, “toy 

is an artifact”, “New York is a city”, “airport is 

facility”, etc. 
2) Based on the refined syntactic tree repre-

sentation, we propose a new tree kernel – feature-

enriched tree kernel, which can better measure the 
similarity between two trees by also taking all fea-

tures into consideration. 

 
Figure 2. SPT representation extraction 

We have experimented our method on the ACE 

2004 RDC corpus. Experimental results show that 
our method can achieve a 5.4% F-measure im-

provement over the traditional convolution tree 

kernel based method. 

This paper is organized as follows. Section 2 
describes the feature-enriched tree kernel. Section 

3 presents the features we used. Section 4 dis-

cusses the experiments. Section 5 briefly reviews 
the related work. Finally Section 6 concludes this 

paper. 

2 The Feature-Enriched Tree Kernel 

In this section, we describe the proposed feature-

enriched tree kernel (FTK) for relation extraction. 

2.1 Refining Syntactic Tree Representation 

As described in above, syntactic tree is often too 
coarse or too ambiguous to represent the semantic 

relation information between two entities. To re-

solve this problem, we refine the syntactic tree 

representation by annotating each tree node with 
a set of discriminant features. 

 

Figure 3. Syntactic tree enriched with features 

Specifically, for each node  in a syntactic tree 

, we represent it as a tuple: 

 

where  is its phrase label (i.e., its Treebank tag), 

and  is a feature vector which indicates the 

characteristics of node , which is represented as: 

 

where fi is a feature and is associated with a weight 

. The feature we used includes charac-

teristics of relation instance, phrase properties and 
context information (See Section 3 for details). 

For demonstration, Figure 3 shows the feature-

enriched version of tree T2 and tree T4 in Figure 
2. We can see that, although T2 and T4 share the 

same syntactic structure, the annotated features 

can still differentiate them. For example, the NP5 

node in tree T2 and the NP5 node in tree T4 are 
differentiated using their features Possessive-

Phrase and PPPhrase, which indicate that NP5 in 

T2 is a possessive phrase, meanwhile NP5 in T4 is 
a preposition phrase. 

2.2 Feature-Enriched Tree Kernel 

This section describes how to take into account 

the annotated features for a better tree similarity. 

In Collins and Duffy’s convolution tree kernel 
(CTK), the similarity between two trees T1 and T2 

is the number of their common sub-trees: 

 

Using this formula, CTK only considers whether 
two enumerated sub-trees have the identical syn-

tactic structure (the indicator  is 1 if the 
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two sub-trees  and  have the identical syntac-

tic structure and 0 otherwise). Such an assumption 
makes CTK can only capture the syntactic struc-

ture similarity between two trees, while ignoring 

other useful information. 

To resolve the above problem, the feature-en-
riched tree kernel (FTK) compute the similarity 

between two trees as the sum of the similarities 

between their common sub-trees: 

 

where  is the similarity between enumer-

ated sub-trees  and , which is computed as: 

 

where  is the same indicator function as in 

CTK; is a pair of aligned nodes between 

 and , where  and  are correspondingly in 

the same position of tree  and ;  is the 

set of all aligned node pairs;  is the 

feature vector similarity between node  and , 

computed as the dot product between their feature 

vectors  and . 

Notice that, if all nodes are not annotated with 

features,  will be equal to . In this 

perspective, we can view  as a similarity 

adjusted version of , i.e.,  only 

considers whether two nodes are equal, in contrast 

 further considers the feature similarity 

 between two nodes. 

The Computation of FTK. As the same as 
CTK, FTK can be efficiently computed as: 

 

where  is the set of nodes in tree , and 

 evaluates the sum of the similarities of 

common sub-trees rooted at node  and node , 

which is recursively computed as follows: 

1) If the production rules of  and  are differ-

ent,  = 0; 

2) If both  and  is pre-terminal nodes, 

; 

Otherwise go to step 3; 

3) Calculate  recursively as: 
¢(n1;n2) = ¸£ (1 + sim(n1; n2))

£

#ch(n1)X

k=1

(1 + ¢(ch(n1; k); ch(n2; k))

¢(n1;n2) = ¸£ (1 + sim(n1; n2))

£

#ch(n1)X

k=1

(1 + ¢(ch(n1; k); ch(n2; k))
 

3 Features for Relation Extraction 

This section presents the features we used to en-

rich the syntactic tree representation. 

3.1 Instance Feature 

Relation instances of the same type often share 

some common characteristics. In this paper, we 

add the following instance features to the root 
node of a sub-tree representation: 

1) Syntactico-Semantic structure. A fea-

ture indicates whether a relation instance has the 
following four syntactico-semantic structures in 

(Chan & Roth, 2011) – Premodifiers, Possessive, 

Preposition, Formulaic and Verbal. 

2) Entity-related information of argu-

ments. Features about the entity information of 

arguments, including: a) #TP1-#TP2: the concat 

of the major entity types of arguments; b) #ST1-
#ST2: the concat of the sub entity types of argu-

ments; c) #MT1-#MT2: the concat of the mention 

types of arguments. 
3) Base phrase chunking features. Fea-

tures about the phrase path between two argu-

ments and the phrases’ head before and after the 
arguments, which are the same as the phrase 

chunking features in (Zhou, et al., 2005). 

3.2 Phrase Feature 

As discussed in above, the Treebank tag is too 

coarse to capture the property of a phrase node. 
Therefore, we enrich each phrase node with fea-

tures about its lexical pattern, its content infor-

mation, and its lexical semantics: 
1) Lexical Pattern. We capture the lexical 

pattern of a phrase node using the following fea-

tures: a) LP_Poss: A feature indicates the node is 

a possessive phrase; b) LP_PP: A feature indi-
cates the node is a preposition phrase; c) LP_CC: 

A feature indicates the node is a conjunction 

phrase; d) LP_EndWithPUNC: A feature indicates 
the node ends with a punctuation; e) LP_EndWith-

POSS: A feature indicates the node ends with a 

possessive word. 
2) Content Information. We capture the 

property of a node’s content using the following 

features: a) MB_#Num: The number of mentions 

contained in the phrase; b) MB_C_#Type: A fea-
ture indicates that the phrase contains a mention 

with major entity type #Type; c) MW_#Num: The 

number of words within the phrase. 
3) Lexical Semantics. If the node is a pre-

terminal node, we capture its lexical semantic by 

adding features indicating its WordNet sense in-

formation. Specifically, the first WordNet sense 
of the terminal word, and all this sense’s hyponym 

senses will be added as features. For example, 

WordNet senses {New York#1, city#1, district#1, 
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region#1, …} will be added as features to the [NN 

New York]  node in Figure 1. 

3.3 Context Information Feature 

The context information of a phrase node is criti-

cal for identifying the role and the importance of 
a sub-tree in the whole relation instance. This pa-

per captures the following context information: 

1) Contextual path from sub-tree root to 
the phrase node. As shown in Zhou et al. (2007), 

the context path from root to the phrase node is an 

effective context information feature. In this paper, 
we use the same settings in (Zhou et al., 2007), i.e., 

each phrase node is enriched with its context paths 

of length 1, 2, 3. 

2) Relative position with arguments. We 
observed that a phrase’s relative position with the 

relation’s arguments is useful for identifying the 

role of the phrase node in the whole relation in-
stance. To capture the relative position infor-

mation, we define five possible relative positions 

between a phrase node and an argument, corre-

sponding match, cover, within, overlap and other. 
Using these five relative positions, we capture the 

context information using the following features: 

a) #RP_Arg1Head_#Arg1Type: a feature in-
dicates the relative position of a phrase node with 

argument 1’s head phrase, where #RP is the rela-

tive position (one of match, cover, within, overlap, 
other), and #Arg1Type is the major entity type of 

argument 1. One example feature may be 

Match_Arg1Head_LOC. 

b) #RP_Arg2Head_#Arg2Type: The relative 
position with argument 2’s head phrase; 

c) #RP_Arg1Extend_#Arg1Type: The rela-

tive position with argument 1’s extended phrase; 
d) #PR_Arg2Extend_#Arg2Type: The rela-

tive position with argument 2’s extended phrase. 

Feature weighting. Currently, we set all fea-

tures with an uniform weight , which is 

used to control the relative importance of the fea-
ture in the final tree similarity: the larger the fea-

ture weight, the more important the feature in the 

final tree similarity. 

4 Experiments 

4.1 Experimental Setting 

To assess the feature-enriched tree kernel, we 

evaluate our method on the ACE RDC 2004 cor-
pus using the same experimental settings as (Qian 

et al., 2008). That is, we parse all sentences using 

the Charniak’s parser (Charniak, 2001), relation 
instances are generated by iterating over all pairs 

of entity mentions occurring in the same sentence. 

In our experiments, we implement the feature-en-

riched tree kernel by extending the SVMlight (Joa-

chims, 1998) with the proposed tree kernel func-

tion (Moschitti, 2004). We apply the one vs. oth-
ers strategy for multiple classification using SVM. 

For SVM training, the parameter C is set to 2.4 for 

all experiments, and the tree kernel parameter λ is 

tuned to 0.2 for FTK and 0.4 (the optimal param-
eter setting used in Qian et al.(2008)) for CTK. 

4.2 Experimental Results 

4.2.1 Overall performance 

We compare our method with the standard convo-

lution tree kernel (CTK) on the state-of-the-art 
context sensitive shortest path-enclosed tree rep-

resentation (CSPT, Zhou et al., 2007). We exper-

iment our method with four different feature set-

tings, correspondingly: 1) FTK with only instance 
features – FTK(instance); 2) FTK with only 

phrase features – FTK(phrase); 3) FTK with only 

context information features – FTK(context); and 
4) FTK with all features – FTK. The overall per-

formance of CTK and FTK is shown in Table 1, 

the F-measure improvements over CTK are also 

shown inside the parentheses. The detailed perfor-
mance of FTK on the 7 major relation types of 

ACE 2004 is shown in Table 2. 

 P(%) R(%) F 

CTK 77.1 61.3 68.3 (-------) 
FTK(instance) 78.5 64.6 70.9 (+2.6%) 
FTK(phrase) 78.3 64.2 70.5 (+2.2%) 
FTK(context) 80.1 67.5 73.2 (+4.9%) 

FTK 81.2 67.4 73.7 (+5.4%) 

Table 1. Overall Performance 

Relation Type P(%) R(%) F Impr 
EMP-ORG 84.7 82.4 83.5 5.8% 
PER-SOC 79.9 70.7 75.0 1.0% 
PHYS 73.3 64.4 68.6 7.0% 
ART 83.6 57.5 68.2 1.7% 
GPE-AFF 74.7 56.6 64.4 4.3% 
DISC 81.6 48.0 60.5 6.6% 
OTHER-AFF 74.2 36.8 49.2 1.0% 

Table 2. FTK on the 7 major relation types and 
their F-measure improvement over CTK 

From Table 1 and 2, we can see that: 

1) By refining the syntactic tree with discri-
minant features and incorporating these features 

into the final tree similarity, FTK can significantly 

improve the relation extraction performance: 
compared with the convolution tree kernel base-

line CTK, our method can achieve a 5.4% F-meas-

ure improvement. 
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2) All types of features can improve the per-

formance of relation extraction: FTK can corre-

spondingly get 2.6%, 2.2% and 4.9% F-measure 

improvements using instance features, phrase fea-
tures and context information features. 

3) Within the three types of features, context 

information feature can achieve the highest F-
measure improvement. We believe this may be-

cause: ①  The context information is useful in 

providing clues for identifying the role and the im-

portance of a sub-tree; and ② The context-free as-

sumption of CTK is too strong, some critical in-

formation will lost in the CTK computation. 
4) The performance improvement of FTK 

varies significantly on different relation types: in 

Table 2, most performance improvement gains 

from the EMP-ORG, PHYS, GPE-AFF and DISC 
relation types. We believe this may because the 

discriminant features will better complement the 

syntactic tree for capturing EMP-ORG, PHYS, 
GPE-AFF and DISC relation. On contrast the fea-

tures may be redundant to the syntactic infor-

mation for other relation types. 

System P(%) R(%) F 

Qian et al., (2008): composite kernel 83.0 72.0 77.1 

Zhou et al., (2007): composite kernel 82.2 70.2 75.8 

Ours: FTK with CSPT 81.2 67.4 73.7 

Zhou et al., (2007): context sensitive 
CTK with CSPT 

81.1 66.7 73.2 

Ours: FTK with SPT 81.1 66.2 72.9 

Jiang & Zhai (2007): MaxEnt classi-

fier with features 

74.6 71.3 72.9 

Zhang et al., (2006): composite kernel  76.1 68.4 72.1 

Zhao & Grishman, (2005): Composite 
kernel 

69.2 70.5 70.4 

Zhang et al., (2006): CTK with SPT 74.1 62.4 67.7 

Table 3. Comparison of different systems on the 

ACE RDC 2004 corpus 

4.2.2 Comparison with other systems 

Finally, Table 3 compares the performance of our 

method with several other systems. From Table 3, 

we can see that FTK can achieve competitive per-

formance: ① It achieves a 0.8% F-measure im-
provement over the feature-based system of Jiang 

& Zhai (2007); ② It achieves a 0.5% F-measure 
improvement over a state-of-the-art tree kernel: 

context sensitive CTK with CSPT of Zhou et al., 

(2007); ③ The F-measure of our system is slightly 

lower than the current best performance on ACE 

2004 (Qian et al., 2008) – 73.7 vs. 77.1, we believe 

this is because the system of (Qian et al., 2008) 
adopts two extra techniques: composing tree ker-

nel with a state-of-the-art feature-based kernel and 

using a more proper sub-tree representation. We 

believe these two techniques can also be used to 

further improve the performance of our system. 

5 Related Work 

This section briefly reviews the related work. A 

classical technique for relation extraction is to 
model the task as a feature-based classification 

problem (Kambhatla, 2004; Zhou et al., 2005; 

Jiang & Zhai, 2007; Chan & Roth, 2010; Chan & 

Roth, 2011), and feature engineering is obviously 
the key for performance improvement. As an al-

ternative, tree kernel-based method implicitly de-

fines features by directly measuring the similarity 
between two structures (Bunescu and Mooney, 

2005; Bunescu and Mooney, 2006; Zelenko et al, 

2003; Culotta and Sorensen, 2004; Zhang et al., 
2006). Composite kernels were also be used (Zhao 

and Grishman, 2005; Zhang et al., 2006). 

The main drawback of the current tree kernel is 

that the syntactic tree representation often cannot 
accurately capture the relation information. To re-

solve this problem, Zhou et al. (2007) took the an-

cestral information of sub-trees into consideration; 
Reichartz and Korte (2010) incorporated depend-

ency type information into a tree kernel; Plank and 

Moschitti (2013) and Liu et al. (2013) embedded 

semantic information into tree kernel. Bloehdorn 
and Moschitti (2007a, 2007b) proposed Syntactic 

Semantic Tree Kernels (SSTK), which can cap-

ture the semantic similarity between leaf nodes. 
Moschitti (2009) proposed a tree kernel which 

specify a kernel function over any pair of nodes 

between two trees, and it was further extended and 
applied in other tasks in (Croce et al., 2011; Croce 

et al., 2012; Mehdad et al., 2010). 

6 Conclusions and Future Work 

This paper proposes a feature-enriched tree kernel, 

which can: 1) refine the syntactic tree representa-

tion; and 2) better measure the similarity between 
two trees. For future work, we want to develop a 

feature weighting algorithm which can accurately 

measure the relevance of a feature to a relation in-

stance for better RE performance. 
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Abstract

Relation extraction suffers from a perfor-
mance loss when a model is applied to
out-of-domain data. This has fostered the
development of domain adaptation tech-
niques for relation extraction. This paper
evaluates word embeddings and clustering
on adapting feature-based relation extrac-
tion systems. We systematically explore
various ways to apply word embeddings
and show the best adaptation improvement
by combining word cluster and word em-
bedding information. Finally, we demon-
strate the effectiveness of regularization
for the adaptability of relation extractors.

1 Introduction

The goal of Relation Extraction (RE) is to detect
and classify relation mentions between entity pairs
into predefined relation types such as Employ-
ment or Citizenship relationships. Recent research
in this area, whether feature-based (Kambhatla,
2004; Boschee et al., 2005; Zhou et al., 2005;
Grishman et al., 2005; Jiang and Zhai, 2007a;
Chan and Roth, 2010; Sun et al., 2011) or kernel-
based (Zelenko et al., 2003; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006; Qian et al., 2008; Nguyen et al., 2009), at-
tempts to improve the RE performance by enrich-
ing the feature sets from multiple sentence anal-
yses and knowledge resources. The fundamental
assumption of these supervised systems is that the
training data and the data to which the systems are
applied are sampled independently and identically
from the same distribution. When there is a mis-
match between data distributions, the RE perfor-
mance of these systems tends to degrade dramat-
ically (Plank and Moschitti, 2013). This is where
we need to resort to domain adaptation techniques
(DA) to adapt a model trained on one domain (the

source domain) into a new model which can per-
form well on new domains (the target domains).

The consequences of linguistic variation be-
tween training and testing data on NLP tools have
been studied extensively in the last couple of years
for various NLP tasks such as Part-of-Speech tag-
ging (Blitzer et al., 2006; Huang and Yates, 2010;
Schnabel and Schütze, 2014), named entity recog-
nition (Daumé III, 2007) and sentiment analysis
(Blitzer et al., 2007; Daumé III, 2007; Daumé
III et al., 2010; Blitzer et al., 2011), etc. Un-
fortunately, there is very little work on domain
adaptation for RE. The only study explicitly tar-
geting this problem so far is by Plank and Mos-
chitti (2013) who find that the out-of-domain per-
formance of kernel-based relation extractors can
be improved by embedding semantic similarity in-
formation generated from word clustering and la-
tent semantic analysis (LSA) into syntactic tree
kernels. Although this idea is interesting, it suf-
fers from two major limitations:

+ It does not incorporate word cluster informa-
tion at different levels of granularity. In fact, Plank
and Moschitti (2013) only use the 10-bit cluster
prefix in their study. We will demonstrate later
that the adaptability of relation extractors can ben-
efit significantly from the addition of word cluster
features at various granularities.

+ It is unclear if this approach can encode real-
valued features of words (such as word embed-
dings (Mnih and Hinton, 2007; Collobert and We-
ston, 2008)) effectively. As the real-valued fea-
tures are able to capture latent yet useful proper-
ties of words, the augmentation of lexical terms
with these features is desirable to provide a more
general representation, potentially helping relation
extractors perform more robustly across domains.

In this work, we propose to avoid these limita-
tions by applying a feature-based approach for RE
which allows us to integrate various word features
of generalization into a single system more natu-
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rally and effectively.
The application of word representations such

as word clusters in domain adaptation of RE
(Plank and Moschitti, 2013) is motivated by its
successes in semi-supervised methods (Chan and
Roth, 2010; Sun et al., 2011) where word repre-
sentations help to reduce data-sparseness of lexi-
cal information in the training data. In DA terms,
since the vocabularies of the source and target do-
mains are usually different, word representations
would mitigate the lexical sparsity by providing
general features of words that are shared across
domains, hence bridge the gap between domains.
The underlying hypothesis here is that the absence
of lexical target-domain features in the source do-
main can be compensated by these general fea-
tures to improve RE performance on the target do-
mains.

We extend this motivation by further evaluat-
ing word embeddings (Bengio et al., 2001; Ben-
gio et al., 2003; Mnih and Hinton, 2007; Col-
lobert and Weston, 2008; Turian et al., 2010) on
feature-based methods to adapt RE systems to new
domains. We explore the embedding-based fea-
tures in a principled way and demonstrate that
word embedding itself is also an effective repre-
sentation for domain adaptation of RE. More im-
portantly, we show empirically that word embed-
dings and word clusters capture different informa-
tion and their combination would further improve
the adaptability of relation extractors.

2 Regularization

Given the more general representations provided
by word representations above, how can we learn a
relation extractor from the labeled source domain
data that generalizes well to new domains? In tra-
ditional machine learning where the challenge is
to utilize the training data to make predictions on
unseen data points (generated from the same dis-
tribution as the training data), the classifier with
a good generalization performance is the one that
not only fits the training data, but also avoids ov-
efitting over it. This is often obtained via regular-
ization methods to penalize complexity of classi-
fiers. Exploiting the shared interest in generaliza-
tion performance with traditional machine learn-
ing, in domain adaptation for RE, we would prefer
the relation extractor that fits the source domain
data, but also circumvents the overfitting problem

over this source domain1 so that it could general-
ize well on new domains. Eventually, regulariza-
tion methods can be considered naturally as a sim-
ple yet general technique to cope with DA prob-
lems.

Following Plank and Moschitti (2013), we as-
sume that we only have labeled data in a single
source domain but no labeled as well as unlabeled
target data. Moreover, we consider the single-
system DA setting where we construct a single
system able to work robustly with different but
related domains (multiple target domains). This
setting differs from most previous studies (Blitzer
et al., 2006) on DA which have attempted to de-
sign a specialized system for every specific tar-
get domain. In our view, although this setting is
more challenging, it is more practical for RE. In
fact, this setting can benefit considerably from our
general approach of applying word representations
and regularization. Finally, due to this setting, the
best way to set up the regularization parameter is
to impose the same regularization parameter on
every feature rather than a skewed regularization
(Jiang and Zhai, 2007b).

3 Related Work

Although word embeddings have been success-
fully employed in many NLP tasks (Collobert and
Weston, 2008; Turian et al., 2010; Maas and
Ng, 2010), the application of word embeddings
in RE is very recent. Kuksa et al. (2010) pro-
pose an abstraction-augmented string kernel for
bio-relation extraction via word embeddings. In
the surge of deep learning, Socher et al. (2012)
and Khashabi (2013) use pre-trained word embed-
dings as input for Matrix-Vector Recursive Neu-
ral Networks (MV-RNN) to learn compositional
structures for RE. However, none of these works
evaluate word embeddings for domain adaptation
of RE which is our main focus in this paper.

Regarding domain adaptation, in representation
learning, Blitzer et al. (2006) propose structural
correspondence learning (SCL) while Huang and
Yates (2010) attempt to learn a multi-dimensional
feature representation. Unfortunately, these meth-
ods require unlabeled target domain data which
are unavailable in our single-system setting of DA.
Daumé III (2007) proposes an easy adaptation
framework (EA) which is later extended to a semi-
supervised version (EA++) to incorporate unla-

1domain overfitting (Jiang and Zhai, 2007b)
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beled data (Daumé III et al., 2010). In terms of
word embeddings for DA, recently, Xiao and Guo
(2013) present a log-bilinear language adaptation
framework for sequential labeling tasks. However,
these methods assume some labeled data in target
domains and are thus not applicable in our setting
of unsupervised DA. Above all, we move one step
further by evaluating the effectiveness of word em-
beddings on domain adaptation for RE which is
very different from the principal topic of sequence
labeling in the previous research.

4 Word Representations

We consider two types of word representations and
use them as additional features in our DA sys-
tem, namely Brown word clustering (Brown et
al., 1992) and word embeddings (Bengio et al.,
2001). While word clusters can be recognized
as an one-hot vector representation over a small
vocabulary, word embeddings are dense, low-
dimensional, and real-valued vectors (distributed
representations). Each dimension of the word em-
beddings expresses a latent feature of the words,
hopefully reflecting useful semantic and syntactic
regularities (Turian et al., 2010). We investigate
word embeddings induced by two typical language
models: Collobert and Weston (2008) embeddings
(C&W) (Collobert and Weston, 2008; Turian et
al., 2010) and Hierarchical log-bilinear embed-
dings (HLBL) (Mnih and Hinton, 2007; Mnih and
Hinton, 2009; Turian et al., 2010).

5 Feature Set

5.1 Baseline Feature Set
Sun et al. (2011) utilize the full feature set from
(Zhou et al., 2005) plus some additional features
and achieve the state-of-the-art feature-based RE
system. Unfortunately, this feature set includes
the human-annotated (gold-standard) information
on entity and mention types which is often miss-
ing or noisy in reality (Plank and Moschitti, 2013).
This issue becomes more serious in our setting of
single-system DA where we have a single source
domain with multiple dissimilar target domains
and an automatic system able to recognize entity
and mention types very well in different domains
may not be available. Therefore, following the set-
tings of Plank and Moschitti (2013), we will only
assume entity boundaries and not rely on the gold
standard information in the experiments. We ap-
ply the same feature set as Sun et al. (2011) but

remove the entity and mention type information2.

5.2 Lexical Feature Augmentation
While Sun et al. (2011) show that adding word
clusters to the heads of the two mentions is the
most effective way to improve the generaliza-
tion accuracy, the right lexical features into which
word embeddings should be introduced to obtain
the best adaptability improvement are unexplored.
Also, which dimensionality of which word embed-
ding should we use with which lexical features?
In order to answer these questions, following Sun
et al. (2011), we first group lexical features into 4
groups and rank their importance based on linguis-
tic intuition and illustrations of the contributions
of different lexical features from various feature-
based RE systems. After that, we evaluate the ef-
fectiveness of these lexical feature groups for word
embedding augmentation individually and incre-
mentally according to the rank of importance. For
each of these group combinations, we assess the
system performance with different numbers of di-
mensions for both C&W and HLBL word embed-
dings. Let M1 and M2 be the first and second men-
tions in the relation. Table 1 describes the lexical
feature groups.

Rank Group Lexical Features
1 HM HM1 (head of M1)

HM2 (head of M2)
2 BagWM WM1 (words in M1)

WM2 (words in M2)
3 HC heads of chunks in context
4 BagWC words of context

Table 1: Lexical feature groups ordered by importance.

6 Experiments

6.1 Tools and Data
Our relation extraction system is hierarchical
(Bunescu and Mooney, 2005b; Sun et al., 2011)
and apply maximum entropy (MaxEnt) in the
MALLET3 toolkit as the machine learning tool.
For Brown word clusters, we directly apply the
clustering trained by Plank and Moschitti (2013)

2We have the same observation as Plank and Moschitti
(2013) that when the gold-standard labels are used, the
impact of word representations is limited since the gold-
standard information seems to dominate. However, whenever
the gold labels are not available or inaccurate, the word rep-
resentations would be useful for improving adaptability per-
formance. Moreover, in all the cases, regularization methods
are still effective for domain adaptation of RE.

3http://mallet.cs.umass.edu/
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In-domain (bn+nw) Out-of-domain (bc development set)
System C&W,25 C&W,50 C&W,100 HLBL,50 HLBL,100 C&W,25 C&W,50 C&W,100 HLBL,50 HLBL,100

1 Baseline 51.4 51.4 51.4 51.4 51.4 49.0 49.0 49.0 49.0 49.0
2 1+HM ED 54.0(+2.6) 54.1(+2.7) 55.7(+4.3) 53.7(+2.3) 55.2(+3.8) 51.5(+2.5) 52.7(+3.7) 52.5(+3.5) 50.2(+1.2) 50.6(+1.6)
3 1+BagWM ED 52.3(+0.9) 50.9(-0.5) 51.5(+0.1) 51.8(+0.4) 52.5(+1.1) 48.5(-0.5) 48.9(-0.1) 48.6(-0.4) 48.7(-0.3) 49.0(+0.0)
4 1+HC ED 51.3(-0.1) 50.9(-0.5) 48.3(-3.1) 50.8(-0.6) 49.8(-1.6) 44.9(-4.1) 45.8(-3.2) 45.8(-3.2) 48.7(-0.3) 47.3(-1.7)
5 1+BagWC ED 51.5(+0.1) 50.8(-0.6) 49.5(-1.9) 51.4(+0.0) 50.3(-1.1) 48.3(-0.7) 46.3(-2.7) 44.0(-5.0) 46.6(-2.4) 44.8(-4.2)
6 2+BagWM ED 54.3(+2.9) 53.2(+1.8) 53.2(+1.8) 54.0(+2.6) 53.8(+2.4) 52.5(+3.5) 51.4(+2.4) 50.6(+1.6) 50.0(+1.0) 48.6(-0.4)
7 6+HC ED 53.4(+2.0) 52.3(+0.9) 52.7(+1.3) 54.2(+2.8) 53.1(+1.7) 50.5(+1.5) 50.9(+1.9) 48.4(-0.6) 50.0(+1.0) 48.9(-0.1)
8 7+BagWC ED 53.4(+2.0) 52.2(+0.8) 50.8(-0.6) 53.5(+2.1) 53.6(+2.2) 49.2(+0.2) 50.7(+1.7) 49.2(+0.2) 47.9(-1.1) 49.5(+0.5)

Table 2: In-domain and Out-of-domain performance for different embedding features. The cells in bold are the best results.

to facilitate system comparison later. We evalu-
ate C&W word embeddings with 25, 50 and 100
dimensions as well as HLBL word embeddings
with 50 and 100 dimensions that are introduced
in Turian et al. (2010) and can be downloaded
here4. The fact that we utilize the large, general
and unbiased resources generated from the previ-
ous works for evaluation not only helps to verify
the effectiveness of the resources across different
tasks and settings but also supports our setting of
single-system DA.

We use the ACE 2005 corpus for DA experi-
ments (as in Plank and Moschitti (2013)). It in-
volves 6 relation types and 6 domains: broadcast
news (bn), newswire (nw), broadcast conversation
(bc), telephone conversation (cts), weblogs (wl)
and usenet (un). We follow the standard prac-
tices on ACE (Plank and Moschitti, 2013) and use
news (the union of bn and nw) as the source do-
main and bc, cts and wl as our target domains. We
take half of bc as the only target development set,
and use the remaining data and domains for testing
purposes (as they are small already). As noted in
Plank and Moschitti (2013), the distributions of re-
lations as well as the vocabularies of the domains
are quite different.

6.2 Evaluation of Word Embedding Features
We investigate the effectiveness of word embed-
dings on lexical features by following the proce-
dure described in Section 5.2. We test our system
on two scenarios: In-domain: the system is trained
and evaluated on the source domain (bn+nw, 5-
fold cross validation); Out-of-domain: the system
is trained on the source domain and evaluated on
the target development set of bc (bc dev). Table
2 presents the F measures of this experiment5 (the

4http://metaoptimize.com/projects/
wordreprs/

5All the in-domain improvement in rows 2, 6, 7 of Table
2 are significant at confidence levels ≥ 95%.

suffix ED in lexical group names is to indicate the
embedding features).

From the tables, we find that for C&W and
HLBL embeddings of 50 and 100 dimensions, the
most effective way to introduce word embeddings
is to add embeddings to the heads of the two men-
tions (row 2; both in-domain and out-of-domain)
although it is less pronounced for HLBL embed-
ding with 50 dimensions. Interestingly, for C&W
embedding with 25 dimensions, adding the em-
bedding to both heads and words of the two men-
tions (row 6) performs the best for both in-domain
and out-of-domain scenarios. This is new com-
pared to the word cluster features where the heads
of the two mentions are always the best places for
augmentation (Sun et al., 2011). It suggests that
a suitable amount of embeddings for words in the
mentions might be useful for the augmentation of
the heads and inspires further exploration. Intro-
ducing embeddings to words of mentions alone
has mild impact while it is generally a bad idea to
augment chunk heads and words in the contexts.

Comparing C&W and HLBL embeddings is
somehow more complicated. For both in-domain
and out-of-domain settings with different num-
bers of dimensions, C&W embedding outperforms
HLBL embedding when only the heads of the
mentions are augmented while the degree of neg-
ative impact of HLBL embedding on chunk heads
as well as context words seems less serious than
C&W’s. Regarding the incremental addition of
features (rows 6, 7, 8), C&W is better for the out-
of-domain performance when 50 dimensions are
used, whereas HLBL (with both 50 and 100 di-
mensions) is more effective for the in-domain set-
ting. For the next experiments, we will apply the
C&W embedding of 50 dimensions to the heads
of the mentions for its best out-of-domain perfor-
mance.
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6.3 Domain Adaptation with Word
Embeddings

This section examines the effectiveness of word
representations for RE across domains. We evalu-
ate word cluster and embedding (denoted by ED)
features by adding them individually as well as
simultaneously into the baseline feature set. For
word clusters, we experiment with two possibil-
ities: (i) only using a single prefix length of 10
(as Plank and Moschitti (2013) did) (denoted by
WC10) and (ii) applying multiple prefix lengths of
4, 6, 8, 10 together with the full string (denoted by
WC). Table 3 presents the system performance (F
measures) for both in-domain and out-of-domain
settings.

System In-domain bc cts wl
Baseline(B) 51.4 49.7 41.5 36.6
B+WC10 52.3(+0.9) 50.8(+1.1) 45.7(+4.2) 39.6(+3)
B+WC 53.7(+2.3) 52.8(+3.1) 46.8(+5.3) 41.7(+5.1)
B+ED 54.1(+2.7) 52.4(+2.7) 46.2(+4.7) 42.5(+5.9)
B+WC+ED 55.5(+4.1) 53.8(+4.1) 47.4(+5.9) 44.7(+8.1)

Table 3: Domain Adaptation Results with Word Represen-
tations. All the improvements over the baseline in Table 3 are
significant at confidence level ≥ 95%.

The key observations from the table are:
(i): The baseline system achieves a performance

of 51.4% within its own domain while the per-
formance on target domains bc, cts, wl drops to
49.7%, 41.5% and 36.6% respectively. Our base-
line performance is worse than that of Plank and
Moschitti (2013) only on the target domain cts and
better in the other cases. This might be explained
by the difference between our baseline feature set
and the feature set underlying their kernel-based
system. However, the performance order across
domains of the two baselines are the same. Be-
sides, the baseline performance is improved over
all target domains when the system is enriched
with word cluster features of the 10 prefix length
only (row 2).

(ii): Over all the target domains, the perfor-
mance of the system augmented with word cluster
features of various granularities (row 3) is supe-
rior to that when only cluster features for the pre-
fix length 10 are added (row 2). This is significant
(at confidence level ≥ 95%) for domains bc and
wl and verifies our assumption that various granu-
larities for word cluster features are more effective
than a single granularity for domain adaptation of
RE.

(iii): Row 4 shows that word embedding itself is
also very useful for domain adaptation in RE since

it improves the baseline system for all the target
domains.

(iv): In row 5, we see that the addition of both
word cluster and word embedding features im-
proves the system further and results in the best
performance over all target domains (this is sig-
nificant with confidence level ≥ 95% in domains
bc and wl). The result suggests that word embed-
dings seem to capture different information from
word clusters and their combination would be ef-
fective to generalize relation extractors across do-
mains. However, in domain cts, the improvement
that word embeddings provide for word clusters is
modest. This is because the RCV1 corpus used to
induce the word embeddings (Turian et al., 2010)
does not cover spoken language words in cts very
well.

(v): Finally, the in-domain performance is also
improved consistently demonstrating the robust-
ness of word representations (Plank and Moschitti,
2013).

6.4 Domain Adaptation with Regularization
All the experiments we have conducted so far do
not apply regularization for training. In this sec-
tion, in order to evaluate the effect of regulariza-
tion on the generalization capacity of relation ex-
tractors across domains, we replicate all the ex-
periments in Section 6.3 but apply regularization
when relation extractors are trained6. Table 4
presents the results.

System In-domain bc cts wl
Baseline(B) 56.2 55.5 48.7 42.2
B+WC10 57.5(+1.3) 57.3(+1.8) 52.3(+3.6) 45.0(+2.8)
B+WC 58.9(+2.7) 58.4(+2.9) 52.8(+4.1) 47.3(+5.1)
B+ED 58.9(+2.7) 59.5(+4.0) 52.6(+3.9) 48.6(+6.4)
B+WC+ED 59.4(+3.2) 59.8(+4.3) 52.9(+4.2) 49.7(+7.5)

Table 4: Domain Adaptation Results with Regularization.
All the improvements over the baseline in Table 4 are signif-
icant at confidence level ≥ 95%.

For this experiment, every statement in (ii), (iii),
(iv) and (v) of Section 6.3 also holds. More impor-
tantly, the performance in every cell of Table 4 is
significantly better than the corresponding cell in
Table 3 (5% or better gain in F measure, a sig-
nificant improvement at confidence level ≥ 95%).
This demonstrates the effectiveness of regulariza-
tion for RE in general and for domain adaptation
of RE specifically.

6We use a L2 regularizer with the regularization parame-
ter of 0.5 for its best experimental results.
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Abstract

Named Entity Disambiguation (NED)
refers to the task of mapping different
named entity mentions in running text to
their correct interpretations in a specific
knowledge base (KB). This paper presents
a collective disambiguation approach us-
ing a graph model. All possible NE candi-
dates are represented as nodes in the graph
and associations between different candi-
dates are represented by edges between the
nodes. Each node has an initial confidence
score, e.g. entity popularity. Page-Rank
is used to rank nodes and the final rank
is combined with the initial confidence
for candidate selection. Experiments on
27,819 NE textual mentions show the ef-
fectiveness of using Page-Rank in con-
junction with initial confidence: 87% ac-
curacy is achieved, outperforming both
baseline and state-of-the-art approaches.

1 Introduction

Named entities (NEs) have received much atten-
tion over the last two decades (Nadeau and Sekine,
2007), mostly focused on recognizing the bound-
aries of textual NE mentions and classifying them
as, e.g., Person, Organization or Location. How-
ever, references to entities in the real world are of-
ten ambiguous: there is a many-to-many relation
between NE mentions and the entities they denote
in the real world. For example, Norfolk may refer
to a person, “Peter Norfolk, a wheelchair tennis
player”, a place in the UK, “Norfolk County”, or
in the US, “Norfolk, Massachusetts”; conversely,
one entity may be known by many names, such as
“Cat Stevens”, “Yusuf Islam” and “Steven Geor-
giou”. The NED task is to establish a correct map-
ping between each NE mention in a document and
the real world entity it denotes. Following most re-
searchers in this area, we treat entries in a large

Figure 1: Example of solution graph

knowledge base (KB) as surrogates for real world
entities when carrying out NED and, in particu-
lar, use Wikipedia as the reference KB for dis-
ambiguating NE mentions. NED is important for
tasks like KB population, where we want to ex-
tract new information from text about an entity and
add this to a pre-existing entry in a KB; or for in-
formation retrieval, where we may want to cluster
or filter results for different entities with the same
textual mentions.

The main hypothesis in this work is that differ-
ent NEs in a document help to disambiguate each
other. The problem is that other textual mentions
in the document are also ambiguous. So, what is
needed is a collective disambiguation approach
that jointly disambiguates all NE textual mentions.

In our approach we model each possible can-
didate for every NE mention in a document as a
distinct node in a graph and model candidate co-
herence by links between the nodes. We call such
graphs solution graphs. Figure 1 shows an exam-
ple of the solution graph for three mentions “A”,
“B”, and “C” found in a document, where the can-
didate entities for each mention are referred to us-
ing the lower case form of the mention’s letter to-
gether with a distinguishing subscript. The goal of
disambiguation is to find a set of nodes where only
one candidate is selected from the set of entities
associated with each mention, e.g. a3, b2, c2.

Our approach first ranks all nodes in the solu-
tion graph using the Page-Rank algorithm, then re-
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ranks all nodes by combining the initial confidence
and graph ranking scores. We consider several dif-
ferent measures for computing the initial confi-
dence assigned to each node and several measures
for determining and weighting the graph edges.
Node linking relies on the fact that the textual por-
tion of KB entries typically contains mentions of
other NEs. When these mentions are hyper-linked
to KB entries, we can infer that there is some rela-
tion between the real world entities corresponding
to the KB entries, i.e. that they should be linked
in our solution graph. These links also allow us to
build up statistical co-occurrence counts between
entities that occur in the same context which may
be used to weight links in our graph.

We evaluate our approach on the AIDA dataset
(Hoffart et al., 2011). Comparison with the
baseline approach and some state-of-the-art ap-
proaches shows our approach offers substantial
improvements in disambiguation accuracy.

2 Related Work

In 2009, NIST proposed the shared task challenge
of Entity Linking (EL) (McNamee and Dang,
2009). EL is a similar but broader task than NED
because NED is concerned with disambiguating
a textual NE mention where the correct entity is
known to be one of the KB entries, while EL also
requires systems to deal with the case where there
is no entry for the NE in the reference KB. Ji et
al. (2011) group and summarise the different ap-
proaches to EL taken by participating systems.

In general, there are two main lines of approach
to the NED problem. Single entity disambigua-
tion approaches (SNED), disambiguate one entity
at a time without considering the effect of other
NEs. These approaches use local context textual
features of the mention and compare them to the
textual features of NE candidate documents in the
KB, and link to the most similar. The first ap-
proach in this line was Bunescu and Pasca (2006),
who measure similarity between the textual con-
text of the NE mention and the Wikipedia cate-
gories of the candidate. More similarity features
were added by Cucerzan (2007) who realized that
topical coherence between a candidate entity and
other entities in the context will improve NED ac-
curacy and by Milne and Witten (2008) who built
on Cucerzan’s work. Han and Sun (2011) combine
different forms of disambiguation knowledge us-
ing evidence from mention-entity associations and

entity popularity in the KB, and context similarity.
The second line of approach is collective named

entity disambiguation (CNED), where all men-
tions of entities in the document are disambiguated
jointly. These approaches try to model the interde-
pendence between the different candidate entities
for different NE mentions in the query document,
and reformulate the problem of NED as a global
optimization problem whose aim is to find the best
set of entities. As this new formulation is NP-
hard, many approximations have been proposed.
Alhelbawy and Gaizauskas (2013) proposed a se-
quence dependency model using HMMs to model
NE interdependency. Another approximation uses
a mixture of local and global features to train the
coefficients of a linear ranking SVM to rank dif-
ferent NE candidates (Ratinov et al., 2011). Shi-
rakawa et al. (2011) cluster related textual men-
tions and assign a concept to each cluster using
a probabilistic taxonomy. The concept associated
with a mention is used in selecting the correct en-
tity from the Freebase KB.

Graph models are widely used in collective ap-
proaches1. All these approaches model NE in-
terdependencies, while different methods may be
used for disambiguation. Han (2011) uses local
dependency between NE mention and the can-
didate entity, and semantic relatedness between
candidate entities to construct a referent graph,
proposing a collective inference algorithm to in-
fer the correct reference node in the graph. Hoffert
(2011) poses the problem as one of finding a dense
sub-graph, which is infeasible in a huge graph. So,
an algorithm originally used to find strongly inter-
connected, size-limited groups in social media is
adopted to prune the graph, and then a greedy al-
gorithm is used to find the densest graph.

Our proposed model uses the Page-Rank (PR)
algorithm (Page et al., 1999), which to our knowl-
edge has not previously been applied to NED.
Xing and Ghorbani (2004) adopted PR to consider
the weights of links and the nodes’ importance. PR
and Personalized PR algorithms have been used
successfully in WSD (Sinha and Mihalcea, 2007;
Agirre and Soroa, 2009).

3 Solution Graph

In this section we discuss the construction of
a graph representation that we call the solution

1Graph models are also widely used in Word Sense Dis-
ambiguation (WSD), which has lots of similarities to NED
(Gutiérrez et al., 2011; Gutiérrez et al., 2012).
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graph. The input is a document containing pre-
tagged NE textual mentions. The solution graph
is an undirected graph G = (V,D) where V is the
node set of all possible NE candidates for differ-
ent textual mentions in the input document and D
is the set of edges between nodes. Edges are not
drawn between different nodes for the same men-
tion. They are drawn between two entities when
there is a relation between them, as described be-
low. Each candidate has associated with it an ini-
tial confidence score, also detailed below.

Assume the input document D has a set of
mentions M = {m1,m2,m3, ...,mk}. For each
mi ∈ M , we rank each candidate entity, where
the list of candidates for a mention mi is Ei =
{ei,1, ei,2, ..., ei,j}. The graph nodes are formu-
lated as a set V = {(mi, ei,j) | ∀ei,j ∈ Ei, ∀mi ∈
M}. Nodes are represented as ordered pairs of
textual mentions and candidate entities, since the
same entity may be found multiple times as a can-
didate for different textual mentions and each oc-
currence must be evaluated independently.

3.1 NE Candidate Generation
The first step in constructing a solution graph is to
find all possible candidates for each NE mention
in the query document. For each such mention the
KB entry titles are searched to find all entries to
which the mention could refer. This includes en-
tries with titles that fully or partially contain the
query mention and those that could be an acronym
of the query mention. These candidate entries are
paired with their textual mentions in the document
to become nodes in the solution graph.

3.2 Initial Confidence
Initial confidence IConf(ei,j) is an independent
feature of the NE candidate regardless of other
candidates in the document. This confidence may
be calculated locally using the local mention con-
text, or globally using, e.g., the Freebase popular-
ity score for the KB entry (Bollacker et al., 2008).

Local NE Candidate Confidence: The local
confidence is computed by a similarity measure
between the NE mention in the query document
and the KB entry of the candidate entity. We pro-
pose four different measures to be used in the dis-
ambiguation phase.
cos: The cosine similarity between the named en-
tity textual mention and the KB entry title.
jwSim: While the cosine similarity between a tex-
tual mention in the document and the candidate

NE title in the KB is widely used in NED, this
similarity is a misleading feature. For example,
the textual mention “Essex” may refer to either
of the following candidates “Essex County Cricket
Club” or “Danbury, Essex”, both of which are re-
turned by the candidate generation process. The
cosine similarity between “Essex” and “Danbury,
Essex” is higher than that between “Essex” and
“Essex County Cricket Club”, which is not helpful
in the NED setting. We adopted a new mention-
candidate similarity function, jwSim, which uses
Jaro-Winkler similarity as a first estimate of the
initial confidence value for each candidate. This
function considers all terms found in the candidate
entity KB entry title, but not in the textual mention
as disambiguation terms. The percentage of dis-
ambiguation terms found in the query document is
used to boost in the initial jwSim value, in addi-
tion to an acronym check (whether the NE textual
mention could be an acronym for a specific can-
didate entity title). Experiments show that jwSim
performs much better than cos.
ctxt: The cosine similarity between the sentence
containing the NE mention in the query document
and the textual description of the candidate NE in
the KB (we use the first section of the Wikipedia
article as the candidate entity description).

Global NE Candidate Confidence: Global
confidence is a measure of the global importance
of the candidate entity. Entity popularity has been
used successfully as a discriminative feature for
NED (Nebhi, 2013). Freebase provides an API
to get an entity’s popularity score (FB), which is
computed during Freebase indexing. This score is
a function of the entity’s inbound and outbound
link counts in Freebase and Wikipedia2. The initial
confidence is not normalized across all NEs be-
cause each score is calculated independently. Ini-
tial confidence scores of all candidates for a single
NE mention are normalized to sum to 1.

3.3 Entity Coherence

Entity coherence refers to the real world related-
ness of different entities which are candidate inter-
pretations of different textual mentions in the doc-
ument. It is not based on context, so it is always
the same regardless of the query document. Co-
herence is represented as an edge between nodes
in the solution graph. We used two measures for
coherence, described as follows:

2https://developers.google.com/freebase/v1/search
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Ref: Uses the Wikipedia documents for both en-
tity candidates to check if either document has a
link to the other. This relation is directed, but we
assume an inverse relation also exists; so this rela-
tion is represented as undirected.

Ref(ei, ej) =

{
1, if ei or ej refers to the other
0, otherwise

(1)

JProb: An estimate of the probability of both
entities appearing in the same sentence. Wikipedia
documents are used to estimate this probability, as
shown in (2), where S(e) is the set of all sentences
that contain the entity e and S the set of sentences
containing any entity references.

JProb(ei, ej) =
|S(ei)

⋂
S(ej)|

|S| (2)

4 Disambiguation
The solution graph contains all possible candi-
dates for each NE mention in the document. Each
candidate has an initial confidence, with some
connected by association relations. The disam-
biguation phase ranks all nodes in the solution
graph and selects the best from the candidate list
for each NE textual mention. The process of dis-
ambiguation consists of three steps. The first step
is initial graph ranking, where all nodes are ranked
according to the link structure. The second step is
to re-rank the nodes by combining the graph rank
with the initial confidence. The highest rank is not
always correct, so in the third step a selection al-
gorithm is used to choose the best candidate.

Graph Ranking: The links between different
candidates in the solution graph represent real
world relations. These relations may be used to re-
liably boost relevant candidates. All nodes in the
graph are ranked according to these relations using
PR. Initial confidence is used as an initial rank for
the graph nodes, while entities’ coherence mea-
sures are used as link weights which play a role in
distributing a node’s rank over its outgoing nodes.

Candidate Re-ranking: A problem with Page-
Rank for our purposes is the dissipation of initial
node weight (confidence) over all outgoing nodes.
The final rank of a node is based solely on the im-
portance of incoming nodes and the initial confi-
dence play no further role. In our case this is not
appropriate, so the final rank for each mention is
determined after graph ranking, by combining the
graph rank with the initial confidence.

Let us refer to the graph rank of a candidate as
PR(ei). Two combination schemes are used:

Rs(ei,j) = IConf(ei,j) + PR(ei,j) (3)

Rm(ei,j) = IConf(ei,j)× PR(ei,j) (4)

Named Entity Selection: The simplest ap-
proach is to select the highest ranked entity in the
list for each mention mi according to equation
5, where R could refer to Rm or Rs. However,
we found that a dynamic choice between the re-
ranking schemes, based on the difference between
the top two candidates, as described in algorithm
1 and indicated by eg,works best. The underlying
intuition of this algorithm is that a greater differ-
ence between the top ranks reflects more confident
discrimination between candidates. So, the two
combination schemes assign different ranks to the
candidates and the algorithm selects the scheme
which appears more discriminative.

êi = argmax
ei,j

R(ei,j) (5)

Data: Two lists, R1 and R2, of candidates Ei, where R1
is ranked using Rs, and R2 is ranked using Rm

Result: One NE eg
i

Sort R1 and R2 in descending order;
R1diff = R1[0]-R1[1];
R2diff = R2[0]-R2[1];
if R1diff > R2diff then

return highest rank scored entity of R1
else

return highest rank scored entity of R2
end

Algorithm 1: Selection Algorithm

5 Experiments and Results
We used AIDA dataset3, which is based on the
CoNLL 2003 data for NER tagging. All mentions
are manually disambiguated against Wikipedia
(Hoffart et al., 2011). This dataset contains 1393
documents and 34,965 annotated mentions. We
only consider NE mentions with an entry in the
Wikipedia KB, ignoring the 20% of query men-
tions (7136) without a link to the KB, as Hoffart
did. Micro-averaged and macro-averaged accu-
racy are used for evaluation. In this context micro-
averaged accuracy corresponds to the propor-
tion of textual mentions correctly disambiguated
while macro-averaged accuracy corresponds to the
proportion of textual mentions correctly disam-
biguated per entity, averaged over all entities.

5.1 Results
Initially, we evaluated the performance of two
baselines. One is a setup where a ranking based
solely on different initial confidence scores is used

3http://www.mpi-inf.mpg.de/yago-naga/aida/
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IConf PRC PRI PRIC Cucerzan Kulkarni Hoffart Shirakawa Alhelbawy
Amacro 78.09 80.98 84.19 82.80 43.74 76.74 81.91 83.02 74.18
Amicro 80.55 83.59 87.59 86.10 51.03 72.87 81.82 82.29 78.49

Table 1: Results comparison between Proposed Approach and State-of-the-art

PR eg

IConf Amicro Amacro Amicro Amacro

cos 70.6 60.83 78.41 72.35
jwSim 70.61 60.94 83.16 78.28
ctxt 70.61 60.83 75.45 65.22
freebase 71.78 81.07 87.59 84.19

Table 2: Results using initial confidence (PRI )

PR eg

Edge Weight Amicro Amacro Amicro Amacro

Jprob 66.52 55.83 83.31 80.38
Ref 67.48 59.76 81.80 78.53
prob+ refs 72.69 65.71 83.46 80.69

Table 3: Results using weighted edges (PRC )

for candidate selection, i.e. without using PR. In
this setup a ranking based on Freebase popularity
does best, with micro- and macro-averaged accu-
racy scores of 80.55% and 78.09% respectively.
This is a high baseline, close to the state-of-the-
art. Our second baseline is the basic PR algorithm,
where weights of nodes and edges are uniform (i.e.
initial node and edge weights set to 1, edges be-
ing created wherever REF or JProb are not zero).
Micro and macro accuracy scores of 70.60% and
60.91% were obtained with this baseline.

To study graph ranking using PR, and the con-
tributions of the initial confidence and entity co-
herence, experiments were carried out using PR in
different modes and with different selection tech-
niques. In the first experiment, referred to as PRI ,
initial confidence is used as an initial node rank for
PR and edge weights are uniform, edges, as in the
PR baseline, being created wherever REF or JProb
are not zero. Table 2 shows the results both before
re-ranking, i.e. using only the PR score for rank-
ing, and after re-ranking using the dynamic selec-
tion scheme eg. When comparing these results to
the PR baseline we notice a slight positive effect
when using the initial confidence as an initial rank
instead of uniform ranking. The major improve-
ment comes from re-ranking nodes by combining
initial confidence with PR score.

In our second experiment, PRC , entity coher-
ence features are tested by setting the edge weights
to the coherence score and using uniform ini-
tial node weights. We compared JProb and Ref

eg(jwSim) eg(freebase)
Edge Weight Amicro Amacro Amicro Amacro

Jprob 82.56 76.16 86.29 82.77
Ref 78.61 71.12 83.16 80.01
Jprob+Ref 81.97 75.63 86.10 82.80

Table 4: Results using IConf and weighted edges PRIC

edge weighting approaches, where for each ap-
proach edges were created only where the coher-
ence score according to the approach was non-
zero. We also investigated a variant, called JProb +
Ref, in which the Ref edge weights are normalized
to sum to 1 over the whole graph and then added
to the JProb edge weights (here edges result wher-
ever JProb or Ref scores are non-zero). Results in
Table 3 show the JProb feature seems to be more
discriminative than the Ref feature but the com-
bined Jprob + Ref feature performs better than
each separately, just outperforming the baseline.
We used the best initial confidence score (Free-
base) for re-ranking. Again, combining the initial
confidence with the PR score improves the results.

Finally, Table 4 shows the accuracy when using
different combinations of initial confidence and
entity coherence scores just in the case when re-
ranking is applied. Here the jprob + refs com-
bination does not add any value over jprob alone.
Interestingly using initial confidence with differ-
entially weighted edges does not show any ben-
efit over using initial confidence and uniformly
weighted edges (Table 2).

To compare our results with the state-of-the-art,
we report Hoffart et al.’s (2011) results as they re-
implemented two other systems and also ran them
over the AIDA dataset. We also compare with Al-
helbawy and Gaizauskas (2013) and Shirakawa et
al. (2011) who carried out their experiments using
the same dataset. Table 1 presents a comparison
between our approach and the state-of-the-art and
shows our approach exceeds the state-of-the-art.
Futhermore our approach is very simple and direct
to apply, unlike Hoffart et al.’s and Shirakawa et
al.’s which are considerably more complex. Also,
our approach does not need any kind of training,
as does the Alhelbawy approach.

6 Conclusion
Our results show that Page-Rank in conjunction
with re-ranking by initial confidence score can be
used as an effective approach to collectively dis-
ambiguate named entity textual mentions in a doc-
ument. Our proposed features are very simple and
easy to extract, and work well when employed in
PR. In future work we plan to explore enriching
the edges between nodes by incorporating seman-
tic relations extracted from an ontology.
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Abstract

Convolution tree kernels are an efficient
and effective method for comparing syntac-
tic structures in NLP methods. However,
current kernel methods such as subset tree
kernel and partial tree kernel understate the
similarity of very similar tree structures.
Although soft-matching approaches can im-
prove the similarity scores, they are corpus-
dependent and match relaxations may be
task-specific. We propose an alternative ap-
proach called descending path kernel which
gives intuitive similarity scores on compa-
rable structures. This method is evaluated
on two temporal relation extraction tasks
and demonstrates its advantage over rich
syntactic representations.

1 Introduction

Syntactic structure can provide useful features for
many natural language processing (NLP) tasks
such as semantic role labeling, coreference resolu-
tion, temporal relation discovery, and others. How-
ever, the choice of features to be extracted from a
tree for a given task is not always clear. Convolu-
tion kernels over syntactic trees (tree kernels) offer
a potential solution to this problem by providing
relatively efficient algorithms for computing sim-
ilarities between entire discrete structures. These
kernels use tree fragments as features and count
the number of common fragments as a measure of
similarity between any two trees.

However, conventional tree kernels are sensitive
to pattern variations. For example, two trees in Fig-
ure 1(a) sharing the same structure except for one
terminal symbol are deemed at most 67% similar
by the conventional tree kernel (PTK) (Moschitti,
2006). Yet one might expect a higher similarity
given their structural correspondence.

The similarity is further attenuated by trivial
structure changes such as the insertion of an ad-

jective in one of the trees in Figure 1(a), which
would reduce the similarity close to zero. Such
an abrupt attenuation would potentially propel a
model to memorize training instances rather than
generalize from trends, leading towards overfitting.

In this paper, we describe a new kernel over
syntactic trees that operates on descending paths
through the tree rather than production rules as
used in most existing methods. This representation
is reminiscent of Sampson’s (2000) leaf-ancestor
paths for scoring parse similarities, but here it is
generalized over all ancestor paths, not just those
from the root to a leaf. This approach assigns more
robust similarity scores (e.g., 78% similarity in the
above example) than other soft matching tree ker-
nels, is faster than the partial tree kernel (Moschitti,
2006), and is less ad hoc than the grammar-based
convolution kernel (Zhang et al., 2007).

2 Background

2.1 Syntax-based Tree Kernels

Syntax-based tree kernels quantify the similarity
between two constituent parses by counting their
common sub-structures. They differ in their defini-
tion of the sub-structures.

Collins and Duffy (2001) use a subset tree (SST)
representation for their sub-structures. In the SST
representation, a subtree is defined as a subgraph
with more than one node, in which only full pro-
duction rules are expanded. While this approach is
widely used and has been successful in many tasks,
the production rule-matching constraint may be un-
necessarily restrictive, giving zero credit to rules
that have only minor structural differences. For
example, the similarity score between the NPs in
Figure 1(b) would be zero since the production rule
is different (the overall similarity score is above-
zero because of matching pre-terminals).

The partial tree kernel (PTK) relaxes the defi-
nition of subtrees to allow partial production rule
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NP
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NN
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NN

cat

c)

S

ADVP

RB

here

NP

PRP

she

VP

VBZ

comes

S

NP

PRP

she

VP

VBZ

comes

ADVP

RB

here

Figure 1: Three example tree pairs.

matching (Moschitti, 2006). In the PTK, a subtree
may or may not expand any child in a production
rule, while maintaining the ordering of the child
nodes. Thus it generates a very large but sparse
feature space. To Figure 1(b), the PTK generates
fragments (i) [NP [DT a] [JJ fat]]; (ii) [NP [DT a]
[NN cat]]; and (iii) [NP [JJ fat] [NN cat]], among
others, for the second tree. This allows for partial
matching – substructure (ii) – while also generating
some fragments that violate grammatical intuitions.

Zhang et al. (2007) address the restrictiveness
of SST by allowing soft matching of production
rules. They allow partial matching of optional
nodes based on the Treebank. For example, the
rule NP → DT JJ NN indicates a noun phrase
consisting of a determiner, adjective, and common
noun. Zhang et al.’s method designates the JJ as
optional, since the Treebank contains instances of
a reduced version of the rule without the JJ node
(NP → DT NN ). They also allow node match-
ing among similar preterminals such as JJ, JJR, and
JJS, mapping them to one equivalence class.

Other relevant approaches are the spectrum tree
(SpT) (Kuboyama et al., 2007) and the route kernel
(RtT) (Aiolli et al., 2009). SpT uses a q-gram
– a sequence of connected vertices of length q –
as their sub-structure. It observes grammar rules
by recording the orientation of edges: a←b→c is
different from a→b→c. RtT uses a set of routes as
basic structures, which observes grammar rules by

NP

DT

a

NN

cat

l=0: [NP],[DT],[NN]

l=1: [NP-DT],[NP-NN],

[DT-a],[NN-cat]

l=2: [NP-DT-a],[NP-NN-cat]

Figure 2: A parse tree (left) and its descending
paths according to Definition 1 (l - length).

recording the index of a neighbor node.

2.2 Temporal Relation Extraction

Among NLP tasks that use syntactic informa-
tion, temporal relation extraction has been draw-
ing growing attention because of its wide applica-
tions in multiple domains. As subtasks in Tem-
pEval 2007, 2010 and 2013, multiple systems
were built to create labeled links from events
to events/timestamps by using a variety of fea-
tures (Bethard and Martin, 2007; Llorens et al.,
2010; Chambers, 2013). Many methods exist for
synthesizing syntactic information for temporal
relation extraction, and most use traditional tree
kernels with various feature representations. Mir-
roshandel et al. (2009) used the path-enclosed tree
(PET) representation to represent syntactic informa-
tion for temporal relation extraction on the Time-
Bank (Pustejovsky et al., 2003) and the AQUAINT
TimeML corpus1. The PET is the smallest subtree
that contains both proposed arguments of a relation.
Hovy et al. (2012) used bag tree structures to rep-
resent the bag of words (BOW) and bag of part of
speech tags (BOP) between the event and time in
addition to a set of baseline features, and improved
the temporal linking performance on the TempEval
2007 and Machine Reading corpora (Strassel et
al., 2010). Miller at al. (2013) used PET tree, bag
tree, and path tree (PT, which is similar to a PET
tree with the internal nodes removed) to represent
syntactic information and improved the temporal
relation discovery performance on THYME data2

(Styler et al., 2014). In this paper, we also use
syntactic structure-enriched temporal relation dis-
covery as a vehicle to test our proposed kernel.

3 Methods

Here we decribe the Descending Path Kernel
(DPK).

1http://www.timeml.org
2http://thyme.healthnlp.org
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Definition 1 (Descending Path): Let T be a
parse tree, v any non-terminal node in T , dv a
descendant of v, including terminals. A descending
path is the sequence of indexes of edges connecting
v and dv, denoted by [v − · · · − dv]. The length l
of a descending path is the number of connecting
edges. When l = 0, a descending path is the non-
terminal node itself, [v]. Figure 2 illustrates a parse
tree and its descending paths of different lengths.

Suppose that all descending paths of a tree T are
indexed 1, · · · , n, and pathi(T ) is the frequency
of the i-th descending path in T . We represent T as
a vector of frequencies of all its descending paths:
Φ(T ) = (path1(T ), · · · , pathn(T )).

The similarity between any two trees T1 and T2

can be assessed via the dot product of their respec-
tive descending path frequency vector representa-
tions: K(T1, T2) = 〈Φ(T1),Φ(T2)〉.

Compared with the previous tree kernels, our
descending path kernel has the following advan-
tages: 1) the sub-structures are simplified so that
they are more likely to be shared among trees,
and therefore the sparse feature issues of previous
kernels could be alleviated by this representation;
2) soft matching between two similar structures
(e.g., NP→DT JJ NN versus NP→DT NN) have
high similarity without reference to any corpus or
grammar rules;

Following Collins and Duffy (2001), we derive
a recursive algorithm to compute the dot product
of the descending path frequency vector represen-
tations of two trees T1 and T2:

K(T1, T2) = 〈Φ(T1),Φ(T2)〉
=
∑

i

pathi(T1) · pathi(T2)

=
∑

n1∈N1

∑
n2∈N2

∑
i

Ipathi
(n1) · Ipathi

(n2)

=
∑

n1∈N1
n2∈N2

C(n1, n2)

(1)
where N1 and N2 are the sets of nodes in T1 and
T2 respectively, i indexes the set of possible paths,
Ipathi

(n) is an indicator function that is 1 iff the
descending pathi is rooted at node n or 0 other-
wise. C(n1, n2) counts the number of common
descending paths rooted at nodes n1 and n2:

C(n1, n2) =
∑

i

Ipathi
(n1) · Ipathi

(n2)

C(n1, n2) can be computed in polynomial time by

the following recursive rules:

Rule 1: If n1 and n2 have different labels (e.g.,
”DT” versus “NN”), then C(n1, n2) = 0;

Rule 2: Else if n1 and n2 have the same labels
and are both pre-terminals (POS tags), then

C(n1, n2) = 1 +

{
1 if term(n1) = term(n2)
0 otherwise.

where term(n) is the terminal symbol under n;

Rule 3: Else if n1 and n2 have the same labels
and they are not both pre-terminals, then:

C(n1, n2) = 1 +
∑

ni∈children(n1)
nj∈children(n2)

C(ni, nj)

where children(m) are the child nodes of m.
As in other tree kernel approaches (Collins and

Duffy, 2001; Moschitti, 2006), we use a discount
parameter λ to control for the disproportionately
large similarity values of large tree structures.
Therefore, Rule 2 becomes:

C(n1, n2) = 1 +

{
λ if term(n1) = term(n2)
0 otherwise.

and Rule 3 becomes:

C(n1, n2) = 1 + λ
∑

ni∈children(n1)
nj∈children(n2)

C(ni, nj)

Note that Eq. (1) is a convolution kernel under
the kernel closure properties described in Haus-
sler (1999). Rules 1-3 show the equivalence be-
tween the number of common descending paths
rooted at nodes n1 and n2, and the number of
matching nodes below n1 and n2.

In practice, there are many non-matching nodes,
and most matching nodes will have only a few
matching children, so the running time, as in SST,
will be approximated by the number of matching
nodes between trees.

3.1 Relationship with other kernels
For a given tree, DPK will generate significantly
fewer sub-structures than PTK, since it does not
consider all ordered permutations of a production
rule. Moreover, the fragments generated by DPK
are more likely to be shared among different trees.
For the number of corpus-wide fragments, it is
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Kernel ID #Frag Sim N(Sim)
SST a 9 3 0.50

O
(
ρ|N1||N2|

)
b 15 2 0.25
c 63 7 0.20

DPK a 11 7 0.78
O
(
ρ2|N1||N2|

)
b 13 9 0.83
c 31 22 0.83

PTK a 20 10 0.67
O
(
ρ3|N1||N2|

)
b 36 15 0.65
c 127 34 0.42

Table 1: Comparison of the worst case computa-
tional complexicity (ρ - the maximum branching
factor) and kernel performance on the 3 examples
from Figure 1. #Frag is the number of fragments,
N(Sim) is the normalized similarity. Please see
the online supplementary note for detailed frag-
ments of example (a).

possible that DPK≤ SST≤ PTK. In Table 1, given
λ = 1, we compare the performance of 3 kernels
on the three examples in Figure 1. Note that for
more complicated structures, i.e., examples b and
c, DPK generates fewer fragments than SST and
PTK, with more shared fragments among trees.

The complexity for all three kernels are at least
O
(|N1||N2|

)
since they share the pairwise summa-

tion at the end of Equation 1. SST, due to its re-
quirement of exact production rule matching, only
takes one pass in the inner loop which adds a factor
of ρ (the maximum branching factor of any pro-
duction rule). DPK does a pairwise summation
of children, which adds a factor of ρ2 to the com-
plexity. Finally, the efficient algorithm for PTK
is proved by Moschitti (2006) to contain a con-
stant factor of ρ3. Table 1 orders the tree kernels
according by their listed complexity.

It may seem that the value of DPK is strictly in its
ability to evaluate all paths, which is not explicitly
accounted for by other kernels. However, another
view of the DPK is possible by thinking of it as
cheaply calculating rule production similarity by
taking advantage of relatively strict English word
ordering. Like SST and PTK, the DPK requires
the root category of two subtrees to be the same
for the similarity to be greater than zero. Unlike
SST and PTK, once the root category comparison
is successfully completed, DPK looks at all paths
that go through it and accumulates their similarity
scores independent of ordering – in other words, it
will ignore the ordering of the children in its pro-

duction rule. This means, for example, that if the
rule production NP→ NN JJ DT were ever found
in a tree, to DPK it would be indistinguishable from
the common production NP→ DT JJ NN, despite
having inverted word order, and thus would have
a maximal similarity score. SST and PTK would
assign this pair a much lower score for having com-
pletely different ordering, but we suggest that cases
such as these are very rare due to the relatively
strict word ordering of English. In most cases, the
determiner of a noun phrase will be at the front, the
nouns will be at the end, and the adjectives in the
middle. So with small differences in production
rules (one or two adjectives, extra nominal modifier,
etc.) the PTK will capture similarity by compar-
ing every possible partial rule completion, but the
DPK can obtain higher and faster scores by just
comparing one child at a time because the ordering
is constrained by the language. This analysis does
lead to a hypothesis for the general viability of the
DPK, suggesting that in languages with freer word
order it may give inflated scores to structures that
are syntactically dissimilar if they have the same
constituent components in different order.

Formally, Moschitti (2006) showed that SST is
a special case of PTK when only the longest child
sequence from each tree is considered. On the other
end of the spectrum, DPK is a special case of PTK
where the similarity between rules only considers
child subsequences of length one.

4 Evaluation

We applied DPK to two published temporal relation
extraction systems: (Miller et al., 2013) in the
clinical domain and Cleartk-TimeML (Bethard,
2013) in the general domain respectively.

4.1 Narrative Container Discovery

The task here as described by Miller et al. (2013) is
to identify the CONTAINS relation between a time
expression and a same-sentence event from clinical
notes in the THYME corpus, which has 78 notes
of 26 patients. We obtained this corpus from the
authors and followed their linear composite kernel
setting:

KC(s1, s2) = τ
P∑

p=1

KT (tp1, t
p
2)+KF (f1, f2) (2)

where si is an instance object composed of flat fea-
tures fi and a syntactic tree ti. A syntactic tree ti
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can have multiple representations, as in Bag Tree
(BT), Path-enclosed Tree (PET), and Path Tree
(PT). For the tree kernel KT , subset tree (SST) ker-
nel was applied on each tree representation p. The
final similarity score between two instances is the
τ -weighted sum of the similarities of all representa-
tions, combined with the flat feature (FF) similarity
as measured by a feature kernel KF (linear or poly-
nomial). Here we replaced the SST kernel with
DPK and tested two feature combinations FF+PET
and FF+BT+PET+PT. To fine tune parameters, we
used grid search by testing on the default develop-
ment data. Once the parameters were tuned, we
tested the system performance on the testing data,
which was set up by the original system split.

4.2 Cleartk-TimeML
We tested one sub-task from TempEval-2013 –
the extraction of temporal relations between an
event and time expression within the same sen-
tence. We obtained the training corpus (Time-
Bank + AQUAINT) and testing data from the au-
thors (Bethard, 2013). Since the original features
didn’t contain syntactic features, we created a PET
tree extractor for this system. The kernel setting
was similar to equation (2), while there was only
one tree representation, PET tree, P=1. A linear
kernel was used as KF to evaluate the exact same
flat features as used by the original system. We
used the built-in cross validation to do grid search
for tuning the parameters. The final system was
tested on the testing data for reporting results.

4.3 Results and Discussion
Results are shown in Table 2. The top section
shows THYME results. For these experiments,
the DPK is superior when a syntactically-rich PET
representation is used. Using the full feature set of
Miller et al. (2013), SST is superior to DPK and
obtains the best overall performance. The bottom
section shows results on TempEval-2013 data, for
which there is little benefit from either tree kernel.

Our experiments with THYME data show that
DPK can capture something in the linguistically
richer PET representation that the SST kernel can-
not, but adding BT and PT representations decrease
the DPK performance. As a shallow representation,
BT does not have much in the way of descending
paths for DPK to use. PT already ignores the pro-
duction grammar by removing the inner tree nodes.
DPK therefore cannot get useful information and
may even get misleading cues from these two rep-

Features KT P R F
THYME

FF+PET DPK 0.756 0.667 0.708
SST 0.698 0.630 0.662

FF+BT+ DPK 0.759 0.626 0.686
PET+PT SST 0.754 0.711 0.732

TempEval
FF+PET DPK 0.328 0.263 0.292

SST 0.325 0.263 0.290
FF - 0.309 0.266 0.286

Table 2: Comparison of tree kernel performance
for temporal relation extraction on THYME and
TempEval-2013 data.

resentations. These results show that, while DPK
should not always replace SST, there are represen-
tations in which it is superior to existing methods.
This suggests an approach in which tree representa-
tions are matched to different convolution kernels,
for example by tuning on held-out data.

For TempEval-2013 data, adding syntactic fea-
tures did not improve the performance significantly
(comparing F-score of 0.290 with 0.286 in Ta-
ble 3). Probably, syntactic information is not a
strong feature for all types of temporal relations on
TempEval-2013 data.

5 Conclusion

In this paper, we developed a novel convolution
tree kernel (DPK) for measuring syntactic similar-
ity. This kernel uses a descending path represen-
tation in trees to allow higher similarity scores on
partially matching structures, while being simpler
and faster than other methods for doing the same.
Future work will explore 1) a composite kernel
which uses DPK for PET trees, SST for BT and PT,
and feature kernel for flat features, so that different
tree kernels can work with their ideal syntactic rep-
resentations; 2) incorporate dependency structures
for tree kernel analysis 3) applying DPK to other
relation extraction tasks on various corpora.
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Abstract 

Sentiment relevance detection problems oc-

cur when there is a sentiment expression in a 

text, and there is the question of whether or 

not the expression is related to a given entity 

or, more generally, to a given situation. The 

paper discusses variants of the problem, and 

shows that it is distinct from other somewhat 

similar problems occurring in the field of sen-

timent analysis and opinion mining. We ex-

perimentally demonstrate that using the in-

formation about relevancy significantly af-

fects the final sentiment evaluation of the en-

tities. We then compare a set of different al-

gorithms for solving the relevance detection 

problem. The most accurate results are 

achieved by algorithms that use certain doc-

ument-level information about the target enti-

ties. We show that this information can be 

accurately extracted using supervised classi-

fication methods. 

1 Introduction 

Sentiment extraction by modern sentiment analy-

sis (SA) systems is usually based on searching 

the input text for sentiment-bearing words and 

expressions, either general (language-wide) or 

domain-specific. In most common SA approach-

es, each such expression carries a polarity value 

("positive" or "negative") which is possibly 

weighted. The sum of all polarity values from all 

expressions found in a text becomes the senti-

ment score for the whole text.  

People are, however, usually interested in sen-

timents regarding some entity or situation, and 

not in sentiments of a particular document. A 

natural way to make the SA more focused is to 

explicitly bind each sentiment expression to a 

specific entity, or to a small set of entities from 

among all entities mentioned in the document. 

The choice of which entity to bind a sentiment 

expression to, can be made according to the 

proximity (physical, syntactical, and/or semantic) 

and/or salience of the entities. 

In this paper, we argue that all of these meth-

ods can be useful in different contexts, and so the 

best single algorithm should use all available 

proximity information, of all kinds, together with 

additional context information –position in the 

document, section, or paragraph; proximity of 

other entities; lexical contents; etc. One of the 

most important context information is the type of 

relation between the target entity and the docu-

ment – whether the entity is the main topic of the 

document, or one of several main topics, or men-

tioned in passing, etc. 

Another layer that we'd like to add concerns 

the interaction of different entity types during 

SA. In a typical situation, there is only one entity 

type which is the target for SA. In such cases, 

clearly distinguishing between the relevancy of 

target and non-target entities types is not essen-

tial. For example, when the general topic is a 

COMPANY, and there is a sentiment expression 

referring to a PERSON or a PRODUCT, this 

sentiment expression is still relevant to the com-

pany and can be regarded as such. In other situa-

tions, SA users may be specifically interested in 

an interaction between entities of different types. 

For example, in a medical forum setting, it may 

be interesting to know the users' sentiments re-

garding a given DRUG in the context of a given 

DISEASE. We will show that such situations are 

modeled well enough using intersections of re-

gions of relevance of the participating entity 

types, with the relevance region for each type 

calculated separately. 

We purposefully exclude possible interactions 

between entities of the same type, because they 

behave in a different way. The precise analysis 

of such interactions is a different topic from rele-
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vance detection, and so it is mostly ignored in 

this paper. 

2 Related Work 

The task of SA has drawn the attention of many 

researchers worldwide (Connor et al., 2010; Liu, 

2012; Loughran and Mcdonald, 2010; Pang and 

Lee, 2004; Turney, 2002).  While most SA re-

search is focused on discovering and classifying 

the expressions, some are also concerned with 

the targets of the expressions and explicitly iden-

tify the syntactic targets of sentiment expressions 

(Pang and Lee, 2004).  

Other related works belong to the Passage Re-

trieval field, since the relevance detection prob-

lem can be construed as a specific form of pas-

sage retrieval problem (Liu and Croft, 2002; 

Tiedemann and Mur, 2008). Different approach-

es were suggested for passage retrieval (Buscaldi 

et al., 2010; Comas et al., 2012; Hearst, 1997; 

Lafferty et al., 2001; Lin et al., 2012; Liu and 

Croft, 2002; Lloret et al., 2012; O’Connor et al., 

2013; Otterbacher et al., 2009; Salton et al., 

1993; Wachsmuth, 2013), some are more sophis-

ticated than others.  

The closest approach to ours is the one of 

Scheible and Schütze (2013), but in contrast to 

them, we strive to discover sentiments' relevance 

for all entities (of a given type) mentioned in the 

document, not necessarily topical. 

3 Entity Relevance 

An instance of the sentiment relevance detection 

problem for a single entity consists of a text doc-

ument, a sentiment expression within the docu-

ment, and a target entity. The task is a binary 

decision: 'relevant' vs. 'irrelevant'. To solve this 

task, we can use any information that can be 

found by analyzing the document. Thus, we can 

assume that we know the parse trees of all sen-

tences and the locations of all references of all 

entities in the document, including co-references. 

In addition, we make use of an extra piece of 

information for each target entity – its "status 

within the document", or "document type with 

respect to the entity". We distinguish between 

several types which are intuitively clearly differ-

ent: 

 'Target' – the entity is the main topic of the 

document; 

 'Accidental' – the entity is not the main topic 

of the document, and is mentioned in passing; 

 'RelationTarget' – the main topic of the doc-

ument is a relation between the entity and 

some other entities of the same type; 

 'ListTarget' – the entity is one of a few equal-

ly important topics, dealt with sequentially. 

In the datasets we use for experiments, each 

entity is manually annotated with its status with-

in the document, which allows us to directly ob-

serve the influence of this data on the accuracy 

of relevance discernment. We also show that this 

data can be automatically extracted using super-

vised classification. 

Since this paper is primarily a study of senti-

ment relevance, the actual sentiment expressions 

are not always labeled in our datasets. Instead, 

relevance ranges are annotated for each entity, in 

the style of passage retrieval problems, with the 

expectation that sentiment expressions relevant 

to an entity only appear in the parts of the docu-

ment that are labeled as "relevant", and converse-

ly, that all expressions appearing in parts labeled 

"irrelevant" are irrelevant. This way of annotat-

ing allows the comparing of different relevance 

detection strategies independently of the main 

sentiment extraction tool.  

All of the algorithms discussed in this paper 

use the same document processing methods, thus 

allowing us to compare the algorithms them-

selves independent of the quality and specifics of 

the underlying NLP. 

The multiple-entity relevance problem is dis-

tinguished from the single-entity relevance prob-

lem by the requirement for the sentiment expres-

sion to be relevant to several entities of different 

types. The problem is close to Relation Extrac-

tion in this sense. The examples we are interested 

in are in the medical domain and deal with three 

main entity types: PERSON, DRUG, and 

DISEASE, where PERSON is restricted to 

known physicians. While each of the entity types 

can be the target of a sentiment expression, the 

more interesting questions in this domain involve 

multiple entities, specifically, DRUG + 

DISEASE ("how effective is this drug for this 

disease?"), and PERSON + DRUG + DISEASE 

("what does this physician say about using this 

drug to cure this disease?"). 

We solve the multiple-entity relevance prob-

lem by intersecting the relevance ranges of dif-

ferent-type entities, thus reducing the problem to 

the single-entity relevance detection. As such, 

the experiments regarding the multiple-entity 

relevance need only check the accuracy of this 

reduction. In the medical domain, at least, this 

accuracy appears to be adequate. 
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4 Relevance Algorithms 

Each algorithm receives, as input, the text of the 

document, with labeled reference of the target 

entity and other entities of the same type. The 

labeled references also include all coreferential 

references, extracted automatically by an NLP 

system. The input text also includes labeled can-

didate sentiment expressions, either manually 

labeled or automatically extracted by a rele-

vance-ignoring SA system1. The task of the algo-

rithms is to label each candidate expression as 

relevant or irrelevant to the target entity. The 

algorithms are evaluated according to the accura-

cy (recall, precision, and F1) of this labeling of 

individual sentiment expressions.  

This method produces a reasonably well-

understandable quality measure (the percentage 

of expressions that the algorithms get right or 

wrong), and also allows us to compare algo-

rithms focused on individual expressions and 

algorithms working on text ranges. The algo-

rithms we evaluate are as follows: 

 Baseline - Every expression is declared rele-

vant. This is the standard mode of operation of 

document-level SA tools, although it is usually 

only applied to the 'Target' entities – the main 

topic(s) of the document. 

 Physical-proximity-based - A text-range fo-

cused algorithm, which labels pieces of text as 

relevant or irrelevant according to their place-

ment relative to the references of the target en-

tity and other entities of the same type, as well 

as some other contextual clues, such as para-

graph boundaries. Generally, the mentioning of 

an entity starts its relevance range (and stops 

the relevance range of the previously men-

tioned entity). For the first entity reference in a 

paragraph, the range also extends backward to 

the beginning of the sentence. There are three 

flavors of the algorithm, specifically adapted 

for different document-types-with-respect-to-

the-target-entity: 

o 'Proximity-Accidental' - stops relevance 

ranges at paragraph boundaries, 

o 'Proximity-Targeted' - restarts relevance 

ranges at paragraph boundaries (every para-

                                                 
1In our experiments, we also use a standalone automatic 

Financial SA system from Feldman et al. (2010), working 

in the 'ignore relevance' mode, which (1) finds and labels 

all entities of the target type(s); (2) resolves all corefer-

ences for the target entity type(s); (3) finds and labels all 

sentiment expressions, regardless of their relevance; and 

(4) provides dependency parses for all sentences in the 

corpus.  

graph is assumed relevant at the start, unless 

another entity is mentioned). 

o 'Proximity-List' - interpolates relevance 

ranges over intermission paragraphs, unless 

they are explicitly irrelevant (e.g., contain-

ing references of other entities of the same 

type). 

 Syntactic-proximity-based - An expression-

focused algorithm, which labels expressions as 

relevant or irrelevant according to their dis-

tance to various entity references in the de-

pendency parse graph. There are two flavors of 

the algorithm: direct and reverse. The former 

considers an expression relevant only if it is 

closest to the target entity from among all enti-

ties of the same type, and the distance is suffi-

ciently close. The latter considers an expres-

sion irrelevant only if it has the above-

described relation to some non-target entity of 

the same type. The rationale for the two flavors 

is the distinction between 'Targeted' and 'Acci-

dental' document types regarding the target en-

tity. For the 'Accidental' entities, a sentiment 

expression is assumed to be relevant only if it 

is explicitly connected to the entity. For 'Tar-

geted' entities, an expression is irrelevant only 

if it is explicitly connected to some other entity 

of the same type. 

 Classification-based - This algorithm consid-

ers each candidate sentiment expression as an 

instance of a binary classification problem, to 

be solved using supervised classification. For 

evaluating this algorithm, some part of the test 

corpus is used for training, and the other for 

testing, with N-fold cross-validation. The fea-

tures for classification may use any infor-

mation present in the input.  

In the current experiments, we use refer-

ences of target and non-target entities, appear-

ances of paragraph and document boundaries, 

length of syntactic connections to target and 

non-target entities, when available, and explicit 

entity status within documents, when available. 

The (binary) classification features are built 

from sequences of up to 5 occurrences of the 

above-described pieces, with the pieces ap-

pearing before and after the sentiment expres-

sion tracked separately. For classification, we 

use a linear classifier with Large Margin train-

ing (regularized perceptron, as discussed in 

Scheible and Schütze, (2013)). 

 Sequence-classification-based - The algo-

rithm uses exactly the same features as the di-

rect classification-based above, but instead of 

considering each expression separately, it con-

89



siders them as a sequence, one per document. 

So, instead of a Large Margin binary classifier, 

a probabilistic sequence classifier is used 

(CRF, as discussed in Lafferty et al. (2001)). 

5 Experiments 

For the experiments, we use two manually-

annotated corpora 2 , a financial corpus 3  and a 

medical4 corpus. In the Financial corpus, COM-

PANIEs are used as target entities and in the 

medical corpus, DISEASEs, DRUGs and PER-

SONs are the entity types that are used as target 

entities. For the purpose of the experiments, we 

are interested only in single-entity sentiments 

about DRUGs, and multiple-entity sentiments 

about DRUGs + DISEASEs, and DRUGs + 

DISEASEs + PERSONs. 

The evaluation metrics in all of the experi-

ments are precision, recall, and F1. For the clas-

sification-based algorithms, unless stated other-

wise, we use 10-fold cross-validation.  

5.1 Experiment: Importance of relevance 

In the first experiment, we demonstrate the im-

portance of using relevance when calculating the 

consolidated sentiment score of an entity within 

a set of documents. For each entity, we set the 

'correct' consolidated sentiment score to the av-

erage of polarities of all sentiments in a corpus 

which are labeled as relevant to the entity. Then, 

we compare the correct value to the two scores 

calculated without considering relevance: 

 'Baseline' - the average of polarities of all sen-

timents in all documents where the entity is 

mentioned, and 

 'TargetedOnly' - the average of polarities of 

all sentiments in the documents where the enti-

ty is labeled as target (main topic of the docu-

ment). This case models the typical state of a 

relevance-agnostic SA system. 

For this evaluation, we only compare the sign 

of the final sentiment scores, without considering 

their magnitudes (unless it is close to zero, in 

                                                 
2 Fully annotating texts for semantic relevance is an arduous 

task, thus the used annotated corpora are relatively small. 

Sample can be found at http://goo.gl/6HONHP. 

3 A corpus of 160 financial news documents on at least one 

entity of interest, of average size ~5Kb, downloaded from 

various financial news websites. The dataset mentions 424 

different companies.  

4 A corpus of 160 documents, of average size ~7Kb, down-

loaded following Google queries on a set of a few com-

mon drugs and diseases. The dataset mentions 722 differ-

ent people, 46 diseases, and 175 drugs. 

which it is considered 'neutral'). The errors at this 

level indicate definite SA errors – miscalculating 

entity's sentiment into its opposite.  

The results of the evaluation are as follows: 

The 'Baseline' scores show a large difference 

from the correct scores, with 33% and 38% of 

entities having wrong final polarity in the finan-

cial (COMPANY) and medical (DRUG) do-

mains, respectively. The 'TargetedOnly' scores 

are somewhat closer to correct, with 12% and 

28% of entities with incorrect final polarities. 

However, the 'TargetedOnly' method naturally 

suffers from a very low recall, with only 19% 

and 38% of entities covered in the financial and 

medical domains, respectively. 

5.2 Experiment: Influence of entity status 

In this experiment, we compare the performance 

of various algorithms while either providing or 

withholding the information about the document-

type-with-respect-to-the-target-entity. 

The performance of the physical proximity al-

gorithms on the financial corpus is shown at the 

top left hand side of Table 1. The set of all in-

stances of relevance detection problems in the 

corpus (an instance consists of a sentiment ex-

pression within a text, together with a target enti-

ty) is divided into three subsets, according to the 

status of the target entity within the document. 

As expected, the three flavors of the physical 

proximity algorithm perform much better on the 

corpus subsets they are adapted to. At the bottom 

left hand side of Table 1, we similarly show the 

performance of the two flavors of the syntax-

proximity-based algorithm on the medical do-

main (DRUG entities). Same as above, there is a 

large difference in the performance of the two 

flavors of the algorithm on different subsets of 

the problem set. Finally, at the top of Table 2, we 

compare the performance of the two classifica-

tion-based algorithms on the two (whole) prob-

lem sets, while either keeping or withholding the 

entity status information from the classifier. The 

difference in results is less pronounced here, but 

is still noticeable. The reason for the smaller dif-

ference, we hypothesize, is the ability of the clas-

sifiers to partially infer the entity status from the 

various context clues that are used as classifica-

tion features (see the experiment 5.3). 

5.3 Experiment: Automatic identification of 

entity status using classification. 

In this experiment, we confirm that it is possible 

to identify the entity status within documents 

using supervised classification. 
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Table 1. Performance of different algorithms on three subsets of the corpus with a different status of 

the target entity within the document. 

 
Experiment Algorithm  Financial Medical 

Experiment 5.2  

(Prec./ Rec,/F1). 

Classification (with entity 

status info) 

90/86/88 84/88/86 

Classification  (without 

entity status info) 

89/85/87 87/81/84 

Sequence Classification  

(with entity status info) 

96/84/90 99/84/91 

Sequence Classification  

(without entity status info) 

96/83/89 95/85/90 

Experiment 5.3 

(F1, (diff. in F1 

from exp. 5.2)) 

Classification 86.7  (-0.9) 83.9 (-2.0) 

Sequence Classification 89.7 (+0.1) 90.9 (-0.3) 

Experiment 5.5  

(F1) 

Baseline 37.2 28.6 

Physical Proximity 84.1 79.5 

Syntactic-Proximity 43.8 54.6 

Classification 87.6 85.9 

Sequence-Classification 91.2 89.6 

 

Table 2. Performance of different algorithms 

on the different domains. 

 

The results of direct evaluation show that the 

accuracies of the Medical and Financial corpora 

(using 10-fold X-validation) are 87.8% and 

82.2% respectively, and the accuracy when using 

the Medical corpus for training the Financial 

corpus for testing and vice versa, are 78.2% and 

86.1% , respectively.  

The results of relevance detection using the 

automatically extracted entity status values are 

shown at the right hand side of Table 1 and in the 

middle of Table 2, which utilize the same da-

tasets and algorithms as at the left hand side of 

Table 1 and at the top of Table 2.  As can be seen 

from the tables, the drop in performance is small, 

demonstrating the success of classification-based 

extraction of entity status information. 

5.4 Experiment: Cross-domain applicability 

In this experiment, we test how well the classifi-

ers trained on data from one domain work on 

input from a different domain.  

The classification results using different types 

of training data are shown in Table 3.  

 
  Classification Sequence classification 

Medical 2-fold/10-fold 84.6/85.9 85.7/89.6 

Train on Fin, test on Med 83.5 86.8 

Financial 2-fold/10-fold 86.1/87.6 90.3/91.2 

Train on Med, test on Fin 85.4 91.0 

 

Table 3. Performance of classification-based  

algorithms using different training data (F1). 

The table confirms general independence of 

the classification performance on the domain. 

Comparing the 2-fold and 10-fold cross-

validation results (the difference is equivalent to 

doubling the amount of training data), shows that 

the amount of training data is sufficient. 

5.5 Experiment: Overall performance of 

algorithms 

In this experiment, we simply compare the over-

all accuracy of various algorithms for relevance 

discernment, operating at their best parameters. 

The results are shown at the bottom of Table 2. 

Overall, classification-based algorithms perform 

better than the deterministic ones, with sequence-

classification performing significantly better than 

direct classification. Syntactic proximity-based is 

precise, but has relatively low recall, reducing its 

overall performance. Physical proximity-based is 

simplest, and produce reasonably high overall 

results, although worse than the best-performing 

classification-based methods. 

6 Conclusion 

The results are mostly intuitively understood and 

confirm the expectations. We confirmed that 

relevance detection is essential for producing 

correct consolidated SA results. We found that 

the entity status within the document is one of 

the important clues for solving the relevance 

detection problem, and showed that this infor-

mation can be effectively automatically extracted 

using supervised classification. We also com-

pared several algorithms for relevance detection, 

with the results that classification-based algo-

rithms generally outperform simpler ones based 

on the same clues, although a very simple prox-

imity-based algorithm performs reasonably well 

if allowed to use the entity status information.  

 

Acknowledgments 

 

This work is supported by the Israel Ministry of 

Science and Technology Center of Knowledge in 

Machine Learning and Artificial Intelligence and 

the Israel Ministry of Defense. 

 Experiment 5.2  (Precision/Recall/F1) Experiment 5.3 ( F1, (diff. in F1 from exp. 5.2) 

 Accidental Targeted List Whole Accidental Targeted List Whole 

Proximity-Accidental 84/43/57 93/76/84 92/74/82 92/72/81 60 (+2.6) 79 (-5.5) 83 (+1.1)  

Proximity-Targeted 31/50/38 90/84/87 55/89/68 63/83/72 38 (-0.4) 82 (-5.2) 73 (+4.3)  

Proximity-List 58/44/50 90/83/87 88/83/86 85/80/82 52 (+2.1) 81 (-5.9) 87 (+1.6)  

Proximity-Combined    89/80/84    83 (-1.2) 

Syntactic-Prox.-Direct 93/48/64 99/42/60   65 (+0.8) 59 (-0.2)   

Syntactic-Prox.-Inverse 04/72/08 70/66/68   8 (-0.2) 76 (+6.4)   
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Abstract

This paper presents an approach to query
construction to detect multilingual dictio-
naries for predetermined language combi-
nations on the web, based on the identifi-
cation of terms which are likely to occur
in bilingual dictionaries but not in general
web documents. We use eight target lan-
guages for our case study, and train our
method on pre-identified multilingual dic-
tionaries and the Wikipedia dump for each
of our languages.

1 Motivation

Translation dictionaries and other multilingual
lexical resources are valuable in a myriad of
contexts, from language preservation (Thieberger
and Berez, 2012) to language learning (Laufer
and Hadar, 1997), cross-language information
retrieval (Nie, 2010) and machine translation
(Munteanu and Marcu, 2005; Soderland et al.,
2009). While there are syndicated efforts
to produce multilingual dictionaries for differ-
ent pairings of the world’s languages such as
freedict.org, more commonly, multilingual
dictionaries are developed in isolation for a spe-
cific set of languages, with ad hoc formatting,
great variability in lexical coverage, and no cen-
tral indexing of the content or existence of that
dictionary (Baldwin et al., 2010). Projects such
as panlex.org aspire to aggregate these dic-
tionaries into a single lexical database, but are
hampered by the need to identify individual multi-
lingual dictionaries, especially for language pairs
where there is a sparsity of data from existing dic-
tionaries (Baldwin et al., 2010; Kamholz and Pool,
to appear). This paper is an attempt to automate
the detection of multilingual dictionaries on the
web, through query construction for an arbitrary
language pair. Note that for the method to work,

we require that the dictionary occurs in “list form”,
that is it takes the form of a single document (or
at least, a significant number of dictionary entries
on a single page), and is not split across multiple
small-scale sub-documents.

2 Related Work

This research seeks to identify documents of a
particular type on the web, namely multilingual
dictionaries. Related work broadly falls into
four categories: (1) mining of parallel corpora;
(2) automatic construction of bilingual dictionar-
ies/thesauri; (3) automatic detection of multilin-
gual documents; and (4) classification of docu-
ment genre.

Parallel corpus construction is the task of au-
tomatically detecting document sets that contain
the same content in different languages, com-
monly based on a combination of site-structural
and content-based features (Chen and Nie, 2000;
Resnik and Smith, 2003). Such methods could
potentially identify parallel word lists from which
to construct a bilingual dictionary, although more
realistically, bilingual dictionaries exist as single
documents and are not well suited to this style of
analysis.

Methods have also been proposed to automat-
ically construct bilingual dictionaries or thesauri,
e.g. based on crosslingual glossing in predictable
patterns such as a technical term being immedi-
ately proceeded by that term in a lingua franca
source language such as English (Nagata et al.,
2001; Yu and Tsujii, 2009). Alternatively, com-
parable or parallel corpora can be used to extract
bilingual dictionaries based on crosslingual distri-
butional similarity (Melamed, 1996; Fung, 1998).
While the precision of these methods is generally
relatively high, the recall is often very low, as there
is a strong bias towards novel technical terms be-
ing glossed but more conventional terms not.

Also relevant to this work is research on lan-
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guage identification, and specifically the detection
of multilingual documents (Prager, 1999; Yam-
aguchi and Tanaka-Ishii, 2012; Lui et al., 2014).
Here, multi-label document classification meth-
ods have been adapted to identify what mix of
languages is present in a given document, which
could be used as a pre-filter to locate documents
containing a given mixture of languages, although
there is, of course, no guarantee that a multilingual
document is a dictionary.

Finally, document genre classification is rele-
vant in that it is theoretically possible to develop
a document categorisation method which classi-
fies documents as multilingual dictionaries or not,
with the obvious downside that it would need to be
applied exhaustively to all documents on the web.
The general assumption in genre classification is
that the type of a document should be judged not
by its content but rather by its form. A variety
of document genre methods have been proposed,
generally based on a mixture of structural and
content-based features (Matsuda and Fukushima,
1999; Finn et al., 2002; zu Eissen and Stein, 2005).

While all of these lines of research are relevant
to this work, as far as we are aware, there has not
been work which has proposed a direct method
for identifying pre-existing multilingual dictionar-
ies in document collections.

3 Methodology

Our method is based on a query formulation ap-
proach, and querying against a pre-existing index
of a document collection (e.g. the web) via an in-
formation retrieval system.

The first intuition underlying our approach is
that certain words are a priori more “language-
discriminating” than others, and should be pre-
ferred in query construction (e.g. sushi occurs as
a [transliterated] word in a wide variety of lan-
guages, whereas anti-discriminatory is found pre-
dominantly in English documents). As such, we
prefer search terms wi with a higher value for
maxl P (l|wi), where l is the language of interest.

The second intuition is that the lexical cover-
age of dictionaries varies considerably, especially
with multilingual lexicons, which are often com-
piled by a single developer or small community
of developers, with little systematicity in what is
including or not included in the dictionary. As
such, if we are to follow a query construction ap-
proach to lexicon discovery, we need to be able

to predict the likelihood of a given word wi be-
ing included in an arbitrarily-selected dictionary
Dl incorporating language l (i.e. P (wi|Dl)). Fac-
tors which impact on this include the lexical prior
of the word in the language (e.g. P (paper|en) >
P (papyrus|en)), whether they are lemmas or not
(noting that multilingual dictionaries tend not to
contain inflected word forms), and their word class
(e.g. multilingual dictionaries tend to contain more
nouns and verbs than function words).

The third intuition is that certain word combi-
nations are more selective of multilingual dictio-
naries than others, i.e. if certain words are found
together (e.g. cruiser, gospel and noodle), the con-
taining document is highly likely to be a dictionary
of some description rather than a “conventional”
document.

Below, we describe our methodology for query
construction based on these elements in greater de-
tail. The only assumption on the method is that
we have access to a selection of dictionaries D
(mono- or multilingual) and a corpus of conven-
tional (non-dictionary) documents C, and knowl-
edge of the language(s) contained in each dictio-
nary and document.

Given a set of dictionaries Dl for a language l
and the complement setDl = D\Dl, we first con-
struct the lexicon Ll for that language as follows:

Ll =
{
wi|wi ∈ Dl ∩ wi /∈ Dl

}
(1)

This creates a language-discriminating lexicon for
each language, satisfying the first criterion.

Lexical resources differ in size, scope and cov-
erage. For instance, a well-developed, mature
multilingual dictionary may contain over 100,000
multilingual lexical records, while a specialised 5-
way multilingual domain dictionary may contain
as few as 100 multilingual lexical records. In line
with our second criterion, we want to select words
which have a higher likelihood of occurrence in
a multilingual dictionary involving that language.
To this end, we calculate the weight sdict(wi,l) for
each word wi,l ∈ Ll:

sdict(wi,l) =
∑
d∈Dl

{ |Ll|−|d|
|Ll| if wi,l ∈ d
− |d||Ll| otherwise

(2)

where |d| is the size of dictionary d in terms of the
number of lexemes it contains.

The final step is to weight words by their typ-
icality in a given language, as calculated by their
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likelihood of occurrence in a random document in
that language. This is estimated by the proportion
of Wikipedia documents in that language which
contain the word in question:

Score(wi,l) =
df(wi,l)
Nl

sdict(wi,l) (3)

where df(wi,l) is the count of Wikipedia docu-
ments of language l which contain wi, and Nl is
the total number of Wikipedia documents in lan-
guage l.

In all experiments in this paper, we assume that
we have access to at least one multilingual dictio-
nary containing each of our target languages, but
in absence of such a dictionary, sdict(wi,l) could
be set to 1 for all words wi,l in the language.

The result of this term weighing is a ranked list
of words for each language. The next step is to
identify combinations of words that are likely to
be found in multilingual dictionaries and not stan-
dard documents for a given language, in accor-
dance with our third criterion.

3.1 Apriori-based query generation
We perform query construction for each language
based on frequent item set mining, using the Apri-
ori algorithm (Agrawal et al., 1993). For a given
combination of languages (e.g. English and Swa-
heli), queries are then formed simply by combin-
ing monolingual queries for the component lan-
guages.

The basic approach is to use a modified support
formulation within the Apriori algorithm to prefer
word combinations that do not cooccur in regular
documents. Based on the assumption that query-
ing a (pre-indexed) document collection is rela-
tively simple, we generate a range of queries of de-
creasing length and increasing likelihood of term
co-occurrence in standard documents, and query
until a non-empty set of results is returned.

The modified support formulation is as follows:

cscore(w1, ..., wn) ={
0 if ∃d,wi, wj : cod(wi, wj)∏

i Score(wi) otherwise

where cod(wi, wj) is a Boolean function which
evaluates to true iff wi and wj co-occur in doc-
ument d. That is, we reject any combinations of
words which are found to co-occur in Wikipedia
documents for that language. Note that the actual
calculation of this co-occurrence can be performed

Figure 1: Examples of learned queries for different
languages

efficiently, as: (a) for a given iteration of Apri-
ori, it only needs to be performed between the new
word that we are adding to the query (“item set” in
the terminology of Apriori) and each of the other
words in a non-zero support itemset from the pre-
vious iteration of the algorithm (which are guaran-
teed to not co-occur with each other); and (b) the
determination of whether two terms collocate can
be performed efficiently using an inverted index of
Wikipedia for that language.

In our experiments, we apply the Apriori al-
gorithm exhaustively for a given language with a
support threshold of 0.5, and return the resultant
item sets in ranked order of combined score for
the component words.

A random selection of queries learned for each
of the 8 languages targeted in this research is pre-
sented in Figure 1.

4 Experimental methodology

We evaluate our proposed methodology in two
ways:

1. against a synthetic dataset, whereby we in-
jected bilingual dictionaries into a collection
of web documents, and evaluated the ability
of the method to return multilingual dictio-
naries for individual languages; in this, we
naively assume that all web documents in the
background collection are not multilingual
dictionaries, and as such, the results are po-
tentially an underestimate of the true retrieval
effectiveness.

2. against the open web via the Google search
API for a given combination of languages,
and hand evaluation of the returned docu-
ments
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Lang Wikipedia articles (M) Dictionaries Queries learned Avg. query length
en 3.1 26 2546 3.2
zh 0.3 0 5034 3.6
es 0.5 2 356 2.9
ja 0.6 0 1532 3.3
de 1.0 13 634 2.7
fr 0.9 5 4126 3.0
it 0.6 4 1955 3.0
ar 0.1 2 9004 3.2

Table 1: Details of the training data and queries learned for each language

Note that the first evaluation with the synthetic
dataset is based on monolingual dictionary re-
trieval effectiveness because we have very few
(and often no) multilingual dictionaries for a given
pairing of our target languages. For a given lan-
guage, we are thus evaluating the ability of our
method to retrieve multilingual dictionaries con-
taining that language (and other indeterminate lan-
guages).

For both the synthetic dataset and open web ex-
periments, we evaluate our method based on mean
average precision (MAP), that is the mean of the
average precision scores for each query which re-
turns a non-empty result set.

To train our method, we use 52 bilingual Free-
dict (Freedict, 2011) dictionaries and Wikipedia1

documents for each of our target languages. As
there are no bilingual dictionaries in Freedict for
Chinese and Japanese, the training of Score values
is based on the Wikipedia documents only. Mor-
phological segmentation for these two languages
was carried out using MeCab (MeCab, 2011) and
the Stanford Word Segmenter (Tseng et al., 2005),
respectively. See Table 1 for details of the num-
ber of Wikipedia articles and dictionaries for each
language.

Below, we detail the construction of the syn-
thetic dataset.

4.1 Synthetic dataset

The synthetic dataset was constructed using a sub-
set of ClueWeb09 (ClueWeb09, 2009) as the back-
ground web document collection. The original
ClueWeb09 dataset consists of around 1 billion
web pages in ten languages that were collected in
January and February 2009. The relative propor-
tions of documents in the different languages in
the original dataset are as detailed in Table 2.

We randomly downsampled ClueWeb09 to 10

1Based on 2009 dumps.

Language Proportion
en (English) 48.41%
zh (Chinese) 17.05%
es (Spanish) 7.62%
ja (Japanese) 6.47%
de (German) 4.89%
fr (French) 4.79%
ko (Korean) 3.61%
it (Italian) 2.8%
pt (Portuguese) 2.62%
ar (Arabic) 1.74%

Table 2: Language proportions in ClueWeb09.

million documents for the 8 languages targeted
in this research (the original 10 ClueWeb09 lan-
guages minus Korean and Portuguese). We then
sourced a random set of 246 multilingual dic-
tionaries that were used in the construction of
panlex.org, and injected them into the docu-
ment collection. Each of these dictionaries con-
tains at least one of our 8 target languages, with
the second language potentially being outside the
8. A total of 49 languages are contained in the
dictionaries.

We indexed the synthetic dataset using Indri (In-
dri, 2009).

5 Results

First, we present results over the synthetic dataset
in Table 3. As our baseline, we simply query for
the language name and the term dictionary in the
local language (e.g. English dictionary, for En-
glish) in the given language.

For languages that had bilingual dictionaries for
training, the best results were obtained for Span-
ish, German, Italian and Arabic. Encouragingly,
the results for languages with only Wikipedia doc-
uments (and no dictionaries) were largely com-
parable to those for languages with dictionaries,
with Japanese achieving a MAP score compara-
ble to the best results for languages with dictio-
nary training data. The comparably low result for
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Lang Dicts MAP Baseline
en 92 0.77 0.00
zh 7 0.75 0.00
es 34 0.98 0.04
ja 5 0.94 0.00
de 75 0.97 0.08
fr 34 0.84 0.03
it 8 0.95 0.01
ar 3 0.92 0.00

AVERAGE: 32.2 0.88 0.04

Table 3: Dictionary retrieval results over the syn-
thetic dataset (“Dicts” = the number of dictionaries
in the document collection for that language.

English is potentially affected by its prevalence
both in the bilingual dictionaries in training (re-
stricting the effective vocabulary size due to our
Ll filtering), and in the document collection. Re-
call also that our MAP scores are an underestimate
of the true results, and some of the ClueWeb09
documents returned for our queries are potentially
relevant documents (i.e. multilingual dictionaries
including the language of interest). For all lan-
guages, the baseline results were below 0.1, and
substantially lower than the results for our method.

Looking next to the open web, we present in Ta-
ble 4 results based on querying the Google search
API with the 1000 longest queries for English
paired with each of the other 7 target languages.
Most queries returned no results; indeed, for the
en-ar language pair, only 49/1000 queries returned
documents. The results in Table 4 are based on
manual evaluation of all documents returned for
the first 50 queries, and determination of whether
they were multilingual dictionaries containing the
indicated languages.

The baseline results are substantially higher
than those for the synthetic dataset, almost cer-
tainly a direct result of the greater sophistication
and optimisation of the Google search engine (in-
cluding query log analysis, and link and anchor
text analysis). Despite this, the results for our
method are lower than those over the synthetic
dataset, we suspect largely as a result of the style
of queries we issue being so far removed from
standard Google query patterns. Having said this,
MAP scores of 0.32–0.92 suggest that the method
is highly usable (i.e. at any given cutoff in the doc-
ument ranking, an average of at least one in three
documents is a genuine multilingual dictionary),
and any non-dictionary documents returned by the
method could easily be pruned by a lexicographer.

Lang Dicts MAP Baseline
zh 16 0.55 0.19
es 17 0.92 0.13
ja 13 0.32 0.04
de 34 0.77 0.09
fr 36 0.77 0.08
it 23 0.69 0.11
ar 8 0.39 0.17

AVERAGE: 21.0 0.63 0.12

Table 4: Dictionary retrieval results over the open
web for dictionaries containing English and each
of the indicated languages (“Dicts” = the number
of unique multilingual dictionaries retrieved for
that language).

Among the 7 language pairs, en-es, en-de, en-fr
and en-it achieved the highest MAP scores. In
terms of unique lexical resources found with 50
queries, the most successful language pairs were
en-fr, en-de and en-it.

6 Conclusions

We have described initial results for a method de-
signed to automatically detect multilingual dictio-
naries on the web, and attained highly credible re-
sults over both a synthetic dataset and an exper-
iment over the open web using a web search en-
gine.

In future work, we hope to explore the ability
of the method to detect domain-specific dictionar-
ies (e.g. training over domain-specific dictionar-
ies from other language pairs), and low-density
languages where there are few dictionaries and
Wikipedia articles to train the method on.
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Abstract

Words undergo various changes when en-
tering new languages. Based on the as-
sumption that these linguistic changes fol-
low certain rules, we propose a method
for automatically detecting pairs of cog-
nates employing an orthographic align-
ment method which proved relevant for se-
quence alignment in computational biol-
ogy. We use aligned subsequences as fea-
tures for machine learning algorithms in
order to infer rules for linguistic changes
undergone by words when entering new
languages and to discriminate between
cognates and non-cognates. Given a list
of known cognates, our approach does not
require any other linguistic information.
However, it can be customized to integrate
historical information regarding language
evolution.

1 Introduction

Cognates are words in different languages having
the same etymology and a common ancestor. In-
vestigating pairs of cognates is very useful in his-
torical and comparative linguistics, in the study
of language relatedness (Ng et al., 2010), phy-
logenetic inference (Atkinson et al., 2005) and
in identifying how and to what extent languages
change over time. In other several research ar-
eas, such as language acquisition, bilingual word
recognition (Dijkstra et al., 2012), corpus lin-
guistics (Simard et al., 1992), cross-lingual infor-
mation retrieval (Buckley et al., 1997) and ma-
chine translation (Kondrak et al., 2003), the con-
dition of common etymology is usually not essen-
tial and cognates are regarded as words with high
cross-lingual meaning and orthographic or pho-
netic similarity.

The wide range of applications in which cog-
nates prove useful attracted more and more at-

tention on methods for detecting such related
pairs of words. This task is most challenging
for resource-poor languages, for which etymologi-
cally related information is not accessible. There-
fore, the research (Inkpen et al., 2005; Mulloni and
Pekar, 2006; Hauer and Kondrak, 2011) focused
on automatic identification of cognate pairs, start-
ing from lists of known cognates.

In this paper, we propose a method for automat-
ically determining pairs of cognates across lan-
guages. The proposed method requires a list of
known cognates and, for languages for which ad-
ditional linguistic information is available, it can
be customized to integrate historical information
regarding the evolution of the language. The rest
of the paper is organized as follows: in Section
2 we present and analyze alternative methods and
related work in this area. In Section 3 we intro-
duce our approach for detection of cognates us-
ing orthographic alignment. In Section 4 we de-
scribe the experiments we conduct and we report
and analyze the results, together with a compari-
son with previous methods. Finally, in Section 5
we draw the conclusions of our study and describe
our plans for extending the method.

2 Related Work

There are three important aspects widely investi-
gated in the task of cognate identification: seman-
tic, phonetic and orthographic similarity. They
were employed both individually (Simard et al.,
1992; Inkpen et al., 2005; Church, 1993) and com-
bined (Kondrak, 2004; Steiner et al., 2011) in or-
der to detect pairs of cognates across languages.
For determining semantic similarity, external lexi-
cal resources, such as WordNet (Fellbaum, 1998),
or large corpora, might be necessary. For measur-
ing phonetic and orthographic proximity of cog-
nate candidates, string similarity metrics can be
applied, using the phonetic or orthographic word
forms as input. Various measures were investi-
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gated and compared (Inkpen et al., 2005; Hall and
Klein, 2010); Levenshtein distance (Levenshtein,
1965), XDice (Brew and McKelvie, 1996) and
the longest common subsequence ratio (Melamed,
1995) are among the most frequently used metrics
in this field. Gomes and Lopes (2011) proposed
SpSim, a more complex method for computing the
similarity of cognate pairs which tolerates learned
transitions between words.

Algorithms for string alignment were success-
fully used for identifying cognates based on both
their forms, orthographic and phonetic. Delmestri
and Cristianini (2010) used basic sequence align-
ment algorithms (Needleman and Wunsch, 1970;
Smith and Waterman, 1981; Gotoh, 1982) to ob-
tain orthographic alignment scores for cognate
candidates. Kondrak (2000) developed the ALINE
system, which aligns words’ phonetic transcrip-
tions based on multiple phonetic features and com-
putes similarity scores using dynamic program-
ming. List (2012) proposed a framework for au-
tomatic detection of cognate pairs, LexStat, which
combines different approaches to sequence com-
parison and alignment derived from those used in
historical linguistics and evolutionary biology.

The changes undergone by words when enter-
ing from one language into another and the trans-
formation rules they follow have been successfully
employed in various approaches to cognate detec-
tion (Koehn and Knight, 2000; Mulloni and Pekar,
2006; Navlea and Todirascu, 2011). These ortho-
graphic changes have also been used in cognate
production, which is closely related to the task of
cognate detection, but has not yet been as inten-
sively studied. While the purpose of cognate de-
tection is to determine whether two given words
form a cognate pair, the aim of cognate produc-
tion is, given a word in a source language, to
automatically produce its cognate pair in a tar-
get language. Beinborn et al. (2013) proposed a
method for cognate production relying on statis-
tical character-based machine translation, learn-
ing orthographic production patterns, and Mul-
loni (2007) introduced an algorithm for cognate
production based on edit distance alignment and
the identification of orthographic cues when words
enter a new language.

3 Our Approach

Although there are multiple aspects that are rel-
evant in the study of language relatedness, such

as orthographic, phonetic, syntactic and semantic
differences, in this paper we focus only on lexical
evidence. The orthographic approach relies on the
idea that sound changes leave traces in the orthog-
raphy and alphabetic character correspondences
represent, to a fairly large extent, sound correspon-
dences (Delmestri and Cristianini, 2010).

Words undergo various changes when entering
new languages. We assume that rules for adapting
foreign words to the orthographic system of the
target languages might not have been very well
defined in their period of early development, but
they may have since become complex and proba-
bly language-specific. Detecting pairs of cognates
based on etymology is useful and reliable, but, for
resource-poor languages, methods which require
less linguistic knowledge might be necessary. Ac-
cording to Gusfield (1997), an edit transcript (rep-
resenting the conversion of one string to another)
and an alignment are mathematically equivalent
ways of describing relationships between strings.
Therefore, because the edit distance was widely
used in this research area and produced good re-
sults, we are encouraged to employ orthographic
alignment for identifying pairs of cognates, not
only to compute similarity scores, as was previ-
ously done, but to use aligned subsequences as
features for machine learning algorithms. Our in-
tuition is that inferring language-specific rules for
aligning words will lead to better performance in
the task of cognate identification.

3.1 Orthographic Alignment

String alignment is closely related to the task
of sequence alignment in computational biology.
Therefore, to align pairs of words we employ the
Needleman-Wunsch global alignment algorithm
(Needleman and Wunsch, 1970), which is mainly
used for aligning sequences of proteins or nu-
cleotides. Global sequence alignment aims at de-
termining the best alignment over the entire length
of the input sequences. The algorithm uses dy-
namic programming and, thus, guarantees to find
the optimal alignment. Its main idea is that any
partial path of the alignment along the optimal
path should be the optimal path leading up to that
point. Therefore, the optimal path can be deter-
mined by incremental extension of the optimal
subpaths (Schuler, 2002). For orthographic align-
ment, we consider words as input sequences and
we use a very simple substitution matrix, which
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gives equal scores to all substitutions, disregard-
ing diacritics (e.g., we ensure that e and è are
matched).

3.2 Feature Extraction

Using aligned pairs of words as input, we extract
features around mismatches in the alignments.
There are three types of mismatches, correspond-
ing to the following operations: insertion, deletion
and substitution. For example, for the Romanian
word exhaustiv and its Italian cognate pair esaus-
tivo, the alignment is as follows:

e x h a u s t i v -
e s - a u s t i v o

The first mismatch (between x and s) is caused
by a substitution, the second mismatch (between
h and -) is caused by a deletion from source lan-
guage to target language, and the third mismatch
(between - and o) is caused by an insertion from
source language to target language. The features
we use are character n-grams around mismatches.
We experiment with two types of features:

i) n-grams around gaps, i.e., we account only
for insertions and deletions;

ii) n-grams around any type of mismatch, i.e.,
we account for all three types of mismatches.

The second alternative leads to better perfor-
mance, so we account for all mismatches. As
for the length of the grams, we experiment with
n ∈ {1, 2, 3}. We achieve slight improvements by
combining n-grams, i.e., for a given n, we use all
i-grams, where i ∈ {1, ..., n}. In order to provide
information regarding the position of the features,
we mark the beginning and the end of the word
with a $ symbol. Thus, for the above-mentioned
pair of cognates, (exhaustiv, esaustivo), we extract
the following features when n = 2:

x>s ex>es xh>s-
h>- xh>s- ha>-a
->o v->vo -$>o$

For identical features we account only once.
Therefore, because there is one feature (xh>s-)
which occurs twice in our example, we have 8 fea-
tures for the pair (exhaustiv, esaustivo).

3.3 Learning Algorithms

We use Naive Bayes as a baseline and we exper-
iment with Support Vector Machines (SVMs) to

learn orthographic changes and to discriminate be-
tween pairs of cognates and non-cognates. We
put our system together using the Weka work-
bench (Hall et al., 2009), a suite of machine learn-
ing algorithms and tools. For SVM, we use the
wrapper provided by Weka for LibSVM (Chang
and Lin, 2011). We use the radial basis function
kernel (RBF), which can handle the case when
the relation between class labels and attributes is
non-linear, as it maps samples non-linearly into a
higher dimensional space. Given two instances xi

and xj , where xi ∈ Rn, the RBF kernel function
for xi and xj is defined as follows:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0,

where γ is a kernel parameter.
We split the data in two subsets, for training

and testing, with a 3:1 ratio, and we perform grid
search and 3-fold cross validation over the train-
ing set in order to optimize hyperparameters c
and γ. We search over {1, 2, ..., 10} for c and
over {10−5, 10−4, ..., 104, 105} for γ. The values
which optimize accuracy on the training set are re-
ported, for each pair of languages, in Table 3.

4 Experiments

4.1 Data
We apply our method on an automatically ex-
tracted dataset of cognates for four pairs of
languages: Romanian-French, Romanian-Italian,
Romanian-Spanish and Romanian-Portuguese. In
order to build the dataset, we apply the method-
ology proposed by Ciobanu and Dinu (2014) on
the DexOnline1 machine-readable dictionary for
Romanian. We discard pairs of words for which
the forms across languages are identical (i.e., the
Romanian word matrice and its Italian cognate
pair matrice, having the same form), because these
pairs do not provide any orthographic changes to
be learned. For each pair of languages we de-
termine a number of non-cognate pairs equal to
the number of cognate pairs. Finally, we ob-
tain 445 pairs of cognates for Romanian-French2,
3,477 for Romanian-Italian, 5,113 for Romanian-
Spanish and 7,858 for Romanian-Portuguese. Be-
cause we need sets of approximately equal size for

1http://dexonline.ro
2The number of pairs of cognates is much lower for

French than for the other languages because there are numer-
ous Romanian words which have French etymology and, in
this paper, we do not consider these words to be cognate can-
didates.
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1st 2nd 3rd 4th 5th

IT iu>io un>on l->le t$>-$ -$>e$
FR un>on ne>n- iu>io ţi>ti e$>-$
ES -$>o$ ţi>ci –>ón ie>ió at>ad
PT ie>ão aţ>aç ţi>çã i$>-$ ă$>a$

Table 1: The most relevant orthographic cues for
each pair of languages determined on the entire
datasets using the χ2 attribute evaluation method
implemented in Weka.

1st 2nd 3rd 4th 5th

IT -$>e$ -$>o$ ă$>a$ –>re ţi>zi
FR e$>-$ un>on ne>n- iu>io ţi>ti
ES -$>o$ e$>-$ ţi>ci ă$>a$ at>ad
PT -$>o$ ă$>a$ e$>-$ -$>r$ -$>a$

Table 2: The most frequent orthographic cues for
each pair of languages determined on the cognate
lists using the raw frequencies.

comparison across languages, we keep 400 pairs
of cognates and 400 pairs of non-cognates for each
pair of languages. In Tables 1 and 2 we provide,
for each pair of languages, the five most relevant
2-gram orthographic changes, determined using
the χ2 distribution implemented in Weka, and the
five most frequent 2-gram orthographic changes in
the cognate pairs from our dataset3. None of the
top ranked orthographic cues occurs at the begin-
ning of the word, while many of them occur at the
end of the word. The most frequent operation in
Tables 1 and 2 is substitution.

4.2 Results Analysis

We propose a method for automatic detection
of cognate pairs using orthographic alignment.
We experiment with two machine-learning ap-
proaches: Naive Bayes and SVM. In Table 3 we
report the results of our research. We report the
n-gram values for which the best results are ob-
tained and the hyperparameters for SVM, c and γ.
The best results are obtained for French and Span-
ish, while the lowest accuracy is obtained for Por-
tuguese. The SVM produces better results for all
languages except Portuguese, where the accuracy
is equal. For Portuguese, both Naive Bayes and
SVM misclassify more non-cognates as cognates

3For brevity, we use in the tables the ISO 639-1 codes for
language abbreviation. We denote pairs of languages by the
target language, given the fact that Romanian is always the
source language in our experiments.

than viceversa. A possible explanation might be
the occurrence, in the dataset, of more remotely
related words, which are not labeled as cognates.
We plan to investigate this assumption and to ap-
ply the proposed method on other datasets in our
future work.

4.3 Comparison with Previous Methods
We investigate the performance of the method we
propose in comparison to previous approaches for
automatic detection of cognate pairs based on or-
thographic similarity. We employ several ortho-
graphic metrics widely used in this research area:
the edit distance (Levenshtein, 1965), the longest
common subsequence ratio (Melamed, 1995) and
the XDice metric (Brew and McKelvie, 1996)4.
In addition, we use SpSim (Gomes and Lopes,
2011), which outperformed the longest common
subsequence ratio and a similarity measure based
on the edit distance in previous experiments. To
evaluate these metrics on our dataset, we use the
same train/test sets as we did in our previous ex-
periments and we follow the strategy described in
(Inkpen et al., 2005). First, we compute the pair-
wise distances between pairs of words for each
orthographic metric individually, as a single fea-
ture5. In order to detect the best threshold for dis-
criminating between cognates and non-cognates,
we run a decision stump classifier (provided by
Weka) on the training set for each pair of lan-
guages and for each metric. A decision stump is a
decision tree classifier with only one internal node
and two leaves corresponding to our two class la-
bels. Using the best threshold value selected for
each metric and pair of languages, we further clas-
sify the pairs of words in our test sets as cognates
or non-cognates. In Table 4 we report the results
for each approach. Our method performs better
than the orthographic metrics considered as indi-
vidual features. Out of the four similarity met-
rics, SpSim obtains, overall, the best performance.
These results support the relevance of accounting
for orthographic cues in cognate identification.

4We use normalized similarity metrics. For the edit dis-
tance, we subtract the normalized value from 1 in order to
obtain similarity.

5SpSim cannot be computed directly, as the other metrics,
so we introduce an additional step in which we use 1/3 of the
training set (only cognates are needed) to learn orthographic
changes. In order to maintain a stratified dataset, we discard
an equal number of non-cognates in the training set and then
we compute the distances for the rest of the training set and
for the test set. We use the remaining of the initial training
set for the next step of the procedure.
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Naive Bayes SVM
P R A n P R A n c γ

IT 0.72 0.93 79.0 1 0.76 0.92 81.5 1 1 0.10
FR 0.81 0.91 82.0 2 0.84 0.89 87.0 2 10 0.01
ES 0.79 0.92 84.0 1 0.85 0.88 86.5 2 4 0.01
PT 0.67 0.88 73.0 2 0.70 0.78 73.0 2 10 0.01

Table 3: Results for automatic detection of cognates using orthographic alignment. We report the preci-
sion (P), recall (R) and accuracy (A) obtained on the test sets and the optimal n-gram values. For SVM
we also report the optimal hyperparameters c and γ obtained during cross-validation on the training sets.

EDIT LCSR XDICE SPSIM
P R A t P R A t P R A t P R A t

IT 0.67 0.97 75.0 0.43 0.68 0.91 75.0 0.51 0.66 0.98 74.0 0.21 0.66 0.98 74.5 0.44
FR 0.76 0.93 82.0 0.30 0.76 0.90 81.5 0.42 0.77 0.79 78.0 0.26 0.86 0.83 85.0 0.59
ES 0.77 0.91 82.0 0.56 0.72 0.97 80.0 0.47 0.72 0.99 80.5 0.19 0.81 0.90 85.0 0.64
PT 0.62 0.99 69.5 0.34 0.59 0.99 65.5 0.34 0.57 0.99 63.5 0.10 0.62 0.97 69.0 0.39

Table 4: Comparison with previous methods for automatic detection of cognate pairs based on orthog-
raphy. We report the precision (P), recall (R) and accuracy (A) obtained on the test sets and the optimal
threshold t for discriminating between cognates and non-cognates.

5 Conclusions and Future Work

In this paper we proposed a method for automatic
detection of cognates based on orthographic align-
ment. We employed the Needleman-Wunsch al-
gorithm (Needleman and Wunsch, 1970) for se-
quence alignment widely-used in computational
biology and we used aligned pairs of words to
extract rules for lexical changes occurring when
words enter new languages. We applied our
method on an automatically extracted dataset of
cognates for four pairs of languages.

As future work, we plan to extend our method
on a few levels. In this paper we used a very
simple substitution matrix for the alignment algo-
rithm, but the method can be adapted to integrate
historical information regarding language evolu-
tion. The substitution matrix for the alignment al-
gorithm can be customized with language-specific
information, in order to reflect the probability of
a character to change into another. An important
achievement in this direction belongs to Delmestri
and Cristianini (2010), who introduced PAM-like
matrices, linguistic-inspired substitution matrices
which are based on information regarding ortho-
graphic changes. We plan to investigate the con-
tribution of using this type of substitution matrices
for our method.

We intend to investigate other approaches to
string alignment, such as local alignment (Smith

and Waterman, 1981), and other learning algo-
rithms for discriminating between cognates and
non-cognates. We plan to extend our analysis with
more language-specific features, where linguistic
knowledge is available. First, we intend to use the
part of speech as an additional feature. We assume
that some orthographic changes are dependent on
the part of speech of the words. Secondly, we want
to investigate whether accounting for the common
ancestor language influences the results. We are
interested to find out if the orthographic rules de-
pend on the source language, or if they are rather
specific to the target language. Finally, we plan to
make a performance comparison on cognate pairs
versus word-etymon pairs and to investigate false
friends (Nakov et al., 2007).

We further intend to adapt our method for cog-
nate detection to a closely related task, namely
cognate production, i.e., given an input word w,
a related language L and a set of learned rules for
orthographic changes, to produce the cognate pair
of w in L.
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Abstract

Manually constructing a Wordnet is a dif-
ficult task, needing years of experts’ time.
As a first step to automatically construct
full Wordnets, we propose approaches to
generate Wordnet synsets for languages
both resource-rich and resource-poor, us-
ing publicly available Wordnets, a ma-
chine translator and/or a single bilin-
gual dictionary. Our algorithms translate
synsets of existing Wordnets to a target
language T, then apply a ranking method
on the translation candidates to find best
translations in T. Our approaches are ap-
plicable to any language which has at least
one existing bilingual dictionary translat-
ing from English to it.

1 Introduction

Wordnets are intricate and substantive reposito-
ries of lexical knowledge and have become im-
portant resources for computational processing of
natural languages and for information retrieval.
Good quality Wordnets are available only for a
few "resource-rich" languages such as English and
Japanese. Published approaches to automatically
build new Wordnets are manual or semi-automatic
and can be used only for languages that already
possess some lexical resources.

The Princeton Wordnet (PWN) (Fellbaum,
1998) was painstakingly constructed manually
over many decades. Wordnets, except the PWN,
have been usually constructed by one of two ap-
proaches. The first approach translates the PWN
to T (Bilgin et al., 2004), (Barbu and Mititelu,
2005), (Kaji and Watanabe, 2006), (Sagot and
Fišer, 2008), (Saveski and Trajkovsk, 2010) and
(Oliver and Climent, 2012); while the second ap-
proach builds a Wordnet in T, and then aligns
it with the PWN by generating translations (Gu-

nawan and Saputra, 2010). In terms of popular-
ity, the first approach dominates over the second
approach. Wordnets generated using the second
approach have different structures from the PWN;
however, the complex agglutinative morphology,
culture specific meanings and usages of words and
phrases of target languages can be maintained. In
contrast, Wordnets created using the first approach
have the same structure as the PWN.

One of our goals is to automatically gener-
ate high quality synsets, each of which is a set
of cognitive synonyms, for Wordnets having the
same structure as the PWN in several languages.
Therefore, we use the first approach to construct
Wordnets. This paper discusses the first step of a
project to automatically build core Wordnets for
languages with low amounts of resources (viz.,
Arabic and Vietnamese), resource-poor languages
(viz., Assamese) or endangered languages (viz.,
Dimasa and Karbi)1. The sizes and the qualities
of freely existing resources, if any, for these lan-
guages vary, but are not usually high. Hence, our
second goal is to use a limited number of freely
available resources in the target languages as in-
put to our algorithms to ensure that our methods
can be felicitously used with languages that lack
much resource. In addition, our approaches need
to have a capability to reduce noise coming from
the existing resources that we use. For transla-
tion, we use a free machine translator (MT) and
restrict ourselves to using it as the only "dictio-
nary" we can have. For research purposes, we have
obtained free access to the Microsoft Translator,
which supports translations among 44 languages.
In particular, given public Wordnets aligned to the
PWN ( such as the FinnWordNet (FWN) (Lindén,
2010) and the JapaneseWordNet (JWN) (Isahara et
al., 2008) ) and the Microsoft Translator, we build
Wordnet synsets for arb, asm, dis, ajz and vie.

1ISO 693-3 codes of Arabic, Assamese, Dimasa, Karbi
and Vietnamese are arb, asm, dis, ajz and vie, respectively.
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2 Proposed approaches

In this section, we propose approaches to create
Wordnet synsets for a target languages T using ex-
isting Wordnets and the MT and/or a single bilin-
gual dictionary. We take advantage of the fact
that every synset in PWN has a unique offset-POS,
referring to the offset for a synset with a partic-
ular part-of-speech (POS) from the beginning of
its data file. Each synset may have one or more
words, each of which may be in one or more
synsets. Words in a synset have the same sense.
The basic idea is to extract corresponding synsets
for each offset-POS from existing Wordnets linked
to PWN, in several languages. Next, we translate
extracted synsets in each language to T to produce
so-called synset candidates using MT. Then, we
apply a ranking method on these candidates to find
the correct words for a specific offset-POS in T.

2.1 Generating synset candidates

We propose three approaches to generate synset
candidates for each offset-POS in T.

2.1.1 The direct translation (DR) approach

The first approach directly translates synsets in
PWN to T as in Figure 1.

Figure 1: The DR approach to construct Wordnet
synsets in a target language T.

For each offset-POS, we extract words in that
synset from the PWN and translate them to the tar-
get language to generate translation candidates.

2.1.2 Approach using intermediate Wordnets
(IW)

To handle ambiguities in synset translation, we
propose the IW approach as in Figure 2. Publicly
available Wordnets in various languages, which
we call intermediate Wordnets, are used as re-
sources to create synsets for Wordnets. For each
offset-POS, we extract its corresponding synsets
from intermediate Wordnets. Then, the extracted
synsets, which are in different languages, are
translated to T using MT to generate synset candi-
dates. Depending on which Wordnets are used and
the number of intermediate Wordnets, the num-
ber of candidates in each synset and the number
of synsets in the new Wordnets change.

Figure 2: The IW approach to construct Wordnet
synsets in a target language T

2.1.3 Approach using intermediate Wordnets
and a dictionary (IWND)

The IW approach for creating Wordnet synsets de-
creases ambiguities in translations. However, we
need more than one bilingual dictionary from each
intermediate languages to T. Such dictionaries are
not always available for many languages, espe-
cially the ones that are resource poor. The IWND
approach is like the IW approach, but instead of
translating immediately from the intermediate lan-
guages to the target language, we translate synsets
extracted from intermediate Wordnets to English
(eng), then translate them to the target language.
The IWND approach is presented in Figure 3.

Figure 3: The IWND approach to construct Word-
net synsets
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2.2 Ranking method
For each of offset-POS, we have many translation
candidates. A translation candidate with a higher
rank is more likely to become a word belonging to
the corresponding offset-POS of the new Wordnet
in the target language. Candidates having the same
ranks are treated similarly. The rank value in the
range 0.00 to 1.00. The rank of a word w, the so-
called rankw, is computed as below.
rankw = occurw

numCandidates ∗ numDstWordnets
numWordnets

where:

- numCandidates is the total number of trans-
lation candidates of an offset-POS

- occurw is the occurrence count of the word w
in the numCandidates

- numWordnets is the number of intermediate
Wordnets used, and

- numDstWordnets is the number of distinct in-
termediate Wordnets that have words trans-
lated to the word w in the target language.

Our motivation for this rank formula is the fol-
lowing. If a candidate has a higher occurrence
count, it has a greater chance to become a cor-
rect translation. Therefore, the occurrence count
of each candidate needs to be taken into account.
We normalize the occurrence count of a word by
dividing it by numCandidates. In addition, if a
candidate is translated from different words hav-
ing the same sense in different languages, this can-
didate is more likely to be a correct translation.
Hence, we multiply the first fraction by numDst-
Wordnets. To normalize, we divide results by the
number of intermediate Wordnet used.

For instance, in our experiments we use 4 in-
termediate Wordnets, viz., PWN, FWN, JWN and
WOLF Wordnet (WWN) (Sagot and Fišer, 2008).
The words in the offset-POS "00006802-v" ob-
tained from all 4 Wordnets, their translations to
arb, the occurrence count and the rank of each
translation are presented in the second, the fourth
and the fifth columns, respectively, of Figure 4.
2.3 Selecting candidates based on ranks
We separate candidates based on three cases as be-
low.

Case 1: A candidate w has the highest chance
to become a correct word belonging to a specific
synset in the target language if its rank is 1.0. This
means that all intermediate Wordnets contain the
synset having a specific offset-POS and all words
belonging to these synsets are translated to the

Figure 4: Example of calculating the ranks of
candidates translated from words belonging to the
offset-POS "00006802-v" in 4 Wordnets: PWN,
FWN, JWN and WWN. The wordA, wordB and
wordC are obtained from PWN, FWN and WWN,
respectively. The JWN does not contain this offset-
POS. TL presents transliterations of the words in
arb. The numWordnets is 4 and the numCandi-
dates is 7. The rank of each candidate is shown in
the last column of Figure 4.

same word w. The more the number of intermedi-
ate Wordnets used, the higher the chance the can-
didate with the rank of 1.0 has to become the cor-
rect translation. Therefore, we accept all transla-
tions that satisfy this criterion. An example of this
scenario is presented in Figure 5.

Figure 5: Example of Case 1: Using the IW ap-
proach with four intermediate Wordnets, PWN,
FWN, JWN and WWN. All words belonging to
the offSet-POS "00952615-n" in all 4 Wordnets are
translated to the same word "điện" in vie. The
word "điện" is accepted as the correct word be-
longing to the offSet-POS "00952615-n" in the
Vietnamese Wordnet we create.

Case 2: If an offSet-POS does not have candi-
dates having the rank of 1.0, we accept the candi-
dates having the greatest rank. Figure 6 shows the
example of the second scenario.

Case 3: If all candidates of an offSet-POS has
the same rank which is also the greatest rank, we
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Figure 6: Example of Case 2: Using the IW ap-
proach with three intermediate Wordnets, PWN,
FWN and WWN. For the offSet-POS "01437254-
v", there is no candidate with the rank of 1.0.
The highest rank of the candidates in "vie" is 0.67
which is the word gửi. We accept "gửi" as the cor-
rect word in the offSet-POS "01437254-v" in the
Vietnamese Wordnet we create.

skip these candidates. Table 1 gives an example of
the last scenario.

Wordnet Words Cand. Rank
PWN act hành động 0.33
PWN behave hoạt động 0.33
FWN do làm 0.33

Table 1: Example of Case 3: Using the DR ap-
proach. For the offSet-POS "00010435-v", there
is no candidate with the rank of 1.0. The highest
rank of the candidates in vie is 0.33. All of 3 can-
didates have the rank as same as the highest rank.
Therefore, we do not accept any candidate as the
correct word in the offSet-POS "00010435-v" in
the Vietnamese Wordnet we create.

3 Experiments

3.1 Publicly available Wordnets
The PWN is the oldest and the biggest available
Wordnet. It is also free. Wordnets in many
languages are being constructed and developed2.
However, only a few of these Wordnets are of high
quality and free for downloading. The EuroWord-
net (Vossen, 1998) is a multilingual database with
Wordnets in European languages (e.g., Dutch, Ital-
ian and Spanish). The AsianWordnet3 provides
a platform for building and sharing Wordnets for
Asian languages (e.g., Mongolian, Thai and Viet-
namese). Unfortunately, the progress in building
most of these Wordnets is slow and they are far
from being finished.

2http://www.globalWordnet.org/gwa/Wordnet_table.html
3http://www.asianWordnet.org/progress

In our current experiments as mentioned ear-
lier, we use the PWN and other Wordnets linked
to the PWN 3.0 provided by the Open Multilingual
Wordnet4 project (Bond and Foster, 2013): WWN,
FWN and JWN. Table 2 provides some details of
the Wordnets used.

Wordnet Synsets Core
JWN 57,179 95%
FWN 116,763 100%
PWN 117,659 100%
WWN 59,091 92%

Table 2: The number of synsets in the Wordnets
linked to the PWN 3.0 are obtained from the Open
Multilingual Wordnet, along with the percentage
of synsets covered from the semi-automatically
compiled list of 5,000 "core" word senses in PWN.
Note that synsets which are not linked to the PWN
are not taken into account.

For languages not supported by MT, we use
three additional bilingual dictionaries: two dictio-
naries Dict(eng,ajz) and Dict(eng,dis) provided by
Xobdo5; one Dict(eng,asm) created by integrat-
ing two dictionaries Dict(eng,asm) provided by
Xobdo and Panlex6. The dictionaries are of vary-
ing qualities and sizes. The total number of entries
in Dict(eng,ajz), Dict(eng,asm) and Dict(eng,dis)
are 4682, 76634 and 6628, respectively.

3.2 Experimental results and discussion

As previously mentioned, our primary goal is to
build high quality synsets for Wordnets in lan-
guages with low amount of resources: ajz, asm,
arb, dis and vie. The number of Wordnet synsets
we create for arb and vie using the DR approach
and the coverage percentage compared to the
PWN synsets are 4813 (4.10%) and 2983 (2.54%),
respectively. The number of synsets for each
Wordnet we create using the IW approach with
different numbers of intermediate Wordnets and
the coverage percentage compared to the PWN
synsets are presented in Table 3.

For the IWND approach, we use all 4 Wordnets
as intermediate resources. The number of Wordnet
synsets we create using the IWND approach are
presented in Table 4. We only construct Wordnet
synsets for ajz, asm and dis using the IWND ap-

4http://compling.hss.ntu.edu.sg/omw/
5http://www.xobdo.org/
6http://panlex.org/
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App. Lang. WNs Synsets % coverage
IW arb 2 48,245 41.00%
IW vie 2 42,938 36.49%
IW arb 3 61,354 52.15%
IW vie 3 57,439 48.82%
IW arb 4 75,234 63.94%
IW vie 4 72,010 61.20%

Table 3: The number of Wordnet synsets we create
using the IW approach. WNs is the number of in-
termediate Wordnets used: 2: PWN and FWN, 3:
PWN, FWN and JWN and 4: PWN, FWN, JWN
and WWN.

proach because these languages are not supported
by MT.

App. Lang. Synsets % coverage
IWND ajz 21,882 18.60%
IWND arb 70,536 59.95%
IWND asm 43,479 36.95%
IWND dis 24,131 20.51%
IWND vie 42,592 36.20%

Table 4: The number of Wordnets synsets we cre-
ate using the IWND approach.

Finally, we combine all of the Wordnet synsets
we create using different approaches to generate
the final Wordnet synsets. Table 5 presents the fi-
nal number of Wordnet synsets we create and their
coverage percentage.

Lang. Synsets % coverage
ajz 21,882 18.60%
arb 76,322 64.87%
asm 43,479 36.95%
dis 24,131 20.51%
vie 98,210 83.47%

Table 5: The number and the average score of
Wordnets synsets we create.

Evaluations were performed by volunteers who
use the language of the Wordnet as mother tongue.
To achieve reliable judgment, we use the same
set of 500 offSet-POSs, randomly chosen from the
synsets we create. Each volunteer was requested
to evaluate using a 5-point scale – 5: excellent, 4:
good, 3: average, 2: fair and 1: bad. The aver-
age score of Wordnet synsets for arb, asm and vie
are 3.82, 3.78 and 3.75, respectively. We notice
that the Wordnet synsets generated using the IW
approach with all 4 intermediate Wordnets have
the highest average score: 4.16/5.00 for arb and

4.26/5.00 for vie. We are in the process of finding
volunteers to evaluate the Wordnet synsets for ajz
and dis.

It is difficult to compare Wordnets because the
languages involved in different papers are differ-
ent, the number and quality of input resources vary
and the evaluation methods are not standard. How-
ever, for the sake of completeness, we make an at-
tempt at comparing our results with published pa-
pers. Although our score is not in terms of percent-
age, we obtain the average score of 3.78/5.00 (or
informally and possibly incorrectly, 75.60% preci-
sion) which we believe it is better than 55.30% ob-
tained by (Bond et al., 2008) and 43.20% obtained
by (Charoenporn et al., 2008). In addition, the av-
erage coverage percentage of all Wordnet synsets
we create is 44.85% which is better than 12% in
(Charoenporn et al., 2008) and 33276 synsets ('
28.28%) in (Saveski and Trajkovsk, 2010) .

The previous studies need more than one dic-
tionary to translate between a target language
and intermediate-helper languages. For exam-
ple, to create the JWN, (Bond et al., 2008) needs
the Japanese-Multilingual dictionary, Japanese-
English lexicon and Japanese-English life sci-
ence dictionary. For asm, there are a number
of Dict(eng,asm); to the best of our knowledge
only two online dictionaries, both between eng
and asm, are available. The IWND approach re-
quires only one input dictionary between a pair of
languages. This is a strength of our method.

4 Conclusion and future work

We present approaches to create Wordnet synsets
for languages using available Wordnets, a public
MT and a single bilingual dictionary. We create
Wordnet synsets with good accuracy and high cov-
erage for languages with low resources (arb and
vie), resource-poor (asm) and endangered (ajz and
dis). We believe that our work has the potential
to construct full Wordnets for languages which do
not have many existing resources. We are in the
process of creating a Website where all Wordnet
synsets we create will be available, along with a
user friendly interface to give feedback on individ-
ual entries. We will solicit feedback from commu-
nities that use these languages as mother-tongue.
Our goal is to use this feedback to improve the
quality of the Wordnet synsets. Some of Word-
net synsets we created can be downloaded from
http://cs.uccs.edu/∼linclab/projects.html.
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Abstract

In this paper, we report our preliminary ef-
forts in building an English-Turkish paral-
lel treebank corpus for statistical machine
translation. In the corpus, we manually
generated parallel trees for about 5,000
sentences from Penn Treebank. English
sentences in our set have a maximum of
15 tokens, including punctuation. We con-
strained the translated trees to the reorder-
ing of the children and the replacement
of the leaf nodes with appropriate glosses.
We also report the tools that we built and
used in our tree translation task.

1 Introduction

Turkish is an agglutinative and morphologically
rich language with a free constituent order. Al-
though statistical NLP research on Turkish has
taken significant steps in recent years, much re-
mains to be done. Especially for the annotated cor-
pora, Turkish is still behind similar languages such
as Czech, Finnish, or Hungarian. For example,
EuroParl corpus (Koehn, 2002), one of the biggest
parallel corpora in statistical machine translation,
contains 22 languages (but not Turkish). Although
there exist some recent works to produce paral-
lel corpora for Turkish-English pair, the produced
corpus is only applicable for phrase-based training
(Yeniterzi and Oflazer, 2010; El-Kahlout, 2009).

In recent years, many efforts have been made to
annotate parallel corpora with syntactic structure
to build parallel treebanks. A parallel treebank
is a parallel corpus where the sentences in each
language are syntactically (if necessary morpho-
logically) annotated, and the sentences and words
are aligned. In the parallel treebanks, the syntactic
annotation usually follows constituent and/or de-
pendency structure. Well-known parallel treebank
efforts are

• Prague Czech-English dependency treebank
annotated with dependency structure (Cme-
jrek et al., 2004)

• English-German parallel treebank, annotated
with POS, constituent structures, functional
relations, and predicate-argument structures
(Cyrus et al., 2003)

• Linköping English-Swedish parallel treebank
that contains 1,200 sentences annotated with
POS and dependency structures (Ahrenberg,
2007)

• Stockholm multilingual treebank that con-
tains 1,000 sentences in English, German and
Swedish annotated with constituent structure
(Gustafson-Capkova et al., 2007)

In this study, we report our preliminary efforts
in constructing an English-Turkish parallel tree-
bank corpus for statistical machine translation.
Our approach converts English parse trees into
equivalent Turkish parse trees by applying several
transformation heuristics. The main components
of our strategy are (i) tree permutation, where we
permute the children of a node; and (ii) leaf re-
placement, where we replace English word token
at a leaf node.

This paper is organized as follows: In Section 2,
we give the literature review for parallel treebank
construction efforts in Turkish. In Section 3, we
give a very brief overview on Turkish syntax. We
give the details of our corpus construction strategy
in Section 4 and explain our transformation heuris-
tics in Section 5. Finally, we conclude in Section
6.

2 Literature Review

Turkish Treebank creation efforts started with the
METU-Sabancı dependency Treebank. METU-
Sabancı Treebank explicitly represents the head-
dependent relations and functional categories. In
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order to adapt the corpus written in 1990’s Turk-
ish to further studies, a subset of 7.262 sentences
of the corpus was manually annotated morpho-
logically and syntactically (Atalay et al., 2003).
METU-Sabancı Treebank is then used in many
Turkish NLP studies (Eryigit and Oflazer, 2006;
Yuret, 2006; Riedel et al., 2006; Ruket and
Baldridge, 2006; Eryigit et al., 2006; Eryigit et al.,
2008).

METU-Sabancı Treebank is also subject to
transformation efforts from dependency-structure
to constituency-structure. Combinatory Categori-
cal Grammar (CCG) is extracted from the METU-
Sabancı Treebank with annotation of lexical cat-
egories (Cakici, 2005). Sub-lexical units reveal-
ing the internal structure of the words are used
to generate a Lexical Grammar Formalism (LGF)
for Turkish with the help of finite state ma-
chines (Cetinoglu and Oflazer, 2006; Cetinoglu
and Oflazer, 2009).

Swedish-Turkish parallel treebank is the first
parallel Treebank effort for Turkish (Megyesi et
al., 2008). The treebank is a balanced syntactically
annotated corpus containing both fiction and tech-
nical documents. In total, it consists of approxi-
mately 160,000 tokens in Swedish and 145,000 in
Turkish. Parallel texts are linguistically annotated
using different layers from part of speech tags and
morphological features to dependency annotation.

English-Swedish-Turkish parallel treebank
(Megyesi et al., 2010), mainly the successor of
the Swedish-Turkish parallel treebank, consists
of approximately 300,000 tokens in Swedish,
160,000 in Turkish and 150,000 in English. The
majority of the original text is written in Swedish
and translated to Turkish and/or English. For
the syntactic description, dependency structure is
chosen instead of the constituent structure. All
data is automatically annotated with syntactic tags
using MaltParser (Nivre et al., 2006a). MaltParser
is trained on the Penn Treebank for English,
on the Swedish treebank Talbanken05 (Nivre et
al., 2006b), and on the METU-Sabancı Turkish
Treebank (Atalay et al., 2003), respectively.

ParGram parallel treebank (Sulger et al., 2013)
is a joint effort for the construction of a par-
allel treebank involving ten languages (English,
Georgian, German, Hungarian, Indonesian, Nor-
wegian, Polish, Turkish, Urdu, Wolof) from six
language families. The treebank is based on deep
Lexical-Functional Grammars that were devel-

oped within the framework of the Parallel Gram-
mar effort. ParGram treebank allows for the align-
ment of sentences at several levels: dependency
structures, constituency structures and POS infor-
mation.

3 Turkish syntax

Turkish is an agglutinative language with rich
derivational and inflectional morphology through
suffixes. Word forms usually have a complex yet
fairly regular morphotactics.

Turkish sentences have an unmarked SOV or-
der. However, depending on the discourse, con-
stituents can be scrambled to emphasize, topical-
ize and focus certain elements. Case markings
identify the syntactic functions of the constituents,
(Kornfilt, 1997).

4 Corpus construction strategy

In order to constrain the syntactic complexity of
the sentences in the corpus, we selected from the
Penn Treebank II 9560 trees which contain a maxi-
mum of 15 tokens. These include 8660 trees from
the training set of the Penn Treebank, 360 trees
from its development set and 540 trees from its
test set. In the first phase of our work, we trans-
lated 4247 trees of the training set and all of those
in the development and the test sets.

4.1 Tools

Manual annotation is an error prone task. From
simple typos to disagreements among annotators,
the range of errors is fairly large. An annotation
tool needs to help reduce these errors and help the
annotator locate them when they occur. Moreover,
the tool needs to present the annotator with a vi-
sual tree that is both easy to understand and ma-
nipulate for the translation task.

We built a range of custom tools to display, ma-
nipulate and save annotated trees in the treebank.
The underlying data structure is still textual and
uses the standard Treebank II style of syntactic
bracketing.

We also implemented a simple statistical helper
function within the tool. When translating an En-
glish word to a gloss in Turkish, the translator may
choose from a list of glosses sorted according their
likelihood calculated over their previous uses in
similar cases. Thus, as the corpus grows in size,
the translators use the leverage of their previous
choices.
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Figure 1: A screenshot of the tree translation tool

Figure 1 shows a screenshot of our tree transla-
tion tool.

4.2 Tree permutation

In translating an English syntactic tree, we confine
ourselves to two operations. We can permute the
children of a node and we can replace the English
word token at a leaf node. No other modification
of the tree is allowed. In particular, we use the
same set of tags and predicate labels in the non-
leaf nodes and do not use new tags for the Turkish
trees. Adding or deleting nodes are not allowed
either.

This might seem like a rather restrictive view
of translation. Indeed, it is very easy to construct
pairs of translated sentences which involve opera-
tions outside our restricted set when transformed
into each other.

However, we use the following method to alle-
viate the restrictions of the small set of operations.

We use the *NONE* tag when we can not use
any direct gloss for an English token. In itself,
this operation corresponds to effectively mapping
an English token to a null token. However, when
we use the *NONE* tag, permute the nodes and
choose the full inflected forms of the glosses in
the Turkish tree, we have a powerful method to
convert subtrees to an inflected word. The tree in
Figure 2. illustrates this. Note that the POS tag se-
quence VP-RB-MD-PRP in the Turkish sentence

corresponds to the morphological analysis “geç-
NEG-FUT-2SG” of the verb “geçmeyeceksin”. In
general, we try to permute the nodes so as to cor-
respond to the order of inflectional morphemes in
the chosen gloss.

S

VP

VP VB pass

RB not

MD will

NP-SBJ PRP You

S

NP-SBJ PRP *NONE*

VP

MD *NONE*

RB *NONE*

VP VB geçmeyeceksin

Figure 2: The permutation of the nodes and
the replacement of the leaves by the glosses or
*NONE*.

5 Transformation heuristics

When we have a sufficiently rich corpus of paral-
lel trees, our next step is to train a SMT learner
to imitate the human translator who operates un-
der our restricted set of operations. Naturally, hu-
man translators often base their transformation de-
cisions on the whole tree. Still, having a common
set of rules and heuristics helps the translators in
both consistency and speed. In the following, we
illustrate these heuristics.
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5.1 Constituent and morpheme order

Majority of unmarked Turkish sentences have the
SOV order. When translating English trees, we
permute its shallow subtrees to reflect the change
of constituent order in Turkish.

Also, the agglutinative suffixes of Turkish
words dictate the order when permuting the con-
stituents which correspond to prepositions and
particles.

The semantic aspects expressed by preposi-
tions, modals, particles and verb tenses in En-
glish in general correspond to specific morphemes
attached to the corresponding word stem. For
example, “Ali/NNP will/MD sit/VB on/IN a/DT
chair/NN” is literally translated as
Ali bir sandalye-ye otur-acak.
Ali a chair-DAT sit-FUT.

If we embed a constituent in the morphemes of
a Turkish stem, we replace the English constituent
leaf with *NONE*.

In some cases, the personal pronouns acting as
subjects are naturally embedded in the verb inflec-
tion. In those cases, pronoun in the original tree
is replaced with *NONE* and its subtree is moved
to after the verb phrase. See Figure 3.

S

. .

VP

VP
PP

NP
NN chair

DT the

IN on

VB sit

RB not

MD will

NP-SBJ PRP I

S

. .
NP-SBJ PRP *NONE*

VP

MD *NONE*

RB *NONE*

VP
VB oturmayacaǧım

PP
IN *NONE*

NP
NN sandalyeye

DT *NONE*

Figure 3: Original and translated trees,
sandalye-ye otur-ma-yacaǧ-ım
chair-DAT sit-NEG-FUT-1SG

5.2 The determiner “the”

There is no definite article in Turkish correspond-
ing to “the”. Depending on the context, “the” is
translated either as *NONE* or one of the demon-
strative adjectives in Turkish, corresponding to
“this” and “that” in English. See Figure 3 .

5.3 Case markers

Turkish, being a fairly scrambling language, uses
case markers to denote the syntactic functions of
nouns and noun groups. For example, accusative
case may be used to mark the direct object of a
transitive verb and locative case may be used to
mark the head of a prepositional phrase. In trans-
lation from English to Turkish, the prepositions
are usually replaced with *NONE* and their cor-
responding case is attached to the nominal head of
the phrase. See Figure 4.

S

VP

PP
NP PRP me

IN at

NP
NN ball

DT the

VBD threw

NP NNP Ali

S

VP

VBD attı

PP
IN *NONE*

NP PRP bana

NP
NN topu

DT *NONE*

NP NNP Ali

Figure 4: Original and translated trees,
Ali top-u ban-a at-tı
Ali ball-ACC me-DAT throw-PAST-3SG

5.4 Plural in nouns and verb inflection

Number agreement between the verb in the pred-
icate and the subject is somewhat loose in Turk-
ish. We preserved this freedom in translation and
chose the number inflection that sounds more nat-
ural. Also, plural nouns under NNS tag in the En-
glish tree are sometimes translated as singular. In
those cases, we kept the original POS tag NNS in-
tact but used the singular gloss. See Figure 5.

5.5 Tense ambiguity

It is in general not possible to find an exact map-
ping among the tense classes in a pair of lan-
guages. When translating the trees, we mapped
the English verb tenses to their closest semantic
classes in Turkish while trying to keep the over-
all flow of the Turkish sentence natural. In many
cases, we mapped the perfective tense in English
to the past tense in Turkish. Similarly, we some-
times mapped the present tense to present contin-
uous. See Figure 5.
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S

VP
VP

NP
NNS apples

CD three

VBN eaten

VBP have

NP
NNS children

DT The

S

VP

VBP *NONE*

VP
VBN yedi

NP
NNS elma

CD üç

NP
NNS çocuklar

DT *NONE*

Figure 5: Original and translated trees,
Çocuk-lar üç elma ye-di
Child-PL three apple eat-PAST-3SG

5.6 WH- Questions

Question sentences require special attention dur-
ing transformation. As opposed to movement
in English question sentences, any constituent in
Turkish can be questioned by replacing it with an
inflected question word. In the Penn Treebank
II annotation, the movement leaves a trace and
is associated with wh- constituent with a numeric
marker. For example, “WHNP-17” and “*T*-17”
are associated.

When we translate the tree for a question
sentence, we replace the wh- constituent with
*NONE* and replace its trace with the appropri-
ate question pronoun in Turkish. See Figure 6.

SBARQ

. ?

SQ

VP
NP -NONE- *T*-1

VB believe

ADVP RB really

NP-SBJ
NNP Bush

NNP George

VBZ does

WHNP-1 WP what

RB So

SBARQ

. ?

SQ

VBZ *NONE*

VP
VB inanıyor

NP -NONE- neye

ADVP RB gerçekten

NP-SBJ
NNP Bush

NNP George

WHNP-1 WP *NONE*

RB Peki

Figure 6: Original and translated trees,
Peki George Bush gerçekten ne-ye inan-ıyor?
So George Bush really what-DAT
believe-PRES-3SG?

5.7 Miscellany

In the translation of nominal clauses, the copula
marker “-dIr” corresponding to verb “be” is often
dropped.

The proper nouns are translated with their com-
mon Turkish gloss if there is one. So, “London”
becomes “Londra”.

Subordinating conjunctions, marked as “IN” in
English sentences, are transformed to *NONE*
and the appropriate participle morpheme is ap-
pended to the stem in the Turkish translation.

A multiword expression may correspond to a
single English word. Conversely, more than one
words in English may correspond to a single word
in Turkish. In the first case, we use the multiword
expression as the gloss. In the latter case, we re-
place some English words with *NONE*.

6 Conclusion

Parallel treebank construction efforts increased
significantly in the recent years. Many parallel
treebanks are produced to build statistically strong
language models for different languages. In this
study, we report our preliminary efforts to build
such a parallel corpus for Turkish-English pair.
We translated and transformed a subset of parse
trees of Penn Treebank to Turkish. We cover more
than 50% of all sentences with a maximum length
of 15-words including punctuation.

This work constitutes the preliminary step of
parallel treebank generation. As a next step, we
will focus on morphological analysis and disam-
biguation of Turkish words. After determining the
correct morphological analysis of Turkish words,
we will use the parts of these analyses to re-
place the leaf nodes that we intentionally left as
“*NONE*”. As a future work, we plan to expand
the dataset to include all Penn Treebank sentences.
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Abstract

We present richer typesetting models
that extend the unsupervised historical
document recognition system of Berg-
Kirkpatrick et al. (2013). The first
model breaks the independence assump-
tion between vertical offsets of neighbor-
ing glyphs and, in experiments, substan-
tially decreases transcription error rates.
The second model simultaneously learns
multiple font styles and, as a result, is
able to accurately track italic and non-
italic portions of documents. Richer mod-
els complicate inference so we present a
new, streamlined procedure that is over
25x faster than the method used by Berg-
Kirkpatrick et al. (2013). Our final sys-
tem achieves a relative word error reduc-
tion of 22% compared to state-of-the-art
results on a dataset of historical newspa-
pers.

1 Introduction

Modern OCR systems perform poorly on histor-
ical documents from the printing-press era, often
yielding error rates that are too high for down-
stream research projects (Arlitsch and Herbert,
2004; Shoemaker, 2005; Holley, 2010). The two
primary reasons that historical documents present
difficultly for automatic systems are (1) the type-
setting process used to produce such documents
was extremely noisy and (2) the fonts used in the
documents are unknown. Berg-Kirkpatrick et al.
(2013) proposed a system for historical OCR that
generatively models the noisy typesetting process
of printing-press era documents and learns the font
for each input document in an unsupervised fash-
ion. Their system achieves state-of-the-art results
on the task of historical document recognition.

We take the system of Berg-Kirkpatrick et al.
(2013) as a starting point and consider extensions

of the typesetting model that address two short-
comings of their model: (1) their layout model as-
sumes that baseline offset noise is independent for
each glyph and (2) their font model assumes a sin-
gle font is used in every document. Both of these
assumptions are untrue in many historical datasets.

The baseline of the text in printing-press era
documents is not rigid as in modern documents but
rather drifts up and down noisily (see Figure 2).
In practice, the vertical offsets of character glyphs
change gradually along a line. This means the ver-
tical offsets of neighboring glyphs are correlated,
a relationship that is not captured by the original
model. In our first extension, we let the vertical
offsets of character glyphs be generated from a
Markov chain, penalizing large changes in offset.
We find that this extension decreases transcription
error rates. Our system achieves a relative word
error reduction of 22% compared to the state-of-
the-art original model on a test set of historical
newspapers (see Section 4.1), and a 11% relative
reduction on a test set of historical court proceed-
ings.

Multiple font styles are also frequently used in
printing-press era documents; the most common
scenario is for a basic font style to co-occur with
an italic variant. For example, it is common for
proper nouns and quotations to be italicized in
the Old Bailey corpus (Shoemaker, 2005). In our
second extension, we incorporate a Markov chain
over font styles, extending the original model so
that it is capable of simultaneously learning italic
and non-italic fonts within a single document. In
experiments, this model is able to detect which
words are italicized with 93% precision at 74%
recall in a test set of historical court proceedings
(see Section 4.2).

These richer models that we propose do in-
crease the state space and therefore make infer-
ence more costly. To remedy this, we stream-
line inference by replacing the coarse-to-fine in-
ference scheme of Berg-Kirkpatrick et al. (2013)
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Figure 1: See Section 2 for a description of the generative process. We consider an extension of Berg-Kirkpatrick et al. (2013)
that generates vi conditioned on the previous vertical offset vi−1 (labeled Slow-vary) and an extension that generates a sequence
of font styles fi (labeled Italic).

with a forward-cost-augmented beaming scheme.
Our method is over 25x faster on a typical docu-
ment, yet actually yields improved transcriptions.

2 Model

We first describe the generative model used by
the ‘Ocular’ historical OCR system of Berg-
Kirkpatrick et al. (2013)1 and then describe our
extensions. The graphical model corresponding
to their basic generative process for a single line
of text is diagrammed in Figure 1. A Kneser-
Ney (Kneser and Ney, 1995) character 6-gram lan-
guage model generates a sequence of characters
E = (e1, e2, . . . , en). For each character index i, a
glyph box width gi and a pad box width pi are gen-
erated, conditioned on the character ei. gi specifies
the width of the bounding box that will eventually
house the pixels of the glyph for character ei. pi

specifies the width of a padding box which con-
tains the horizontal space before the next character
begins. Next, a vertical offset vi is generated for
the glyph corresponding to character ei. vi allows
the model to capture variance in the baseline of the
text in the document. We will later let vi depend
on vi−1, as depicted in Figure 1, but in the baseline

1The model we describe and extend has two minor dif-
ferences from the one described by Berg-Kirkpatrick et al.
(2013). While Berg-Kirkpatrick et al. (2013) generate two
pad boxes for each character token, one to the left and one to
the right, we only generate one pad box, always to the right.
Additionally, Berg-Kirkpatrick et al. (2013) do not carry over
the language model context between lines, while we do.

system they are independent. Finally, the pixels in
the ith glyph bounding box XGLYPH

i are generated
conditioned on the character ei, width gi, and ver-
tical offset vi, and the pixels in the ith pad bound-
ing box XPAD

i are generated conditioned on the
width pi. We refer the reader to Berg-Kirkpatrick
et al. (2013) for the details of the pixel generation
process. We have omitted the token-level inking
random variables for the purpose of brevity. These
can be treated as part of the pixel generation pro-
cess.

Let X denote the matrix of pixels for the entire
line, V = (v1, . . . , vn), P = (p1, . . . , pn), and
G = (g1, . . . , gn). The joint distribution is writ-
ten:

P (X,V, P,G,E) =
P (E) [Language model]

·
n∏

i=1

P (gi|ei; Φ) [Glyph widths]

·
n∏

i=1

P (pi|ei; Φ) [Pad widths]

·
n∏

i=1

P (vi) [Vertical offsets]

·
n∏

i=1

P (XPAD
i |pi) [Pad pixels]

·
n∏

i=1

P (XGLYPH
i |vi, gi, ei; Φ) [Glyph pixels]
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Figure 2: The first line depicts the Viterbi typesetting layout predicted by the OCULAR-BEAM-SV model. The second line
depicts the same, but for the OCULAR-BEAM model. Pad boxes are shown in blue. Glyphs boxes are shown in white and display
the Bernoulli template probabilities used to generate the observed pixels. The third line shows the corresponding portion of the
input image.

The font is parameterized by the vector Φ which
governs the shapes of glyphs and the distributions
over box widths. Φ is learned in an unsupervised
fashion. Document recognition is accomplished
via Viterbi decoding over the character random
variables ei.

2.1 Slow-varying Offsets
The original model generates the vertical offsets
vi independently, and therefore cannot model how
neighboring offsets are correlated. This correla-
tion is actually strong in printing-press era docu-
ments. The baseline of the text wanders in the in-
put image for two reasons: (1) the physical groove
along which character templates were set was un-
even and (2) the original document was imaged in
a way that produced distortion. Both these under-
lying causes are likely to yield baselines that wan-
der slowly up and down across a document. We
refer to this behavior of vertical offsets as slow-
varying, and extend the model to capture it.

In our first extension, we augment the model
by incorporating a Markov chain over the verti-
cal offset random variables vi, as depicted in Fig-
ure 1. Specifically, vi is generated from a dis-
cretized Gaussian centered at vi−1:

P (vi|vi−1) ∝ exp
(

(vi − vi−1)2

2σ2

)
This means that the if vi differs substantially from
vi−1, a large penalty is incurred. As a result,
the model should prefer sequences of vi that vary
slowly. In experiments, we set σ2 = 0.05.

2.2 Italic Font Styles
Many of the documents in the Old Bailey corpus
contain both italic and non-italic font styles (Shoe-
maker, 2005). The way that italic fonts are used
depends on the year the document was printed,
but generally italics are reserved for proper nouns,

quotations, and sentences that have a special role
(e.g. the final judgment made in a court case). The
switch between font styles almost always occurs
at space characters.

Our second extension of the typesetting model
deals with both italic and non-italic font styles.
We augment the model with a Markov chain
over font styles fi, as depicted in Figure 1.
Each font style token fi takes on a value in
{ITALIC, NON-ITALIC} and is generated condi-
tioned on the previous font style fi−1 and the cur-
rent character token ei. Specifically, after generat-
ing a character token that is not a space, the lan-
guage model deterministically generates the last
font used. If the language model generates a space
character token, the decision of whether to switch
font styles is drawn from a Bernoulli distribution.
This ensures that the font style only changes at
space characters.

The font parameters Φ are extended to contain
entries for the italic versions of all characters. This
means the shapes and widths of italic glyphs can
be learned separately from non-italic ones. Like
Berg-Kirkpatrick et al. (2013), we initialize the
font parameters from mixtures of modern fonts,
using mixtures of modern italic font styles for
italic characters.

3 Streamlined Inference

Inference in our extended typesetting models is
costly because the state space is large; we propose
an new inference procedure that is fast and simple.

Berg-Kirkpatrick et al. (2013) used EM to learn
the font parameters Φ, and therefore required ex-
pected sufficient statistics (indicators on (ei, gi, vi)
tuples), which they computed using coarse-to-
fine inference (Petrov et al., 2008; Zhang and
Gildea, 2008) with a semi-Markov dynamic pro-
gram (Levinson, 1986). This approach is effec-
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Document image:

Learned typesetting:

Figure 3: This first line depicts the Viterbi typesetting layout predicted by the OCULAR-BEAM-IT model. Pad boxes are shown
in blue. Glyphs boxes are shown in white and display the Bernoulli template probabilities used to generate the observed pixels.
The second line shows the corresponding portion of the input image.

tive, but slow. For example, while transcribing a
typical document consisting of 30 lines of text,
their system spends 63 minutes computing ex-
pected sufficient statistics and decoding when run
on a 4.5GHz 4-core CPU.

We instead use hard counts of the sufficient
statistics for learning (i.e. perform hard-EM). As a
result, we are free to use inference procedures that
are specialized for Viterbi computation. Specif-
ically, we use beam-search with estimated for-
ward costs. Because the model is semi-Markov,
our beam-search procedure is very similar the
one used by Pharaoh (Koehn, 2004) for phrase-
based machine translation, only without a distor-
tion model. We use a beam of size 20, and estimate
forward costs using a character bigram language
model. On the machine mentioned above, tran-
scribing the same document, our simplified system
that uses hard-EM and beam-search spends only
2.4 minutes computing sufficient statistics and de-
coding. This represents a 26x speedup.

4 Results

We ran experiments with four different systems.
The first is our baseline, the system presented
by Berg-Kirkpatrick et al. (2013), which we re-
fer to as OCULAR. The second system uses the
original model, but uses beam-search for infer-
ence. We refer to this system as OCULAR-BEAM.
The final two systems use beam-search for infer-
ence, but use extended models: OCULAR-BEAM-
SV uses the slow-varying vertical offset extension
described in Section 2.1 and OCULAR-BEAM-
IT uses the italic font extension described in Sec-
tion 2.2.

We evaluate on two different test sets of histor-
ical documents. The first test set is called Trove,
and is used by Berg-Kirkpatrick et al. (2013) for
evaluation. Trove consists of 10 documents that
were printed between 1803 and 1954, each con-
sisting of 30 lines, all taken from a collection of
historical Australian newspapers hosted by the Na-
tional Library of Australia (Holley, 2010). The
second test set, called Old Bailey, consists of 20

documents that were printed between 1716 and
1906, each consisting of 30 lines, all taken from
a the proceedings of the Old Bailey Courthouse
in London (Shoemaker, 2005).2 Following Berg-
Kirkpatrick et al. (2013), we train the language
model using 36 millions words from the New York
Times portion of the Gigaword corpus (Graff et al.,
2007).3

4.1 Document Recognition Performance

We evaluate predicted transcriptions using both
character error rate (CER) and word error rate
(WER). CER is the edit distance between the
guessed transcription and the gold transcription,
divided by the number of characters in the gold
transcription. WER is computed in the same way,
but words are treated as tokens instead of charac-
ters.

First we compare the baseline, OCULAR, to
our system with simplified inference, OCULAR-
BEAM. To our surprise, we found that OCULAR-
BEAM produced better transcriptions than OCU-
LAR. On Trove, OCULAR achieved a WER of
33.0 while OCULAR-BEAM achieved a WER of
30.7. On Old Bailey, OCULAR achieved a WER
of 30.8 while OCULAR-BEAM achieved a WER of
28.8. These results are shown in Table 1, where we
also report the performance of Google Tesseract
(Smith, 2007) and ABBYY FineReader, a state-
of-the-art commercial system, on the Trove test set
(taken from Berg-Kirkpatrick et al. (2013)).

Next, we evaluate our slow-varying vertical off-
set model. OCULAR-BEAM-SV out-performs
OCULAR-BEAM on both test sets. On Trove,
OCULAR-BEAM-SV achieved a WER of 25.6,
and on Old Bailey, OCULAR-BEAM-SV achieved
a WER of 27.5. Overall, compared to our baseline

2Old Bailey is comparable to the the second test set used
by Berg-Kirkpatrick et al. (2013) since it is derived from the
same collection and covers a similar time span, but it consists
of different documents.

3This means the language model is out-of-domain on both
test sets. Berg-Kirkpatrick et al. (2013) also consider a per-
fectly in-domain language model, though this setting is some-
what unrealistic.
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system, OCULAR-BEAM-SV achieved a relative
reduction in WER of 22% on Trove and 11% on
Old Bailey.

By looking at the predicted typesetting layouts
we can make a qualitative comparison between the
vertical offsets predicted by OCULAR-BEAM and
OCULAR-BEAM-SV. Figure 2 shows representa-
tions of the Viterbi estimates of the typesetting
random variables predicted by the models on a
portion of an example document. The first line
is the typesetting layout predicted by OCULAR-
BEAM-SV and the second line is same, but for
OCULAR-BEAM. The locations of padding boxes
are depicted in blue. The white glyph bounding
boxes reveal the values of the Bernoulli template
probabilities used to generate the observed pixels.
The Bernoulli templates are produced from type-
level font parameters, but are modulated by token-
level widths gi and vertical offsets vi (and ink-
ing random variables, whose description we have
omitted for brevity). The predicted vertical off-
sets are visible in the shifted baselines of the tem-
plate probabilities. The third line shows the corre-
sponding portion of the input image. In this ex-
ample, the text baseline predicted by OCULAR-
BEAM-SV is contiguous, while the one predicted
by OCULAR-BEAM is not. Given how OCULAR-
BEAM-SV was designed, this meets our expecta-
tions. The text baseline predicted by OCULAR-
BEAM has a discontinuity in the middle of its pre-
diction for the gold word Surplus. In contrast,
the vertical offsets predicted by OCULAR-BEAM-
SV at this location vary smoothly and more ac-
curately match the true text baseline in the input
image.

4.2 Font Detection Performance
We ran experiments with the italic font style
model, OCULAR-BEAM-IT, on the Old Bai-
ley test set (italics are infrequent in Trove). We
evaluated the learned styles by measuring how ac-
curately OCULAR-BEAM-IT was able to distin-
guish between italic and non-italic styles. Specifi-
cally, we computed the precision and recall for the
system’s predictions about which words were ital-
icized. We found that, across the entire Old Bai-
ley test set, OCULAR-BEAM-IT was able to detect
which words were italicized with 93% precision
at 74% recall, suggesting that the system did suc-
cessfully learn both italic and non-italic styles.4

4While it seems plausible that learning italics could also
improve transcription accuracy, we found that OCULAR-

System CER WER
Trove

Google Tesseract 37.5 59.3
ABBYY FineReader 22.9 49.2
OCULAR (baseline) 14.9 33.0
OCULAR-BEAM 12.9 30.7
OCULAR-BEAM-SV 11.2 25.6

Old Bailey
OCULAR (baseline) 14.9 30.8
OCULAR-BEAM 10.9 28.8
OCULAR-BEAM-SV 10.3 27.5

Table 1: We evaluate the output of each system on two test
sets: Trove, a collection of historical newspapers, and Old
Bailey, a collection of historical court proceedings. We report
character error rate (CER) and word error rate (WER), macro-
averaged across documents.

We can look at the typesetting layout predicted
by OCULAR-BEAM-IT to gain insight into what
has been learned by the model. The first line of
Figure 3 shows the typesetting layout predicted by
the OCULAR-BEAM-IT model for a line of a doc-
ument image that contains italics. The second line
of Figure 3 displays the corresponding portion of
the input document image. From this example,
it appears that the model has effectively learned
separate glyph shapes for italic and non-italic ver-
sions of certain characters. For example, compare
the template probabilities used to generate the d’s
in defraud to the template probabilities used to
generate the d in hard.

5 Conclusion

We began with an efficient simplification of the
state-of-the-art historical OCR system of Berg-
Kirkpatrick et al. (2013) and demonstrated two ex-
tensions to its underlying model. We saw an im-
provement in transcription quality as a result of re-
moving a harmful independence assumption. This
suggests that it may be worthwhile to consider still
further extensions of the model, designed to more
faithfully reflect the generative process that pro-
duced the input documents.
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BEAM-IT actually performed slightly worse than OCULAR-
BEAM. This negative result is possibly due to the extra diffi-
culty of learning a larger number of font parameters.
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Abstract

Annotation errors can significantly hurt
classifier performance, yet datasets are
only growing noisier with the increased
use of Amazon Mechanical Turk and tech-
niques like distant supervision that auto-
matically generate labels. In this paper,
we present a robust extension of logistic
regression that incorporates the possibil-
ity of mislabelling directly into the objec-
tive. This model can be trained through
nearly the same means as logistic regres-
sion, and retains its efficiency on high-
dimensional datasets. We conduct exper-
iments on named entity recognition data
and find that our approach can provide a
significant improvement over the standard
model when annotation errors are present.

1 Introduction
Almost any large dataset has annotation errors,
especially those complex, nuanced datasets com-
monly used in natural language processing. Low-
quality annotations have become even more com-
mon in recent years with the rise of Amazon Me-
chanical Turk, as well as methods like distant su-
pervision and co-training that involve automati-
cally generating training data.

Although small amounts of noise may not be
detrimental, in some applications the level can
be high: upon manually inspecting a relation ex-
traction corpus commonly used in distant super-
vision, Riedel et al. (2010) report a 31% false
positive rate. In cases like these, annotation er-
rors have frequently been observed to hurt perfor-
mance. Dingare et al. (2005), for example, con-
duct error analysis on a system to extract relations
from biomedical text, and observe that over half
of the system’s errors could be attributed to incon-
sistencies in how the data was annotated. Simi-
larly, in a case study on co-training for natural lan-

guage tasks, Pierce and Cardie (2001) find that
the degradation in data quality from automatic la-
belling prevents these systems from performing
comparably to their fully-supervised counterparts.

In this work we argue that incorrect exam-
ples should be explicitly modelled during train-
ing, and present a simple extension of logistic re-
gression that incorporates the possibility of mis-
labelling directly into the objective. Following a
technique from robust statistics, our model intro-
duces sparse ‘shift parameters’ to allow datapoints
to slide along the sigmoid, changing class if ap-
propriate. It has a convex objective, is well-suited
to high-dimensional data, and can be efficiently
trained with minimal changes to the logistic re-
gression pipeline.

In experiments on a large, noisy NER dataset,
we find that this method can provide an improve-
ment over standard logistic regression when anno-
tation errors are present. The model also provides
a means to identify which examples were misla-
belled: through experiments on biological data,
we demonstrate how our method can be used to
accurately identify annotation errors. This robust
extension of logistic regression shows particular
promise for NLP applications: it helps account
for incorrect labels, while remaining efficient on
large, high-dimensional datasets.

2 Related Work

Much of the previous work on dealing with anno-
tation errors centers around filtering the data be-
fore training. Brodley and Friedl (1999) introduce
what is perhaps the simplest form of supervised
filtering: they train various classifiers, then record
their predictions on a different part of the train set
and eliminate contentious examples. Sculley and
Cormack (2008) apply this approach to spam fil-
tering with noisy user feedback.

One obvious issue with these methods is that the
noise-detecting classifiers are themselves trained
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on noisy labels. Unsupervised filtering tries to
avoid this problem by clustering training instances
based solely on their features, then using the clus-
ters to detect labelling anomalies (Rebbapragada
et al., 2009). Recently, Intxaurrondo et al. (2013)
applied this approach to distantly-supervised rela-
tion extraction, using heuristics such as the num-
ber of mentions per tuple to eliminate suspicious
examples.

Unsupervised filtering, however, relies on the
perhaps unwarranted assumption that examples
with the same label lie close together in feature
space. Moreover filtering techniques in general
may not be well-justified: if a training example
does not fit closely with the current model, it is
not necessarily mislabelled. It may represent an
important exception that would improve the over-
all fit, or appear unusual simply because we have
made poor modelling assumptions.

Perhaps the most promising approaches are
those that directly model annotation errors, han-
dling mislabelled examples as they train. This
way, there is an active trade-off between fitting the
model and identifying suspected errors. Bootkra-
jang and Kaban (2012) present an extension of
logistic regression that models annotation errors
through flipping probabilities. While intuitive, this
approach has shortcomings of its own: the objec-
tive function is nonconvex and the authors note
that local optima are an issue, and the model can
be difficult to fit when there are many more fea-
tures than training examples.

There is a growing body of literature on learn-
ing from several annotators, each of whom may be
inaccurate (Bachrach et al., 2012; Raykar et al.,
2009). It is important to note that we are consid-
ering a separate, and perhaps more general, prob-
lem: we have only one source of noisy labels, and
the errors need not come from the human annota-
tors, but could be introduced through contamina-
tion or automatic labelling.

The field of ‘robust statistics’ seeks to develop
estimators that are not unduly affected by devi-
ations from the model assumptions (Huber and
Ronchetti, 2009). Since mislabelled points are
one type of outlier, this goal is naturally related
to our interest in dealing with noisy data, and it
seems many of the existing techniques would be
relevant. A common strategy is to use a modi-
fied loss function that gives less influence to points
far from the boundary, and several models along
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Figure 1: Fit resulting from a standard vs. robust
model, where data is generated from the dashed
sigmoid and negative labels flipped with probabil-
ity 0.2.

these lines have been proposed (Ding and Vish-
wanathan., 2010; Masnadi-Shirazi et al., 2010).
Unfortunately these approaches require optimiz-
ing nonstandard, often nonconvex objectives, and
fail to give insight into which datapoints are mis-
labelled.

In a recent advance, She and Owen (2011)
demonstrate that introducing a regularized ‘shift
parameter’ per datapoint can help increase the ro-
bustness of linear regression. Candes et al. (2009)
propose a similar approach for principal compo-
nent analysis, while Wright and Ma (2009) ex-
plore its effectiveness in sparse signal recovery. In
this work we adapt the technique to logistic re-
gression. To the best of our knowledge, we are
the first to experiment with adding ‘shift param-
eters’ to logistic regression and demonstrate that
the model is especially well-suited to the type of
high-dimensional, noisy datasets commonly used
in NLP.

3 Model

Recall that in binary logistic regression, the prob-
ability of an example xi being positive is modeled
as

g(θTxi) =
1

1 + e−θT xi
.

For simplicity, we assume the intercept term has
been folded into the weight vector θ, so θ ∈ Rm+1

where m is the number of features.
Following She and Owen (2011), we propose

the following robust extension: for each datapoint
i = 1, . . . , n, we introduce a real-valued shift pa-
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rameter γi so that the sigmoid becomes

g(θTxi + γi) =
1

1 + e−θT xi−γi
.

Since we believe that most examples are correctly
labelled, we L1-regularize the shift parameters to
encourage sparsity. Letting yi ∈ {0, 1} be the la-
bel for datapoint i and fixing λ ≥ 0, our objective
is now given by

l(θ, γ) =
n∑
i=1

[
yi log g(θTxi + γi) (1)

+ (1− yi) log
(
1− g(θTxi + γi)

)]− λ n∑
i=1

|γi|.

These parameters γi let certain datapoints shift
along the sigmoid, perhaps switching from one
class to the other. If a datapoint i is correctly an-
notated, then we would expect its corresponding
γi to be zero. If it actually belongs to the posi-
tive class but is labelled negative, then γi might be
positive, and analogously for the other direction.

One way to interpret the model is that it al-
lows the log-odds of select datapoints to be
shifted. Compared to models based on label-
flipping, where there is a global set of flipping
probabilities, our method has the advantage of tar-
geting each example individually.

It is worth noting that there is no difficulty in
regularizing the θ parameters as well. For exam-
ple, if we choose to use an L1 penalty then our
objective becomes

l(θ, γ) =
n∑
i=1

[
yi log g(θTxi + γi) (2)

+ (1− yi) log
(
1− g(θTxi + γi)

)]
− κ

m∑
j=1

|θj | − λ
n∑
i=1

|γi|.

Finally, it may seem concerning that we have
introduced a new parameter for each datapoint.
But in many applications the number of features
already exceeds n, so with proper regularization,
this increase is actually quite reasonable.

3.1 Training

Notice that adding these shift parameters is equiv-
alent to introducing n features, where the ith new
feature is 1 for datapoint i and 0 otherwise. With

this observation, we can simply modify the fea-
ture matrix and parameter vector and train the lo-
gistic model as usual. Specifically, we let θ′ =
(θ0, . . . , θm, γ1, . . . , γn) and X ′ = [X|In] so that
the objective (1) simplifies to

l(θ′) =
n∑
i=1

[
yi log g(θ′Tx′i)

+ (1− yi) log
(
1− g(θ′Tx′i)

)]− λm+n∑
j=m+1

|θ′(j)|.

Upon writing the objective in this way, we imme-
diately see that it is convex, just as standard L1-
penalized logistic regression is convex.

3.2 Testing

To obtain our final logistic model, we keep only
the θ parameters. Predictions are then made as
usual:

I{g(θ̂Tx) > 0.5}.
3.3 Selecting Regularization Parameters

The parameter λ from equation (1) would nor-
mally be chosen through cross-validation, but our
set-up is unusual in that the training set may con-
tain errors, and even if we have a designated devel-
opment set it is unlikely to be error-free. We found
in simulations that the errors largely do not inter-
fere in selecting λ, so in the experiments below we
cross-validate as normal.

Notice that λ has a direct effect on the number
of nonzero shifts γ and hence the suspected num-
ber of errors in the training set. So if we have in-
formation about the noise level, we can directly
incorporate it into the selection procedure. For ex-
ample, we may believe the training set has no more
than 15% noise, and so would restrict the choice
of λ during cross-validation to only those values
where 15% or fewer of the estimated shift param-
eters are nonzero.

We now consider situations in which the θ pa-
rameters are regularized as well. Assume, for ex-
ample, that we use L1-regularization as in equa-
tion (2), so that we now need to optimize over both
κ and λ. We perform the following simple proce-
dure:

1. Cross-validate using standard logistic regres-
sion to select κ.

2. Fix this value for κ, and cross-validate using
the robust model to find the best choice of λ.
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method suspects identified false positives
Alon et al. (1999) T2 T30 T33 T36 T37 N8 N12 N34 N36
Furey et al. (2000) • • • • • •
Kadota et al. (2003) • • • • • T6, N2
Malossini et al. (2006) • • • • • • • T8, N2, N28, N29
Bootkrajang et al. (2012) • • • • • • •
Robust LR • • • • • • •

Table 1: Results of various error-identification methods on the colon cancer dataset. The first row lists
the samples that are biologically confirmed to be suspicious, and each other row gives the output from
an automatic detection method. Bootkrajang et al. report confidences, so we threshold at 0.5 to obtain
these results.

4 Experiments

We conduct two sets of experiments to assess the
effectiveness of the approach, in terms of both
identifying mislabelled examples and producing
accurate predictions.

4.1 Contaminated Data

Our first experiment is centered around a biologi-
cal dataset with suspected labelling errors. Called
the colon cancer dataset, it contains the expres-
sion levels of 2000 genes from 40 tumor and 22
normal tissues (Alon et al., 1999). There is evi-
dence in the literature that certain tissue samples
may have been cross-contaminated. In particular,
5 tumor and 4 normal samples should have their
labels flipped.

In this experiment, we examine the model’s
ability to identify mislabelled training examples.
Because there are many more features than data-
points and it is likely that not all genes are relevant,
we choose to place an L1 penalty on θ.

Using glmnet, an R package for training reg-
ularized models (Friedman et al., 2009), we se-
lect κ and λ using cross-validation. Looking at
the resulting values for γ, we find that only 7 of
the shift parameters are nonzero and that each one
corresponds to a suspicious datapoint. As further
confirmation, the signs of the gammas correctly
match the direction of the mislabelling. Compared
to previous attempts to automatically detect errors
in this dataset, our approach identifies at least as
many suspicious examples but with no false posi-
tives. A detailed comparison is given in Table 1.
Although Bootkrajang and Kaban (2012) are quite
accurate, it is worth noting that due to its noncon-
vexity, their model needed to be trained 20 times
to achieve these results.

4.2 Manually Annotated Data

We now consider the problem of named entity
recognition (NER) to evaluate how our model per-
forms in a large-scale prediction task. In tradi-
tional NER, the goal is to determine whether each
word is a person, organization, location, or not a
named entity (‘other’). Since our model is binary,
we concentrate on the task of deciding whether a
word is a person or not. (This task does not triv-
ially reduce to finding the capitalized words, as the
model must distinguish between people and other
named entities like organizations).

For training, we use a large, noisy NER dataset
collected by Jenny Finkel. The data was created
by taking various Wikipedia articles and giving
them to five Amazon Mechanical Turkers to anno-
tate. Few to no quality controls were put in place,
so that certain annotators produced very noisy la-
bels. To construct the train set we chose a Turker
who was about average in how much he disagreed
with the majority vote, and used only his annota-
tions. Negative examples are subsampled to bring
the class ratio to a reasonable level, for a total of
200,000 negative and 24,002 positive examples.
We find that in 0.4% of examples, the majority
agreed they were negative but the chosen annota-
tor marked them positive, and 7.5% were labelled
positive by the majority but negative by the an-
notator. Note that we still include examples for
which there was no majority consensus, so these
noise estimates are quite conservative.

We evaluate on the English development test set
from the CoNLL shared task (Tjong Kim Sang and
Meulder, 2003). This data consists of news arti-
cles from the Reuters corpus, hand-annotated by
researchers at the University of Antwerp.

We extract a set of features using Stanford’s
NER pipeline (Finkel et al., 2005). This set was
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model precision recall F1
standard 76.99 85.87 81.19
flipping 76.62 86.28 81.17
robust 77.04 90.47 83.22

Table 2: Performance of standard vs. robust logis-
tic regression in the Wikipedia NER experiment.
The flipping model refers to the approach from
Bootkrajang and Kaban (2012).

chosen for simplicity and is not highly engineered
– it largely consists of lexical features such as the
current word, the previous and next words in the
sentence, as well as character n-grams and vari-
ous word shape features. With a total of 393,633
features in the train set, we choose to use L2-
regularization, so that our penalty now becomes

1
2σ2

m∑
j=0

|θj |2 + λ

n∑
i=1

|γi|.

This choice is natural as L2 is the most common
form of regularization in NLP, and we wish to ver-
ify that our approach works for penalties besides
L1.

The robust model is fit using Orthant-Wise
Limited-Memory Quasi Newton (OWL-QN), a
technique for optimizing an L1-penalized objec-
tive (Andrew and Gao, 2007). We tune both
models through 5-fold cross-validation to obtain
σ2 = 1.0 and λ = 0.1. Note that from the way
we cross-validate (first tuning σ using standard lo-
gistic regression, fixing this choice, then tuning λ)
our procedure may give an unfair advantage to the
baseline.

We also compare against the algorithm pro-
posed in Bootkrajang and Kaban (2012), an exten-
sion of logistic regression mentioned in the section
on prior work. This approach assumes that each
example’s true label is flipped with a certain prob-
ability before being observed, and fits the resulting
latent-variable model using EM.

The results of these experiments are shown in
Table 2 as well as Figure 2. Robust logistic re-
gression offers a noticeable improvement over the
baseline, and this improvement holds at essentially
all levels of precision and recall. Interestingly, be-
cause of the large dimension, the flipping model
consistently learns that no labels have been flipped
and thus does not show a substantial difference
with standard logistic regression.
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Figure 2: Precision-recall curve obtained from
training on noisy Wikipedia data and testing on
CoNLL. The flipping model refers to the approach
from Bootkrajang and Kaban (2012).

5 Future Work

A natural direction for future work is to extend the
model to a multi-class setting. One option is to
introduce a γ for every class except the negative
one, so that there are n(c − 1) shift parameters in
all. We could then apply a group lasso, with each
group consisting of the γ for a particular datapoint
(Meier et al., 2008). This way all of a datapoint’s
shift parameters drop out together, which corre-
sponds to the example being correctly labelled.

CRFs and other sequence models could also
benefit from the addition of shift parameters.
Since the extra variables can be neatly folded into
the linear term, convexity is preserved and the
model could essentially be trained as usual.
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Abstract

We contribute a faster decoding algo-
rithm for phrase-based machine transla-
tion. Translation hypotheses keep track
of state, such as context for the language
model and coverage of words in the source
sentence. Most features depend upon only
part of the state, but traditional algorithms,
including cube pruning, handle state atom-
ically. For example, cube pruning will re-
peatedly query the language model with
hypotheses that differ only in source cov-
erage, despite the fact that source cover-
age is irrelevant to the language model.
Our key contribution avoids this behav-
ior by placing hypotheses into equivalence
classes, masking the parts of state that
matter least to the score. Moreover, we ex-
ploit shared words in hypotheses to itera-
tively refine language model scores rather
than handling language model state atom-
ically. Since our algorithm and cube prun-
ing are both approximate, improvement
can be used to increase speed or accuracy.
When tuned to attain the same accuracy,
our algorithm is 4.0–7.7 times as fast as
the Moses decoder with cube pruning.

1 Introduction

Translation speed is critical to making suggestions
as translators type, mining for parallel data by
translating the web, and running on mobile de-
vices without Internet connectivity. We contribute
a fast decoding algorithm for phrase-based ma-
chine translation along with an implementation in
a new open-source (LGPL) decoder available at
http://kheafield.com/code/.

Phrase-based decoders (Koehn et al., 2007; Cer
et al., 2010; Wuebker et al., 2012) keep track
of several types of state with translation hypothe-

ses: coverage of the source sentence thus far, con-
text for the language model, the last position for
the distortion model, and anything else features
need. Existing decoders handle state atomically:
hypotheses that have exactly the same state can be
recombined and efficiently handled via dynamic
programming, but there is no special handling for
partial agreement. Therefore, features are repeat-
edly consulted regarding hypotheses that differ
only in ways irrelevant to their score, such as cov-
erage of the source sentence. Our decoder bun-
dles hypotheses into equivalence classes so that
features can focus on the relevant parts of state.

We pay particular attention to the language
model because it is responsible for much of the hy-
pothesis state. As the decoder builds translations
from left to right (Koehn, 2004), it records the last
N − 1 words of each hypothesis so that they can
be used as context to score the first N − 1 words
of a phrase, where N is the order of the language
model. Traditional decoders (Huang and Chiang,
2007) try thousands of combinations of hypothe-
ses and phrases, hoping to find ones that the lan-
guage model likes. Our algorithm instead discov-
ers good combinations in a coarse-to-fine manner.
The algorithm exploits the fact that hypotheses of-
ten share the same suffix and phrases often share
the same prefix. These shared suffixes and prefixes
allow the algorithm to coarsely reason over many
combinations at once.

Our primary contribution is a new search algo-
rithm that exploits the above observations, namely
that state can be divided into pieces relevant to
each feature and that language model state can be
further subdivided. The primary claim is that our
algorithm is faster and more accurate than the pop-
ular cube pruning algorithm.

2 Related Work

Our previous work (Heafield et al., 2013) devel-
oped language model state refinement for bottom-
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up decoding in syntatic machine translation. In
bottom-up decoding, hypotheses can be extended
to the left or right, so hypotheses keep track of
both their prefix and suffix. The present phrase-
based setting is simpler because sentences are
constructed from left to right, so prefix infor-
mation is unnecessary. However, phrase-based
translation implements reordering by allowing hy-
potheses that translate discontiguous words in the
source sentence. There are exponentially many
ways to cover the source sentence and hypotheses
carry this information as additional state. A main
contribution in this paper is efficiently ignoring
coverage when evaluating the language model. In
contrast, syntactic machine translation hypotheses
correspond to contiguous spans in the source sen-
tence, so in prior work we simply ran the search
algorithm in every span.

Another improvement upon Heafield et al.
(2013) is that we previously made no effort to
exploit common words that appear in translation
rules, which are analogous to phrases. In this
work, we explicitly group target phrases by com-
mon prefixes, doing so directly in the phrase table.

Coarse-to-fine approaches (Petrov et al., 2008;
Zhang and Gildea, 2008) invoke the decoder
multiple times with increasingly detailed models,
pruning after each pass. The key difference in our
work is that, rather than refining models in lock
step, we effectively refine the language model on
demand for hypotheses that score well. More-
over, their work was performed in syntactic ma-
chine translation while we address issues specific
to phrase-based translation.

Our baseline is cube pruning (Chiang, 2007;
Huang and Chiang, 2007), which is both a way
to organize search and an algorithm to search
through cross products of sets. We adopt the same
search organization (Section 3.1) but change how
cross products are searched.

Chang and Collins (2011) developed an exact
decoding algorithm based on Lagrangian relax-
ation. However, it has not been shown to tractably
scale to 5-gram language models used by many
modern translation systems.

3 Decoding

We begin by summarizing the high-level organiza-
tion of phrase-based cube pruning (Koehn, 2004;
Koehn et al., 2007; Huang and Chiang, 2007).
Sections 3.2 and later show our contribution.

0 word 1 word
the
cat
.

2 words
cat
the cat
cat the
. the

3 words
cat .
the cat .
cat the .
. the cat

Figure 1: Stacks to translate the French “le chat .”
into English. Filled circles indicate that the source
word has been translated. A phrase translates “le
chat” as simply “cat”, emphasizing that stacks are
organized by the number of source words rather
than the number of target words.

3.1 Search Organization

Phrase-based decoders construct hypotheses from
left to right by appending phrases in the target lan-
guage. The decoder organizes this search process
using stacks (Figure 1). Stacks contain hypothe-
ses that have translated the same number of source
words. The zeroth stack contains one hypothe-
sis with nothing translated. Subsequent stacks are
built by extending hypotheses in preceding stacks.
For example, the second stack contains hypothe-
ses that translated two source words either sepa-
rately or as a phrasal unit. Returning to Figure 1,
the decoder can apply a phrase pair to translate “le
chat” as “cat” or it can derive “the cat” by translat-
ing one word at a time; both appear in the second
stack because they translate two source words. To
generalize, the decoder populates the ith stack by
pairing hypotheses in the i − jth stack with tar-
get phrases that translate source phrases of length
j. Hypotheses remember which source word they
translated, as indicated by the filled circles.

The reordering limit prevents hypotheses from
jumping around the source sentence too much and
dramatically reduces the search space. Formally,
the decoder cannot propose translations that would
require jumping back more than R words in the
source sentence, including multiple small jumps.

In practice, stacks are limited to k hypothe-
ses, where k is set by the user. Small k is faster
but may prune good hypotheses, while large k is
slower but more thorough, thereby comprising a
time-accuracy trade-off. The central question in
this paper is how to select these k hypotheses.

Populating a stack boils down to two steps.
First, the decoder matches hypotheses with source
phrases subject to three constraints: the total
source length matches the stack being populated,
none of the source words has already been trans-

131



ε

countrya

nations
few

countries

Figure 2: Hypothesis suffixes arranged into a trie.
The leaves indicate source coverage and any other
hypothesis state.

lated, and the reordering limit. Second, the de-
coder searches through these matches to select
k high-scoring hypotheses for placement in the
stack. We improve this second step.

The decoder provides our algorithm with pairs
consisting of a hypothesis and a compatible source
phrase. Each source phrase translates to multiple
target phrases. The task is to grow these hypothe-
ses by appending a target phrase, yielding new hy-
potheses. These new hypotheses will be placed
into a stack of size k, so we are interested in se-
lecting k new hypotheses that score highly.

Beam search (Lowerre, 1976; Koehn, 2004)
tries every hypothesis with every compatible tar-
get phrase then selects the top k new hypotheses
by score. This is wasteful because most hypothe-
ses are discarded. Instead, we follow cube pruning
(Chiang, 2007) in using a priority queue to gen-
erate k hypotheses. A key difference is that we
generate these hypotheses iteratively.

3.2 Tries

For each source phrase, we collect the set of com-
patible hypotheses. We then place these hypothe-
ses in a trie that emphasizes the suffix words be-
cause these matter most when appending a target
phrase. Figure 2 shows an example. While it suf-
fices to build this trie on the last N − 1 words
that matter to the language model, Li and Khu-
danpur (2008) have identified cases where fewer
words are necessary because the language model
will back off. The leaves of the trie are complete
hypotheses and reveal information irrelevant to the
language model, such as coverage of the source
sentence and the state of other features.

Each source phrase translates to a set of tar-
get phrases. Because these phrases will be ap-
pended to a hypothesis, the first few words mat-
ter the most to the language model. We therefore

ε

which
have diplomatic

are

that have diplomatic

Figure 3: Target phrases arranged into a trie. Set
in italic, leaves reveal parts of the phrase that are
irrelevant to the language model.

arrange the target phrases into a prefix trie. An
example is shown in Figure 3. Similar to the hy-
pothesis trie, the depth may be shorter than N − 1
in cases where the language model will provably
back off (Li and Khudanpur, 2008). The trie can
also be short because the target phrase has fewer
than N − 1 words. We currently store this trie
data structure directly in the phrase table, though
it could also be computed on demand to save mem-
ory. Empirically, our phrase table uses less RAM
than Moses’s memory-based phrase table.

As an optimization, a trie reveals multiple
words when there would otherwise be no branch-
ing. This allows the search algorithm to make de-
cisions only when needed.

Following Heafield et al. (2013), leaves in the
trie take the score of the underlying hypothesis or
target phrase. Non-leaf nodes take the maximum
score of their descendants. Children of a node are
sorted by score.

3.3 Boundary Pairs

The idea is that the decoder reasons over pairs of
nodes in the hypothesis and phrase tries before de-
vling into detail. In this way, it can determine what
the language model likes and, conversely, quickly
discard combinations that the model does not like.

A boundary pair consists of a node in the hy-
pothesis trie and a node in the target phrase trie.
For example, the decoder starts at the root of each
trie with the boundary pair (ε, ε). The score of a
boundary pair is the sum of the scores of the un-
derlying trie nodes. However, once some words
have been revealed, the decoder calls the language
model to compute a score adjustment. For exam-
ple, the boundary pair (country, that) has score ad-
justment

log
p(that | country)

p(that)

times the weight of the language model. This
has the effect of cancelling out the estimate made
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when the phrase was scored in isolation, replacing
it with a more accurate estimate based on avail-
able context. These score adjustments are efficient
to compute because the decoder retained a pointer
to “that” in the language model’s data structure
(Heafield et al., 2011).

3.4 Splitting
Refinement is the notion that the boundary pair
(ε, ε) divides into several boundary pairs that re-
veal specific words from hypotheses or target
phrases. The most straightforward way to do this
is simply to split into all children of a trie node.
Continuing the example from Figure 2, we could
split (ε, ε) into three boundary pairs: (country, ε),
(nations, ε), and (countries, ε). However, it is
somewhat inefficient to separately consider the
low-scoring child (countries, ε). Instead, we con-
tinue to split off the best child (country, ε) and
leave a note that the zeroth child has been split off,
denoted (ε[1+], ε). The index increases each time
a child is split off.

The the boundary pair (ε[1+], ε) no longer
counts (country, ε) as a child, so its score is lower.

Splitting alternates sides. For example,
(country, ε) splits into (country, that) and
(country, ε[1+]). If one side has completely
revealed words that matter to the language model,
then splitting continues with the other side.
This procedure ensures that the language model
score is completely resolved before considering
irrelevant differences, such as coverage of the
source sentence.

3.5 Priority Queue
Search proceeds in a best-first fashion controlled
by a priority queue. For each source phrase,
we convert the compatible hypotheses into a trie.
The target phrases were already converted into a
trie when the phrase table was loaded. We then
push the root (ε, ε) boundary pair into the prior-
ity queue. We do this for all source phrases under
consideration, putting their root boundary pairs
into the same priority queue. The algorithm then
loops by popping the top boundary pair. It the top
boundary pair uniquely describes a hypothesis and
target phrase, then remaining features are evalu-
ated and the new hypothesis is output to the de-
coder’s stack. Otherwise, the algorithm splits the
boundary pair and pushes both split versions. Iter-
ation continues until k new hypotheses have been
found.

3.6 Overall Algorithm

We build hypotheses from left-to-right and man-
age stacks just like cube pruning. The only dif-
ference is how the k elements of these stacks are
selected.

When the decoder matches a hypothesis with a
compatible source phrase, we immediately evalu-
ate the distortion feature and update future costs,
both of which are independent of the target phrase.
Our future costs are exactly the same as those used
in Moses (Koehn et al., 2007): the highest-scoring
way to cover the rest of the source sentence. This
includes the language model score within target
phrases but ignores the change in language model
score that would occur were these phrases to be
appended together. The hypotheses compatible
with each source phrase are arranged into a trie.
Finally, the priority queue algorithm from the pre-
ceding section searches for options that the lan-
guage model likes.

4 Experiments

The primary claim is that our algorithm performs
better than cube pruning in terms of the trade-off
between time and accuracy. We compare our new
decoder implementation with Moses (Koehn et al.,
2007) by translating 1677 sentences from Chinese
to English. These sentences are a deduplicated
subset of the NIST Open MT 2012 test set and
were drawn from Chinese online text sources, such
as discussion forums. We trained our phrase table
using a bitext of 10.8 million sentence pairs, which
after tokenization amounts to approximately 290
million words on the English side. The bitext con-
tains data from several sources, including news ar-
ticles, UN proceedings, Hong Kong government
documents, online forum data, and specialized
sources such as an idiom translation table. We also
trained our language model on the English half of
this bitext using unpruned interpolated modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1998).

The system has standard phrase table, length,
distortion, and language model features. We
plan to implement lexicalized reordering in future
work; without this, the test system is 0.53 BLEU
(Papineni et al., 2002) point behind a state-of-the-
art system. We set the reordering limit to R = 15.
The phrase table was pre-pruned by applying the
same heuristic as Moses: select the top 20 target
phrases by score, including the language model.
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Figure 4: Performance of our decoder and Moses for various stack sizes k.

Moses (Koehn et al., 2007) revision d6df825
was compiled with all optimizations recom-
mended in the documentation. We use the in-
memory phrase table for speed. Tests were run
on otherwise-idle identical machines with 32 GB
RAM; the processes did not come close to running
out of memory. The language model was com-
piled into KenLM probing format (Heafield, 2011)
and placed in RAM while text phrase tables were
forced into the disk cache before each run. Timing
is based on CPU usage (user plus system) minus
loading time, as measured by running on empty
input; our decoder is also faster at loading. All re-
sults are single-threaded. Model score is compa-
rable across decoders and averaged over all 1677
sentences; higher is better. The relationship be-
tween model score and uncased BLEU (Papineni
et al., 2002) is noisy, so peak BLEU is not attained
by the highest search accuracy.

Figure 4 shows the results for pop limits k rang-
ing from 5 to 10000 while Table 1 shows select
results. For Moses, we also set the stack size to
k to disable a second pruning pass, as is common.
Because Moses is slower, we also ran our decoder
with higher beam sizes to fill in the graph. Our
decoder is more accurate, but mostly faster. We
can interpret accuracy improvments as speed im-
provements by asking how much time is required
to attain the same accuracy as the baseline. By
this metric, our decoder is 4.0 to 7.7 times as fast
as Moses, depending on k.

Model CPU BLEU
Stack Moses This Moses This Moses This

10 -29.96 -29.70 0.019 0.004 12.92 13.46
100 -28.68 -28.54 0.057 0.016 14.19 14.40

1000 -27.87 -27.80 0.463 0.116 14.91 14.95
10000 -27.46 -27.39 4.773 1.256 15.32 15.28

Table 1: Results for select stack sizes k.

5 Conclusion

We have contributed a new phrase-based search al-
gorithm based on the principle that the language
model cares the most about boundary words. This
leads to two contributions: hiding irrelevant state
from features and an incremental refinement algo-
rithm to find high-scoring combinations. This al-
gorithm is implemented in a new fast phrase-based
decoder, which we release as open-source under
the LGPL at kheafield.com/code/.
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Abstract

Neural network language models are often
trained by optimizing likelihood, but we
would prefer to optimize for a task specific
metric, such as BLEU in machine trans-
lation. We show how a recurrent neural
network language model can be optimized
towards an expected BLEU loss instead
of the usual cross-entropy criterion. Fur-
thermore, we tackle the issue of directly
integrating a recurrent network into first-
pass decoding under an efficient approxi-
mation. Our best results improve a phrase-
based statistical machine translation sys-
tem trained on WMT 2012 French-English
data by up to 2.0 BLEU, and the expected
BLEU objective improves over a cross-
entropy trained model by up to 0.6 BLEU
in a single reference setup.

1 Introduction

Neural network-based language and translation
models have achieved impressive accuracy im-
provements on statistical machine translation tasks
(Allauzen et al., 2011; Le et al., 2012b; Schwenk
et al., 2012; Vaswani et al., 2013; Gao et al., 2014).
In this paper we focus on recurrent neural network
architectures which have recently advanced the
state of the art in language modeling (Mikolov et
al., 2010; Mikolov et al., 2011; Sundermeyer et al.,
2013) with several subsequent applications in ma-
chine translation (Auli et al., 2013; Kalchbrenner
and Blunsom, 2013; Hu et al., 2014). Recurrent
models have the potential to capture long-span de-
pendencies since their predictions are based on an
unbounded history of previous words (§2).

In practice, neural network models for machine
translation are usually trained by maximizing the
likelihood of the training data, either via a cross-
entropy objective (Mikolov et al., 2010; Schwenk

et al., 2012) or more recently, noise-contrastive es-
timation (Vaswani et al., 2013). However, it is
widely appreciated that directly optimizing for a
task-specific metric often leads to better perfor-
mance (Goodman, 1996; Och, 2003; Auli and
Lopez, 2011). The expected BLEU objective pro-
vides an efficient way of achieving this for ma-
chine translation (Rosti et al., 2010; Rosti et al.,
2011; He and Deng, 2012; Gao and He, 2013;
Gao et al., 2014) instead of solely relying on tra-
ditional optimizers such as Minimum Error Rate
Training (MERT) that only adjust the weighting
of entire component models within the log-linear
framework of machine translation (§3).

Most previous work on neural networks for ma-
chine translation is based on a rescoring setup
(Arisoy et al., 2012; Mikolov, 2012; Le et al.,
2012a; Auli et al., 2013), thereby side stepping
the algorithmic and engineering challenges of di-
rect decoder-integration. One recent exception is
Vaswani et al. (2013) who demonstrated that feed-
forward network-based language models are more
accurate in first-pass decoding than in rescoring.
Decoder integration has the advantage for the neu-
ral network to directly influence search, unlike
rescoring which is restricted to an n-best list or lat-
tice. Decoding with feed-forward architectures is
straightforward, since predictions are based on a
fixed size input, similar to n-gram language mod-
els. However, for recurrent networks we have to
deal with the unbounded history, which breaks the
usual dynamic programming assumptions for effi-
cient search. We show how a simple but effective
approximation can side step this issue and we em-
pirically demonstrate its effectiveness (§4).

We test the expected BLEU objective by train-
ing a recurrent neural network language model
and obtain substantial improvements. We also find
that our efficient approximation for decoder inte-
gration is very accurate, clearly outperforming a
rescoring setup (§5).
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Figure 1: Structure of the recurrent neural network
language model.

2 Recurrent Neural Network LMs

Our model has a similar structure to the recurrent
neural network language model of Mikolov et al.
(2010) which is factored into an input layer, a hid-
den layer with recurrent connections, and an out-
put layer (Figure 1). The input layer encodes the
word at position t as a 1-of-N vector wt. The out-
put layer yt represents scores over possible next
words; both the input and output layers are of size
|V |, the size of the vocabulary. The hidden layer
state ht encodes the history of all words observed
in the sequence up to time step t. The state of
the hidden layer is determined by the input layer
and the hidden layer configuration of the previous
time step ht−1. The weights of the connections
between the layers are summarized in a number
of matrices: U represents weights from the in-
put layer to the hidden layer, and W represents
connections from the previous hidden layer to the
current hidden layer. Matrix V contains weights
between the current hidden layer and the output
layer. The activations of the hidden and output
layers are computed by:

ht = tanh(Uwt + Wht−1)
yt = tanh(Vht)

Different to previous work (Mikolov et al., 2010),
we do not use the softmax activation function to
output a probability over the next word, but in-
stead just compute a single unnormalized score.
This is computationally more efficient than sum-
ming over all possible outputs such as required
for the cross-entropy error function (Bengio et al.,
2003; Mikolov et al., 2010; Schwenk et al., 2012).
Training is based on the back propagation through

time algorithm, which unrolls the network and
then computes error gradients over multiple time
steps (Rumelhart et al., 1986); we use the expected
BLEU loss (§3) to obtain the error with respect to
the output activations. After training, the output
layer represents scores s(wt+1|w1 . . . wt,ht) for
the next word given the previous t input words and
the current hidden layer configuration ht.

3 Expected BLEU Training

We integrate the recurrent neural network lan-
guage model as an additional feature into the stan-
dard log-linear framework of translation (Och,
2003). Formally, our phrase-based model is pa-
rameterized by M parameters Λ where each λm ∈
Λ, m = 1 . . .M is the weight of an associated
feature hm(f, e). Function h(f, e) maps foreign
sentences f and English sentences e to the vector
h1(f, e) . . . (f, e), and the model chooses transla-
tions according to the following decision rule:

ê = arg max
e∈E(f)

ΛTh(f, e)

We summarize the weights of the recurrent neural
network language model as θ = {U,W,V} and
add the model as an additional feature to the log-
linear translation model using the simplified nota-
tion sθ(wt) = s(wt|w1 . . . wt−1,ht−1):

hM+1(e) = sθ(e) =
|e|∑
t=1

log sθ(wt) (1)

which computes a sentence-level language model
score as the sum of individual word scores. The
translation model is parameterized by Λ and θ
which are learned as follows (Gao et al., 2014):

1. We generate an n-best list for each foreign
sentence in the training data with the baseline
translation system given Λ where λM+1 = 0
using the settings described in §5. The n-best
lists serve as an approximation to E(f) used
in the next step for expected BLEU training
of the recurrent neural network model (§3.1).

2. Next, we fix Λ, set λM+1 = 1 and opti-
mize θ with respect to the loss function on
the training data using stochastic gradient de-
scent (SGD).1

1We tuned λM+1 on the development set but found that
λM+1 = 1 resulted in faster training and equal accuracy.
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3. We fix θ and re-optimize Λ in the presence
of the recurrent neural network model using
Minimum Error Rate Training (Och, 2003)
on the development set (§5).

3.1 Expected BLEU Objective
Formally, we define our loss function l(θ) as
the negative expected BLEU score, denoted as
xBLEU(θ) for a given foreign sentence f :

l(θ) =− xBLEU(θ)

=
∑
e∈E(f)

pΛ,θ(e|f)sBLEU(e, e(i)) (2)

where sBLEU(e, e(i)) is a smoothed sentence-
level BLEU score with respect to the reference
translation e(i), and E(f) is the generation set
given by an n-best list.2 We use a sentence-level
BLEU approximation similar to He and Deng
(2012).3 The normalized probability pΛ,θ(e|f) of
a particular translation e given f is defined as:

pΛ,θ(e|f) =
exp{γΛTh(f, e)}∑

e′∈E(f) exp{γΛTh(f, e′)} (3)

where ΛTh(f, e) includes the recurrent neural net-
work hM+1(e), and γ ∈ [0, inf) is a scaling factor
that flattens the distribution for γ < 1 and sharp-
ens it for γ > 1 (Tromble et al., 2008).4

Next, we define the gradient of the expected
BLEU loss function l(θ) using the observation that
the loss does not explicitly depend on θ:

∂l(θ)
∂θ

=
∑
e

|e|∑
t=1

∂l(θ)
∂sθ(wt)

∂sθ(wt)
∂θ

=
∑
e

|e|∑
t=1

−δwt
∂sθ(wt)
∂θ

where δwt is the error term for English word wt.5

The error term indicates how the loss changes with
the translation probability which we derive next.6

2Our definitions do not take into account multiple derivations
for the same translation because our n-best lists contain only
unique entries which we obtain by choosing the highest scor-
ing translation among string identical candidates.

3In early experiments we found that the BLEU+1 approxi-
mation used by Liang et al. (2006) and Nakov et. al (2012)
worked equally well in our setting.

4The γ parameter is only used during expected BLEU training
but not for subsequent MERT tuning.

5A sentence may contain the same word multiple times and
we compute the error term for each occurrence separately
since the error depends on the individual history.

6We omit the gradient of the recurrent neural network score
∂sθ(wt)
∂θ

since it follows the standard form (Mikolov, 2012).

3.2 Derivation of the Error Term δwt

We rewrite the loss function (2) using (3) and sep-
arate it into two terms G(θ) and Z(θ) as follows:

l(θ) = −xBLEU(θ) = −G(θ)
Z(θ)

(4)

= −
∑

e∈E(f) exp{γΛTh(f, e)} sBLEU(e, e(i))∑
e∈E(f) exp{γΛTh(f, e)}

Next, we apply the quotient rule of differentiation:

δwt =
∂xBLEU(θ)
∂sθ(wt)

=
∂(G(θ)/Z(θ))
∂sθ(wt)

=
1

Z(θ)

(
∂G(θ)
∂sθ(wt)

− ∂Z(θ)
∂sθ(wt)

xBLEU(θ)
)

Using the observation that θ is only relevant to the
recurrent neural network hM+1(e) (1) we have

∂γΛTh(f, e)
∂sθ(wt)

= γλM+1
∂hM+1(e)
∂sθ(wt)

=
γλM+1

sθ(wt)

which together with the chain rule, (3) and (4) al-
lows us to rewrite δwt as follows:

δwt =
1

Z(θ)

∑
e∈E(f),
s.t.wt∈e

(
∂ exp{γΛTh(f, e)}

∂sθ(wt)
U(θ, e)

)

=
∑

e∈E(f),
s.t.wt∈e

(
pΛ,θ(e|f)U(θ, e)λM+1

γ

sθ(wt)

)

where U(θ, e) = sBLEU(e, ei)− xBLEU(θ).

4 Decoder Integration

Directly integrating our recurrent neural network
language model into first-pass decoding enables us
to search a much larger space than would be pos-
sible in rescoring.

Typically, phrase-based decoders maintain a set
of states representing partial and complete transla-
tion hypothesis that are scored by a set of features.
Most features are local, meaning that all required
information for them to assign a score is available
within the state. One exception is the n-gram lan-
guage model which requires the preceding n − 1
words as well. In order to accommodate this fea-
ture, each state usually keeps these words as con-
text. Unfortunately, a recurrent neural network
makes even weaker independence assumptions so
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that it depends on the entire left prefix of a sen-
tence. Furthermore, the weaker independence as-
sumptions also dramatically reduce the effective-
ness of dynamic programming by allowing much
fewer states to be recombined.7

To solve this problem, we follow previous work
on lattice rescoring with recurrent networks that
maintained the usual n-gram context but kept a
beam of hidden layer configurations at each state
(Auli et al., 2013). In fact, to make decoding as
efficient as possible, we only keep the single best
scoring hidden layer configuration. This approx-
imation has been effective for lattice rescoring,
since the translations represented by each state are
in fact very similar: They share both the same
source words as well as the same n-gram context
which is likely to result in similar recurrent his-
tories that can be safely pruned. As future cost
estimate we score each phrase in isolation, reset-
ting the hidden layer at the beginning of a phrase.
While simple, we found our estimate to be more
accurate than no future cost at all.

5 Experiments

Baseline. We use a phrase-based system simi-
lar to Moses (Koehn et al., 2007) based on a set
of common features including maximum likeli-
hood estimates pML(e|f) and pML(f |e), lexically
weighted estimates pLW (e|f) and pLW (f |e),
word and phrase-penalties, a hierarchical reorder-
ing model (Galley and Manning, 2008), a linear
distortion feature, and a modified Kneser-Ney lan-
guage model trained on the target-side of the paral-
lel data. Log-linear weights are tuned with MERT.
Evaluation. We use training and test data from
the WMT 2012 campaign and report results on
French-English and German-English. Transla-
tion models are estimated on 102M words of par-
allel data for French-English, and 99M words
for German-English; about 6.5M words for each
language pair are newswire, the remainder are
parliamentary proceedings. We evaluate on six
newswire domain test sets from 2008 to 2013 con-
taining between 2034 to 3003 sentences. Log-
linear weights are estimated on the 2009 data set
comprising 2525 sentences. We evaluate accuracy
in terms of BLEU with a single reference.
Rescoring Setup. For rescoring we use ei-

7Recombination only retains the highest scoring state if there
are multiple identical states, that is, they cover the same
source span, the same translation phrase and contexts.

ther lattices or the unique 100-best output of
the phrase-based decoder and re-estimate the log-
linear weights by running a further iteration of
MERT on the n-best list of the development set,
augmented by scores corresponding to the neural
network models. At test time we rescore n-best
lists with the new weights.

Neural Network Training. All neural network
models are trained on the news portion of the
parallel data, corresponding to 136K sentences,
which we found to be most useful in initial exper-
iments. As training data we use unique 100-best
lists generated by the baseline system. We use the
same data both for training the phrase-based sys-
tem as well as the language model but find that
the resulting bias did not hurt end-to-end accu-
racy (Yu et al., 2013). The vocabulary consists of
words that occur in at least two different sentences,
which is 31K words for both language pairs. We
tuned the learning rate µ of our mini-batch SGD
trainer as well as the probability scaling parameter
γ (3) on a held-out set and found simple settings of
µ = 0.1 and γ = 1 to be good choices. To prevent
over-fitting, we experimented with L2 regulariza-
tion, but found no accuracy improvements, prob-
ably because SGD regularizes enough. We evalu-
ate performance on a held-out set during training
and stop whenever the objective changes less than
0.0003. The hidden layer uses 100 neurons unless
otherwise stated.

5.1 Decoder Integration

We compare the effect of direct decoder integra-
tion to rescoring with both lattices and n-best lists
when the model is trained with a cross-entropy ob-
jective (Mikolov et al., 2010). The results (Ta-
ble 1 and Table 2) show that direct integration im-
proves accuracy across all six test sets on both lan-
guage pairs. For French-English we improve over
n-best rescoring by up to 1.1 BLEU and by up to
0.5 BLEU for German-English. We improve over
lattice rescoring by up to 0.4 BLEU on French-
English and by up to 0.3 BLEU on German-
English. Compared to the baseline, we achieve
improvements of up to 2.0 BLEU for French-
English and up to 1.3 BLEU for German-English.
The average improvement across all test sets is
1.5 BLEU for French-English and 1.0 BLEU for
German-English compared to the baseline.
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dev 2008 2010 syscomb2010 2011 2012 2013 AllTest
Baseline 24.11 20.73 24.68 24.59 25.62 24.85 25.54 24.53
RNN n-best rescore 24.83 21.41 25.17 25.06 26.53 25.74 26.31 25.25
RNN lattice rescore 24.91 21.73 25.56 25.43 27.04 26.43 26.75 25.72
RNN decode 25.14 22.03 25.86 25.74 27.32 26.86 27.15 26.06

Table 1: French-English accuracy of decoder integration of a recurrent neural network language model
(RNN decode) compared to n-best and lattice rescoring as well as the output of a phrase-based system
using an n-gram model (Baseline); Alltest is the corpus-weighted average BLEU across all test sets.

dev 2008 2010 syscomb2010 2011 2012 2013 AllTest
Baseline 19.35 19.96 20.87 20.66 19.60 19.80 22.48 20.58
RNN n-best rescore 20.17 20.29 21.35 21.27 20.51 20.54 23.03 21.21
RNN lattice rescore 20.24 20.38 21.55 21.43 20.77 20.63 23.23 21.38
RNN decode 20.13 20.51 21.79 21.71 20.91 20.93 23.53 21.61

Table 2: German-English results of direct decoder integration (cf. Table 1).

dev 2008 2010 syscomb2010 2011 2012 2013 AllTest
Baseline 24.11 20.73 24.68 24.59 25.62 24.85 25.54 24.53
CE RNN 24.80 21.15 25.14 25.06 26.45 25.83 26.69 25.29
+ xBLEU RNN 25.11 21.74 25.52 25.42 27.06 26.42 26.72 25.71

Table 3: French-English accuracy of a decoder integrated cross-entropy recurrent neural network model
(CE RNN) and a combination with an expected BLEU trained model (xBLEU RNN). Results are not
comparable to Table 1 since a smaller hidden layer was used to keep training times manageable (§5.2).

5.2 Expected BLEU Training

Training with the expected BLEU loss is compu-
tationally more expensive than with cross-entropy
since each training example is an n-best list in-
stead of a single sentence. This increases the num-
ber of words to be processed from 3.5M to 340M.
To keep training times manageable, we reduce the
hidden layer size to 30 neurons, thereby greatly
increasing speed. Despite slower training, the ac-
tual scoring at test time of expected BLEU mod-
els is about 5 times faster than for cross-entropy
models since we do not need to normalize the out-
put layer anymore. The results (Table 3) show
improvements of up to 0.6 BLEU when combin-
ing a cross-entropy model with an expected BLEU
variant. Average gains across all test sets are 0.4
BLEU, demonstrating that the gains from the ex-
pected BLEU loss are additive.

6 Conclusion and Future Work

We introduce an empirically effective approxima-
tion to integrate a recurrent neural network model
into first pass decoding, thereby extending pre-
vious work on decoding with feed-forward neu-

ral networks (Vaswani et al., 2013). Our best re-
sult improves the output of a phrase-based decoder
by up to 2.0 BLEU on French-English translation,
outperforming n-best rescoring by up to 1.1 BLEU
and lattice rescoring by up to 0.4 BLEU. Directly
optimizing a recurrent neural network language
model towards an expected BLEU loss proves ef-
fective, improving a cross-entropy trained variant
by up 0.6 BLEU. Despite higher training complex-
ity, our expected BLEU trained model has five
times faster runtime than a cross-entropy model
since it does not require normalization.

In future work, we would like to scale up to
larger data sets and more complex models through
parallelization. We would also like to experiment
with more elaborate future cost estimates, such as
the average score assigned to all occurrences of a
phrase in a large corpus.
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Abstract

While tree-to-string (T2S) translation the-
oretically holds promise for efficient, ac-
curate translation, in previous reports T2S
systems have often proven inferior to other
machine translation (MT) methods such as
phrase-based or hierarchical phrase-based
MT. In this paper, we attempt to clarify
the reason for this performance gap by
investigating a number of peripheral ele-
ments that affect the accuracy of T2S sys-
tems, including parsing, alignment, and
search. Based on detailed experiments
on the English-Japanese and Japanese-
English pairs, we show how a basic T2S
system that performs on par with phrase-
based systems can be improved by 2.6-4.6
BLEU, greatly exceeding existing state-
of-the-art methods. These results indi-
cate that T2S systems indeed hold much
promise, but the above-mentioned ele-
ments must be taken seriously in construc-
tion of these systems.

1 Introduction

In recent years, syntactic parsing is being viewed
as an ever-more important element of statistical
machine translation (SMT) systems, particularly
for translation between languages with large dif-
ferences in word order. There are many ways of
incorporating syntax into MT systems, including
the use of string-to-tree translation (S2T) to ensure
the syntactic well-formedness of the output (Gal-
ley et al., 2006; Shen et al., 2008), tree-to-string
(T2S) using source-side parsing as a hint during
the translation process (Liu et al., 2006), or pre-
or post-ordering to help compensate for reorder-
ing problems experienced by non-syntactic meth-
ods such as phrase-based MT (PBMT) (Collins et
al., 2005; Sudoh et al., 2011). Among these, T2S

translation has a number of attractive theoretical
properties, such as joint consideration of global re-
ordering and lexical choice while maintaining rel-
atively fast decoding times.

However, building an accurate T2S system is
not trivial. On one hand, there have been multiple
reports (mainly from groups with a long history
of building T2S systems) stating that systems us-
ing source-side syntax greatly out-perform phrase-
based systems (Mi et al., 2008; Liu et al., 2011;
Zhang et al., 2011; Tamura et al., 2013). On the
other hand, there have been also been multiple re-
ports noting the exact opposite result that source-
side syntax systems perform worse than Hiero,
S2T, PBMT, or PBMT with pre-ordering (Ambati
and Lavie, 2008; Xie et al., 2011; Kaljahi et al.,
2012). In this paper, we argue that this is due to the
fact that T2S systems have the potential to achieve
high accuracy, but are also less robust, with a num-
ber of peripheral elements having a large effect on
translation accuracy.

Our motivation in writing this paper is to pro-
vide a first step in examining and codifying the
more important elements that make it possible to
construct a highly accurate T2S MT system. To do
so, we perform an empirical study of the effect of
parsing accuracy, packed forest input, alignment
accuracy, and search. The reason why we choose
these elements is that past work that has reported
low accuracy for T2S systems has often neglected
to consider one or all of these elements.

As a result of our tests on English-Japanese (en-
ja) and Japanese-English (ja-en) machine transla-
tion, we find that a T2S system not considering
these elements performs only slightly better than a
standard PBMT system. However, after account-
ing for all these elements we see large increases of
accuracy, with the final system greatly exceeding
not only standard PBMT, but also state-of-the-art
methods based on syntactic pre- or post-ordering.
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2 Experimental Setup

2.1 Systems Compared
In our experiments, we use a translation model
based on T2S tree transducers (Graehl and Knight,
2004), constructed using the Travatar toolkit (Neu-
big, 2013). Rules are extracted using the GHKM
algorithm (Galley et al., 2006), and rules with
up to 5 composed minimal rules, up to 2 non-
terminals, and up to 10 terminals are used.

We also prepare 3 baselines not based on T2S
to provide a comparison with other systems in the
literature. The first two baselines are standard sys-
tems using PBMT or Hiero trained using Moses
(Koehn et al., 2007). We use default settings, ex-
cept for setting the reordering limit or maximum
chart span to the best-performing value of 24. As
our last baselines, we use two methods based on
syntactic pre- or post-ordering, which are state-of-
the-art methods for the language pairs. Specifi-
cally, for en-ja translation we use the head finaliza-
tion pre-ordering method of (Isozaki et al., 2010b),
and for ja-en translation, we use the syntactic post-
ordering method of (Goto et al., 2012). For all
systems, T2S or otherwise, the language model is
a Kneser-Ney 5-gram, and tuning is performed to
maximize BLEU score using minimum error rate
training (Och, 2003).

2.2 Data and Evaluation

We perform all of our experiments on en-ja
and ja-en translation over data from the NTCIR
PatentMT task (Goto et al., 2011), the most stan-
dard benchmark task for these language pairs. We
use the training data from NTCIR 7/8, a total of
approximately 3.0M sentences, and perform tun-
ing on the NTCIR 7 dry run, testing on the NTCIR
7 formal run data. As evaluation measures, we use
the standard BLEU (Papineni et al., 2002) as well
as RIBES (Isozaki et al., 2010a), a reordering-
based metric that has been shown to have high
correlation with human evaluations on the NTCIR
data. We measure significance of results using
bootstrap resampling at p < 0.05 (Koehn, 2004).
In tables, bold numbers indicate the best system
and all systems that were not significantly differ-
ent from the best system.

2.3 Motivational Experiment
Before going into a detailed analysis, we first
present results that stress the importance of the el-
ements described in the introduction. To do so,

en-ja ja-en
System BLEU RIBES BLEU RIBES
PBMT 35.84 72.89 30.49 69.80
Hiero 34.45 72.94 29.41 69.51
Pre/Post 36.69 77.05 29.42 73.85
T2S-all 36.23 76.60 31.15 72.87
T2S+all 40.84 80.15 33.70 75.94

Table 1: Overall results for five systems.

we compare the 3 non-T2S baselines with two
T2S systems that vary the settings of the parser,
alignment, and search, as described in the follow-
ing Sections 3, 4, and 5. The first system “T2S-
all” is a system that uses the worst settings1 for
each of these elements, while the second system
“T2S+all” uses the best settings.2 The results for
the systems are shown in Table 1.

The most striking result is that T2S+all signif-
icantly exceeds all of the baselines, even includ-
ing the pre/post-ordering baselines, which provide
state-of-the-art results on this task. The gains are
particularly striking on en-ja, with a gain of over 4
BLEU points over the closest system, but still sig-
nificant on the ja-en task, where the use of source-
side syntax has proven less effective in previous
work (Sudoh et al., 2011). The next thing to notice
is that if we had instead used T2S-all, our conclu-
sion would have been much different. This system
is able to achieve respectable accuracy compared
to PBMT or Hiero, but does not exceed the more
competitive pre/post-ordering systems.3 With this
result in hand, we will investigate the contribution
of each of these elements in detail in the following
sections. In the remainder of the paper settings
follow T2S+all except when otherwise noted.

3 Parsing

3.1 Parsing Overview

As T2S translation uses parse trees both in train-
ing and testing of the system, an accurate syntactic
parser is required. In order to test the extent that
parsing accuracy affects translation, we use two

1Stanford/Eda, GIZA++, pop-limit 5000 cube pruning.
2Egret forests, Nile, pop-limit 5000 hypergraph search.
3We have also observed similar trends on other genres and

language pairs. For example, in a Japanese-Chinese/English
medical conversation task (Neubig et al., 2013), forests,
alignment, and search resulted in BLEU increases of en-ja
24.55→30.81, ja-en 19.28→22.46, zh-ja 15.22→20.67, ja-zh
30.88→33.89.
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different syntactic parsers and examine the trans-
lation accuracy realized by each parser.

For English, the two most widely referenced
parsers are the Stanford Parser and Berkeley
Parser. In this work, we compare the Stanford
Parser’s CFG model, with the Berkeley Parser’s
latent variable model. In previous reports, it has
been noted (Kummerfeld et al., 2012) that the la-
tent variable model of the Berkeley parser tends to
have the higher accuracy of the two, so if the accu-
racy of a system using this model is higher then it
is likely that parsing accuracy is important for T2S
translation. Instead of the Berkeley Parser itself,
we use a clone Egret,4 which achieves nearly iden-
tical accuracy, and is able to output packed forests
for use in MT, as mentioned below. Trees are
right-binarized, with the exception of phrase-final
punctuation, which is split off before any other el-
ement in the phrase.

For Japanese, our first method uses the MST-
based pointwise dependency parser of Flannery et
al. (2011), as implemented in the Eda toolkit.5

In order to convert dependencies into phrase-
structure trees typically used in T2S translation,
we use the head rules implemented in the Travatar
toolkit. In addition, we also train a latent variable
CFG using the Berkeley Parser and use Egret for
parsing. Both models are trained on the Japanese
Word Dependency Treebank (Mori et al., 2014).

In addition, Mi et al. (2008) have proposed a
method for forest-to-string (F2S) translation us-
ing packed forests to encode many possible sen-
tence interpretations. By doing so, it is possible to
resolve some of the ambiguity in syntactic inter-
pretation at translation time, potentially increasing
translation accuracy. However, the great majority
of recent works on T2S translation do not consider
multiple syntactic parses (e.g. Liu et al. (2011),
Zhang et al. (2011)), and thus it is important to
confirm the potential gains that could be acquired
by taking ambiguity into account.

3.2 Effect of Parsing and Forest Input

In Table 2 we show the results for Stanford/Eda
with 1-best tree input vs. Egret with trees or
forests as input. Forests are those containing all
edges in the 100-best parses.

First looking at the difference between the two
parsers, we can see that the T2S system using

4http://code.google.com/p/egret-parser
5http://plata.ar.media.kyoto-u.ac.jp/tool/EDA

en-ja ja-en
System BLEU RIBES BLEU RIBES
Stan/Eda 38.95 78.47 32.56 73.03
Egret-T 39.26 79.26 32.97 74.94
Egret-F 40.84 80.15 33.70 75.94

Table 2: Results for Stanford/Eda, Egret with tree
input, and Egret with forest input.
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Figure 1: BLEU scores using various levels of for-
est pruning. Numbers in the graph indicate decod-
ing time in seconds/sentence.

Egret achieves greater accuracy than that using the
other two parsers. This improvement is particu-
larly obvious in RIBES, indicating that an increase
in parsing accuracy has a larger effect on global
reordering than on lexical choice. When going
from T2S to F2S translation using Egret, we see
another large gain in accuracy, although this time
with the gain in BLEU being more prominent. We
believe this is related to the observation of Zhang
and Chiang (2012) that F2S translation is not nec-
essarily helping fixing parsing errors, but instead
giving the translation system the freedom to ignore
the parse somewhat, allowing for less syntactically
motivated but more fluent translations.

As passing some degree of syntactic ambigu-
ity on to the decoder through F2S translation has
proven useful, a next natural question is how much
of this ambiguity we need to preserve in our forest.
The pruning criterion that we use for the forest is
based on including all edges that appear in one or
more of the n-best parses, so we perform transla-
tion setting n to 1 (trees), 3, 6, 12, 25, 50, 100, and
200. Figure 1 shows results for these settings with
regards to translation accuracy and speed. Over-
all, we can see that every time we double the size
of the forest we get an approximately linear in-
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crease in BLEU at the cost of an increase in decod-
ing time. Interestingly, the increases in BLEU did
not show any sign of saturating even when setting
the n-best cutoff to 200, although larger cutoffs re-
sulted in exceedingly large translation forests that
required large amounts of memory.

4 Alignment

4.1 Alignment Overview
The second element that we investigate is align-
ment accuracy. It has been noted in many previ-
ous works that significant gains in alignment accu-
racy do not make a significant difference in trans-
lation results (Ayan and Dorr, 2006; Ganchev et
al., 2008). However, none of these works have ex-
plicitly investigated the effect on T2S translation,
so it is not clear whether these results carry over to
our current situation.

As our baseline aligner, we use the GIZA++ im-
plementation of the IBM models (Och and Ney,
2003) with the default options. To test the effect
of improved alignment accuracy, we use the dis-
criminative alignment method of Riesa and Marcu
(2010) as implemented in the Nile toolkit.6 This
method has the ability to use source- and target-
side syntactic information, and has been shown to
improve the accuracy of S2T translation.

We trained Nile and tested both methods on
the Japanese-English alignments provided with
the Kyoto Free Translation Task (Neubig, 2011)
(430k parallel sentences, 1074 manually aligned
training sentences, and 120 manually aligned test
sentences).7 As creating manual alignment data is
costly, we also created two training sets that con-
sisted of 1/4 and 1/16 of the total data to test if
we can achieve an effect with smaller amounts of
manually annotated data. The details of data size
and alignment accuracy are shown in Table 3.

4.2 Effect of Alignment on Translation
In Table 4, we show results when we vary the
aligner between GIZA++ and Nile. For reference,
we also demonstrate results when using the same
alignments for PBMT and Hiero.

From this, we can see that while for PBMT and
Hiero systems the results are mixed, as has been
noted in previous work (Fraser and Marcu, 2007),

6http://code.google.com/p/nile
7This data is from Wikipedia articles about Kyoto City,

and is an entirely different genre than our MT test data. It is
likely that creating aligned data that matches the MT genre
would provide larger gains in MT accuracy.

Name Sent. Prec. Rec. F-meas
GIZA++ 0 60.46 55.48 57.86
Nile/16 68 70.21 60.81 65.17
Nile/4 269 72.85 62.70 67.40
Nile 1074 72.73 63.97 68.07

Table 3: Alignment accuracy (%) by method and
number of manually annotated training sentences.

en-ja ja-en
System BLEU RIBES BLEU RIBES
PBMT-G 35.84 72.89 30.49 69.80
PBMT-N 36.05 71.84 30.77 69.75
Hiero-G 34.45 72.94 29.41 69.51
Hiero-N 33.90 72.63 28.90 69.83
T2S-G 39.57 78.94 32.62 75.19
T2S-N/16 40.79 80.05 32.82 74.89
T2S-N/4 40.97 80.32 33.35 75.46
T2S-N 40.84 80.15 33.70 75.94

Table 4: Results varying the aligner (GIZA++ vs.
Nile), including results for Nile when using 1/4 or
1/16 of the annotated training data.

Figure 2: Probabilities for SVO→SOV rules.

improving the alignment accuracy gives signifi-
cant gains for T2S translation. The reason for this
difference is two-fold. The first is that in rule
extraction in syntax-based translation (Galley et
al., 2006), a single mistaken alignment crossing
phrase boundaries results not only in a bad rule be-
ing extracted, but also prevents the extraction of a
number of good rules. This is reflected in the size
of the rule table; the en-ja system built using Nile
contains 92.8M rules, while the GIZA++ system
contains only 83.3M rules, a 11.2% drop.

The second reason why alignment is important
is that while one of the merits of T2S models is
their ability to perform global re-ordering, it is dif-
ficult to learn good reorderings from bad align-
ments. We show an example of this in Figure 2.
When translating SVO English to SOV Japanese,
we expect rules containing a verb and a following
noun phrase (VO) to have a high probability of be-
ing reversed (to OV), possibly with the addition of
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the Japanese direct object particle “wo.” From the
figure, we can see that the probabilities learned by
Nile match this intuition, while the probabilities
learned by GIZA heavily favor no reordering.

Finally, looking at the amount of data needed to
train the model, we can see that a relatively small
amount of manually annotated data proves suffi-
cient for large gains in alignment accuracy, with
even 68 sentences showing a 7.31 point gain in F-
measure over GIZA++. This is because Nile’s fea-
ture set uses generalizable POS/syntactic informa-
tion and also because mis-alignments of common
function words (e.g. a/the) will be covered even
by small sets of training data. Looking at the MT
results, we can see that even the smaller data sets
allow for gains in accuracy, although the gains are
more prominent for en-ja.

5 Search

5.1 Search Overview

Finally, we examine the effect that the choice of
search algorithm has on the accuracy of transla-
tion. The most standard search algorithm for T2S
translation is bottom-up beam search using cube
pruning (CP, Chiang (2007)). However, there are
a number of other search algorithms that have
been proposed for tree-based translation in gen-
eral (Huang and Chiang, 2007) or T2S systems
in particular (Huang and Mi, 2010; Feng et al.,
2012). In this work, we compare CP and the hy-
pergraph search (HS) method of Heafield et al.
(2013), which is also a bottom-up pruning algo-
rithm but performs more efficient search by group-
ing together similar language model states.

5.2 Effect of Search

Figure 3 shows BLEU and decoding speed results
using HS or CP on T2S and F2S translation, us-
ing a variety of pop limits. From this, we can see
that HS out-performs CP for both F2S and T2S,
especially with smaller pop limits. Comparing the
graphs for F2S and T2S translation, it is notable
that the shapes of the graphs for the two meth-
ods are strikingly similar. This result is somewhat
surprising, as the overall search space of F2S is
larger and it would be natural for the characteris-
tics of the search algorithm to vary between these
two settings. Finally, comparing ja-en and en-ja,
search is simpler for the former, a result of the fact
that the Japanese sentences contain more words,
and thus more LM evaluations per sentence.
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Figure 3: Hypergraph search (HS) and cube
pruning (CP) results for F2S and T2S. Numbers
above and below the lines indicate time in sec-
onds/sentence for HS and CP respectively.

6 Conclusion

In this paper, we discussed the importance of three
peripheral elements that contribute greatly to the
accuracy of T2S machine translation: parsing,
alignment, and search. Put together, a T2S sys-
tem that uses the more effective settings for these
three elements greatly outperforms a system that
uses more standard settings, as well as the current
state-of-the-art on English-Japanese and Japanese-
English translation tasks.

Based on these results we draw three conclu-
sions. The first is that given the very competitive
results presented here, T2S systems do seem to
have the potential to achieve high accuracy, even
when compared to strong baselines incorporating
syntactic reordering into a phrase-based system.
The second is that when going forward with re-
search on T2S translation, one should first be sure
to account for these three elements to ensure a
sturdy foundation for any further improvements.
Finally, considering the fact that parsing and align-
ment for each of these languages is far from per-
fect, further research investment in these fields
may very well have the potential to provide ad-
ditional gains in accuracy in the T2S framework.
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Abstract

A modification of a reparameterisation of
IBM Model 2 is presented, which makes
the model more flexible, and able to model
a preference for aligning to words to either
the right or left, and take into account POS
tags on the target side of the corpus. We
show that this extension has a very small
impact on training times, while obtain-
ing better alignments in terms of BLEU
scores.

1 Introduction

Word alignment is at the basis of most statistical
machine translation. The models that are gener-
ally used are often slow to train, and have a large
number of parameters. Dyer et al. (2013) present
a simple reparameterization of IBM Model 2 that
is very fast to train, and achieves results similar to
IBM Model 4.

While this model is very effective, it also has
a very low number of parameters, and as such
doesn’t have a large amount of expressive power.
For one thing, it forces the model to consider
alignments on both sides of the diagonal equally
likely. However, it isn’t clear that this is the case,
as for some languages an alignment to earlier or
later in the sentence (above or below the diagonal)
could be common, due to word order differences.
For example, when aligning to Dutch, it may be
common for one verb to be aligned near the end of
the sentence that would be at the beginning in En-
glish. This would mean most of the other words in
the sentence would also align slightly away from
the diagonal in one direction. Figure 1 shows an
example sentence in which this happens. Here, a
circle denotes an alignment, and darker squares
are more likely under the alignment model. In
this case the modified Model 2 would simply make
both directions equally likely, where we would re-
ally like for only one direction to be more likely.

Hij
had de

man
gezi

en

He

had

seen

the

man

Figure 1: Visualization of aligned sentence pair in
Dutch and English, darker shaded squares have a
higher alignment probability under the model, a
circle indicates a correct alignment. The English
sentence runs from bottom to top, the Dutch sen-
tence left to Right.

In some cases it could be that the prior probability
for a word alignment should be off the diagonal.

Furthermore, it is common in word alignment to
take word classes into account. This is commonly
implemented for the HMM alignment model as
well as Models 4 and 5. Och and Ney (2003) show
that for larger corpora, using word classes leads
to lower Alignment Error Rate (AER). This is not
implemented for Model 2, as it already has an
alignment model that is dependent on both source
and target length, and the position in both sen-
tences, and adding a dependency to word classes
would make the the Model even more prone to
overfitting than it already is. However, using the
reparameterization in (Dyer et al., 2013) would
leave the model simple enough even with a rela-
tively large amount of word classes.

Figure 2 shows an example of how the model
extensions could benefit word alignment. In the
example, all the Dutch words have a different
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Hij
had de

man
gezi

en

He

had

seen

the

man

Figure 2: Visualization of aligned sentence pair in
Dutch and English, darker shaded squares have a
higher alignment probability under the model, a
circle indicates a correct alignment. The English
sentence runs from bottom to top, the Dutch sen-
tence left to Right.

word class, and so can have different gradients for
alignment probability over the english words. If
the model has learned that prepositions and nouns
are more likely to align to words later in the sen-
tence, it could have a lower lambda for both word
classes, resulting in a less steep slope. If we also
split lambda into two variables, we can get align-
ment probabilities as shown above for the Dutch
word ’de’, where aligning to one side of the diag-
onal is made more likely for some word classes.
Finally, instead of just having one side of the di-
agonal less steep than the other, it may be useful
to instead move the peak of the alignment prob-
ability function off the diagonal, while keeping it
equally likely. In Figure 2, this is done for the past
participle ’gezien’.

We will present a simple model for adding the
above extensions to achieve the above (splitting
the parameter, adding an offset and conditioning
the parameters on the POS tag of the target word)
in section 2, results on a set of experiments in sec-
tion 3 and present our conclusions in section 4.

2 Methods

We make use of a modified version of Model 2,
from Dyer et al. (2013), which has an alignment
model that is parameterised in its original form
solely on the variable λ. Specifically, the proba-
bility of a sentence e given a sentence f is given
as:

m∏
i=1

n∑
j=0

δ(ai|i,m, n) · θ(ei|fai)

here, m is the length of the target sentence e, n
the same for source sentence f , δ is the alignment
model and θ is the translation model. In this pa-
per we are mainly concerned with the alignment
model δ. In the original formulation (with a minor
tweak to ensure symmetry through the center), this
function is defined as:

δ(ai = j|i,m, n) =
p0 j = 0
(1− p0) · eh(i,j,m,n)

Z(i,m,n) 0 < j ≤ n
0 otherwise

where, h(·) is defined as

h(i, j,m, n) = −λ
∣∣∣∣ i

m+ 1
− j

n+ 1

∣∣∣∣
and Zλ(i,m, n) is

∑n
j′=1 e

λh(i,j′,m,n), i.e. a
normalising function. Like the original Model 2
(Brown et al., 1993), this model is trained us-
ing Expectation-Maximisation. However, it is not
possible to directly update the λ parameter during
training, as it cannot be computed analytically. In-
stead, a gradient-based approach is used during the
M-step.

Two different optimisations are employed, the
first of which is used for calculating Zλ. This
function forms a geometric series away from the
diagonal (for each target word), which can be
computed efficiently for each of the directions
from the diagonal. The second is used during the
M-step when computing the derivative, and is very
similar, but instead of using a geometric series, an
arithmetico-geometric series is used.

In order to allow the model to have a different
parameter above and below the diagonal, the only
change needed is to redefine h(·) to use a different
parameter for λ above and below the diagonal. We
denote these parameters as λ and γ for below and
above the diagonal respectively. Further, the offset
is denoted as ω.

we change the definition of h(·) to the following
instead:
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h(i, j,m, n) =
−λ
∣∣∣∣ i

m+ 1
− j

n+ 1
+ ω

∣∣∣∣ j <= j↓

−γ
∣∣∣∣ i

m+ 1
− j

n+ 1
+ ω

∣∣∣∣ otherwise

j↓ is the point closest to or on the diagonal here,
calculated as:

max(min(b i · (n+ 1)
m+ 1

+ ω · (n+ 1)c, n), 0)

Here, ω can range from −1 to 1, and thus the
calculation for the diagonal j↓ is clamped to be in
a valid range for alignments.

As the partition function (Z(·)) used in (Dyer et
al., 2013) consists of 2 calculations for each tar-
get position i, one for above and one for below the
diagonal, we can simply substitute γ for the geo-
metric series calculations in order to use different
parameters for each:

s↓(eλh(i,j↓,m,n), r) + sn−↑(eγh(i,j↑,m,n), r)

where j↑ is j↓ + 1.

2.1 Optimizing the Parameters
As in the original formulation, we need to use
gradient-based optimisation in order to find good
values for λ, γ and ω. Unfortunately, optimizing
ω would require taking the derivative of h(·), and
thus the derivative of the absolute value. This is
unfortunately undefined when the argument is 0,
however we work around this by choosing a sub-
gradient of 0 at that point. This means the steps we
take do not always improve the objective function,
but in practice the method works well.

The first derivative of L with respect to λ at a
single target word becomes:

∇λL =
j↓∑
k=1

p(ai = k|ei, f,m, n)h(i, k,m, n)

−
j↓∑
l=1

δ(l|i,m, n)h(i, l,m, n)

And similar for finding the first derivative with
respect to γ, but summing from j↑ to n instead.
The first derivative with respect to ω then, is:

∇ωL =
n∑
k=1

p(ai = k|ei, f,m, n)h′(i, k,m, n)

−
j↓∑
l=1

δ(l|i,m, n)h′(i, l,m, n)

Where h′(·) is the first derivative of h(·) with
respect to ω. For obtaining this derivative, the
arithmetico-geometric series (Fernandez et al.,
2006) was originally used as an optimization, and
for the gradient with respect to omega a geometric
series should suffice, as an optimization, as there
is no conditioning on the source words. This is
not done in the current work however, so timing
results will not be directly comparable to those
found in (Dyer et al., 2013).

Conditioning on the POS of the target words
then becomes as simple as using a different λ, γ,
and ω for each POS tag in the input, and calculat-
ing a separate derivative for each of them, using
only the derivatives at those target words that use
the POS tag. A minor detail is to keep a count of
alignment positions used for finding the derivative
for each different parameter, and normalizing the
resulting derivatives with those counts, so the step
size can be kept constant across POS tags.

3 Empirical results

The above described model is evaluated with ex-
periments on a set of 3 language pairs, on which
AER scores and BLEU scores are computed. We
use similar corpora as used in (Dyer et al., 2013):
a French-English corpus made up of Europarl ver-
sion 7 and news-commentary corpora, the Arabic-
English parallel data consisting of the non-UN
portions of the NIST training corpora, and the
FBIS Chinese-English corpora.

The models that are compared are the original
reparameterization of Model 2, a version where λ
is split around the diagonal (split), one where pos
tags are used, but λ is not split around the diagonal
(pos), one where an offset is used, but parameters
aren’t split about the diagonal (offset), one that’s
split about the diagonal and uses pos tags (pos &
split) and finally one with all three (pos & split &
offset). All are trained for 5 iterations, with uni-
form initialisation, where the first iteration only
the translation probabilities are updated, and the
other parameters are updated as well in the sub-
sequent iterations. The same hyperparameters are
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Model Fr-En Ar-En Zh-En

Tokens 111M 46M 17.3M
(after) 110M 29.0M 10.4M

average 1.64 0.76 0.27
Model 4 15.5 6.3 2.2

Table 1: Token counts and average amount of time
to train models (and separately training time for
Model 4) on original corpora in one direction in
hours, by corpus.

used as in (Dyer et al., 2013), with stepsize for up-
dates to λ and γ during gradient ascent is 1000,
and that for ω is 0.03, decaying after every gradi-
ent descent step by 0.9, using 8 steps every iter-
ation. Both λ and γ are initialised to 6, and ω is
initialised to 0. For these experiments the pos and
pos & split use POS tags generated using the Stan-
ford POS tagger (Toutanova and Manning, 2000),
using the supplied models for all of the languages
used in the experiments. For comparison, Model
4 is trained for 5 iterations using 5 iterations each
of Model 1 and Model 3 as initialization, using
GIZA++ (Och and Ney, 2003).

For the comparisons in AER, the corpora are
used as-is, but for the BLEU comparisons, sen-
tences longer than 50 words are filtered out. In
Table 2 the sizes of the corpora before filtering are
listed, as well as the time taken in hours to align
the corpora for AER. As the training times for
the different versions barely differ, only the aver-
age is displayed for the models here described and
Model 4 training times are given for comparison.
Note that the times for the models optimizing only
λ and γ, and the model only optimizing ω still cal-
culate the derivatives for the other parameters, and
so could be made to be faster than here displayed.
For both the BLEU and AER results, the align-
ments are generated in both directions, and sym-
metrised using the grow-diag-final-and heuristic,
which in preliminary tests had shown to do best in
terms of AER.

The results are given in Table 2. These scores
were computed using the WMT2012 data as gold
standard. The different extensions to the model
make no difference to the AER scores for Chinese-
English, and actually do slightly worse for French-
English. In both cases, Model 4 does better than
the models introduced here.

Model Fr-En Zh-En

Original 16.3 42.5
Split 16.8 42.5
Pos 16.6 42.5
Offset 16.8 42.5
Pos & Split 16.8 42.5
Pos & Split & Offset 16.7 42.5
Model 4 11.2 40.5

Table 2: AER results on Chinese-English and
French-English data sets

Model Fr-En Ar-En Zh-En

Original 25.9 43.8 32.8
Split 25.9 43.2 32.8
Pos 25.9 43.9 32.9
Offset 26.0 43.9 32.8
Pos & Split 26.0 44.1 33.2
Pos & Split & Offset 26.0 44.2 33.3
Model 4 26.8 43.9 32.4

Table 3: BLEU results on Chinese-English and
French-English data sets

For the comparisons of translation quality, the
models are trained up using a phrase-based trans-
lation system (Koehn et al., 2007) that used the
above listed models to align the data. Language
models were augmented with data outside of the
corpora for Chinese-English (200M words total)
and Arabic-English (100M words total). Test sets
for Chinese are MT02, MT03, MT06 and MT08,
for Arabic they were MT05, MT06 and MT08, and
for French they were the newssyscomb2009 data
and the newstest 2009-2012 data.

The results are listed in Table 31. BLEU scores
for Arabic-English and Chinese-English are com-
puted with multiple references, while those for
French-English are against a single reference. Al-
though the different models made little difference
in AER, there is quite a bit of variation in the
BLEU scores between the different models. In
all cases, the models conditioned on POS tags
did better than the original model, by as much
as 0.5 BLEU points. For Arabic-English as well
as Chinese-English, the full model outperformed

1The difference in these results compared to those re-
ported in Dyer et al. (2013) is due to differences in corpus
size, and the fact that a different translation model is used.
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Model 4, in the case of Chinese-English by 0.9
BLEU points.

The low impact of the split and offset models
are most likely due to the need to model all align-
ments in the corpus. The distributions can’t skew
too far to aligning to one direction, as that would
lower the probability of a large amount of align-
ments. This is reflected in the resulting parame-
ters λ, γ and ω that are estimated, as the first two
do not differ much from the parameters estimated
when both are kept the same, and the second tends
to be very small.

As for the Pos model, it seems that only vary-
ing the symmetrical slope for the different POS
tags doesn’t capture the differences between dis-
tributions for POS tags. For example, the λ and
γ parameters can differ quite a lot in the Pos &
Split model when compared to the Pos model, with
one side having a much smaller parameter and the
other a much larger parameter for a given POS tag
in the first model, and the single parameter being
closer to the model average for the same POS tag
in the second model.

The low variation in results between the differ-
ent models for French-English might be explained
by less word movement when translating between
these languages, which could mean the original
model is sufficient to capture this behaviour.

4 Conclusion

We have shown some extensions to a reparame-
terized IBM Model 2, allowing it to model word
reordering better. Although these models don’t
improve on the baseline in terms of AER, they
do better than the original in all three languages
tested, and outperform M4 in two of these lan-
guages, at little cost in terms of training time. Fu-
ture directions for this work include allowing for
more expressivity of the alignment model by using
a Beta distribution instead of the current exponen-
tial model.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Comput. Linguist., 29:19–51, March.

Kristina Toutanova and Christopher D. Manning.
2000. Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger. In Pro-
ceedings of the 2000 Joint SIGDAT Conference on
Empirical Methods in Natural Language Process-
ing and Very Large Corpora: Held in Conjunction
with the 38th Annual Meeting of the Association
for Computational Linguistics - Volume 13, EMNLP
’00, pages 63–70, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

154



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 155–160,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Dependency-based Pre-ordering for Chinese-English Machine Translation

Jingsheng Cai†∗ Masao Utiyama‡ Eiichiro Sumita‡ Yujie Zhang†
†School of Computer and Information Technology, Beijing Jiaotong University

‡National Institute of Information and Communications Technology
joycetsai99@gmail.com

{mutiyama, eiichiro.sumita}@nict.go.jp
yjzhang@bjtu.edu.cn

Abstract

In statistical machine translation (SMT),
syntax-based pre-ordering of the source
language is an effective method for deal-
ing with language pairs where there are
great differences in their respective word
orders. This paper introduces a novel
pre-ordering approach based on depen-
dency parsing for Chinese-English SMT.
We present a set of dependency-based pre-
ordering rules which improved the BLEU
score by 1.61 on the NIST 2006 evalua-
tion data. We also investigate the accuracy
of the rule set by conducting human eval-
uations.

1 Introduction

SMT systems have difficulties translating between
distant language pairs such as Chinese and En-
glish. The reason for this is that there are great
differences in their word orders. Reordering there-
fore becomes a key issue in SMT systems between
distant language pairs.

Previous work has shown that the approaches
tackling the problem by introducing a pre-ordering
procedure into phrase-based SMT (PBSMT) were
effective. These pre-ordering approaches first
parse the source language sentences to create parse
trees. Then, syntactic reordering rules are ap-
plied to these parse trees with the goal of re-
ordering the source language sentences into the
word order of the target language. Syntax-based
pre-ordering by employing constituent parsing
have demonstrated effectiveness in many language
pairs, such as English-French (Xia and McCord,
2004), German-English (Collins et al., 2005),
Chinese-English (Wang et al., 2007; Zhang et al.,
2008), and English-Japanese (Lee et al., 2010).

∗ This work was done when the first author was on an
internship in NICT.

As a kind of constituent structure, HPSG (Pol-
lard and Sag, 1994) parsing-based pre-ordering
showed improvements in SVO-SOV translations,
such as English-Japanese (Isozaki et al., 2010; Wu
et al., 2011) and Chinese-Japanese (Han et al.,
2012). Since dependency parsing is more concise
than constituent parsing in describing sentences,
some research has used dependency parsing in
pre-ordering approaches for language pairs such
as Arabic-English (Habash, 2007), and English-
SOV languages (Xu et al., 2009; Katz-Brown et
al., 2011). The pre-ordering rules can be made
manually (Collins et al., 2005; Wang et al., 2007;
Han et al., 2012) or extracted automatically from
a parallel corpus (Xia and McCord, 2004; Habash,
2007; Zhang et al., 2007; Wu et al., 2011).

The purpose of this paper is to introduce a novel
dependency-based pre-ordering approach through
creating a pre-ordering rule set and applying it to
the Chinese-English PBSMT system. Experiment
results showed that our pre-ordering rule set im-
proved the BLEU score on the NIST 2006 evalua-
tion data by 1.61. Moreover, this rule set substan-
tially decreased the total times of rule application
about 60%, compared with a constituent-based ap-
proach (Wang et al., 2007). We also conducted hu-
man evaluations in order to assess its accuracy. To
our knowledge, our manually created pre-ordering
rule set is the first Chinese-English dependency-
based pre-ordering rule set.

The most similar work to this paper is that of
Wang et al. (2007). They created a set of pre-
ordering rules for constituent parsers for Chinese-
English PBSMT. In contrast, we propose a set of
pre-ordering rules for dependency parsers. We
argue that even though the rules by Wang et al.
(2007) exist, it is almost impossible to automati-
cally convert their rules into rules that are appli-
cable to dependency parsers. In fact, we aban-
doned our initial attempts to automatically convert
their rules into rules for dependency parsers, and
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(a) A constituent parse tree

(b) Stanford typed dependency parse tree

Figure 1: A constituent parse tree and its cor-
responding Stanford typed dependency parse tree
for the same Chinese sentence.

spent more than two months discovering the rules
introduced in this paper. By applying our rules
and Wang et al.’s rules, one can use both depen-
dency and constituency parsers for pre-ordering in
Chinese-English PBSMT.

This is especially important on the point of the
system combination of PBSMT systems, because
the diversity of outputs from machine translation
systems is important for system combination (Cer
et al., 2013). By using both our rules and Wang et
al.’s rules, one can obtain diverse machine trans-
lation results because the pre-ordering results of
these two rule sets are generally different.

Another similar work is that of (Xu et al., 2009).
They created a pre-ordering rule set for depen-
dency parsers from English to several SOV lan-
guages. In contrast, our rule set is for Chinese-
English PBSMT. That is, the direction of transla-
tion is opposite. Because there are a lot of lan-
guage specific decisions that reflect specific as-
pects of the source language and the language pair
combination, our rule set provides a valuable re-
source for pre-ordering in Chinese-English PB-
SMT.

2 Dependency-based Pre-ordering Rule
Set

Figure 1 shows a constituent parse tree and its
Stanford typed dependency parse tree for the same

Figure 2: An example of a preposition phrase with
a plmod structure. The phrase translates into “in
front of the US embassy”.

Chinese sentence. As shown in the figure, the
number of nodes in the dependency parse tree
(i.e. 9) is much fewer than that in its correspond-
ing constituent parse tree (i.e. 17). Because de-
pendency parse trees are generally more concise
than the constituent ones, they can conduct long-
distance reorderings in a finer way. Thus, we at-
tempted to conduct pre-ordering based on depen-
dency parsing. There are two widely-used de-
pendency systems – Stanford typed dependencies
and CoNLL typed dependencies. For Chinese,
there are 45 types of grammatical relations for
Stanford typed dependencies (Chang et al., 2009)
and 25 for CoNLL typed dependencies. As we
thought that Stanford typed dependencies could
describe language phenomena more meticulously
owing to more types of grammatical relations, we
preferred to use it for searching candidate pre-
ordering rules.

We designed two types of formats in our
dependency-based pre-ordering rules. They are:

Type-1: x : y

Type-2: x - y

Here, both x and y are dependency relations
(e.g., plmod or lobj in Figure 2). We define the
dependency structure of a dependency relation as
the structure containing the dependent word (e.g.,
the word directly indicated by plmod, or “前” in
Figure 2) and the whole subtree under the depen-
dency relation (all of the words that directly or
indirectly depend on the dependent word, or the
words under “前” in Figure 2). Further, we define
X and Y as the corresponding dependency struc-
tures of the dependency relations x and y, respec-
tively. We define X\Y as structure X except Y. For
example, in Figure 2, let x and y denote plmod and
lobj dependency relations, then X represents “前”
and all words under “前”, Y represents “大使馆”
and all words under “大使馆”, and X\Y represents
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Figure 3: An example of rcmod structure within
an nsubj structure. The phrase translates into “a
senior official close to Sharon said”.

“前”. For Type-1, Y is a sub-structure of X. The
rule repositions X\Y to the position before Y. For
Type-2, X and Y are ordered sibling structures un-
der a same parent node. The rule repositions X to
the position after Y.

We obtained rules as the following steps:

1 Search the Chinese dependency parse trees
in the corpus and rank all of the structures
matching the two types of rules respectively
according to their frequencies. Note that
while calculating the frequencies of Type-
1 structures, we dismissed the structures in
which X occurred before Y originally.

2 Filtration. 1) Filter out the structures which
occurred less than 5,000 times. 2) Filter
out the structures from which it was almost
impossible to derive candidate pre-ordering
rules because x or y was an “irrespective” de-
pendency relation, for example, root, conj, cc
and so on.

3 Investigate the remaining structures. For each
kind of structure, we selected some of the
sample dependency parse trees that contained
it, tried to restructure the parse trees accord-
ing to the matched rule and judged the re-
ordered Chinese phrases. If the reordering
produced a Chinese phrase that had a closer
word order to that of the English one, this
structure would be a candidate pre-ordering
rule.

4 Conduct primary experiments which used the
same training set and development set as the
experiments described in Section 3. In the
primary experiments, we tested the effective-
ness of the candidate rules and filtered the
ones that did not work based on the BLEU
scores on the development set.

Figure 4: An example of rcmod structure with a
preposition modifier. The phrase translates into “a
press conference held in Kabul”.

As a result, we obtained eight pre-ordering rules
in total, which can be divided into three depen-
dency relation categories. They are: plmod (lo-
calizer modifier of a preposition), rcmod (relative
clause modifier) and prep (preposition modifer).
Each of these categories are discussed in detail be-
low.

plmod Figure 2 shows an example of a preposi-
tional phrase with a plmod structure, which trans-
lates literally into “in the US embassy front”. In
Chinese, the dependent word of a plmod relation
(e.g., “前” in Figure 2) occurs in the last position
of the prepositional phrase. However, in English,
this kind of word (e.g., “front” in the caption of
Figure 2) always occur directly after prepositions,
which is to say, in the second position in a preposi-
tional phrase. Therefore, we applied a rule plmod
: lobj (localizer object) to reposition the depen-
dent word of the plmod relation (e.g., “前” in Fig-
ure 2) to the position before the lobj structure (e.g.,
“美国 大使馆” in Figure 2). In this case, it also
comes directly after the preposition. Similarly, we
created a rule plmod : lccomp (clausal comple-
ment of a localizer).

rcmod Figure 3 shows an example of an rcmod
structure under an nsubj (nominal subject) struc-
ture. Here “mw” means “measure word”. As
shown in the figure, relative clause modifiers in
Chinese (e.g., “接近 夏隆 的” in Figure 3) oc-
curs before the noun being modified, which is in
contrast to English (e.g., “close to Sharon” in the
caption of Figure 3), where they come after. Thus,
we introduced a series of rules NOUN : rcmod
to restructure rcmod structures so that the noun
is moved to the head. In this example, with the
application of an nsubj : rcmod rule, the phrase
can be translated into “a senior official close to
Sharon say”, which has a word order very close
to English. Since a noun can be nsubj, dobj (di-
rect object), pobj (prepositional object) and lobj
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Type System Parser BLEU Counts #Sent.
- No pre-ordering - 29.96 - -

Constituent WR07 Berkeley 31.45 2,561,937 852,052
Dependency OUR DEP 1 Berkeley Const. 31.54 978,013 556,752

OUR DEP 2 Mate 31.57 947,441 547,084

Table 1: The comparison of four systems, including the performance (BLEU) on the test set, the total
count of each rule set and the number of sentences they were applied to on the training set.

Figure 5: An example of verb phrase with a
preposition modifier. The phrase translates into
“Musharraf told reporters here”.

in Stanford typed dependencies, we created four
rules from the NOUN pattern. Note that for some
preposition modifiers, we needed a rule rcmod :
prep to conduct the same work. For instance, the
Chinese phrase in Figure 4 can be translated into
“hold in Kabul press conference” with the appli-
cation of this rule.

prep Within verb phrases, the positions of prep
structures are quite different between Chinese and
English. Figure 5 shows an example of a verb
phrase with a preposition modifier (prep), which
literally translates into “Musharraf at this place tell
reporter”. Recognizing that prep structures occur
before the verb in Chinese (e.g., “在此地” in Fig-
ure 5) but after the verb in English (usually in the
last position of a verb phrase, e.g., “here” in the
caption of Figure 5), we applied a rule prep - dobj
to reposition prep structures after their sibling dobj
structures.

In summary, the dependency-based pre-
ordering rule set has eight rules: plmod : lobj,
plmod : lccomp, nsubj : rcmod, dobj : rcmod,
pobj : rcmod, lobj : rcmod, rcmod : prep, and
prep - dobj.

3 Experiments

We used the MOSES PBSMT system (Koehn et
al., 2007) in our experiments. The training data,
which included those data used in Wang et al.
(2007), contained 1 million pairs of sentences ex-

tracted from the Linguistic Data Consortium’s par-
allel news corpora. Our development set was
the official NIST MT evaluation data from 2002
to 2005, consisting of 4476 Chinese-English sen-
tences pairs. Our test set was the NIST 2006 MT
evaluation data, consisting of 1664 sentence pairs.
We employed the Stanford Segmenter1 to segment
all of the data sets. For evaluation, we used BLEU
scores (Papineni et al., 2002).

We implemented the constituent-based pre-
ordering rule set in Wang et al. (2007) for compar-
ison, which is called WR07 below. The Berkeley
Parser (Petrov et al., 2006) was employed for pars-
ing the Chinese sentences. For training the Berke-
ley Parser, we used Chinese Treebank (CTB) 7.0.

We conducted our dependency-based pre-
ordering experiments on the Berkeley Parser and
the Mate Parser (Bohnet, 2010), which were
shown to be the two best parsers for Stanford
typed dependencies (Che et al., 2012). First, we
converted the constituent parse trees in the re-
sults of the Berkeley Parser into dependency parse
trees by employing a tool in the Stanford Parser
(Klein and Manning, 2003). For the Mate Parser,
POS tagged inputs are required both in training
and in inference. Thus, we then extracted the
POS information from the results of the Berke-
ley Parser and used these as the pre-specified POS
tags for the Mate Parser. Finally, we applied our
dependency-based pre-ordering rule set to the de-
pendency parse trees created from the converted
Berkeley Parser and the Mate Parser, respectively.

Table 1 presents a comparison of the system
without pre-ordering, the constituent system us-
ing WR07 and two dependency systems employ-
ing the converted Berkeley Parser and the Mate
Parser, respectively. It shows the BLEU scores on
the test set and the statistics of pre-ordering on the
training set, which includes the total count of each
rule set and the number of sentences they were ap-

1http://nlp.stanford.edu/software/segmenter.shtml
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Category Count Correct Incorrect Accuracy
plmod 42 26 16 61.9%
rcmod 89 49 40 55.1%
prep 54 36 18 66.7%
All 185 111 74 60.0%

Table 2: Accuracy of the dependency-based pre-ordering rules on a set of 200 sentences randomly se-
lected from the development set.

plied to. Both of our dependency systems outper-
formed WR07 slightly but were not significant at
p = 0.05. However, both of them substantially de-
creased the total times about 60% (or 1,600,000)
for pre-ordering rule applications on the training
set, compared with WR07. In our opinion, the rea-
son for the great decrease was that the dependency
parse trees were more concise than the constituent
parse trees in describing sentences and they could
also describe the reordering at the sentence level in
a finer way. In contrast, the constituent parse trees
were more redundant and they needed more nodes
to conduct long-distance reordering. In this case,
the affect of the performance of the constituent
parsers on pre-ordering is larger than that of the
dependency ones so that the constituent parsers are
likely to bring about more incorrect pre-orderings.

Similar to Wang et al. (2007), we carried out
human evaluations to assess the accuracy of our
dependency-based pre-ordering rules by employ-
ing the system “OUR DEP 2” in Table 1. The
evaluation set contained 200 sentences randomly
selected from the development set. Among them,
107 sentences contained at least one rule and the
rules were applied 185 times totally. Since the
accuracy check for dependency parse trees took
great deal of time, we did not try to select er-
ror free (100% accurately parsed) sentences. A
bilingual speaker of Chinese and English looked
at an original Chinese phrase and the pre-ordered
one with their corresponding English phrase and
judged whether the pre-ordering obtained a Chi-
nese phrase that had a closer word order to the En-
glish one. Table 2 shows the accuracies of three
categories of our dependency-based pre-ordering
rules. The overall accuracy of this rule set is
60.0%, which is almost at the same level as the
WR07 rule set (62.1%), according to the similar
evaluation (200 sentences and one annotator) con-
ducted in Wang et al. (2007). Notice that some
of the incorrect pre-orderings may be caused by
erroneous parsing as also suggested by Wang et

al. (2007). Through human evaluations, we found
that 19 out of the total 74 incorrect pre-orderings
resulted from errors in parsing. Among them, 13
incorrect pre-orderings applied the rules of the rc-
mod category. The analysis suggests that we need
to introduce constraints on the rule application of
this category in the future.

4 Conclusion

In this paper, we introduced a novel pre-ordering
approach based on dependency parsing for a
Chinese-English PBSMT system. The results
showed that our approach achieved a BLEU score
gain of 1.61. Moreover, our dependency-based
pre-ordering rule set substantially decreased the
time for applying pre-ordering rules about 60%
compared with WR07, on the training set of 1M
sentences pairs. The overall accuracy of our rule
set is 60.0%, which is almost at the same level as
the WR07 rule set. These results indicated that
dependency parsing is more effective for conduct-
ing pre-ordering for Chinese-English PBSMT. Al-
though our work focused on Chinese, the ideas can
also be applied to other languages.

In the future, we attempt to create more efficient
pre-ordering rules by exploiting the rich informa-
tion in dependency structures.
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Abstract

We present a generalized discrimina-
tive model for spelling error correction
which targets character-level transforma-
tions. While operating at the charac-
ter level, the model makes use of word-
level and contextual information. In con-
trast to previous work, the proposed ap-
proach learns to correct a variety of er-
ror types without guidance of manually-
selected constraints or language-specific
features. We apply the model to cor-
rect errors in Egyptian Arabic dialect text,
achieving 65% reduction in word error
rate over the input baseline, and improv-
ing over the earlier state-of-the-art system.

1 Introduction

Spelling error correction is a longstanding Natural
Language Processing (NLP) problem, and it has
recently become especially relevant because of the
many potential applications to the large amount
of informal and unedited text generated online,
including web forums, tweets, blogs, and email.
Misspellings in such text can lead to increased
sparsity and errors, posing a challenge for many
NLP applications such as text summarization, sen-
timent analysis and machine translation.

In this work, we present GSEC, a Generalized
character-level Spelling Error Correction model,
which uses supervised learning to map input char-
acters into output characters in context. The ap-
proach has the following characteristics:

Character-level Corrections are learned at the
character-level1 using a supervised sequence la-
beling approach.

Generalized The input space consists of all
characters, and a single classifier is used to learn

1We use the term ‘character’ strictly in the alphabetic
sense, not the logographic sense (as in the Chinese script).

common error patterns over all the training data,
without guidance of specific rules.

Context-sensitive The model looks beyond the
context of the current word, when making a deci-
sion at the character-level.

Discriminative The model provides the free-
dom of adding a number of different features,
which may or may not be language-specific.

Language-Independent In this work, we in-
tegrate only language-independent features, and
therefore do not consider morphological or lin-
guistic features. However, we apply the model
to correct errors in Egyptian Arabic dialect text,
following a conventional orthography standard,
CODA (Habash et al., 2012).

Using the described approach, we demonstrate
a word-error-rate (WER) reduction of 65% over a
do-nothing input baseline, and we improve over
a state-of-the-art system (Eskander et al., 2013)
which relies heavily on language-specific and
manually-selected constraints. We present a de-
tailed analysis of mistakes and demonstrate that
the proposed model indeed learns to correct a
wider variety of errors.

2 Related Work

Most earlier work on automatic error correction
addressed spelling errors in English and built mod-
els of correct usage on native English data (Ku-
kich, 1992; Golding and Roth, 1999; Carlson
and Fette, 2007; Banko and Brill, 2001). Ara-
bic spelling correction has also received consider-
able interest (Ben Othmane Zribi and Ben Ahmed,
2003; Haddad and Yaseen, 2007; Hassan et al.,
2008; Shaalan et al., 2010; Alkanhal et al., 2012;
Eskander et al., 2013; Zaghouani et al., 2014).

Supervised spelling correction approaches
trained on paired examples of errors and their cor-
rections have recently been applied for non-native
English correction (van Delden et al., 2004; Li et
al., 2012; Gamon, 2010; Dahlmeier and Ng, 2012;
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Rozovskaya and Roth, 2011). Discriminative
models have been proposed at the word-level for
error correction (Duan et al., 2012) and for error
detection (Habash and Roth, 2011).

In addition, there has been growing work on lex-
ical normalization of social media data, a some-
what related problem to that considered in this pa-
per (Han and Baldwin, 2011; Han et al., 2013;
Subramaniam et al., 2009; Ling et al., 2013).

The work of Eskander et al. (2013) is the
most relevant to the present study: it presents
a character-edit classification model (CEC) using
the same dataset we use in this paper.2 Eskan-
der et al. (2013) analyzed the data to identify the
seven most common types of errors. They devel-
oped seven classifiers and applied them to the data
in succession. This makes the approach tailored to
the specific data set in use and limited to a specific
set of errors. In this work, a single model is con-
sidered for all types of errors. The model consid-
ers every character in the input text for a possible
spelling error, as opposed to looking only at cer-
tain input characters and contexts in which they
appear. Moreover, in contrast to Eskander et al.
(2013), it looks beyond the boundary of the cur-
rent word.

3 The GSEC Approach

3.1 Modeling Spelling Correction at the
Character Level

We recast the problem of spelling correction into
a sequence labeling problem, where for each input
character, we predict an action label describing
how to transform it to obtain the correct charac-
ter. The proposed model therefore transforms a
given input sentence e = e1, . . . , en of n char-
acters that possibly include errors, to a corrected
sentence c of m characters, where corrected char-
acters are produced by one of the following four
actions applied to each input character ei :

• ok: ei is passed without transformation.
• substitute − with(c): ei is substituted with

a character c where c could be any character
encountered in the training data.
• delete: ei is deleted.
• insert(c): A character c is inserted before
ei. To address errors occurring at the end

2Eskander et al. (2013) also considered a slower, more
expensive, and more language-specific method using a mor-
phological tagger (Habash et al., 2013) that outperformed the
CEC model; however, we do not compare to it in this paper.

Input Action Label
k substitute-with(c)
o ok
r insert(r)
e ok
c ok
t ok
d delete

Table 1: Character-level spelling error correction process
on the input word korectd, with the reference word correct

Train Dev Test
Sentences 10.3K 1.67K 1.73K
Characters 675K 106K 103K
Words 134K 21.1K 20.6K

Table 2: ARZ Egyptian dialect corpus statistics

of the sentence, we assume the presence of a
dummy sentence-final stop character.

We use a multi-class SVM classifier to predict the
action labels for each input character ei ∈ e. A
decoding process is then applied to transform the
input characters accordingly to produce the cor-
rected sentence. Note that we consider the space
character as a character like any other, which gives
us the ability to correct word merge errors with
space character insertion actions and word split er-
rors with space character deletion actions. Table 1
shows an example of the spelling correction pro-
cess.

In this paper, we only model single-edit actions
and ignore cases where a character requires mul-
tiple edits (henceforth, complex actions), such as
multiple insertions or a combination of insertions
and substitutions. This choice was motivated by
the need to reduce the number of output labels, as
many infrequent labels are generated by complex
actions. An error analysis of the training data, de-
scribed in detail in section 3.2, showed that com-
plex errors are relatively infrequent (4% of data).
We plan to address these errors in future work.

Finally, in order to generate the training data
in the described form, we require a parallel cor-
pus of erroneous and corrected reference text (de-
scribed below), which we align at the character
level. We use the alignment tool Sclite (Fiscus,
1998), which is part of the SCTK Toolkit.

3.2 Description of Data

We apply our model to correcting Egyptian Ara-
bic dialect text. Since there is no standard dialect
orthography adopted by native speakers of Ara-
bic dialects, it is common to encounter multiple
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Action % Errors Example Error⇒ Reference
Substitute 80.9
E Alif A @ forms ( @/



@/ @
/

�
@AÂ/Ǎ/Ā) 33.3 AHdhm⇒ ÂHdhm ÑëYg@⇒ ÑëYg



@

EYa ø
 /ø forms ( y/ý) 26.7 ςly⇒ ςlý ú
Î«⇒úÎ«
Eh/~ è/ �è , h/w è/ð forms 14.9 kfrh⇒ kfr~ èQ 	®»⇒ �èQ 	®»
Eh/H è/h forms 2.2 htςmlhA⇒ HtςmlhA AêÊÒª�Jë⇒ AêÊÒª�Jk
Other substitutions 3.8 AltAny~⇒ AlθAny~ �éJ
 	K A�JË @⇒ �éJ
 	K A�JË @ ; dA⇒ dh @X⇒ èX
Insert 10.5
EPInsert {A} 3.0 ktbw⇒ ktbwA ñJ. �J»⇒ @ñJ. �J»
EPInsert {space} 2.9 mAtzςlš⇒ mA tzςlš ��Ê« 	Q�KAÓ⇒ ��Ê« 	Q�K AÓ
Other insertion actions 4.4 Aly⇒ Ally ú
Í@⇒ ú
Î�Ë @
Delete 4.7
E Del{A} 2.4 whmA⇒ whm AÒëð⇒ Ñëð

Other deletion actions 2.3 wfyh⇒ wfy éJ
 	̄ð⇒ ú

	̄ ð

Complex 4.0 mykwnš⇒ mA ykwnš ��	�ñºJ
Ó⇒ ��	�ñºK
 AÓ

Table 3: Character-level distribution of correction labels. We model all types of transformations except complex actions, and
rare Insert labels with counts below a tuned threshold. The Delete label is a single label that comprises all deletion actions.
Labels modeled by Eskander et al. (2013) are marked with E, and EP for cases modeled partially, for example, the Insert{A}
would only be applied at certain positions such as the end of the word.

spellings of the same word. The CODA orthogra-
phy was proposed by Habash et al. (2012) in an
attempt to standardize dialectal writing, and we
use it as a reference of correct text for spelling
correction following the previous work by Eskan-
der et al. (2013). We use the same corpus (la-
beled "ARZ") and experimental setup splits used
by them. The ARZ corpus was developed by
the Linguistic Data Consortium (Maamouri et al.,
2012a-e). See Table 2 for corpus statistics.

Error Distribution Table 3 presents the distri-
bution of correction action labels that correspond
to spelling errors in the training data together with
examples of these errors.3 We group the ac-
tions into: Substitute, Insert, Delete, and Complex,
and also list common transformations within each
group. We further distinguish between the phe-
nomena modeled by our system and by Eskander
et al. (2013). At least 10% of all generated action
labels are not handled by Eskander et al. (2013).

3.3 Features
Each input character is represented by a feature
vector. We include a set of basic features inspired
by Eskander et al. (2013) in their CEC system and
additional features for further improvement.

Basic features We use a set of nine basic fea-
tures: the given character, the preceding and fol-
lowing two characters, and the first two and last

3Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007). For more informa-
tion on Arabic orthography in NLP, see (Habash, 2010).

two characters in the word. These are the same
features used by CEC, except that CEC does
not include characters beyond the word boundary,
while we consider space characters as well as char-
acters from the previous and next words.

Ngram features We extract sequences of char-
acters corresponding to the current character and
the following and previous two, three, or four
characters. We refer to these sequences as bi-
grams, trigrams, or 4-grams, respectively. These
are an extension of the basic features and allow
the model to look beyond the context of the cur-
rent word.

3.4 Maximum Likelihood Estimate (MLE)

We implemented another approach for error cor-
rection based on a word-level maximum likeli-
hood model. The MLE method uses a unigram
model which replaces each input word with its
most likely correct word based on counts from the
training data. The intuition behind MLE is that it
can easily correct frequent errors; however, it is
quite dependent on the training data.

4 Experiments

4.1 Model Evaluation

Setup The training data was extracted to gener-
ate the form described in Section 3.1, using the
Sclite tool (Fiscus, 1998) to align the input and
reference sentences. A speech effect handling step
was applied as a preprocessing step to all models.
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This step removes redundant repetitions of charac-
ters in sequence, e.g., Q�
J
�
J
�
�J» ktyyyyyr ‘veeeeery’.
The same speech effect handling was applied by
Eskander et al. (2013).

For classification, we used the SVM implemen-
tation in YamCha (Kudo and Matsumoto, 2001),
and trained with different variations of the fea-
tures described above. Default parameters were
selected for training (c=1, quadratic kernel, and
context window of +/- 2).

In all results listed below, the baseline corre-
sponds to the do-nothing baseline of the input text.

Metrics Three evaluation metrics are used. The
word-error-rate WER metric is computed by sum-
ming the total number of word-level substitution
errors, insertion errors, and deletion errors in the
output, and dividing by the number of words in the
reference. The correct-rate Corr metric is com-
puted by dividing the number of correct output
words by the total number of words in the refer-
ence. These two metrics are produced by Sclite
(Fiscus, 1998), using automatic alignment. Fi-
nally, the accuracy Acc metric, used by Eskander
et al. (2013), is a simple string matching metric
which enforces a word alignment that pairs words
in the reference to those of the output. It is cal-
culated by dividing the number of correct output
words by the number of words in the input. This
metric assumes no split errors in the data (a word
incorrectly split into two words), which is the case
in the data we are working with.

Character-level Model Evaluation The per-
formance of the generalized spelling correction
model (GSEC) on the dev data is presented in the
first half of Table 4. The results of the Eskan-
der et al. (2013) CEC system are also presented
for the purpose of comparison. We can see that
using a single classifier, the generalized model is
able to outperform CEC, which relies on a cascade
of classifiers (p = 0.03 for the basic model and
p < 0.0001 for the best model, GSEC+4grams).4

Model Combination Evaluation Here we
present results on combining GSEC with the
MLE component (GSEC+MLE). We combine the
two models in cascade: the MLE component is
applied to the output of GSEC. To train the MLE
model, we use the word pairs obtained from the
original training data, rather than from the output
of GSEC. We found that this configuration allows

4Significance results are obtained using McNemar’s test.

Approach Corr%/WER Acc%
Baseline 75.9/24.2 76.8
CEC 88.7/11.4 90.0
GSEC 89.7/10.4* 90.3*
GSEC+2grams 90.6/9.5* 91.2*
GSEC+4grams 91.0/9.2* 91.6*
MLE 89.7/10.4 90.5
CEC + MLE 90.8/9.4 91.5
GSEC+MLE 91.0/9.2 91.3
GSEC+4grams+ MLE 91.7/8.3* 92.2*

Table 4: Model Evaluation. GSEC represents the gener-
alized character-level model. CEC represents the character-
level-edit classification model of Eskander et al. (2013).
Rows marked with an asterisk (*) are statistically signifi-
cant compared to CEC (for the first half of the table) or
CEC+MLE (for the second half of the table), with p < 0.05.

us to include a larger sample of word pair errors
for learning, because our model corrects many
errors, leaving fewer example pairs to train an
MLE post-processor. The results are shown in the
second half of Table 4.

We first observe that MLE improves the per-
formance of both CEC and GSEC. In fact,
CEC+MLE and GSEC+MLE perform similarly
(p = 0.36, not statistically significant). When
adding features that go beyond the word bound-
ary, we achieve an improvement over MLE,
GSEC+MLE, and CEC+MLE, all of which are
mostly restricted within the boundary of the word.
The best GSEC model outperforms CEC+MLE
(p < 0.0001), achieving a WER of 8.3%, corre-
sponding to 65% reduction compared to the base-
line. It is worth noting that adding the MLE com-
ponent allows Eskander’s CEC to recover various
types of errors that were not modeled previously.
However, the contribution of MLE is limited to
words that are in the training data. On the other
hand, because GSEC is trained on character trans-
formations, it is likely to generalize better to words
unseen in the training data.

Results on Test Data Table 5 presents the re-
sults of our best model (GSEC+4grams), and best
model+MLE. The latter achieves a 92.1% Acc
score. The Acc score reported by Eskander et al.
(2013) for CEC+MLE is 91.3% . The two results
are statistically significant (p < 0.0001) with re-
spect to CEC and CEC+MLE respectively.

Approach Corr%/WER Acc%
Baseline 74.5/25.5 75.5
GSEC+4grams 90.9/9.1 91.5
GSEC+4grams+ MLE 91.8/8.3 92.1

Table 5: Evaluation on test data.
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4.2 Error Analysis
To gain a better understanding of the performance
of the models on different types of errors and their
interaction with the MLE component, we separate
the words in the dev data into: (1) words seen in
the training data, or in-vocabulary words (IV), and
(2) out-of-vocabulary (OOV) words not seen in
the training data. Because the MLE model maps
every input word to its most likely gold word seen
in the training data, we expect the MLE compo-
nent to recover a large portion of errors in the IV
category (but not all, since an input word can have
multiple correct readings depending on the con-
text). On the other hand, the recovery of errors in
OOV words indicates how well the character-level
model is doing independently of the MLE compo-
nent. Table 6 presents the performance, using the
Acc metric, on each of these types of words. Here
our best model (GSEC+4grams) is considered.

#Inp Words Baseline CEC+MLE GSEC+MLE
OOV 3,289 (17.2%) 70.7 76.5 80.5
IV 15,832 (82.8%) 78.6 94.6 94.6
Total 19,121 (100%) 77.2 91.5 92.2

Table 6: Accuracy of character-level models shown sepa-
rately on out-of-vocabulary and in-vocabulary words.

When considering words seen in the training
data, CEC and GSEC have the same performance.
However, when considering OOV words, GSEC
performs significantly better (p < 0.0001), veri-
fying our hypothesis that a generalized model re-
duces dependency on training data. The data is
heavily skewed towards IV words (83%), which
explains the generally high performance of MLE.

We performed a manual error analysis on a sam-
ple of 50 word errors from the IV set and found
that all of the errors came from gold annotation er-
rors and inconsistencies, either in the dev or train.
We then divided the character transformations in
the OOV words into four groups: (1) characters
that were unchanged by the gold (X-X transforma-
tions), (2) character transformations modeled by
CEC (X-Y CEC), (3) character transformations not
modeled by CEC, and which include all phenom-
ena that were only partially modeled by CEC (X-Y
not CEC), and (4) complex errors. The character-
level accuracy on each of these groups is shown in
Table 7.

Both CEC and GSEC do much better on the
second group of character transformations (that
is, X-Y CEC) than on the third group (X-Y not
CEC). This is not surprising because the former

Type #Chars Example CEC GSEC
X-X 16502 m-m, space-space 99.25 99.33
X-Y 609 ~-h, h-~, Ǎ-A 80.62 83.09
(CEC) A-Ǎ, y-ý
X-Y 161 t-θ , del{w} 31.68 43.48
(not CEC) n-ins{space}
Complex 32 n-ins{A}{m} 37.5 15.63

Table 7: Character-level accuracy on different transforma-
tion types for out-of-vocabulary words. For complex trans-
formations, the accuracy represents the complex category
recognition rate, and not the actual correction accuracy.

transformations correspond to phenomena that are
most common in the training data. For GSEC,
they are learned automatically, while for CEC they
are selected and modeled explicitly. Despite this
fact, GSEC generalizes better to OOV words. As
for the third group, both CEC and GSEC per-
form more poorly, but GSEC corrects more errors
(43.48% vs. 31.68% accuracy). Finally, CEC is
better at recognizing complex errors, which, al-
though are not modeled explicitly by CEC, can
sometimes be corrected as a result of applying
multiple classifiers in cascade. Dealing with com-
plex errors, though there are few of them in this
dataset, is an important direction for future work,
and for generalizing to other datasets, e.g., (Za-
ghouani et al., 2014).

5 Conclusions

We showed that a generalized character-level
spelling error correction model can improve
spelling error correction on Egyptian Arabic data.
This model learns common spelling error patterns
automatically, without guidance of manually se-
lected or language-specific constraints. We also
demonstrate that the model outperforms existing
methods, especially on out-of-vocabulary words.

In the future, we plan to extend the model to use
word-level language models to select between top
character predictions in the output. We also plan
to apply the model to different datasets and differ-
ent languages. Finally, we plan to experiment with
more features that can also be tailored to specific
languages by using morphological and linguistic
information, which was not explored in this paper.
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Abstract

Noisy channel models, widely used in
modern spellers, cope with typical mis-
spellings, but do not work well with infre-
quent and difficult spelling errors. In this
paper, we have improved the noisy chan-
nel approach by iterative stochastic search
for the best correction. The proposed al-
gorithm allowed us to avoid local minima
problem and improve the F1 measure by
6.6% on distant spelling errors.

1 Introduction

A speller is an essential part of any program as-
sociated with text input and processing — e-mail
system, search engine, browser, form editor etc.
To detect and correct spelling errors, the state of
the art spelling correction systems use the noisy
channel approach (Kernighan et al., 1990; Mays
et al., 1991; Brill and Moore, 2000). Its models
are usually trained on large corpora and provide
high effectiveness in correction of typical errors
(most of which consist of 1-2 wrong characters per
word), but does not work well for complex (multi-
character) and infrequent errors.

In this paper, we improved effectiveness of
the noisy channel for the correction of com-
plex errors. In most cases, these are cogni-
tive errors in loan words (folsvagen → volkswa-
gen), names of drugs (vobemzin → wobenzym),
names of brands (scatcher→ skechers), scientific
terms (heksagidron→ hexahedron) and last names
(Shwartzneger → Schwarzenegger). In all these
cases, the misspelled word contains many errors
and the corresponding error model penalty cannot
be compensated by the LM weight of its proper
form. As a result, either the misspelled word it-
self, or the other (less complicated, more frequent)
misspelling of the same word wins the likelihood
race.

To compensate for this defect of the noisy chan-
nel, the iterative approach (Cucerzan and Brill,
2004) is typically used. The search for the best
variant is repeated several times, what allows cor-
recting rather complex errors, but does not com-
pletely solve the problem of falling into local min-
ima. To overcome this issue we suggest to con-
sider more correction hypotheses. For this pur-
pose we used a method based on the simulated
annealing algorithm. We experimentally demon-
strate that the proposed method outperforms the
baseline noisy channel and iterative spellers.

Many authors employ machine learning to build
rankers that compensate for the drawbacks of the
noisy channel model: (Whitelaw et al., 2009; Gao
et al., 2010). These techniques can be combined
with the proposed method by replacing posterior
probability of single correction in our method with
an estimate obtained via discriminative training
method.

In our work, we focus on isolated word-error
correction (Kukich, 1992), which, in a sense, is a
harder task, than multi-word correction, because
there is no context available for misspelled words.
For experiments we used single-word queries to a
commercial search engine.

2 Baseline speller

2.1 Noisy channel spelling correction
Noisy channel is a probabilistic model that defines
posterior probability P (q0|q1) of q0 being the in-
tended word, given the observed word q1; for such
model, the optimal decision rule µ is the follow-
ing:

µ(q1) = arg max
q0

P (q0|q1);
P (q0|q1) ∝ Pdist(q0 → q1)PLM(q0),

(1)

where PLM is the source (language) model, and
Pdist is the error model. Given P (q0|q1) defined,
to correct the word q1 we could iterate through
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all ever-observed words, and choose the one, that
maximizes the posterior probability. However,
the practical considerations demand that we do
not rank the whole list of words, but instead
choose between a limited number of hypotheses
h1, ..., hK :

1. Given q1, generate a set of hypotheses
h1, ..., hK , such that

K∑
k=1

P (q0 = hk|q1) ≈ 1; (2)

2. Choose the hypothesis hk that maximizes
P (q0 = hk|q1).

If hypotheses constitute a major part of the poste-
rior probability mass, it is highly unlikely that the
intended word is not among them.

2.2 Baseline speller setup
In baseline speller we use a substring-based error
model Pdist(q0 → q1) described in (Brill and
Moore, 2000), the error model training method
and the hypotheses generator are similar to (Duan
and Hsu, 2011).

For building language (PLM′) and error (Pdist′)
models, we use words collected from the 6-months
query log of a commercial search engine.

Hypotheses generator is based on A* beam
search in a trie of words, and yields K hy-
potheses hk, for which the noisy channel scores
Pdist(hk → q1)PLM(hk) are highest possible.
Hypotheses generator has high K-best recall (see
Section 4.2) — in 91.8% cases the correct hy-
pothesis is found when K = 30, which confirms
the assumption about covering almost all posterior
probability mass (see Equation 2).

3 Improvements for noisy channel
spelling correction

While choosing arg max of the posterior probabil-
ity is an optimal decision rule in theory, in practice
it might not be optimal, due to limitations of the
language and error modeling. For example, vobe-
mzin is corrected to more frequent misspelling
vobenzin (instead of correct form wobenzym) by
the noisy channel, because Pdist(vobemzin →
wobenzym) is too low (see Table 1).

There have been attempts (Cucerzan and Brill,
2004) to apply other rules, which would over-
come limitations of language and error models
with compensating changes described further.

c − logPdist − logPLM
∑

vobenzin 2.289 31.75 34.04
wobenzym 12.52 26.02 38.54

Table 1: Noisy-channel scores for two corrections
of vobemzin

3.1 Iterative correction

Iterative spelling correction with E iterations uses
standard noisy-channel to correct the query q re-
peatedly E times. It is motivated by the assump-
tion, that we are more likely to successfully correct
the query if we take several short steps instead of
one big step (Cucerzan and Brill, 2004) .

Iterative correction is hill climbing in the space
of possible corrections: on each iteration we make
a transition to the best point in the neighbourhood,
i.e. to correction, that has maximal posterior prob-
ability P (c|q). As any local search method, itera-
tive correction is prone to local minima, stopping
before reaching the correct word.

3.2 Stochastic iterative correction

A common method of avoiding local minima in
optimization is the simulated annealing algorithm,
key ideas from which can be adapted for spelling
correction task. In this section we propose such an
adaptation. Consider: we do not always transition
deterministically to the next best correction, but
instead transition randomly to a (potentially any)
correction with transition probability being equal
to the posterior P (ci|ci−1), where ci−1 is the cor-
rection we transition from, ci is the correction we
transition to, and P (·|·) is defined by Equation 1.
Iterative correction then turns into a random walk:
we start at word c0 = q and stop after E ran-
dom steps at some word cE , which becomes our
answer.

To turn random walk into deterministic spelling
correction algorithm, we de-randomize it, using
the following transformation. Described random
walk defines, for each word w, a probability
P (cE = w|q) of ending up in w after starting a
walk from the initial query q. With that probability
defined, our correction algorithm is the following:
given query q, pick c = arg maxcE P (cE |q) as a
correction.

Probability of getting from c0 = q to some
cE = c is a sum, over all possible paths, of prob-
abilities of getting from q to c via specific path
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q = c0 → c1 → ...→ cE−1 → cE = c:

P (cE |c0) =
∑
c1∈W
...

cE−1∈W

E∏
i=1

P (ci|ci−1), (3)

P (ci|ci−1) =
Pdist(ci → ci−1)PLM(ci)

Pobserve(ci−1)
, (4)

where W is the set of all possible words, and
Pobserve(w) is the probability of observing w as
a query in the noisy-channel model.

Example: if we start a random walk from vobe-
mzin and make 3 steps, we most probably will end
up in the correct form wobenzym with P = 0.361.
A few of the most probable random walk paths
are shown in Table 2. Note, that despite the fact
that most probable path does not lead to the cor-
rect word, many other paths to wobenzym sum up
to 0.361, which is greater than probability of any
other word. Also note, that the method works only
because multiple misspellings of the same word
are presented in our model; for related research
see (Choudhury et al., 2007).

c0 → c1 → c2 → c3 P
vobemzin→vobenzin→vobenzin→vobenzin 0.074
vobemzin→vobenzim→wobenzym→wobenzym 0.065
vobemzin→vobenzin→vobenzim→vobenzim 0.052
vobemzin→vobenzim→vobenzim→wobenzym 0.034
vobemzin→wobenzym→wobenzym→wobenzym 0.031
vobemzin→wobenzim→wobenzym→wobenzym 0.028
vobemzin→wobenzyn→wobenzym→wobenzym 0.022

Table 2: Most probable random walk paths start-
ing from c0 = q = vobemzin (the correct form is
in bold).

Also note, that while Equation 3 uses noisy-
channel posteriors, the method can use an arbitrary
discriminative model, for example the one from
(Gao et al., 2010), and benefit from a more accu-
rate posterior estimate.

3.3 Additional heuristics

This section describes some common heuristic im-
provements, that, where possible, were applied
both to the baseline methods and to the proposed
algorithm.

Basic building block of every mentioned algo-
rithm is one-step noisy-channel correction. Each
basic correction proceeds as described in Sec-
tion 2.1: a small number of hypotheses h1, ..., hK
is generated for the query q, hypotheses are scored,

and scores are recomputed into normalized pos-
terior probabilities (see Equation 5). Posterior
probabilities are then either used to pick the best
correction (in baseline and simple iterative cor-
rection), or are accumulated to later compute the
score defined by Equation 3.

score(hi) = Pdist(hi → q)λPLM(hi)

P (hi|q) = score(hi)
/ K∑

j=1

score(hj)
(5)

A standard log-linear weighing trick was ap-
plied to noisy-channel model components, see e.g.
(Whitelaw et al., 2009). λ is the parameter that
controls the trade-off between precision and recall
(see Section 4.2) by emphasizing the importance
of either the high frequency of the correction or its
proximity to the query.

We have also found, that resulting posterior
probabilities emphasize the best hypothesis too
much: best hypothesis gets almost all probability
mass and other hypotheses get none. To compen-
sate for that, posteriors were smoothed by raising
each probability to some power γ < 1 and re-
normalizing them afterward:

Psmooth(hi|q) = P (hi|q)γ
/ K∑

j=1

P (hj |q)γ . (6)

In a sense, γ is like temperature parameter in sim-
ulated annealing – it controls the entropy of the
walk and the final probability distribution. Unlike
in simulated annealing, we fix γ for all iterations
of the algorithm.

Finally, if posterior probability of the best hy-
pothesis was lower than threshold α, then the orig-
inal query q was used as the spell-checker output.
(Posterior is defined by Equation 6 for the baseline
and simple iterative methods and by Equations 3
and 6 for the proposed method). Parameter α con-
trols precision/recall trade-off (as well as λ men-
tioned above).

4 Experiments

4.1 Data
To evaluate the proposed algorithm we have col-
lected two datasets. Both datasets were randomly
sampled from single-word user queries from the
1-week query log of a commercial search en-
gine. We annotated them with the help of pro-
fessional analyst. The difference between datasets
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is that one of them contained only queries with
low search performance: for which the number
of documents retrieved by the search engine was
less than a fixed threshold (we will address it as
the ”hard” dataset), while the other dataset had
no such restrictions (we will call it ”common”).
Dataset statistics are shown in Table 3.

Dataset Queries Misspelled Avg. − logPdist

Common 2240 224 (10%) 5.98
Hard 2542 1484 (58%) 9.23

Table 3: Evaluation datasets.

Increased average error model score and er-
ror rate of ”common” dataset compared to ”hard”
shows, that we have indeed managed to collect
hard-to-correct queries in the ”hard” dataset.

4.2 Experimental results

First of all, we evaluated the recall of hypothe-
ses generator using K-best recall — the number of
correct spelling corrections for misspelled queries
among K hypotheses divided by the total number
of misspelled queries in the test set. Resulting re-
call with K = 30 is 91.8% on ”hard” and 98.6%
on ”common”.

Next, three spelling correction methods were
tested: noisy channel, iterative correction and our
method (stochastic iterative correction).

For evaluation of spelling correction quality, we
use the following metrics:

• Precision: The number of correct spelling
corrections for misspelled words generated
by the system divided by the total number of
corrections generated by the system;

• Recall: The number of correct spelling cor-
rections for misspelled words generated by
the system divided by the total number of
misspelled words in the test set;

For hypotheses generator, K = 30 was fixed: re-
call of 91.8% was considered big enough. Pre-
cision/recall tradeoff parameters λ and α (they
are applicable to each method, including baseline)
were iterated by the grid (0.2, 0.25, 0.3, ..., 1.5)×
(0, 0.025, 0.05, ..., 1.0), and E (applicable to it-
erative and our method) and γ (just our method)
were iterated by the grid (2, 3, 4, 5, 7, 10) ×
(0.1, 0.15, ...1.0); for each set of parameters, pre-
cision and recall were measured on both datasets.
Pareto frontiers for precision and recall are shown
in Figures 1 and 2.

Figure 1: Precision/recall Pareto frontiers on
”hard” dataset

Figure 2: Precision/recall Pareto frontiers on
”common” dataset

We were not able to reproduce superior perfor-
mance of the iterative method over the noisy chan-
nel, reported by (Cucerzan and Brill, 2004). Sup-
posedly, it is because the iterative method bene-
fits primarily from the sequential application of
split/join operations altering query decomposition
into words; since we are considering only one-
word queries, such decomposition does not matter.

On the ”hard” dataset the performance of the
noisy channel and the iterative methods is infe-
rior to our proposed method, see Figure 1. We
tested all three methods on the ”common” dataset
as well to evaluate if our handling of hard cases
affects the performance of our approach on the
common cases of spelling error. Our method per-
forms well on the common cases as well, as Fig-
ure 2 shows. The performance comparison for
the ”common” dataset shows comparable perfor-
mance for all considered methods.

Noisy channel and iterative methods’ frontiers
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are considerably inferior to the proposed method
on ”hard” dataset, which means that our method
works better. The results on ”common” dataset
show, that the proposed method doesn’t work
worse than baseline.

Next, we optimized parameters for each method
and each dataset separately to achieve the highest
F1 measure. Results are shown in Tables 4 and 5.
We can see, that, given the proper tuning, our
method can work better on any dataset (but it can-
not achieve the best performance on both datasets
at once). See Tables 4 and 5 for details.

Method λ α γ E F1

Noisy channel 0.6 0.1 - - 55.8
Iterative 0.6 0.1 - 2 55.9

Stochastic iterative 0.9 0.2 0.35 3 62.5

Table 4: Best parameters and F1 on ”hard” dataset

Method λ α γ E F1

Noisy channel 0.75 0.225 - - 62.06
Iterative 0.8 0.275 - 2 63.15

Stochastic iterative 1.2 0.4 0.35 3 63.9

Table 5: Best parameters and F1 on ”common”
dataset

Next, each parameter was separately iterated
(by a coarser grid); initial parameters for each
method were taken from Table 4. Such iteration
serves two purposes: to show the influence of pa-
rameters on algorithm performance, and to show
differences between datasets: in such setup pa-
rameters are virtually tuned using ”hard” dataset
and evaluated using ”common” dataset. Results
are shown in Table 6.

The proposed method is able to successfully
correct distant spelling errors with edit distance of
3 characters (see Table 7).

However, if our method is applied to shorter
and more frequent queries (as opposed to ”hard”
dataset), it tends to suggest frequent words as
false-positive corrections (for example, grid is cor-
rected to creed – Assassin’s Creed is popular video
game). As can be seen in Table 5, in order to fix
that, algorithm parameters need to be tuned more
towards precision.

5 Conclusion and future work

In this paper we introduced the stochastic itera-
tive correction method for spell check corrections.
Our experimental evaluation showed that the pro-
posed method improved the performance of popu-

F1, common F1, hard
N.ch. It. Our N.ch. It. Our

λ = 0.5 45.3 45.9 37.5 54.9 54.8 50.0
0.6 49.9 50.5 41.5 55.8 55.9 56.6
0.7 50.4 50.4 44.1 54.5 55.1 59.6
0.8 52.7 52.7 46.0 52.6 53.0 61.5
0.9 53.5 53.5 49.3 50.3 50.6 62.5
1.0 55.4 55.0 50.9 47.0 47.3 61.8
1.1 53.7 53.4 52.7 44.3 44.6 60.8
1.2 52.5 52.5 53.7 41.9 42.3 58.8
1.3 52.2 52.6 54.6 39.5 39.9 56.6
1.4 51.4 51.8 55.0 36.8 37.3 53.6

α = 0 41.0 41.5 33.0 52.9 53.1 58.3
0.1 49.9 50.6 35.6 55.8 55.9 59.7

0.15 59.4 59.8 43.2 55.8 55.6 61.6
0.2 60.8 61.3 49.4 51.0 51.0 62.5

0.25 54.0 54.0 54.9 46.3 46.3 61.1
0.3 46.3 46.3 57.3 39.2 39.2 58.4
0.4 25.8 25.8 53.9 22.3 22.3 50.3

E = 2 50.6 53.6 55.9 60.4
3 50.6 49.4 55.9 62.5
4 50.6 46.4 55.9 62.1
5 50.6 46.7 55.9 60.1

γ = 0.1 10.1 6.0
0.2 49.4 51.5
0.3 51.4 61.4

0.35 49.4 62.5
0.4 47.5 62.0

0.45 45.8 60.8
0.5 45.2 60.3

Table 6: Per-coordinate iteration of parameters
from Table 4; per-method maximum is shown in
italic, per-dataset in bold

Query Noisy channel Proposed method
akwamarin akvamarin aquamarine
maccartni maccartni mccartney
ariflaim ariflaim oriflame
epika epica replica
grid grid creed

Table 7: Correction examples for the noisy chan-
nel and the proposed method.

lar spelling correction approach – the noisy chan-
nel model – in the correction of difficult spelling
errors. We showed how to eliminate the local min-
ima issue of simulated annealing and proposed a
technique to make our algorithm deterministic.

The experiments conducted on the specialized
datasets have shown that our method significantly
improves the performance of the correction of
hard spelling errors (by 6.6% F1) while maintain-
ing good performance on common spelling errors.

In continuation of the work we are considering
to expand the method to correct errors in multi-
word queries, extend the method to work with dis-
criminative models, and use a query performance
prediction method, which tells for a query whether
our algorithm needs to be applied.
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Abstract
Automated methods for identifying
whether sentences are grammatical
have various potential applications (e.g.,
machine translation, automated essay
scoring, computer-assisted language
learning). In this work, we construct a
statistical model of grammaticality using
various linguistic features (e.g., mis-
spelling counts, parser outputs, n-gram
language model scores). We also present
a new publicly available dataset of learner
sentences judged for grammaticality on
an ordinal scale. In evaluations, we
compare our system to the one from Post
(2011) and find that our approach yields
state-of-the-art performance.

1 Introduction

In this paper, we develop a system for the task
of predicting the grammaticality of sentences, and
present a dataset of learner sentences rated for
grammaticality. Such a system could be used, for
example, to check or to rank outputs from systems
for text summarization, natural language genera-
tion, or machine translation. It could also be used
in educational applications such as essay scoring.

Much of the previous research on predicting
grammaticality has focused on identifying (and
possibly correcting) specific types of grammati-
cal errors that are typically made by English lan-
guage learners, such as prepositions (Tetreault and
Chodorow, 2008), articles (Han et al., 2006), and
collocations (Dahlmeier and Ng, 2011). While
some applications (e.g., grammar checking) rely
on such fine-grained predictions, others might be
better addressed by sentence-level grammaticality
judgments (e.g., machine translation evaluation).

Regarding sentence-level grammaticality, there
has been much work on rating the grammatical-

ity of machine translation outputs (Gamon et al.,
2005; Parton et al., 2011), such as the MT Quality
Estimation Shared Tasks (Bojar et al., 2013, §6),
but relatively little on evaluating the grammatical-
ity of naturally occurring text. Also, most other re-
search on evaluating grammaticality involves arti-
ficial tasks or datasets (Sun et al., 2007; Lee et al.,
2007; Wong and Dras, 2010; Post, 2011).

Here, we make the following contributions.

• We develop a state-of-the-art approach for
predicting the grammaticality of sentences on
an ordinal scale, adapting various techniques
from the previous work described above.

• We create a dataset of grammatical and un-
grammatical sentences written by English
language learners, labeled on an ordinal scale
for grammaticality. With this unique data set,
which we will release to the research com-
munity, it is now possible to conduct realis-
tic evaluations for predicting sentence-level
grammaticality.

2 Dataset Description

We created a dataset consisting of 3,129 sentences
randomly selected from essays written by non-
native speakers of English as part of a test of
English language proficiency. We oversampled
lower-scoring essays to increase the chances of
finding ungrammatical sentences. Two of the au-
thors of this paper, both native speakers of English
with linguistic training, annotated the data. We
refer to these annotators as expert judges. When
making judgments of the sentences, they saw the
previous sentence from the same essay as context.
These two authors were not directly involved in
development of the system in §3.

Each sentence was annotated on a scale from
1 to 4 as described below, with 4 being the most
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grammatical. We use an ordinal rather than bi-
nary scale, following previous work such as that of
Clark et al. (2013) and Crocker and Keller (2005)
who argue that the distinction between grammati-
cal and ungrammatical is not simply binary. Also,
for practical applications, we believe that it is use-
ful to distinguish sentences with minor errors from
those with major errors that may disrupt communi-
cation. Our annotation scheme was influenced by
a translation rating scheme by Coughlin (2003).

Every sentence judged on the 1–4 scale must be
a clause. There is an extra category (“Other”) for
sentences that do not fit this criterion. We exclude
instances of “Other” in our experiments (see §4).

4. Perfect The sentence is native-sounding. It has
no grammatical errors, but may contain very mi-
nor typographical and/or collocation errors, as in
Example (1).

(1) For instance, i stayed in a dorm when i
went to collge.

3. Comprehensible The sentence may contain
one or more minor grammatical errors, includ-
ing subject-verb agreement, determiner, and mi-
nor preposition errors that do not make the mean-
ing unclear, as in Example (2).

(2) We know during Spring Festival, Chinese
family will have a abundand family banquet
with family memebers.

“Chinese family”, which could be corrected to
“Chinese families”, “each Chinese family”, etc.,
would be an example of a minor grammatical er-
ror involving determiners.

2. Somewhat Comprehensible The sentence
may contain one or more serious grammatical
errors, including missing subject, verb, object,
etc., verb tense errors, and serious preposition
errors. Due to these errors, the sentence may
have multiple plausible interpretations, as in
Example (3).

(3) I can gain the transportations such as buses
and trains.

1. Incomprehensible The sentence contains so
many errors that it would be difficult to correct,
as in Example (4).

(4) Or you want to say he is only a little boy do
not everything clearly?

The phrase “do not everything” makes the sen-
tence practically incomprehensible since the sub-
ject of “do” is not clear.

O. Other/Incomplete This sentence is incom-
plete. These sentences, such as Example (5), ap-
pear in our corpus due to the nature of timed tests.

(5) The police officer handed the

This sentence is cut off and does not at least in-
clude one clause.

We measured interannotator agreement on a
subset of 442 sentences that were independently
annotated by both expert annotators. Exact agree-
ment was 71.3%, unweighted κ = 0.574, and
Pearson’s r = 0.759.1 For our experiments, one
expert annotator was arbitrarily selected, and for
the doubly-annotated sentences, only the judg-
ments from that annotator were retained.

The labels from the expert annotators are dis-
tributed as follows: 72 sentences are labeled 1;
538 are 2; 1,431 are 3; 978 are 4; and 110 are “O”.

We also gathered 5 additional judgments using
Crowdflower.2 For this, we excluded the “Other”
category and any sentences that had been marked
as such by the expert annotators. We used 100
(3.2%) of the judged sentences as “gold” data in
Crowdflower to block contributors who were not
following the annotation guidelines. For those
sentences, only disagreements within 1 point of
the expert annotator judgment were accepted. In
preliminary experiments, averaging the six judg-
ments (1 expert, 5 crowdsourced) for each item
led to higher human-machine agreement. For all
experiments reported later, we used this average
of six judgments as our gold standard.

For our experiments (§4), we randomly split the
data into training (50%), development (25%), and
testing (25%) sets. We also excluded all instances
labeled “Other”. These are relatively uncommon
and less interesting to this study. Also, we believe
that simpler, heuristic approaches could be used to
identify such sentences.

We use “GUG” (“Grammatical” versus “Un-
Grammatical”) to refer to this dataset. The dataset
is available for research at https://github.
com/EducationalTestingService/
gug-data.

1The reported agreement values assume that “Other”
maps to 0. For the sentences where both labels were in the
1–4 range (n = 424), Pearson’s r = 0.767.

2http://www.crowdflower.com
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3 System Description

This section describes the statistical model (§3.1)
and features (§3.2) used by our system.

3.1 Statistical Model
We use `2-regularized linear regression (i.e., ridge
regression) to learn a model of sentence grammat-
icality from a variety of linguistic features.34

To tune the `2-regularization hyperparameter α,
the system performs 5-fold cross-validation on the
data used for training. The system evaluates α ∈
10{−4,...,4} and selects the one that achieves the
highest cross-validation correlation r.

3.2 Features
Next, we describe the four types of features.

3.2.1 Spelling Features
Given a sentence with with n word tokens, the
model filters out tokens containing nonalpha-
betic characters and then computes the num-
ber of misspelled words nmiss (later referred to
as num misspelled), the proportion of mis-
spelled words nmiss

n , and log(nmiss + 1) as fea-
tures. To identify misspellings, we use a freely
available spelling dictionary for U.S. English.5

3.2.2 n-gram Count and Language Model
Features

Given each sentence, the model obtains the counts
of n-grams (n = 1 . . . 3) from English Gigaword
and computes the following features:6

•
∑
s∈Sn

log(count(s) + 1)
‖Sn‖

3We use ridge regression from the scikit-learn
toolkit (Pedregosa et al., 2011) v0.23.1 and the
SciKit-Learn Laboratory (http://github.com/
EducationalTestingService/skll).

4Regression models typically produce conservative pre-
dictions with lower variance than the original training data.
So that predictions better match the distribution of labels in
the training data, the system rescales its predictions. It saves
the mean and standard deviation of the training data gold
standard (Mgold and SDgold, respectively) and of its own
predictions on the training data (Mpred and SDpred, respec-
tively). During cross-validation, this is done for each fold.
From an initial prediction ŷ, it produces the final prediction:
ŷ′ = ŷ−Mpred

SDpred
∗ SDgold +Mgold. This transformation does

not affect Pearson’s r correlations or rankings, but it would
affect binarized predictions.

5http://pythonhosted.org/pyenchant/
6We use the New York Times (nyt), the Los Ange-

les Times-Washington Post (ltw), and the Washington Post-
Bloomberg News (wpb) sections from the fifth edition of En-
glish Gigaword (LDC2011T07).

• max
s∈Sn

log(count(s) + 1)

• min
s∈Sn

log(count(s) + 1)

where Sn represents the n-grams of order n from
the given sentence. The model computes the fol-
lowing features from a 5-gram language model
trained on the same three sections of English Gi-
gaword using the SRILM toolkit (Stolcke, 2002):

• the average log-probability of the
given sentence (referred to as
gigaword avglogprob later)

• the number of out-of-vocabulary words in the
sentence

Finally, the system computes the average
log-probability and number of out-of-vocabulary
words from a language model trained on a col-
lection of essays written by non-native English
speakers7 (“non-native LM”).

3.2.3 Precision Grammar Features
Following Wagner et al. (2007) and Wagner et
al. (2009), we use features extracted from preci-
sion grammar parsers. These grammars have been
hand-crafted and designed to only provide com-
plete syntactic analyses for grammatically cor-
rect sentences. This is in contrast to treebank-
trained grammars, which will generally provide
some analysis regardless of grammaticality. Here,
we use (1) the Link Grammar Parser8 and (2)
the HPSG English Resource Grammar (Copestake
and Flickinger, 2000) and PET parser.9

We use a binary feature, complete link,
from the Link grammar that indicates whether at
least one complete linkage can be found for a sen-
tence. We also extract several features from the
HPSG analyses.10 They mostly reflect information
about unification success or failure and the associ-
ated costs. In each instance, we use the logarithm
of one plus the frequency.

7This did not overlap with the data described in §2 and
was a subset of the data released by Blanchard et al. (2013).

8http://www.link.cs.cmu.edu/link/
9http://moin.delph-in.net/PetTop

10The complete list of relevant statistics used as features
is: trees, unify cost succ, unify cost fail,
unifications succ, unifications fail,
subsumptions succ, subsumptions fail,
words, words pruned, aedges, pedges,
upedges, raedges, rpedges, medges. During
development, we observed that some of these features vary
for some inputs, probably due to parsing search timeouts. On
10 preliminary runs with the development set, this variance
had minimal effects on correlations with human judgments
(less than 0.00001 in terms of r).
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r

our system 0.668
− non-native LM (§3.2.2) 0.665
− HPSG parse (§3.2.3) 0.664
− PCFG parse (§3.2.4) 0.662
− spelling (§3.2.1) 0.643
− gigaword LM (§3.2.2) 0.638
− link parse (§3.2.3) 0.632
− gigaword count (§3.2.2) 0.630

Table 1: Pearson’s r on the development set, for
our full system and variations excluding each fea-
ture type. “− X” indicates the full model without
the “X” features.

3.2.4 PCFG Parsing Features
We find phrase structure trees and basic depen-
dencies with the Stanford Parser’s English PCFG
model (Klein and Manning, 2003; de Marneffe et
al., 2006).11 We then compute the following:

• the parse score as provided by the Stan-
ford PCFG Parser, normalized for sentence
length, later referred to as parse prob

• a binary feature that captures whether the top
node of the tree is sentential or not (i.e. the
assumption is that if the top node is non-
sentential, then the sentence is a fragment)

• features binning the number of dep rela-
tions returned by the dependency conversion.
These dep relations are underspecified for
function and indicate that the parser was un-
able to find a standard relation such as subj,
possibly indicating a grammatical error.

4 Experiments

Next, we present evaluations on the GUG dataset.

4.1 Feature Ablation
We conducted a feature ablation study to iden-
tify the contributions of the different types of fea-
tures described in §3.2. We compared the perfor-
mance of the full model with all of the features
to models with all but one type of feature. For
this experiment, all models were estimated from
the training set and evaluated on the development
set. We report performance in terms of Pearson’s
r between the averaged 1–4 human labels and un-
rounded system predictions.

The results are shown in Table 1. From these
results, the most useful features appear to be the

n-gram frequencies from Gigaword and whether
the link parser can fully parse the sentence.

4.2 Test Set Results
In this section, we present results on the held-out
test set for the full model and various baselines,
summarized in Table 2. For test set evaluations,
we trained on the combination of the training and
development sets (§2), to maximize the amount of
training data for the final experiments.

We also trained and evaluated on binarized ver-
sions of the ordinal GUG labels: a sentence was
labeled 1 if the average judgment was at least 3.5
(i.e., would round to 4), and 0 otherwise. Evaluat-
ing on a binary scale allows us to measure how
well the system distinguishes grammatical sen-
tences from ungrammatical ones. For some ap-
plications, this two-way distinction may be more
relevant than the more fine-grained 1–4 scale. To
train our system on binarized data, we replaced the
`2-regularized linear regression model with an `2-
regularized logistic regression and used Kendall’s
τ rank correlation between the predicted probabil-
ities of the positive class and the binary gold stan-
dard labels as the grid search metric (§3.1) instead
of Pearson’s r.

For the ordinal task, we report Pearson’s r be-
tween the averaged human judgments and each
system. For the binary task, we report percentage
accuracy. Since the predictions from the binary
and ordinal systems are on different scales, we in-
clude the nonparametric statistic Kendall’s τ as a
secondary evaluation metric for both tasks.

We also evaluated the binary system for the or-
dinal task by computing correlations between its
estimated probabilities and the averaged human
scores, and we evaluated the ordinal system for the
binary task by binarizing its predictions.12

We compare our work to a modified version of
the publicly available13 system from Post (2011),
which performed very well on an artificial dataset.
To our knowledge, it is the only publicly available
system for grammaticality prediction. It is very

11We use the Nov. 12, 2013 version of the Stanford Parser.
12We selected a threshold for binarization from a grid of

1001 points from 1 to 4 that maximized the accuracy of bina-
rized predictions from a model trained on the training set and
evaluated on the binarized development set. For evaluating
the three single-feature baselines discussed below, we used
the same approach except with grid ranging from the min-
imum development set feature value to the maximum plus
0.1% of the range.

13The Post (2011) system is available at https://
github.com/mjpost/post2011judging.
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Ordinal Task Binary Task
r Sig.r τ % Acc. Sig.%Acc. τ

our system 0.644 0.479 79.3 0.419
our systemlogistic 0.616 * 0.484 80.7 0.428
Post 0.321 * 0.225 75.5 * 0.195
Postlogistic 0.259 * 0.181 74.4 * 0.181
complete link 0.386 * 0.335 74.8 * 0.302
gigaword avglogprob 0.414 * 0.290 76.7 * 0.280
num misspelled -0.462 * -0.370 74.8 * -0.335

Table 2: Human-machine agreement statistics for our system, the system from Post (2011), and simple
baselines, computed from the averages of human ratings in the testing set (§2). “*” in a Sig. column
indicates a statistically significant difference from “our system” (p < .05, see text for details). A majority
baseline for the binary task achieves 74.8% accuracy. The best results for each metric are in bold.

different from our system since it relies on par-
tial tree-substitution grammar derivations as fea-
tures. We use the feature computation components
of that system but replace its statistical model. The
system was designed for use with a dataset consist-
ing of 50% grammatical and 50% ungrammatical
sentences, rather than data with ordinal or continu-
ous labels. Additionally, its classifier implementa-
tion does not output scores or probabilities. There-
fore, we used the same learning algorithms as for
our system (i.e., ridge regression for the ordinal
task and logistic regression for the binary task).14

To create further baselines for comparison,
we selected the following features that represent
ways one might approximate grammaticality if a
comprehensive model was unavailable: whether
the link parser can fully parse the sentence
(complete link), the Gigaword language
model score (gigaword avglogprob),
and the number of misspelled tokens
(num misspelled). Note that we expect
the number of misspelled tokens to be negatively
correlated with grammaticality. We flipped the
sign of the misspelling feature when computing
accuracy for the binary task.

To identify whether the differences in perfor-
mance for the ordinal task between our system and
each of the baselines are statistically significant,
we used the BCa Bootstrap (Efron and Tibshirani,
1993) with 10,000 replications to compute 95%
confidence intervals for the absolute value of r for
our system minus the absolute value of r for each
of the alternative methods. For the binary task, we

14In preliminary experiments, we observed little difference
in performance between logistic regression and the original
support vector classifier used by the system from Post (2011).

used the sign test to test for significant differences
in accuracy. The results are in Table 2.

5 Discussion and Conclusions

In this paper, we developed a system for predict-
ing grammaticality on an ordinal scale and cre-
ated a labeled dataset that we have released pub-
licly (§2) to enable more realistic evaluations in
future research. Our system outperformed an ex-
isting state-of-the-art system (Post, 2011) in eval-
uations on binary and ordinal scales. This is the
most realistic evaluation of methods for predicting
sentence-level grammaticality to date.

Surprisingly, the system from Post (2011) per-
formed quite poorly on the GUG dataset. We spec-
ulate that this is due to the fact that the Post sys-
tem relies heavily on features extracted from au-
tomatic syntactic parses. While Post found that
such a system can effectively distinguish gram-
matical news text sentences from sentences gen-
erated by a language model, measuring the gram-
maticality of real sentences from language learn-
ers seems to require a wider variety of features,
including n-gram counts, language model scores,
etc. Of course, our findings do not indicate that
syntactic features such as those from Post (2011)
are without value. In future work, it may be pos-
sible to improve grammaticality measurement by
integrating such features into a larger system.
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Abstract

Motivated by work predicting coarse-
grained author categories in social me-
dia, such as gender or political preference,
we explore whether Twitter contains infor-
mation to support the prediction of fine-
grained categories, or social roles. We
find that the simple self-identification pat-
tern “I am a ” supports significantly
richer classification than previously ex-
plored, successfully retrieving a variety of
fine-grained roles. For a given role (e.g.,
writer), we can further identify character-
istic attributes using a simple possessive
construction (e.g., writer’s ). Tweets
that incorporate the attribute terms in first
person possessives (my ) are confirmed
to be an indicator that the author holds the
associated social role.

1 Introduction

With the rise of social media, researchers have
sought to induce models for predicting latent au-
thor attributes such as gender, age, and politi-
cal preferences (Garera and Yarowsky, 2009; Rao
et al., 2010; Burger et al., 2011; Van Durme,
2012b; Zamal et al., 2012). Such models are
clearly in line with the goals of both computa-
tional advertising (Wortman, 2008) and the grow-
ing area of computational social science (Conover
et al., 2011; Nguyen et al., 2011; Paul and Dredze,
2011; Pennacchiotti and Popescu, 2011; Moham-
mad et al., 2013) where big data and computa-
tion supplement methods based on, e.g., direct hu-
man surveys. For example, Eisenstein et al. (2010)
demonstrated a model that predicted where an au-
thor was located in order to analyze regional dis-
tinctions in communication. While some users ex-
plicitly share their GPS coordinates through their

Twitter clients, having a larger collection of au-
tomatically identified users within a region was
preferable even though the predictions for any
given user were uncertain.

We show that media such as Twitter can sup-
port classification that is more fine-grained than
gender or general location. Predicting social roles
such as doctor, teacher, vegetarian, christian,
may open the door to large-scale passive surveys
of public discourse that dwarf what has been pre-
viously available to social scientists. For exam-
ple, work on tracking the spread of flu infections
across Twitter (Lamb et al., 2013) might be en-
hanced with a factor based on aggregate predic-
tions of author occupation.

We present two studies showing that first-
person social content (tweets) contains intuitive
signals for such fine-grained roles. We argue that
non-trivial classifiers may be constructed based
purely on leveraging simple linguistic patterns.
These baselines suggest a wide range of author
categories to be explored further in future work.

Study 1 In the first study, we seek to determine
whether such a signal exists in self-identification:
we rely on variants of a single pattern, “I am a ”,
to bootstrap data for training balanced-class binary
classifiers using unigrams observed in tweet con-
tent. As compared to prior research that required
actively polling users for ground truth in order to
construct predictive models for demographic in-
formation (Kosinski et al., 2013), we demonstrate
that some users specify such properties publicly
through direct natural language.

Many of the resultant models show intuitive
strongly-weighted features, such as a writer be-
ing likely to tweet about a story, or an ath-
lete discussing a game. This demonstrates self-
identification as a viable signal in building predic-
tive models of social roles.
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Role Tweet
artist I’m an Artist..... the last of a dying breed
belieber @justinbieber I will support you in ev-

erything you do because I am a belieber
please follow me I love you 30

vegetarian So glad I’m a vegetarian.

Table 1: Examples of self-identifying tweets.

# Role # Role # Role
29,924 little 5,694 man 564 champion
21,822 big ... ... 559 teacher
18,957 good 4,007 belieber 556 writer
13,069 huge 3,997 celebrity 556 awful
13,020 bit 3,737 virgin ... ...
12,816 fan 3,682 pretty 100 cashier
10,832 bad ... ... 100 bro
10,604 girl 2,915 woman ... ...
9,981 very 2,851 beast 10 linguist

... ... ... ... ... ...

Table 2: Number of self-identifying users per “role”. While
rich in interesting labels, cases such as very highlight the pur-
poseful simplicity of the current approach.

Study 2 In the second study we exploit a com-
plementary signal based on characteristic con-
ceptual attributes of a social role, or concept
class (Schubert, 2002; Almuhareb and Poesio,
2004; Paşca and Van Durme, 2008). We identify
typical attributes of a given social role by collect-
ing terms in the Google n-gram corpus that occur
frequently in a possessive construction with that
role. For example, with the role doctor we extract
terms matching the simple pattern “doctor’s ”.

2 Self-identification

All role-representative users were drawn from
the free public 1% sample of the Twitter Fire-
hose, over the period 2011-2013, from the sub-
set that selected English as their native language
(85,387,204 unique users). To identify users of
a particular role, we performed a case-agnostic
search of variants of a single pattern: I am a(n)

, and I’m a(n) , where all single tokens filling
the slot were taken as evidence of the author self-
reporting for the given “role”. Example tweets can
be seen in Table 1, examples of frequency per role
in Table 2. This resulted in 63,858 unique roles
identified, of which 44,260 appeared only once.1

We manually selected a set of roles for fur-
ther exploration, aiming for a diverse sample
across: occupation (e.g., doctor, teacher), family
(mother), disposition (pessimist), religion (chris-

1Future work should consider identifying multi-word role
labels (e.g., Doctor Who fan, or dog walker).
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Figure 1: Success rate for querying a user. Random.0,1,2
are background draws from the population, with the mean of
those three samples drawn horizontally. Tails capture 95%
confidence intervals.

tian), and “followers” (belieber, directioner).2

We filtered users via language ID (Bergsma et al.,
2012) to better ensure English content.3

For each selected role, we randomly sampled up
to 500 unique self-reporting users and then queried
Twitter for up to 200 of their recent publicly
posted tweets.4 These tweets served as represen-
tative content for that role, with any tweet match-
ing the self-reporting patterns filtered. Three sets
of background populations were extracted based
on randomly sampling users that self-reported En-
glish (post-filtered via LID).

Twitter users are empowered to at any time
delete, rename or make private their accounts.
Any given user taken to be representative based on
a previously posted tweet may no longer be avail-
able to query on. As a hint of the sort of user stud-
ies one might explore given access to social role
prediction, we see in Figure 1 a correlation be-
tween self-reported role and the chance of an ac-
count still being publicly visible, with roles such
as belieber and directioner on the one hand, and
doctor and teacher on the other.

The authors examined the self-identifying tweet
of 20 random users per role. The accuracy of the
self-identification pattern varied across roles and
is attributable to various factors including quotes,
e.g. @StarTrek Jim, I’m a DOCTOR not a down-
load!. While these samples are small (and thus
estimates of quality come with wide variance), it

2Those that follow the music/life of the singer Justin
Bieber and the band One Direction, respectively.

3This removes users that selected English as their primary
language, used a self-identification phrase, e.g. I am a be-
lieber, but otherwise tended to communicate in non-English.

4Roughly half of the classes had less than 500 self-
reporting users in total, in those cases we used all matches.
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writer

0 5 10 15

Figure 2: Valid self-identifying tweets from sample of 20.

is noteworthy that a non-trivial number for each
were judged as actually self-identifying.

Indicative Language Most work in user clas-
sification relies on featurizing language use,
most simply through binary indicators recording
whether a user did or did not use a particular word
in a history of n tweets. To explore whether lan-
guage provides signal for future work in fine-grain
social role prediction, we constructed a set of ex-
periments, one per role, where training and test
sets were balanced between users from a random
background sample and self-reported users. Base-
line accuracy in these experiments was thus 50%.

Each training set had a target of 600 users (300
background, 300 self-identified); for those roles
with less than 300 users self-identifying, all users
were used, with an equal number background. We
used the Jerboa (Van Durme, 2012a) platform
to convert data to binary feature vectors over a un-
igram vocabulary filtered such that the minimum
frequency was 5 (across unique users). Training
and testing was done with a log-linear model via
LibLinear (Fan et al., 2008). We used the pos-
itively annotated data to form test sets, balanced
with data from the background set. Each test set
had a theoretical maximum size of 40, but for sev-
eral classes it was in the single digits (see Fig-
ure 2). Despite the varied noisiness of our simple
pattern-bootstrapped training data, and the small
size of our annotated test set, we see in Figure 3
that we are able to successfully achieve statisti-
cally significant predictions of social role for the
majority of our selected examples.

Table 3 highlights examples of language indica-
tive of role, as determined by the most positively
weighted unigrams in the classification experi-
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Figure 3: Accuracy in classifying social roles.

Role :: Feature ( Rank)
artist morning, summer, life, most, amp, studio
atheist fuck, fucking, shit, makes, dead, ..., religion19

athlete lol, game, probably, life, into, ..., team9

belieber justin, justinbeiber, believe, beliebers, bieber
cheerleader cheer, best, excited, hate, mom, ..., prom16

christian lol, ..., god12, pray13, ..., bless17, ..., jesus20
dancer dance, since, hey, never, been
directioner harry, d, follow, direction, never, liam, niall
doctor sweet, oh, or, life, nothing
engineer (, then, since, may, ), test9, -17, =18

freshman summer, homework, na, ..., party19, school20
geek trying, oh, different, dead, been
grandma morning, baby, around, night, excited
hipster fucking, actually, thing, fuck, song
lawyer did, never, his, may, pretty, law, even, office
man man, away, ai, young, since
mother morning, take, fuck, fucking, trying
nurse lol, been, morning, ..., night10, nursing11, shift13
optimist morning, enough, those, everything, never
poet feel, song, even, say, yo
rapper fuck, morning, lol, ..., mixtape8, songs15
singer sing, song, music, lol, never
smoker fuck, shit, fucking, since, ass, smoke, weed20

solider ai, beautiful, lol, wan, trying
sophmore summer, >, ..., school11, homework12

student anything, summer, morning, since, actually
teacher teacher, morning, teach, ..., students7, ..., school20
vegetarian actually, dead, summer, oh, morning
waitress man, try, goes, hate, fat
woman lol, into, woman, morning, never
writer write, story, sweet, very, working

Table 3: Most-positively weighted features per role, along
with select features within the top 20. Surprising mother
features come from ambigious self-identification, as seen in
tweets such as: I’m a mother f!cking starrrrr.

ment. These results qualitatively suggest many
roles under consideration may be teased out from a
background population by focussing on language
that follows expected use patterns. For example
the use of the term game by athletes, studio by
artists, mixtape by rappers, or jesus by Christians.

3 Characteristic Attributes

Bergsma and Van Durme (2013) showed that the
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task of mining attributes for conceptual classes can
relate straightforwardly to author attribute predic-
tion. If one views a role, in their case gender, as
two conceptual classes, male and female, then ex-
isting attribute extraction methods for third-person
content (e.g., news articles) can be cheaply used to
create a set of bootstrapping features for building
classifiers over first-person content (e.g., tweets).
For example, if we learn from news corpora that:
a man may have a wife, then a tweet saying: ...my
wife... can be taken as potential evidence of mem-
bership in the male conceptual class.

In our second study, we test whether this idea
extends to our wider set of fine-grained roles. For
example, we aimed to discover that a doctor may
have a patient, while a hairdresser may have a
salon; these properties can be expressed in first-
person content as possessives like my patient or my
salon. We approached this task by selecting target
roles from the first experiment and ranking charac-
teristic attributes for each using pointwise mutual
information (PMI) (Church and Hanks, 1990).

First, we counted all terms matching a target
social role’s possessive pattern (e.g., doctor’s )
in the web-scale n-gram corpus Google V2 (Lin
et al., 2010)5. We ranked the collected terms
by computing PMI between classes and attribute
terms. Probabilities were estimated from counts of
the class-attribute pairs along with counts match-
ing the generic possessive patterns his and
her which serve as general background cate-
gories. Following suggestions by Bergsma and
Van Durme, we manually filtered the ranked list.6

We removed attributes that were either (a) not
nominal, or (b) not indicative of the social role.
This left fewer than 30 attribute terms per role,
with many roles having fewer than 10.

We next performed a precision test to identify
potentially useful attributes in these lists. We ex-
amined tweets with a first person possessive pat-
tern for each attribute term from a small corpus
of tweets collected over a single month in 2013,
discarding those attribute terms with no positive
matches. This precision test is useful regardless
of how attribute lists are generated. The attribute

5In this corpus, follower-type roles like belieber and di-
rectioner are not at all prevalent. We therefore focused on
occupational and habitual roles (e.g., doctor, smoker).

6Evidence from cognitive work on memory-dependent
tasks suggests that such relevance based filtering (recogni-
tion) involves less cognitive effort than generating relevant
attributes (recall) see (Jacoby et al., 1979). Indeed, this filter-
ing step generally took less than a minute per class.

term chart, for example, had high PMI with doc-
tor; but a precision test on the phrase my chart
yielded a single tweet which referred not to a med-
ical chart but to a top ten list (prompting removal
of this attribute). Using this smaller high-precision
set of attribute terms, we collected tweets from the
Twitter Firehose over the period 2011-2013.

4 Attribute-based Classification

Attribute terms are less indicative overall than
self-ID, e.g., the phrase I’m a barber is a clearer
signal than my scissors. We therefore include a
role verification step in curating a collection of
positively identified users. We use the crowd-
sourcing platform Mechanical Turk7 to judge
whether the person tweeting held a given role
Tweets were judged 5-way redundantly. Me-
chanical Turk judges (“Turkers”) were presented
with a tweet and the prompt: Based on this
tweet, would you think this person is a BAR-
BER/HAIRDRESSER? along with four response
options: Yes, Maybe, Hard to tell, and No.

We piloted this labeling task on 10 tweets per
attribute term over a variety of classes. Each an-
swer was associated with a score (Yes = 1, Maybe
= .5, Hard to tell = No = 0) and aggregated across
the five judges. We found in development that an
aggregate score of 4.0 (out of 5.0) led to an ac-
ceptable agreement rate between the Turkers and
the experimenters, when the tweets were randomly
sampled and judged internally. We found that
making conceptual class assignments based on a
single tweet was often a subtle task. The results of
this labeling study are shown in Figure 4, which
gives the percent of tweets per attribute that were
4.0 or above. Attribute terms shown in red were
manually discarded as being inaccurate (low on
the y-axis) or non-prevalent (small shape).

From the remaining attribute terms, we identi-
fied users with tweets scoring 4.0 or better as posi-
tive examples of the associated roles. Tweets from
those users were scraped via the Twitter API to
construct corpora for each role. These were split
intro train and test, balanced with data from the
same background set used in the self-ID study.

Test sets were usually of size 40 (20 positive, 20
background), with a few classes being sparse (the
smallest had only 16 instances). Results are shown
in Figure 5. Several classes in this balanced setup
can be predicted with accuracies in the 70-90%

7https://www.mturk.com/mturk/
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Figure 4: Turker judged quality of attributes selected as
candidate features for bootstrapping positive instances of the
given social role.
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Figure 5: Classifier accuracy on balanced set contrasting
agreed upon Twitter users of a given role against users pulled
at random from the 1% stream.

range, supporting our claim that there is discrimi-
nating content for a variety of these social roles.

Conditional Classification How accurately we
can predict membership in a given class when a
Twitter user sends a tweet matching one of the tar-
geted attributes? For example, if one sends a tweet
saying my coach, then how likely is it that author

Figure 6: Results of positive vs negative by attribute term.
Given that a user tweets . . . my lines . . . we are nearly 80%
accurate in identifying whether or not the user is an actor.

is an athlete?
Using the same collection as the previous ex-

periment, we trained classifiers conditioned on a
given attribute term. Positive instances were taken
to be those with a score of 4.0 or higher, with neg-
ative instances taken to be those with scores of 1.0
or lower (strong agreement by judges that the orig-
inal tweet did not provide evidence of the given
role). Classification results are shown in Figure 6.

5 Conclusion

We have shown that Twitter contains sufficiently
robust signal to support more fine-grained au-
thor attribute prediction tasks than have previously
been attempted. Our results are based on simple,
intuitive search patterns with minimal additional
filtering: this establishes the feasibility of the task,
but leaves wide room for future work, both in the
sophistication in methodology as well as the diver-
sity of roles to be targeted. We exploited two com-
plementary types of indicators: self-identification
and self-possession of conceptual class (role) at-
tributes. Those interested in identifying latent de-
mographics can extend and improve these indica-
tors in developing ways to identify groups of inter-
est within the general population of Twitter users.
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cisco, Bruno Gonçalves, Filippo Menczer, and
Alessandro Flammini. 2011. Political polarization
on twitter. In ICWSM.

Jacob Eisenstein, Brendan O’Connor, Noah Smith, and
Eric P. Xing. 2010. A latent variable model of
geographical lexical variation. In Proceedings of
EMNLP.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsief, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of Ma-
chine Learning Research, (9).

Nikesh Garera and David Yarowsky. 2009. Modeling
latent biographic attributes in conversational genres.
In Proceedings of ACL.

Larry L Jacoby, Fergus IM Craik, and Ian Begg. 1979.
Effects of decision difficulty on recognition and re-
call. Journal of Verbal Learning and Verbal Behav-
ior, 18(5):585–600.

Michal Kosinski, David Stillwell, and Thore Graepel.
2013. Private traits and attributes are predictable
from digital records of human behavior. Proceed-
ings of the National Academy of Sciences.

Alex Lamb, Michael J. Paul, and Mark Dredze. 2013.
Separating fact from fear: Tracking flu infections on
twitter. In Proceedings of NAACL.

Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine,
David Yarowsky, Shane Bergsma, Kailash Patil,
Emily Pitler, Rachel Lathbury, Vikram Rao, Kapil
Dalwani, and Sushant Narsale. 2010. New tools for
web-scale n-grams. In Proc. LREC, pages 2221–
2227.

Saif M. Mohammad, Svetlana Kiritchenko, and Joel
Martin. 2013. Identifying purpose behind elec-
toral tweets. In Proceedings of the Second Interna-
tional Workshop on Issues of Sentiment Discovery
and Opinion Mining, WISDOM ’13, pages 1–9.

Dong Nguyen, Noah A Smith, and Carolyn P Rosé.
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Abstract

In this study, we analyze links between
edits in Wikipedia articles and turns from
their discussion page. Our motivation is
to better understand implicit details about
the writing process and knowledge flow in
collaboratively created resources. Based
on properties of the involved edit and
turn, we have defined constraints for corre-
sponding edit-turn-pairs. We manually an-
notated a corpus of 636 corresponding and
non-corresponding edit-turn-pairs. Fur-
thermore, we show how our data can be
used to automatically identify correspond-
ing edit-turn-pairs. With the help of su-
pervised machine learning, we achieve an
accuracy of .87 for this task.

1 Introduction

The process of user interaction in collaborative
writing has been the topic of many studies in re-
cent years (Erkens et al., 2005). Most of the re-
sources used for collaborative writing do not ex-
plicitly allow their users to interact directly, so that
the implicit effort of coordination behind the ac-
tual writing is not documented. Wikipedia, as one
of the most prominent collaboratively created re-
sources, offers its users a platform to coordinate
their writing, the so called talk or discussion pages
(Viégas et al., 2007). In addition to that, Wikipedia
stores all edits made to any of its pages in a revi-
sion history, which makes the actual writing pro-
cess explicit. We argue that linking these two re-
sources helps to get a better picture of the collabo-
rative writing process. To enable such interaction,
we extract segments from discussion pages, called
turns, and connect them to corresponding edits in
the respective article. Consider the following snip-
pet from the discussion page of the article “Boron”

in the English Wikipedia. On February 16th of
2011, user JCM83 added the turn:

Shouldn’t borax be wikilinked in the
“etymology” paragraph?

Roughly five hours after that turn was issued
on the discussion page, user Sbharris added
a wikilink to the “History and etymology” sec-
tion of the article by performing the following
edit:

'' borax''→ [[borax]]

This is what we define as a corresponding edit-
turn-pair. More details follow in Section 2. To
the best of our knowledge, this study is the first
attempt to detect corresponding edit-turn-pairs in
the English Wikipedia fully automatically.

Our motivation for this task is two-fold. First,
an automatic detection of corresponding edit-turn-
pairs in Wikipedia pages might help users of the
encyclopedia to better understand the development
of the article they are reading. Instead of having to
read through all of the discussion page which can
be an exhausting task for many of the larger arti-
cles in the English Wikipedia, users could focus
on those discussions that actually had an impact
on the article they are reading. Second, assuming
that edits often introduce new knowledge to an ar-
ticle, it might be interesting to analyze how much
of this knowledge was actually generated within
the discourse on the discussion page.

The detection of correspondence between edits
and turns is also relevant beyond Wikipedia. Many
companies use Wikis to store internal information
and documentation (Arazy et al., 2009). An align-
ment between edits in the company Wiki and is-
sues discussed in email conversations, on mailing
lists, or other forums, can be helpful to track the
flow or generation of knowledge within the com-
pany. This information can be useful to improve
communication and knowledge sharing.
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In the limited scope of this paper, we will fo-
cus on two research questions. First, we want to
understand the nature of correspondence between
Wikipedia article edits and discussion page turns.
Second, we want to know the distinctive properties
of corresponding edit-turn-pairs and how to use
these to automatically detect corresponding pairs.

2 Edit-Turn-Pairs

In this section, we will define the basic units of our
task, namely edits and turns. Furthermore, we will
explain the kind of correspondence between edits
and turns we are interested in.

Edits To capture a fine-grained picture of
changes to Wikipedia article pages, we rely on the
notion of edits defined in our previous work (Dax-
enberger and Gurevych, 2012). Edits are coherent
modifications based on a pair of adjacent revisions
from Wikipedia article pages. To calculate edits,
a line-based diff comparison between the old re-
vision and the new revision is made, followed by
several post-processing steps. Each pair of adja-
cent revisions found in the edit history of an arti-
cle consists of one or more edits, which describe
either inserted, deleted, changed or relocated text.
Edits are associated with metadata from the revi-
sion they belong to, this includes the comment (if
present), the user name and the time stamp.

Turns Turns are segments from Wikipedia dis-
cussion pages. To segment discussion pages into
turns, we follow a procedure proposed by Fer-
schke et al. (2012). With the help of the Java
Wikipedia Library (Zesch et al., 2008), we ac-
cess discussion pages from a database. Discus-
sion pages are then segmented into topics based
upon the structure of the page. Individual turns
are retrieved from topics by considering the revi-
sion history of the discussion page. This proce-
dure successfully segmented 94 % of all turns in
a corpus from the Simple English Wikipedia (Fer-
schke et al., 2012). Along with each turn, we store
the name of its user, the time stamp, and the name
of the topic to which the turn belongs.

Corresponding Edit-Turn-Pairs An edit-turn-
pair is defined as a pair of an edit from a Wikipedia
article’s revision history and a turn from the dis-
cussion page bound to the same article. If an arti-
cle has no discussion page, there are no edit-turn-
pairs for this article.

A definition of correspondence is not straight-
forward in the context of edit-turn-pairs. Ferschke
et al. (2012) suggest four types of explicit perfor-
matives in their annotation scheme for dialog acts
of Wikipedia turns. Due to their performative na-
ture, we assume that these dialog acts make the
turn they belong to a good candidate for a cor-
responding edit-turn-pair. We therefore define an
edit-turn-pair as corresponding, if: i) The turn is
an explicit suggestion, recommendation or request
and the edit performs this suggestion, recommen-
dation or request, ii) the turn is an explicit refer-
ence or pointer and the edit adds or modifies this
reference or pointer, iii) the turn is a commitment
to an action in the future and the edit performs this
action, and iv) the turn is a report of a performed
action and the edit performs this action. We define
all edit-turn-pairs which do not conform to the up-
per classification as non-corresponding.

3 Corpus

With the help of Amazon Mechanical Turk1, we
crowdsourced annotations on a corpus of edit-
turn-pairs from 26 random English Wikipedia ar-
ticles in various thematic categories. The search
space for corresponding edit-turn-pairs is quite
big, as any edit to an article may correspond to any
turn from the article’s discussion page. Assuming
that most edit-turn-pairs are non-corresponding,
we expect a heavy imbalance in the class distribu-
tion. It was important to find a reasonable amount
of corresponding edit-turn-pairs before the actual
annotation could take place, as we needed a cer-
tain amount of positive seeds to keep turkers from
simply labeling pairs as non-corresponding all the
time. In the following, we explain the step-by-step
approach we chose to create a suitable corpus for
the annotation study.

Filtering We applied various filters to avoid an-
notating trivial content. Based on an automatic
classification using the model presented in our pre-
vious work (Daxenberger and Gurevych, 2013),
we excluded edits classified as Vandalism, Revert
or Other. Furthermore, we removed all edits which
are part of a revision created by bots, based on the
Wikimedia user group2 scheme. To keep the class
imbalance within reasonable margins, we limited
the time span between edits and turns to 86,000

1www.mturk.com
2http://meta.wikimedia.org/wiki/User_

classes
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seconds (about 24 hours). The result is a set of
13,331 edit-turn-pairs, referred to as ETP-all.

Preliminary Annotation Study From ETP-all,
a set of 262 edit-turn-pairs have been annotated
as corresponding as part of a preliminary annota-
tion study with one human annotator. This step is
intended to make sure that we have a substantial
number of corresponding pairs in the data for the
final annotation study. However, we still expect
a certain amount of non-corresponding edit-turn-
pairs in this data, as the annotator judged the cor-
respondence based on the entire revision and not
the individual edit. We refer to this 262 edit-turn-
pairs as ETP-unconfirmed.

Mechanical Turk Annotation Study Finally,
for the Mechanical Turk annotation study, we se-
lected 500 random edit-turn-pairs from ETP-all
excluding ETP-unconfirmed. Among these, we
expect to find mostly non-corresponding pairs.
From ETP-unconfirmed, we selected 250 ran-
dom edit-turn-pairs. The resulting 750 pairs have
each been annotated by five turkers. The turk-
ers were presented the turn text, the turn topic
name, the edit in its context, and the edit comment
(if present). The context of an edit is defined as
one preceding and one following paragraph of the
edited paragraph. Each edit-turn-pair could be la-
beled as “corresponding”, “non-corresponding” or
“can’t tell”. To select good turkers and to block
spammers, we carried out a pilot study on a small
portion of manually confirmed corresponding and
non-corresponding pairs, and required turkers to
pass a qualification test.

The average pairwise percentage agreement
over all pairs is 0.66. This was calculated as
1
N

∑N
i=1

∑C
c=1 v

c
i

C , where N = 750 is the overall

number of annotated edit-turn-pairs, C = R
2−R
2 is

the number of pairwise comparisons, R = 5 is the
number of raters per edit-turn-pair, and vc

i = 1 if a
pair of raters c labeled edit-turn-pair i equally, and
0 otherwise. The moderate pairwise agreement re-
flects the complexity of this task for non-experts.

Gold Standard To rule out ambiguous cases,
we created the Gold Standard corpus with the help
of majority voting. We counted an edit-turn-pair
as corresponding, if it was annotated as “corre-
sponding” by least three out of five annotators,
and likewise for non-corresponding pairs. Further-
more, we deleted 21 pairs for which the turn seg-
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Figure 1: Percentage of (non-)corresponding edit-
turn-pairs for various time intervals in ETP-gold.

mentation algorithm clearly failed (e.g. when the
turn text was empty). This resulted in 128 corre-
sponding and 508 non-corresponsing pairs, or 636
pairs in total. We refer to this dataset as ETP-gold.
To assess the reliability of these annotations, one
of the co-authors manually annotated a random
subset of 100 edit-turn-pairs contained in ETP-
gold as corresponding or non-corresponding. The
inter-rater agreement between ETP-gold (major-
ity votes over Mechanical Turk annotations) and
our expert annotations on this subset is Cohen’s
κ = .72. We consider this agreement high enough
to draw conclusions from the annotations (Artstein
and Poesio, 2008).

Obviously, this is a fairly small dataset which
does not cover a representative sample of articles
from the English Wikpedia. However, given the
high price for a new corresponding edit-turn-pair
(due to the high class imbalance in random data),
we consider it as a useful starting point for re-
search on edit-turn-pairs in Wikipedia. We make
ETP-gold freely available.3

As shown in Figure 1, more than 50% of all
corresponding edit-turn-pairs in ETP-gold occur
within a time span of less than one hour. In our
24 hours search space, the probability to find a
corresponding edit-turn-pair drops steeply for time
spans of more than 6 hours. We therefore expect
to cover the vast majority of corresponding edit-
turn-pairs within a search space of 24 hours.

4 Machine Learning with
Edit-Turn-Pairs

We used DKPro TC (Daxenberger et al., 2014)
to carry out the machine learning experiments on
edit-turn-pairs. For each edit, we stored both the
edited paragraph and its context from the old re-
vision as well as the edited paragraph and con-
text from the new revision. We used Apache

3http://www.ukp.tu-darmstadt.de/data/
edit-turn-pairs
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OpenNLP4 for the segmentation of edit and turn
text. Training and testing the classifier has been
carried out with the help of the Weka Data Mining
Software (Hall et al., 2009). We used the Sweble
parser (Dohrn and Riehle, 2011) to remove Wiki
markup.

4.1 Features
In the following, we list the features extracted
from preprocessed edits and turns. The edit text
is composed of any inserted, deleted or relocated
text from both the old and the new revision. The
edit context includes the edited paragraph and one
preceding and one following paragraph. The turn
text includes the entire text from the turn.

Similarity between turn and edit text We pro-
pose a number of features which are purely based
on the textual similarity between the text of the
turn, and the edited text and context. We used the
cosine similarity, longest common subsequence,
and word n-gram similarity measures. Cosine sim-
ilarity was applied on binary weighted term vec-
tors (L2 norm). The word n-gram measure (Lyon
et al., 2004) calculates a Jaccard similarity coeffi-
cient on trigrams. Similarity has been calculated
between i) the plain edit text and the turn text, ii)
the edit and turn text after any wiki markup has
been removed, iii) the plain edit context and turn
text, and iv) the edit context and turn text after any
wiki markup has been removed.

Based on metadata of edit and turn Several of
our features are based on metadata from both the
edit and the turn. We recorded whether the name
of the edit user and the turn user are equal, the
absolute time difference between the turn and the
edit, and whether the edit occurred before the turn.
Cosine similarity, longest common subsequence,
and word n-gram similarity were also applied to
measure the similarity between the edit comment
and the turn text as well as the similarity between
the edit comment and the turn topic name.

Based on either edit or turn Some features are
based on the edit or the turn alone and do not take
into account the pair itself. We recorded whether
the edit is an insertion, deletion, modification or
relocation. Furthermore, we measured the length
of the edit text and the length of the turn text. The
1,000 most frequent uni-, bi- and trigrams from the
turn text are represented as binary features.

4http://opennlp.apache.org

Baseline R. Forest SVM
Accuracy .799 ±.031 .866 ±.026† .858 ±.027†
F1mac. NaN .789 ±.032 .763 ±.033
Precisionmac. NaN .794 ±.031 .791 ±.032
Recallmac. .500 ±.039 .785 ±.032† .736 ±.034†
F1non-corr. .888 ±.025 .917 ±.021 .914 ±.022
F1corr. NaN .661 ±.037 .602 ±.038

Table 1: Classification results from a 10-fold
cross-validation experiment on ETP-gold with
95% confidence intervals. Non-overlapping inter-
vals w.r.t. the majority baseline are marked by †.

4.2 Classification Experiments

We treat the automatic classification of edit-turn-
pairs as a binary classification problem. Given the
small size of ETP-gold, we did not assign a fixed
train/test split to the data. For the same reason, we
did not further divide the data into train/test and
development data. Rather, hyperparameters were
optimized using grid-search over multiple cross-
validation experiments, aiming to maximize accu-
racy. To deal with the class imbalance problem,
we applied cost-sensitive classification. In corre-
spondence with the distribution of class sizes in
the training data, the cost for false negatives was
set to 4, and for false positives to 1. A reduction of
the feature set as judged by a χ2 ranker improved
the results for both Random Forest as well as the
SVM, so we limited our feature set to the 100 best
features.

In a 10-fold cross-validation experiment, we
tested a Random Forest classifier (Breiman, 2001)
and an SVM (Platt, 1998) with polynomial ker-
nel. Previous work (Ferschke et al., 2012; Bronner
and Monz, 2012) has shown that these algorithms
work well for edit and turn classification. As base-
line, we defined a majority class classifier, which
labels all edit-turn-pairs as non-corresponding.

4.3 Discussion and Error Analysis

The classification results for the above configura-
tion are displayed in Table 1. Due to the high
class imbalance in the data, the majority class
baseline sets a challenging accuracy score of .80.
Both classifiers performed significantly better than
the baseline (non-overlapping confidence inter-
vals, see Table 1). With an overall macro-averaged
F1 of .79, Random Forest yielded the best results,
both with respect to precision as well as recall.
The low F1 on corresponding pairs is likely due
to the small number of training examples.
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To understand the mistakes of the classifier, we
manually assessed error patterns within the model
of the Random Forest classifier. Some of the false
positives (i.e. non-corresponding pairs classified
as corresponding) were caused by pairs where the
revision (as judged by its comment or the edit con-
text) is related to the turn text, however the specific
edit in this pair is not. This might happen, when
somebody corrects a spelling error in a paragraph
that is heavily disputed on the discussion page.
Among the false negatives, we found errors caused
by a missing direct textual overlap between edit
and turn text. In these cases, the correspondence
was indicated only (if at all) by some relationship
between turn text and edit comment.

5 Related Work

Besides the work by Ferschke et al. (2012) which
is the basis for our turn segmentation, there are
several studies dedicated to discourse structure in
Wikipedia. Viégas et al. (2007) propose 11 di-
mensions to classify discussion page turns. The
most frequent dimensions in their sample are re-
quests for coordination and requests for informa-
tion. Both of these may be part of a corresponding
edit-turn-pair, according to our definition in Sec-
tion 2. A subsequent study (Schneider et al., 2010)
adds more dimensions, among these an explicit ca-
tegory for references to article edits. This dimen-
sion accounts for roughly 5 to 10% of all turns.
Kittur and Kraut (2008) analyze correspondence
between article quality and activity on the discus-
sion page. Their study shows that both implicit
coordination (on the article itself) and explicit co-
ordination (on the discussion page of the article)
play important roles for the improvement of arti-
cle quality. In the present study, we have analyzed
cases where explicit coordination lead to implicit
coordination and vice versa.

Kaltenbrunner and Laniado (2012) analyze the
development of discussion pages in Wikipedia
with respect to time and compare dependences be-
tween edit peaks in the revision history of the arti-
cle itself and the respective discussion page. They
find that the development of a discussion page is
often bound to the topic of the article, i.e. arti-
cles on time-specific topics such as events grow
much faster than discussions about timeless, ency-
clopedic content. Furthermore, they observed that
the edit peaks in articles and their discussion pages
are mostly independent. This partially explains the

high number of non-corresponding edit-turn-pairs
and the consequent class imbalance.

While there are several studies which analyze
the high-level relationship between discussion and
edit activity in Wikipedia articles, very few have
investigated the correspondence between edits and
turns on the textual level. Among the latter, Fer-
ron and Massa (2014) analyze 88 articles and their
discussion pages related to traumatic events. In
particular, they find a correlation between the arti-
cle edits and their discussions around the anniver-
saries of the events.

6 Conclusion

The novelty of this paper is a computational analy-
sis of the relationship between the edit history and
the discussion of a Wikipedia article. As far as
we are aware, this is the first study to automati-
cally analyze this relationship involving the tex-
tual content of edits and turns. Based on the types
of turn and edit in an edit-turn-pair, we have oper-
ationalized the notion of corresponding and non-
corresponding edit-turn-pairs. The basic assump-
tion is that in a corresponding pair, the turn con-
tains an explicit performative and the edit corre-
sponds to this performative. We have presented
a machine learning system to automatically detect
corresponding edit-turn-pairs. To test this system,
we manually annotated a corpus of corresponding
and non-corresponding edit-turn-pairs. Trained
and tested on this data, our system shows a sig-
nificant improvement over the baseline.

With regard to future work, an extension of the
manually annotated corpus is the most important
issue. Our classifier can be used to bootstrap the
annotation of additional edit-turn-pairs.
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Abstract

There are two dominant approaches to
Chinese word segmentation: word-based
and character-based models, each with re-
spective strengths. Prior work has shown
that gains in segmentation performance
can be achieved from combining these
two types of models; however, past efforts
have not provided a practical technique
to allow mainstream adoption. We pro-
pose a method that effectively combines
the strength of both segmentation schemes
using an efficient dual-decomposition al-
gorithm for joint inference. Our method
is simple and easy to implement. Ex-
periments on SIGHAN 2003 and 2005
evaluation datasets show that our method
achieves the best reported results to date
on 6 out of 7 datasets.

1 Introduction

Chinese text is written without delimiters between
words; as a result, Chinese word segmentation
(CWS) is an essential foundational step for many
tasks in Chinese natural language processing. As
demonstrated by (Shi and Wang, 2007; Bai et
al., 2008; Chang et al., 2008; Kummerfeld et al.,
2013), the quality and consistency of segmentation
has important downstream impacts on system per-
formance in machine translation, POS tagging and
parsing.

State-of-the-art performance in CWS is high,
with F-scores in the upper 90s. Still, challenges
remain. Unknown words, also known as out-of-
vocabulary (OOV) words, lead to difficulties for
word- or dictionary-based approaches. Ambiguity
can cause errors when the appropriate segmenta-
tion is determined contextually, such as才能 (“tal-
ent”) and才 /能 (“just able”) (Gao et al., 2003).

There are two primary classes of models:
character-based, where the foundational units for

processing are individual Chinese characters (Xue,
2003; Tseng et al., 2005; Zhang et al., 2006;
Wang et al., 2010), and word-based, where the
units are full words based on some dictionary or
training lexicon (Andrew, 2006; Zhang and Clark,
2007). Sun (2010) details their respective theo-
retical strengths: character-based approaches bet-
ter model the internal compositional structure of
words and are therefore more effective at inducing
new OOV words; word-based approaches are bet-
ter at reproducing the words of the training lexi-
con and can capture information from significantly
larger contextual spans. Prior work has shown per-
formance gains from combining these two types
of models to exploit their respective strengths, but
such approaches are often complex to implement
and computationally expensive.

In this work, we propose a simple and prin-
cipled joint decoding method for combining
character-based and word-based segmenters based
on dual decomposition. This method has strong
optimality guarantees and works very well empir-
ically. It is easy to implement and does not re-
quire retraining of existing character- and word-
based segmenters. Perhaps most importantly, this
work presents a much more practical and usable
form of classifier combination in the CWS context
than existing methods offer.

Experimental results on standard SIGHAN
2003 and 2005 bake-off evaluations show that our
model outperforms the character and word base-
lines by a significant margin. In particular, out
approach improves OOV recall rates and segmen-
tation consistency, and gives the best reported re-
sults to date on 6 out of 7 datasets.

2 Models for CWS

Here we describe the character-based and word-
based models we use as baselines, review existing
approaches to combination, and describe our algo-
rithm for joint decoding with dual decomposition.
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2.1 Character-based Models

In the most commonly used contemporary ap-
proach to character-based segmentation, first pro-
posed by (Xue, 2003), CWS is seen as a charac-
ter sequence tagging task, where each character
is tagged on whether it is at the beginning, mid-
dle, or end of a word. Conditional random fields
(CRF) (Lafferty et al., 2001) have been widely
adopted for this task, and give state-of-the-art re-
sults (Tseng et al., 2005). In a first-order linear-
chain CRF model, the conditional probability of a
label sequence y given a word sequence x is de-
fined as:

P (y|x) =
1
Z

|y|∑
t=1

exp (θ · f(x, yt, yt+1))

f(x, yt, yt−1) are feature functions that typically
include surrounding character n-gram and mor-
phological suffix/prefix features. These types of
features capture the compositional properties of
characters and are likely to generalize well to un-
known words. However, the Markov assumption
in CRF limits the context of such features; it is
difficult to capture long-range word features in this
model.

2.2 Word-based Models

Word-based models search through lists of word
candidates using scoring functions that directly
assign scores to each. Early word-based seg-
mentation work employed simple heuristics like
dictionary-lookup maximum matching (Chen and
Liu, 1992). More recently, Zhang and Clark
(2007) reported success using a linear model
trained with the average perceptron algorithm
(Collins, 2002). Formally, given input x, their
model seeks a segmentation y such that:

F (y|x) = max
y∈GEN(x)

(α · φ(y))

F (y|x) is the score of segmentation result y.
Searching through the entire GEN(x) space is
intractable even with a local model, so a beam-
search algorithm is used. The search algorithm
consumes one character input token at a time, and
iterates through the existing beams to score two
new alternative hypotheses by either appending
the new character to the last word in the beam, or
starting a new word at the current position.

Algorithm 1 Dual decomposition inference algo-
rithm, and modified Viterbi and beam-search algo-
rithms.
∀i ∈ {1 to |x|} : ∀k ∈ {0, 1} : ui(k) = 0
for t← 1 to T do

yc∗ = argmax
y

P (yc|x) +
∑

i∈|x|
ui(y

c
i)

yw∗ = argmax
y∈GEN(x)

F (yw|x)− ∑
j∈|x|

uj(y
w
j )

if yc∗ = yw∗ then
return (yc∗,yw∗)

end if
for all i ∈ {1 to |x|} do
∀k ∈ {0, 1} : ui(k) = ui(k) + αt(2k − 1)(yw∗

i −
yc∗

i )
end for

end for
return (yc∗,yw∗)

Viterbi:
V1(1) = 1, V1(0) = 0
for i = 2 to |x| do
∀k ∈ {0, 1} : Vi(k) = argmax

k′
Pi(k|k′)Vi−1k

′ +

ui(k)
end for

Beam-Search:
for i = 1 to |x| do

for item v = {w0, · · · , wj} in beam(i) do
append xi to wj , score(v)

+
= ui(0)

v = {w0, · · · , wj , xi}, score(v)
+
= ui(1)

end for
end for

2.3 Combining Models with Dual
Decomposition

Various mixing approaches have been proposed to
combine the above two approaches (Wang et al.,
2006; Lin, 2009; Sun et al., 2009; Sun, 2010;
Wang et al., 2010). These mixing models perform
well on standard datasets, but are not in wide use
because of their high computational costs and dif-
ficulty of implementation.

Dual decomposition (DD) (Rush et al., 2010)
offers an attractive framework for combining these
two types of models without incurring high costs
in model complexity (in contrast to (Sun et al.,
2009)) or decoding efficiency (in contrast to bag-
ging in (Wang et al., 2006; Sun, 2010)). DD has
been successfully applied to similar situations for
combining local with global models; for example,
in dependency parsing (Koo et al., 2010), bilingual
sequence tagging (Wang et al., 2013) and word
alignment (DeNero and Macherey, 2011).

The idea is that jointly modelling both
character-sequence and word information can be
computationally challenging, so instead we can try
to find outputs that the two models are most likely
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Academia Sinica Peking Univ.
R P F1 Roov C R P F1 Roov C

Char-based CRF 95.2 93.6 94.4 58.9 0.064 94.6 95.3 94.9 77.8 0.089
Word-based Perceptron 95.8 95.0 95.4 69.5 0.060 94.1 95.5 94.8 76.7 0.099

Dual-decomp 95.9 94.9 95.4 67.7 0.055 94.8 95.7 95.3 78.7 0.086

City Univ. of Hong Kong Microsoft Research
R P F1 Roov C R P F1 Roov C

Char-based CRF 94.7 94.0 94.3 76.1 0.065 96.4 96.6 96.5 71.3 0.074
Word-based Perceptron 94.3 94.0 94.2 71.7 0.073 97.0 97.2 97.1 74.6 0.063

Dual-decomp 95.0 94.4 94.7 75.3 0.062 97.3 97.4 97.4 76.0 0.055

Table 1: Results on SIGHAN 2005 datasets. Roov denotes OOV recall, and C denotes segmentation
consistency. Best number in each column is highlighted in bold.

to agree on. Formally, the objective of DD is:

max
yc,yw

P (yc|x) + F (yw|x) s.t. yc = yw (1)

where yc is the output of character-based CRF, yw

is the output of word-based perceptron, and the
agreements are expressed as constraints. s.t. is
a shorthand for “such that”.

Solving this constrained optimization problem
directly is difficult. Instead, we take the La-
grangian relaxation of this term as:

L (yc,yw,U) = (2)

P (yc|x) + F (yw|x) +
∑
i∈|x|

ui(yc
i − yw

i )

where U is the set of Lagrangian multipliers that
consists of a multiplier ui at each word position i.

We can rewrite the original objective with the
Lagrangian relaxation as:

max
yc,yw

min
U

L (yc,yw,U) (3)

We can then form the dual of this problem by
taking the min outside of the max, which is an up-
per bound on the original problem. The dual form
can then be decomposed into two sub-components
(the two max problems in Eq. 4), each of which is
local with respect to the set of Lagrangian multi-
pliers:

min
U

(
max

yc

P (yc|x) +
∑
i∈|x|

ui(yc
i )

 (4)

+ max
yw

F (yw|x)−
∑
j∈|x|

uj(yw
j )

)

This method is called dual decomposition (DD)
(Rush et al., 2010). Similar to previous work

(Rush and Collins, 2012), we solve this DD prob-
lem by iteratively updating the sub-gradient as de-
picted in Algorithm 1.1 In each iteration, if the
best segmentations provided by the two models do
not agree, then the two models will receive penal-
ties for the decisions they made that differ from the
other. This penalty exchange is similar to message
passing, and as the penalty accumulates over itera-
tions, the two models are pushed towards agreeing
with each other. We also give an updated Viterbi
decoding algorithm for CRF and a modified beam-
search algorithm for perceptron in Algorithm 1. T
is the maximum number of iterations before early
stopping, and αt is the learning rate at time t. We
adopt a learning rate update rule from Koo et al.
(2010) where αt is defined as 1

N , where N is the
number of times we observed a consecutive dual
value increase from iteration 1 to t.

3 Experiments

We conduct experiments on the SIGHAN 2003
(Sproat and Emerson, 2003) and 2005 (Emer-
son, 2005) bake-off datasets to evaluate the ef-
fectiveness of the proposed dual decomposition
algorithm. We use the publicly available Stan-
ford CRF segmenter (Tseng et al., 2005)2 as our
character-based baseline model, and reproduce
the perceptron-based segmenter from Zhang and
Clark (2007) as our word-based baseline model.

We adopted the development setting from
(Zhang and Clark, 2007), and used CTB sections
1-270 for training and sections 400-931 for devel-
opment in hyper-parameter setting; for all results
given in tables, the models are trained and eval-
uated on the standard train/test split for the given
dataset. The optimized hyper-parameters used are:

1See Rush and Collins (2012) for a full introduction to
DD.

2http://nlp.stanford.edu/software/segmenter.shtml
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`2 regularization parameter λ in CRF is set to
3; the perceptron is trained for 10 iterations with
beam size 200; dual decomposition is run to max
iteration of 100 (T in Algo. 1) with step size 0.1
(αt in Algo. 1).

Beyond standard precision (P), recall (R) and
F1 scores, we also evaluate segmentation consis-
tency as proposed by (Chang et al., 2008), who
have shown that increased segmentation consis-
tency is correlated with better machine transla-
tion performance. The consistency measure cal-
culates the entropy of segmentation variations —
the lower the score the better. We also report
out-of-vocabulary recall (Roov) as an estimation of
the model’s generalizability to previously unseen
words.

4 Results

Table 1 shows our empirical results on SIGHAN
2005 dataset. Our dual decomposition method
outperforms both the word-based and character-
based baselines consistently across all four sub-
sets in both F1 and OOV recall (Roov). Our
method demonstrates a robustness across domains
and segmentation standards regardless of which
baseline model was stronger. Of particular note
is DD’s is much more robust in Roov, where the
two baselines swing a lot. This is an important
property for downstream applications such as en-
tity recognition. The DD algorithm is also more
consistent, which would likely lead to improve-
ments in applications such as machine translation
(Chang et al., 2008).

The improvement over our word- and character-
based baselines is also seen in our results on the
earlier SIGHAN 2003 dataset. Table 2 puts our
method in the context of earlier systems for CWS.
Our method achieves the best reported score on 6
out of 7 datasets.

5 Discussion and Error Analysis

On the whole, dual decomposition produces state-
of-the-art segmentations that are more accurate,
more consistent, and more successful at induc-
ing OOV words than the baseline systems that it
combines. On the SIGHAN 2005 test set, in
over 99.1% of cases the DD algorithm converged
within 100 iterations, which gives an optimality
guarantee. In 77.4% of the cases, DD converged
in the first iteration. The number of iterations to
convergence histogram is plotted in Figure 1.

SIGHAN 2005
AS PU CU MSR

Best 05 95.2 95.0 94.3 96.4
Zhang et al. 06 94.7 94.5 94.6 96.4
Z&C 07 94.6 94.5 95.1 97.2
Sun et al. 09 - 95.2 94.6 97.3
Sun 10 95.2 95.2 95.6 96.9
Dual-decomp 95.4 95.3 94.7 97.4

SIGHAN 2003
Best 03 96.1 95.1 94.0
Peng et al. 04 95.6 94.1 92.8
Z&C 07 96.5 94.0 94.6
Dual-decomp 97.1 95.4 94.9

Table 2: Performance of dual decomposition in
comparison to past published results on SIGHAN
2003 and 2005 datasets. Best reported F1 score
for each dataset is highlighted in bold. Z&C 07
refers to Zhang and Clark (2007). Best 03, 05 are
results of the winning systems for each dataset in
the respective shared tasks.

Error analysis In many cases the relative con-
fidence of each model means that dual decom-
position is capable of using information from
both sources to generate a series of correct
segmentations better than either baseline model
alone. The example below shows a difficult-to-
segment proper name comprised of common char-
acters, which results in undersegmentation by the
character-based CRF and oversegmentation by the
word-based perceptron, but our method achieves
the correct middle ground.

Gloss Tian Yage / ’s / creations
Gold 田雅各 /的 /创作
CRF 田雅各的 /创作
PCPT 田雅 /各 /的 /创作
DD 田雅各 /的 /创作

A powerful feature of the dual decomposition
approach is that it can generate correct segmenta-
tion decisions in cases where a voting or product-
of-experts model could not, since joint decod-
ing allows the sharing of information at decod-
ing time. In the following example, both baseline
models miss the contextually clear use of the word
点心 (“sweets / snack food”) and instead attach点
to the prior word to produce the otherwise com-
mon compound 一点点 (“a little bit”); dual de-
composition allows the model to generate the cor-
rect segmentation.

Gloss Enjoy / a bit of / snack food / , ...
Gold 享受 /一点 /点心 /，
CRF 享受 /一点点 /心 /，
PCPT 享受 /一点点 /心 /，
DD 享受 /一点 /点心 /，
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Figure 1: No. of iterations till DD convergence.

We found more than 400 such surprisingly ac-
curate instances in our dual decomposition output.

Finally, since dual decomposition is a method of
joint decoding, it is still liable to reproduce errors
made by the constituent systems.

6 Conclusion

In this paper we presented an approach to Chinese
word segmentation using dual decomposition for
system combination. We demonstrated that this
method allows for joint decoding of existing CWS
systems that is more accurate and consistent than
either system alone, and further achieves the best
performance reported to date on standard datasets
for the task. Perhaps most importantly, our ap-
proach is straightforward to implement and does
not require retraining of the underlying segmenta-
tion models used. This suggests its potential for
broader applicability in real-world settings than
existing approaches to combining character-based
and word-based models for Chinese word segmen-
tation.
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Abstract

A patent is a property right for an inven-
tion granted by the government to the in-
ventor. Patents often have a high con-
centration of scientific and technical terms
that are rare in everyday language. How-
ever, some scientific and technical terms
usually appear with high frequency only
in one specific patent. In this paper, we
propose a pragmatic approach to Chinese
word segmentation on patents where we
train a sequence labeling model based on
a group of novel document-level features.
Experiments show that the accuracy of our
model reached 96.3% (F1 score) on the de-
velopment set and 95.0% on a held-out test
set.

1 Introduction

It is well known that Chinese text does not come
with natural word delimiters, and the first step
for many Chinese language processing tasks is
word segmentation, the automatic determination
of word boundaries in Chinese text. Tremendous
progress was made in this area in the last decade
or so due to the availability of large-scale human
segmented corpora coupled with better statistical
modeling techniques. On the data side, there exist
a few large-scale human annotated corpora based
on established word segmentation standards, and
these include the Chinese TreeBank (Xue et al.,
2005), the Sinica Balanced Corpus (Chen et al.,
1996), the PKU Peoples’ Daily Corpus (Duan et
al., 2003), and the LIVAC balanced corpus (T’sou
et al., 1997). Another driver for the improvemen-
t in Chinese word segmentation accuracy comes
from the evolution of statistical modeling tech-
niques. Dictionaries used to play a central role
in early heuristics-based word segmentation tech-
niques (Chen and Liu, 1996; Sproat et al., 1996).

Modern word segmentation systems have moved
away from dictionary-based approaches in favor
of character tagging approaches. This allows the
word segmentation problem to be modeled as a
sequence labeling problem, and lends itself to dis-
criminative sequence modeling techniques (Xue,
2003; Peng et al., 2004). With these better model-
ing techniques, state-of-the-art systems routinely
report accuracy in the high 90%, and a few recen-
t systems report accuracies of over 98% in F1 s-
core (Sun, 2011; Zeng et al., 2013b).

Chinese word segmentation is not a solved
problem however and significant challenges re-
main. Advanced word segmentation systems per-
form very well in domains such as newswire
where everyday language is used and there is a
large amount of human annotated training data.
There is often a rapid degradation in performance
when systems trained on one domain (let us call it
the source domain) are used to segment data in a
different domain (let us call it the target domain).
This problem is especially severe when the target
domain is distant from the source domain. This is
the problem we are facing when we perform word
segmentation on Chinese patent data. The word
segmentation accuracy on Chinese patents is very
poor if the word segmentation model is trained on
the Chinese TreeBank data, which consists of data
sources from a variety of genres but no patents.
To address this issue, we annotated a corpus of
142 patents which contain about 440K words ac-
cording to the Chinese TreeBank standards. We
trained a character-tagging based CRF model for
word segmentation, and based on the writing style
of patents, we propose a group of document-level
features as well as a novel character part-of-speech
feature (C_POS). Our results show these new fea-
tures are effective and we are able to achieve an
accuracy of 96.3% (F1 score) on the development
set and 95% (F1 score) on the test set.
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2 Method

We adopt the character-based sequence labeling
approach, first proposed in (Xue, 2003), as our
modeling technique for its simplicity and effec-
tiveness. This approach treats each sentence as a
sequence of characters and assigns to each charac-
ter a label that indicates its position in the word. In
this paper, we use the BMES tag set to indicate the
character positions. The tag set has four labels that
represent for possible positions a character can oc-
cupy within a word: B for beginning, M for mid-
dle, E for ending, and S for a single character as a
word. After each character in a sentence is tagged
with a BMES label, a sequence of words can be
derived from this labeled character sequence.

We train a Conditional Random Field (CRF)
(Lafferty et al., 2001) model for this sequence
labeling. When extracting features to train a
CRF model from a sequence of n characters
C1C2...Ci−1CiCi+1...Cn, we extract features for
each character Ci from a fixed window. We start
with a set of core features extracted from the anno-
tated corpus that have been shown to be effective
in previous works and propose some new features
for patent word segmentation. We describe each
group of features in detail below.

2.1 Character features (CF)
When predicting the position of a character with-
in a word, features based on its surrounding char-
acters and their types have shown to be the most
effective features for this task (Xue, 2003). There
are some variations of these features depending on
the window size in terms of the number of char-
acters to examine, and here we adopt the feature
templates used in (Ng and Low, 2004).

Character N-gram features The N-gram fea-
tures are various combinations of the surrounding
characters of the candidate character Ci. The 10
features we used are listed below:

• Character unigrams: Ck (i− 3 < k < i+ 3)
• Character bigrams: CkCk+1 (i − 3 < k <
i+ 2) and Ck−1Ck+1 (k = i)

Character type N-gram features We classify
the characters in Chinese text into 4 types: Chi-
nese characters or hanzi, English letters, numbers
and others. Ti is the character type of Ci. The
character type has been used in the previous work-
s in various forms (Ng and Low, 2004; Jiang et al.,
2009), and the 4 features we use are as follows:

• Character type unigrams: Tk (k = i)

• Character type bigrams: TkTk+1 (i−2 < k <
i+ 1) and Tk−1Tk+1 (k = i)

Starting with this baseline, we extract some new
features to improve Chinese patent word segmen-
tation accuracy.

2.2 POS of single-character words (C_POS)
Chinese words are composed of Chinese hanzi,
and an overwhelming majority of these Chinese
characters can be single-character words them-
selves in some context. In fact, most of the multi-
character words are compounds that are 2-4 char-
acters in length. The formation of these compound
words is not random and abide by word formation
rules that are similar to the formation of phras-
es (Xue, 2000; Packard, 2000). In fact, the Chi-
nese TreeBank word segmentation guidelines (X-
ia, 2000) specify how words are segmented based
on the part-of-speech (POS) of their componen-
t characters. We hypothesize that the POS tags
of the single-character words would be useful in-
formation to help predict how they form the com-
pound words, and these POS tags are more fine-
grained information than the character type infor-
mation described in the previous section, but are
more robust and more generalizable than the char-
acters themselves.

Since we do not have POS-tagged patent da-
ta, we extract this information from the Chinese
TreeBank (CTB) 7.0, a 1.2-million-word out-of-
domain dataset. We extract the POS tags for al-
l the single-character words in the CTB. Some of
the single-character words will have more than one
POS tag. In this case, we select the POS tag with
the highest frequency as the C_POS tag for this
character. The result of this extraction process is
a list of single-character Chinese words, each of
which is assigned a single POS tag.

When extracting features for the target character
Ci, if Ci is in this list, the POS tag of Ci is used as
a feature for this target character.

2.3 Document-level features
A patent is a property right for an invention grant-
ed by the government to the inventor, and many of
the patents have a high concentration of scientif-
ic and technical terms. From a machine learning
perspective, these terms are hard to detect and seg-
ment because they are often "new words" that are
not seen in everyday language. These technical
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Algorithm 1 Longest n-gram sequence extraction.
Input:

Sentences {si} in patent Pi;
Output:

Longest n-gram sequence list for Pi;
1: For each sentence si in Pi do:

n-gram sequence extraction
(2≤n≤length(si));

2: Count the frequency of each n-gram sequence;
3: Delete the sequence if its frequency<2;
4: Delete sequence i if it is contained in a longer

sequence j;
5: All the remaining sequences form a longest n-

gram sequence list for Pi;
6: return Longest n-gram sequences list.

terminologies also tend to be very sparse, either
because they are related to the latest invention that
has not made into everyday language, or because
our limited patent dataset cannot possibly cover all
possible technical topics. However, these techni-
cal terms are also topical and they tend to have
high relative frequency within a patent document
even though they are sparse in the entire patent da-
ta set. We attempt to exploit this distribution prop-
erty with some document-level features which are
extracted based on each patent document.

Longest n-gram features (LNG) We propose a
longest n-gram (LNG) feature as a document-level
feature. Each patent document is treated as an in-
dependent unit and the candidate longest n-gram
sequence lists for each patent are obtained as de-
scribed in Algorithm 1.

For a given patent, the LNG feature value for the
target character Ci’s LNG is set to 'S' if the bigram
(Ci,Ci+1) are the first two characters of an n-gram
sequence in this patent’s longest n-gram sequence
list. If (Ci−1, Ci) are the last two characters of an
n-gram sequence in this patent’s longest n-gram
sequence list, the target character Ci’s LNG is set
to 'F'. It is set to 'O' otherwise. If Ci can be labeled
as both 'S' and 'F' at the same time, label 'T' will be
given as the final label. For example, if 'α' is the
target character Ci in patent A and the sequence
'α¨Z6�' is in patent A’s longest n-gram se-
quence list. If the character next to 'α' is '¨', the
value of the LNG feature is set to 'S'. If the next
character is not '¨', the value of the LNG feature
is set to 'O'.

Algorithm 2 Pseudo KL divergence.
Input:

Sentences {si} in patent Pi;
Output:

Pseudo KL divergence values between differ-
ent characters in Pi;

1: For each sentence si in Pi do:
trigram sequences extraction;

2: Count the frequency of each trigram;
3: Delete the trigram if its frequency<2;
4: For Ci in trigram CiCi+1Ci+2 do :

PKL(Ci, Ci+1) = p(Ci
1)log

p(Ci
1)

p(Ci+1
2)

(1)

PKL(Ci, Ci+2) = p(Ci
1)log

p(Ci
1)

p(Ci+2
3)

(2)

The superscripts {1,2,3} indicate the character
position in trigram sequences;

5: return PKL(Ci, Ci+1) and PKL(Ci, Ci+2)
for the first character Ci in each trigram.

Pseudo Kullback-Leibler divergence (PKL)
The second document-level feature we propose
is the Pseudo Kullback-Leibler divergence fea-
ture which is calculated following the form of
the Kullback-Leibler divergence. The relative
position information is very important for Chi-
nese word segmentation as a sequence labeling
task. Characters XY may constitute a meaningful
word, but characters Y X may not be. Therefore,
if we want to determine whether character X and
character Y can form a word, the relative position
of these two characters should be considered. We
adopt a pseudo KL divergence with the relative po-
sition information as a measure of the association
strength between two adjacent characters X and
Y . The pseudo KL divergence is an asymmetric
measure. The PKL value between character X
and character Y is described in Algorithm 2.

The PKL values are real numbers and are s-
parse. A common solution to sparsity reduction
is binning. We rank the PKL values between t-
wo adjacent characters in each patent from low to
high, and then divide all values into five bins. Each
bin is assigned a unique ID and all PKL values in
the same bin are replaced by this ID. This ID is
then used as the PKL feature value for the target
character Ci.
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Pointwise Mutual information (PMI) Point-
wise Mutual information has been widely used
in previous work on Chinese word segmentation
(Sun and Xu, 2011; Zhang et al., 2013b) and it is a
measure of the mutual dependence of two strings
and reflects the tendency of two strings appearing
in one word. In previous work, PMI statistics are
gathered on the entire data set, and here we gather
PMI statistics for each patent in an attempt to cap-
ture character strings with high PMI in a particu-
lar patent. The procedure for calculating PMI is
the same as that for computing pseudo KL diver-
gence, but the functions (1) and (2) are replaced
with the following functions:

PMI(Ci, Ci+1) = log
p(Ci

1, Ci+1
2)

p(Ci
1)p(Ci+1

2)
(3)

PMI(Ci, Ci+2) = log
p(Ci

1, Ci+2
3)

p(Ci
1)p(Ci+2

3)
(4)

For the target character Ci, we obtain the values
for PMI(Ci, Ci+1) and PMI(Ci, Ci+2). In each
patent document, we rank these values from high
to low and divided them into five bins. Then the
PMI feature values are represented by the bin IDs.

3 Experiments

3.1 Data preparation
We annotated 142 Chinese patents following the
CTB word segmentation guidelines (Xia, 2000).
Since the original guidelines are mainly designed
to cover non-technical everyday language, many
scientific and technical terms found in patents are
not covered in the guidelines. We had to extend
the CTB word segmentation guidelines to han-
dle these new words. Deciding on how to seg-
ment these scientific and technical terms is a big
challenge since these patents cover many differ-
ent technical fields and without proper technical
background, even a native speaker has difficulty
in segmenting them properly. For difficult scien-
tific and technical terms, we consult BaiduBaike
("Baidu Encyclopedia")1, which we use as a scien-
tific and technical terminology dictionary during
our annotation. There are still many words that
do not appear in BaiduBaiKe, and these include
chemical names and formulas. These chemical
names and formulas (e.g., /¬¨�¨®¨ÅZ
�/1-bromo-3-chloropropane0) are usually very

1http://baike.baidu.com/

Table 1: Training, development and test data on
Patent data

Data set # of words # of patent
Training 345336 113
Devel. 46196 14
Test 48351 15

long, and unlike everyday words, they often have
numbers and punctuation marks in them. We de-
cided not to try segmenting the internal structures
of such chemical terms and treat them as single
words, because without a technical background in
chemistry, it is very hard to segment their internal
structures consistently.

The annotated patent dataset covers many topics
and they include chemistry, mechanics, medicine,
etc. If we consider the words in our annotated
dataset but not in CTB 7.0 data as new words (or
out-of-vocabulary, OOV), the new words account
for 18.3% of the patent corpus by token and 68.1%
by type. This shows that there is a large number of
words in the patent corpus that are not in the ev-
eryday language vocabulary. Table 1 presents the
data split used in our experiments.

3.2 Main results

We use CRF++ (Kudo, 2013) to train our sequence
labeling model. Precision, recall, F1 score and
ROOV are used to evaluate our word segmentation
methods, whereROOV for our purposes means the
recall of new words which do not appear in CTB
7.0 but in patent data.

Table 2 shows the segmentation results on the
development and test sets with different feature
templates and different training sets. The CTB
training set includes the entire CTB 7.0, which has
1.2 million words. The model with the CF fea-
ture template is considered to be the baseline sys-
tem. We conducted 4 groups of experiments based
on the different datasets: (1) patent training set +
patent development set; (2) patent training set +
patent test set; (3) CTB training set + patent de-
velopment set; (4) CTB training set + patent test
set.

The results in Table 2 show that the model-
s trained on the patent data outperform the mod-
els trained on the CTB data by a big margin on
both the development and test set, even if the CTB
training set is much bigger. That proves the im-
portance of having a training set in the same do-
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Table 2: Segmentation performance with different feature sets on different datasets.

Train set Test set Features P R F1 ROOV

Patent train Patent dev.

CF 95.34 95.28 95.32 90.02
CF+C_POS 95.58 95.40 95.49 90.40

CF+C_POS+LNG 96.32 96.00 96.15 91.22
CF+C_POS+PKL 95.62 95.41 95.51 90.40
CF+C_POS+PMI 95.65 95.40 95.53 89.94

CF+C_POS+PMI+PKL 95.72 95.53 95.62 90.37
CF+C_POS+LNG+PMI 96.42 96.09 96.26 91.66

CF+C_POS+LNG+PMI+PKL 96.48 96.12 96.30 91.69

Patent train Patent test
CF 93.98 94.49 94.23 85.19

CF+C_POS+LNG+PKL+PMI 94.89 95.10 95.00 87.89
CTB train Patent dev. CF+C_POS+LNG+PKL+PMI 89.04 90.75 89.89 72.80
CTB train Patent test CF+C_POS+LNG+PKL+PMI 87.88 89.03 88.45 70.89

main. The results also show that adding the new
features we proposed leads to consistent improve-
ment across all experimental conditions, and that
the LNG features are the most effective and bring
about the largest improvement in accuracy.

4 Related work

Most of the previous work on Chinese word seg-
mentation focused on newswire, and one wide-
ly adopted technique is character-based represen-
tation combined with sequential learning models
(Xue, 2003; Low et al., 2005; Zhao et al., 2006;
Sun and Xu, 2011; Zeng et al., 2013b; Zhang
et al., 2013b; Wang and Kan, 2013). More re-
cently, word-based models using perceptron learn-
ing techniques (Zhang and Clark, 2007) also pro-
duce very competitive results. There are also some
recent successful attempts to combine character-
based and word-based techniques (Sun, 2010;
Zeng et al., 2013a).

As Chinese word segmentation has reached a
very high accuracy in the newswire domain, the
attention of the field has started to shift to other
domains where there are few annotated resources
and the problem is more challenging, such as work
on the word segmentation of literature data (Li-
u and Zhang, 2012) and informal language gen-
res (Wang and Kan, 2013; Zhang et al., 2013a).
Patents are distinctly different from the above gen-
res as they contain scientific and technical terms
that require some special training to understand.
There has been very little work in this area, and
the only work that is devoted to Chinese word
segmentation is (Guo et al., 2012), which reports

work on Chinese patent word segmentation with
a fairly small test set without any annotated train-
ing data in the target domain. They reported an
accuracy of 86.42% (F1 score), but the results are
incomparable with ours as their evaluation data is
not available to us. We differ from their work in
that we manually segmented a significant amount
of data, and trained a model with document-level
features designed to capture the characteristics of
patent data.

5 Conclusion

In this paper, we presented an accurate character-
based word segmentation model for Chinese
patents. Our contributions are two-fold. Our first
contribution is that we have annotated a signifi-
cant amount of Chinese patent data and we plan
to release this data once the copyright issues have
been cleared. Our second contribution is that we
designed document-level features to capture the
distributional characteristics of the scientific and
technical terms in patents. Experimental results
showed that the document-level features we pro-
posed are effective for patent word segmentation.
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Abstract
Segmentation of clitics has been shown to
improve accuracy on a variety of Arabic
NLP tasks. However, state-of-the-art Ara-
bic word segmenters are either limited to
formal Modern Standard Arabic, perform-
ing poorly on Arabic text featuring dialectal
vocabulary and grammar, or rely on lin-
guistic knowledge that is hand-tuned for
each dialect. We extend an existing MSA
segmenter with a simple domain adapta-
tion technique and new features in order
to segment informal and dialectal Arabic
text. Experiments show that our system
outperforms existing systems on newswire,
broadcast news and Egyptian dialect, im-
proving segmentation F1 score on a recently
released Egyptian Arabic corpus to 95.1%,
compared to 90.8% for another segmenter
designed specifically for Egyptian Arabic.

1 Introduction
Segmentation of words, clitics, and affixes is essen-
tial for a number of natural language processing
(NLP) applications, including machine translation,
parsing, and speech recognition (Chang et al., 2008;
Tsarfaty, 2006; Kurimo et al., 2006). Segmentation
is a common practice in Arabic NLP due to the lan-
guage’s morphological richness. Specifically, clitic
separation has been shown to improve performance
on Arabic parsing (Green and Manning, 2010) and
Arabic-English machine translation (Habash and
Sadat, 2006). However, the variety of Arabic di-
alects presents challenges in Arabic NLP. Dialectal
Arabic contains non-standard orthography, vocab-
ulary, morphology, and syntax. Tools that depend
on corpora or grammatical properties that only con-
sider formal Modern Standard Arabic (MSA) do
not perform well when confronted with these differ-
ences. The creation of annotated corpora in dialec-
tal Arabic (Maamouri et al., 2006) has promoted

the development of new systems that support di-
alectal Arabic, but these systems tend to be tailored
to specific dialects and require separate efforts for
Egyptian Arabic, Levantine Arabic, Maghrebi Ara-
bic, etc.
We present a single clitic segmentation model

that is accurate on both MSA and informal Arabic.
The model is an extension of the character-level
conditional random field (CRF) model of Green
and DeNero (2012). Our work goes beyond theirs
in three aspects. First, we handle two Arabic ortho-
graphic normalization rules that commonly require
rewriting of tokens after segmentation. Second,
we add new features that improve segmentation ac-
curacy. Third, we show that dialectal data can be
handled in the framework of domain adaptation.
Specifically, we show that even simple feature space
augmentation (Daumé, 2007) yields significant im-
provements in task accuracy.

We compare our work to the original Green and
DeNero model and two other Arabic segmenta-
tion systems: the MADA+TOKAN toolkit v. 3.1
(Habash et al., 2009) and its Egyptian dialect vari-
ant, MADA-ARZ v. 0.4 (Habash et al., 2013). We
demonstrate that our system achieves better perfor-
mance across the board, beating all three systems
on MSA newswire, informal broadcast news, and
Egyptian dialect. Our segmenter achieves a 95.1%
F1 segmentation score evaluated against a gold stan-
dard on Egyptian dialect data, compared to 90.8%
for MADA-ARZ and 92.9% for Green and DeN-
ero. In addition, our model decodes input an order
of magnitude faster than either version of MADA.
Like the Green and DeNero system, but unlike
MADA and MADA-ARZ, our system does not rely
on a morphological analyzer, and can be applied
directly to any dialect for which segmented training
data is available. The source code is available in
the latest public release of the Stanford Word Seg-
menter (http://nlp.stanford.edu/software/

segmenter.shtml).
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2 Arabic Word Segmentation Model
A CRF model (Lafferty et al., 2001) defines a distri-
bution p(Y|X; θ), whereX = {x1, . . . , xN} is the
observed input sequence and Y = {y1, . . . , yN} is
the sequence of labels we seek to predict. Green
and DeNero use a linear-chain model with X as
the sequence of input characters, and Y∗ chosen
according to the decision rule

Y∗ = arg max
Y

N∑
i=1

θ>φ(X, yi, . . . , yi−3, i) .

where φ is the feature map defined in Section 2.1.
Their model classifies each yi as one of I (contin-
uation of a segment), O (whitespace outside any
segment), B (beginning of a segment), or F (pre-
grouped foreign characters).

Our segmenter expands this label space in order
to handle two Arabic-specific orthographic rules.
In our model, each yi can take on one of the six
values {I,O,B,F,RewAl,RewTa}:
• RewAl indicates that the current character,
which is always the Arabic letter È l, starts a
new segment and should additionally be trans-
formed into the definite article �Ë @ al- when
segmented. This type of transformation occurs
after the prefix �Ë li- “to”.
• RewTa indicates that the current character,
which is always the Arabic letter �H t, is a
continuation but should be transformed into
the letter �è h when segmented. Arabic orthog-
raphy rules restrict the occurrence of �è h to
the word-final position, writing it instead as
�H t whenever it is followed by a suffix.

2.1 Features
The model of Green and DeNero is a third-order
(i.e., 4-gram) Markov CRF, employing the follow-
ing indicator features:

• a five-character window around the current
character: for each −2 ≤ δ ≤ 2 and 1 ≤ i ≤
N , the triple (xi+δ, δ, yi)

• n-grams consisting of the current character
and up to three preceding characters: for
each 2 ≤ n ≤ 4 and n ≤ i ≤ N ,
the character-sequence/label-sequence pair
(xi−n+1 . . . xi, yi−n+1 . . . yi)

• whether the current character is punctuation

• whether the current character is a digit

• the Unicode block of the current character

• the Unicode character class of the current char-
acter

In addition to these, we include two other types of
features motivated by specific errors the original
system made on Egyptian dialect development data:

• Word length and position within a word: for
each 1 ≤ i ≤ N , the pairs (`, yi), (a, yi), and
(b, yi), where `, a, and b are the total length
of the word containing xi, the number of char-
acters after xi in the word, and the number of
characters before xi in the word, respectively.
Some incorrect segmentations produced by
the original system could be ruled out with the
knowledge of these statistics.

• First and last two characters of the current
word, separately influencing the first two
labels and the last two labels: for each
word consisting of characters xs . . . xt, the tu-
ples (xsxs+1, xt−1xt, ysys+1, “begin”) and
(xsxs+1, xt−1xt, yt−1yt, “end”). This set of
features addresses a particular dialectal Arabic
construction, the negation AÓ mā- + [verb] +

�� -sh, which requires a matching prefix and
suffix to be segmented simultaneously. This
feature set also allows themodel to take into ac-
count other interactions between the beginning
and end of a word, particularly those involving
the definite article �Ë @ al-.

A notable property of this feature set is that it re-
mains highly dialect-agnostic, even though our ad-
ditional features were chosen in response to errors
made on text in Egyptian dialect. In particular,
it does not depend on the existence of a dialect-
specific lexicon or morphological analyzer. As a
result, we expect this model to perform similarly
well when applied to other Arabic dialects.

2.2 Domain adaptation
In this work, we train our model to segment Arabic
text drawn from three domains: newswire, which
consists of formal text in MSA; broadcast news,
which contains scripted, formal MSA as well as
extemporaneous dialogue in a mix of MSA and di-
alect; and discussion forum posts written primarily
in Egyptian dialect.
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F1 (%) TEDEval (%)
Model Training Data ATB BN ARZ ATB BN ARZ

GD ATB 97.60 94.87 79.92 98.22 96.81 87.30
GD +BN+ARZ 97.28 96.37 92.90 98.05 97.45 95.01

+Rew ATB 97.55 94.95 79.95 98.72 97.45 87.54
+Rew +BN 97.58 96.60 82.94 98.75 98.18 89.43
+Rew +BN+ARZ 97.30 96.09 92.64 98.59 97.91 95.03

+Rew+DA +BN+ARZ 97.71 96.57 93.87 98.79 98.14 95.86
+Rew+DA+Feat +BN+ARZ 98.36 97.35 95.06 99.14 98.57 96.67

Table 1: Development set results. GD is the model of Green and DeNero (2012). Rew is support for
orthographic rewrites with the RewAl and RewTa labels. The fifth row shows the strongest baseline,
which is the GD+Rew model trained on the concatenated training sets from all three treebanks. DA is
domain adaptation via feature space augmentation. Feat adds the additional feature templates described
in section 2.1. ATB is the newswire ATB; BN is the Broadcast News treebank; ARZ is the Egyptian
treebank. Best results (bold) are statistically significant (p < 0.001) relative to the strongest baseline.

The approach to domain adaptation we use is
that of feature space augmentation (Daumé, 2007).
Each indicator feature from the model described
in Section 2.1 is replaced by N + 1 features in
the augmented model, where N is the number of
domains from which the data is drawn (here, N =
3). These N + 1 features consist of the original
feature and N “domain-specific” features, one for
each of theN domains, each of which is active only
when both the original feature is present and the
current text comes from its assigned domain.

3 Experiments

We train and evaluate on three corpora: parts 1–3 of
the newswire Arabic Treebank (ATB),1 the Broad-
cast News Arabic Treebank (BN),2 and parts 1–8
of the BOLT Phase 1 Egyptian Arabic Treebank
(ARZ).3 These correspond respectively to the do-
mains in section 2.2. We target the segmentation
scheme used by these corpora (leaving morphologi-
cal affixes and the definite article attached). For the
ATB, we use the same split as Chiang et al. (2006).
For each of the other two corpora, we split the data
into 80% training, 10% development, and 10% test
in chronological order by document.4 We train the
Green and DeNero model and our improvements
using L-BFGS with L2 regularization.

1LDC2010T13, LDC2011T09, LDC2010T08
2LDC2012T07
3LDC2012E{93,98,89,99,107,125}, LDC2013E{12,21}
4These splits are publicly available at

http://nlp.stanford.edu/software/parser-
arabic-data-splits.shtml.

3.1 Evaluation metrics
We use two evaluation metrics in our experiments.
The first is an F1 precision-recall measure, ignoring
orthographic rewrites. F1 scores provide a more
informative assessment of performance than word-
level or character-level accuracy scores, as over 80%
of tokens in the development sets consist of only
one segment, with an average of one segmentation
every 4.7 tokens (or one every 20.4 characters).
The second metric we use is the TEDEval met-

ric (Tsarfaty et al., 2012). TEDEval was devel-
oped to evaluate joint segmentation and parsing5
in Hebrew, which requires a greater variety of or-
thographic rewrites than those possible in Arabic.
Its edit distance-based scoring algorithm is robust
enough to handle the rewrites produced by both
MADA and our segmenter.
We measure the statistical significance of differ-

ences in these metrics with an approximate ran-
domization test (Yeh, 2000; Padó, 2006), with
R = 10,000 samples.

3.2 Results
Table 1 contains results on the development set
for the model of Green and DeNero and our im-
provements. Using domain adaptation alone helps
performance on two of the three datasets (with a sta-
tistically insignificant decrease on broadcast news),
and that our additional features further improve

5In order to evaluate segmentation in isolation, we convert
each segmented sentence from both the model output and
the gold standard to a flat tree with all segments descending
directly from the root.
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F1 (%) TEDEval (%)
ATB BN ARZ ATB BN ARZ

MADA 97.36 94.54 78.35 97.62 96.96 86.78
MADA-ARZ 92.83 91.89 90.76 91.26 91.10 90.39
GD+Rew+DA+Feat 98.30 97.17 95.13 99.10 98.42 96.75

Table 2: Test set results. Our final model (last row) is trained on all available data (ATB+BN+ARZ). Best
results (bold) are statistically significant (p < 0.001) relative to each MADA version.

ATB BN ARZ

MADA 705.6 ± 5.1 472.0 ± 0.8 767.8 ± 1.9
MADA-ARZ 784.7 ± 1.6 492.1 ± 4.2 779.0 ± 2.7
GD+Rew+DA+Feat 90.0 ± 1.0 59.5 ± 0.3 72.7 ± 0.2

Table 3: Wallclock time (in seconds) for MADA, MADA-ARZ, and our model for decoding each of
the three development datasets. Means and standard deviations were computed for 10 independent runs.
MADA and MADA-ARZ are single-threaded. Our segmenter supports multithreaded execution, but the
times reported here are for single-threaded runs.

segmentation on all datasets. Table 2 shows the
segmentation scores our model achieves when eval-
uated on the three test sets, as well as the results for
MADA and MADA-ARZ. Our segmenter achieves
higher scores than MADA and MADA-ARZ on all
datasets under both evaluation metrics. In addi-
tion, our segmenter is faster than MADA. Table 3
compares the running times of the three systems.
Our segmenter achieves a 7x or more speedup over
MADA and MADA-ARZ on all datasets.

4 Error Analysis
We sampled 100 errors randomly from all errors
made by our final model (trained on all three
datasets with domain adaptation and additional fea-
tures) on the ARZ development set; see Table 4.
These errors fall into three general categories:

• typographical errors and annotation inconsis-
tencies in the gold data;

• errors that can be fixed with a fuller analysis
of just the problematic token, and therefore
represent a deficiency in the feature set; and

• errors that would require additional context or
sophisticated semantic awareness to fix.

4.1 Typographical errors and annotation
inconsistencies

Of the 100 errors we sampled, 33 are due to typo-
graphical errors or inconsistencies in the gold data.

We classify 7 as typos and 26 as annotation incon-
sistencies, although the distinction between the two
is murky: typos are intentionally preserved in the
treebank data, but segmentation of typos varies de-
pending on how well they can be reconciled with
standard Arabic orthography. Four of the seven
typos are the result of a missing space, such as:

• ú
ÍAJ

�
ÊËAK. Qê��
 yashar-bi-’l-layālı̄ “staysawakeat-

night” (QîD��
 yashar + K. bi- + ú
ÍAJ

�
ÊË @ al-layālı̄)

• 	à


@ A 	J�JÊÔ« ↪amilatnā-↩an “madeus” ( �IÊÔ«

↪amilat + A 	J� -nā + 	à


@ ↩an)

The first example is segmented in the Egyptian tree-
bank but is left unsegmented by our system; the
second is left as a single token in the treebank but is
split into the above three segments by our system.
Of the annotation inconsistencies that do not in-

volve typographical errors, a handful are segmen-
tation mistakes; however, in the majority of these
cases, the annotator chose not to segment a word
for justifiable but arbitrary reasons. In particular, a
few colloquial “filler” expressions are sometimes
not segmented, despite being compound Arabic
words that are segmented elsewhere in the data.
These include A 	J�K. P rabbinā “[our] Lord” (oath);
AÓY 	J« ↪indamā “when”/“while”; and ½J


�
Ê 	g khallı̄-

k “keep”/“stay”. Also, tokens containing foreign
words are sometimes not segmented, despite car-
rying Arabic affixes. An example of this is Q���Óð
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Category # of errors

Abnormal gold data 33
Typographical error 7
Annotation inconsistency 26

Need full-token features 36
Need more context 31

Bð wlā 5
A 	J� -nā: verb/pron 7
ù
 � -y: nisba/pron 4
other 15

Table 4: Counts of error categories (out of 100
randomly sampled ARZ development set errors).

wamistur “andMister [English]”, which could be
segmented as ð wa- + Q���Ó mistur.

4.2 Features too local
In 36 of the 100 sampled errors, we conjecture that
the presence of the error indicates a shortcoming
of the feature set, resulting in segmentations that
make sense locally but are not plausible given the
full token. Two examples of these are:

• �é�®K
Q¢ 	̄ð wafit.arı̄qah “and in the way” seg-
mented as ð wa- + �é�®K
Q¢ 	̄ fit.arı̄qah (correct
analysis is ð wa- + � 	̄ fi- + �é�®K
Q£ t.arı̄qah).
Q¢ 	̄ ft.r “break”/“breakfast” is a common Ara-
bic root, but the presence of �� q should indi-
cate that Q¢ 	̄ ft.r is not the root in this case.

• Ñê�ÒîE
Bð walāyuhimmhum “and it’s not im-
portant to them” segmented as ð wa- + �Ë
li- + �ÑîE
 A� -ayuhimm + Ñê� -hum (correct
analysis is ð wa- + B lā + �ÑîE
 yuhimm +
Ñê� -hum). The 4-character window éK
B lāyh
occurs commonly with a segment boundary
after the È l, but the segment �ÑîE
 A� -ayuhimm
is not a well-formed Arabic word.

4.3 Context-sensitive segmentations and
multiple word senses

In the remaining 31 of 100 errors, external context
is needed. In many of these, it is not clear how to
address the error without sophisticated semantic
reasoning about the surrounding sentence.
One token accounts for five of these errors: Bð

wlā, which in Egyptian dialect can be analyzed as
ð wa- + B lā “and [do/does] not” or as B

�
ð wallā

“or”. In a few cases, either is syntactically correct,
and the meaning must be inferred from context.
Two other ambiguities are a frequent cause of

error and seem to require sophisticated disambigua-
tion. The first is A 	J� -nā, which is both a first person
plural object pronoun and a first person plural past
tense ending. The former is segmented, while the
latter is not. An example of this is the pair A 	JÒÊ«
↪ilmunā “our knowledge” (ÕÎ« ↪ilmu + A 	J� -nā) ver-
sus A 	JÒÊ« ↪alimnā “we knew” (one segment). The
other is ù
 � -y, which is both a first person singular
possessive pronoun and the nisba adjective ending
(which turns a noun into an adjective meaning “of
or related to”); only the former is segmented. One
example of this distinction that appeared in the de-
velopment set is the pair ú
«ñ 	�ñÓ mawd. ū↪̄ı “my

topic” (¨ñ 	�ñÓ mawd. ū↪+ ù
 � -y) versus �ú
«ñ 	�ñÓ
mawd. ū↪̄ıy “topical”, “objective”.

5 Conclusion
In this paper we demonstrate substantial gains on
Arabic clitic segmentation for both formal and
dialectal text using a single model with dialect-
independent features and a simple domain adap-
tation strategy. We present a new Arabic segmenter
which performs better than tools employing sophis-
ticated linguistic analysis, while also giving im-
pressive speed improvements. We evaluated our
segmenter on broadcast news and Egyptian Arabic
due to the current availability of annotated data in
these domains. However, as data for other Arabic di-
alects and genres becomes available, we expect that
the model’s simplicity and the domain adaptation
method we use will allow the system to be applied
to these dialects with minimal effort and without a
loss of performance in the original domains.
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Abstract

This paper provides a method for improv-
ing tensor-based compositional distribu-
tional models of meaning by the addition
of an explicit disambiguation step prior to
composition. In contrast with previous re-
search where this hypothesis has been suc-
cessfully tested against relatively simple
compositional models, in our work we use
a robust model trained with linear regres-
sion. The results we get in two experi-
ments show the superiority of the prior dis-
ambiguation method and suggest that the
effectiveness of this approach is model-
independent.

1 Introduction

The provision of compositionality in distributional
models of meaning, where a word is represented as
a vector of co-occurrence counts with every other
word in the vocabulary, offers a solution to the
fact that no text corpus, regardless of its size, is
capable of providing reliable co-occurrence statis-
tics for anything but very short text constituents.
By composing the vectors for the words within
a sentence, we are still able to create a vectorial
representation for that sentence that is very useful
in a variety of natural language processing tasks,
such as paraphrase detection, sentiment analysis
or machine translation. Hence, given a sentence
w1w2 . . . wn, a compositional distributional model
provides a function f such that:

−→s = f(−→w1,
−→w2, . . . ,

−→wn) (1)

where −→wi is the distributional vector of the ith
word in the sentence and −→s the resulting compos-
ite sentential vector.

An interesting question that has attracted the at-
tention of researchers lately refers to the way in
which these models affect ambiguous words; in
other words, given a sentence such as “a man was
waiting by the bank”, we are interested to know to
what extent a composite vector can appropriately

reflect the intended use of word ‘bank’ in that con-
text, and how such a vector would differ, for exam-
ple, from the vector of the sentence “a fisherman
was waiting by the bank”.

Recent experimental evidence (Reddy et al.,
2011; Kartsaklis et al., 2013; Kartsaklis and
Sadrzadeh, 2013) suggests that for a number of
compositional models the introduction of a dis-
ambiguation step prior to the actual composi-
tional process results in better composite represen-
tations. In other words, the suggestion is that Eq.
1 should be replaced by:

−→s = f(φ(−→w1), φ(−→w2), . . . , φ(−→wn)) (2)
where the purpose of function φ is to return a dis-
ambiguated version of each word vector given the
rest of the context (e.g. all the other words in the
sentence). The composition operation, whatever
that could be, is then applied on these unambigu-
ous representations of the words, instead of the
original distributional vectors.

Until now this idea has been verified on rela-
tively simple compositional functions, usually in-
volving some form of element-wise operation be-
tween the word vectors, such as addition or mul-
tiplication. An exception to this is the work of
Kartsaklis and Sadrzadeh (2013), who apply Eq.
2 on partial tensor-based compositional models.
In a tensor-based model, relational words such
as verbs and adjectives are represented by multi-
linear maps; composition takes place as the ap-
plication of those maps on vectors representing
the arguments (usually nouns). What makes the
models of the above work ‘partial’ is that the au-
thors used simplified versions of the linear maps,
projected onto spaces of order lower than that re-
quired by the theoretical framework. As a result,
a certain amount of transformational power was
traded off for efficiency.

A potential explanation then for the effective-
ness of the proposed prior disambiguation method
can be sought on the limitations imposed by the
compositional models under test. After all, the
idea of having disambiguation emerge as a direct
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consequence of the compositional process, with-
out the introduction of any explicit step, seems
more natural and closer to the way the human
mind resolves lexical ambiguities.

The purpose of this paper is to investigate
the hypothesis whether prior disambiguation is
important in a pure tensor-based compositional
model, where no simplifying assumptions have
been made. We create such a model by using lin-
ear regression, and we explain how an explicit dis-
ambiguation step can be introduced to this model
prior to composition. We then proceed by com-
paring the composite vectors produced by this ap-
proach with those produced by the model alone in
a number of experiments. The results show a clear
superiority of the priorly disambiguated models
following Eq. 2, confirming previous research and
suggesting that the reasons behind the success of
this approach are more fundamental than the form
of the compositional function.

2 Composition in distributional models

Compositional distributional models of meaning
vary in sophistication, from simple element-wise
operations between vectors such as addition and
multiplication (Mitchell and Lapata, 2008) to deep
learning techniques based on neural networks
(Socher et al., 2011; Socher et al., 2012; Kalch-
brenner and Blunsom, 2013a). Tensor-based mod-
els, formalized by Coecke et al. (2010), comprise
a third class of models lying somewhere in be-
tween these two extremes. Under this setting rela-
tional words such as verbs and adjectives are rep-
resented by multi-linear maps (tensors of various
orders) acting on a number of arguments. An ad-
jective for example is a linear map f : N → N
(where N is our basic vector space for nouns),
which takes as input a noun and returns a mod-
ified version of it. Since every map of this sort
can be represented by a matrix living in the ten-
sor product space N ⊗ N , we now see that the
meaning of a phrase such as ‘red car’ is given by
red × −→car, where red is an adjective matrix and
× indicates matrix multiplication. The same con-
cept applies for functions of higher order, such as
a transitive verb (a function of two arguments, so
a tensor of order 3). For these cases, matrix mul-
tiplication generalizes to the more generic notion
of tensor contraction. The meaning of a sentence
such as ‘kids play games’ is computed as:

−−→
kidsT × play ×−−−−→games (3)

where play here is an order-3 tensor (a “cube”)
and × now represents tensor contraction. A con-

cise introduction to compositional distributional
models can be found in (Kartsaklis, 2014).

3 Disambiguation and composition

The idea of separating disambiguation from com-
position first appears in a work of Reddy et al.
(2011), where the authors show that the intro-
duction of an explicit disambiguation step prior
to simple element-wise composition is beneficial
for noun-noun compounds. Subsequent work by
Kartsaklis et al. (2013) reports very similar find-
ings for verb-object structures, again on additive
and multiplicative models. Finally, in (Kartsaklis
and Sadrzadeh, 2013) these experiments were ex-
tended to include tensor-based models following
the categorical framework of Coecke et al. (2010),
where again all “unambiguous” models present
superior performance compared to their “ambigu-
ous” versions.

However, in this last work one of the dimen-
sions of the tensors was kept empty (filled in
with zeros). This simplified the calculations but
also weakened the effectiveness of the multi-linear
maps. If, for example, instead of using an order-3
tensor for a transitive verb, one uses some of the
matrix instantiations of Kartsaklis and Sadrzadeh,
Eq. 3 is reduced to one of the following forms:

play � (
−−→
kids⊗−−−−→games) ,

−−→
kids� (play ×−−−−→games)

(
−−→
kidsT × play)�−−−−→games

(4)

where symbol � denotes element-wise multipli-
cation and play is a matrix. Here, the model does
not fully exploit the space provided by the theo-
retical framework (i.e. an order-3 tensor), which
has two disadvantages: firstly, we lose space that
could hold valuable information about the verb in
this case and relational words in general; secondly,
the generally non-commutative tensor contraction
operation is now partly relying on element-wise
multiplication, which is commutative, thus forgets
(part of the) order of composition.

In the next section we will see how to apply lin-
ear regression in order to create full tensors for
verbs and use them for a compositional model that
avoids these pitfalls.

4 Creating tensors for verbs

The essence of any tensor-based compositional
model is the way we choose to create our sentence-
producing maps, i.e. the verbs. In this paper we
adopt a method proposed by Baroni and Zampar-
elli (2010) for building adjective matrices, which
can be generally applied to any relational word.
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In order to create a matrix for, say, the intransi-
tive verb ‘play’, we first collect all instances of
the verb occurring with some subject in the train-
ing corpus, and then we create non-compositional
holistic vectors for these elementary sentences fol-
lowing exactly the same methodology as if they
were words. We now have a dataset with instances
of the form 〈−−−→subji,

−−−−−−→
subji play〉 (e.g. the vector of

‘kids’ paired with the holistic vector of ‘kids play’,
and so on), that can be used to train a linear regres-
sion model in order to produce an appropriate ma-
trix for verb ‘play’. The premise of a model like
this is that the multiplication of the verb matrix
with the vector of a new subject will produce a re-
sult that approximates the distributional behaviour
of all these elementary two-word exemplars used
in training.

We present examples and experiments based
on this method, constructing ambiguous and dis-
ambiguated tensors of order 2 (that is, matrices)
for verbs taking one argument. In principle, our
method is directly applicable to tensors of higher
order, following a multi-step process similar to
that of Grefenstette et al. (2013) who create order-
3 tensors for transitive verbs using similar means.
Instead of using subject-verb constructs as above
we concentrate on elementary verb phrases of the
form verb-object (e.g. ‘play football’, ‘admit stu-
dent’), since in general objects comprise stronger
contexts for disambiguating the usage of a verb.

5 Experimental setting

Our basic vector space is trained from the ukWaC
corpus (Ferraresi et al., 2008), originally using as
a basis the 2,000 content words with the highest
frequency (but excluding a list of stop words as
well as the 50 most frequent content words since
they exhibit low information content). We cre-
ated vectors for all content words with at least
100 occurrences in the corpus. As context we
considered a 5-word window from either side of
the target word, while as our weighting scheme
we used local mutual information (i.e. point-wise
mutual information multiplied by raw counts).
This initial semantic space achieved a score of
0.77 Spearman’s ρ (and 0.71 Pearson’s r) on the
well-known benchmark dataset of Rubenstein and
Goodenough (1965). In order to reduce the time of
regression training, our vector space was normal-
ized and projected onto a 300-dimensional space
using singular value decomposition (SVD). The
performance of the reduced space on the R&G
dataset was again very satisfying, specifically 0.73
Spearman’s ρ and 0.72 Pearson’s r.

In order to create the vector space of the holistic
verb phrase vectors, we first collected all instances
where a verb participating in the experiments ap-
peared at least 100 times in a verb-object relation-
ship with some noun in the corpus. As context of
a verb phrase we considered any content word that
falls into a 5-word window from either side of the
verb or the object. For the 68 verbs participating
in our experiments, this procedure resulted in 22k
verb phrases, a vector space that again was pro-
jected into 300 dimensions using SVD.

Linear regression For each verb we use simple
linear regression with gradient descent directly ap-
plied on matrices X and Y, where the rows of X
correspond to vectors of the nouns that appear as
objects for the given verb and the rows of Y to the
holistic vectors of the corresponding verb phrases.
Our objective function then becomes:

Ŵ = arg min
W

1

2m

(
‖WXT −YT‖2 + λ‖W‖2

)
(5)

wherem is the number of training examples and λ
a regularization parameter. The matrix W is used
as the tensor for the specific verb.

6 Supervised disambiguation

In our first experiment we test the effectiveness
of a prior disambiguation step for a tensor-based
model in a “sandbox” using supervised learning.
The goal is to create composite vectors for a num-
ber of elementary verb phrases of the form verb-
object with and without an explicit disambiguation
step, and evaluate which model approximates bet-
ter the holistic vectors of these verb phrases.

The verb phrases of our dataset are based on the
5 ambiguous verbs of Table 1. Each verb has been
combined with two different sets of nouns that ap-
pear in a verb-object relationship with that verb
in the corpus (a total of 343 verb phrases). The
nouns of each set have been manually selected in
order to explicitly represent a different meaning of
the verb. As an example, in the verb ‘play’ we im-
pose the two distinct meanings of using a musical
instrument and participating in a sport; so the first

Verb Meaning 1 Meaning 2
break violate (56) break (22)
catch capture (28) be on time (21)
play musical instrument (47) sports (29)
admit permit to enter (12) acknowledge (25)
draw attract (64) sketch (39)

Table 1: Ambiguous verbs for the supervised task.
The numbers in parentheses refer to the collected
training examples for each case.
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set of objects contains nouns such as ‘oboe’, ‘pi-
ano’, ‘guitar’, and so on, while in the second set
we see nouns such as ‘football’, ’baseball” etc.

In more detail, the creation of the dataset was
done in the following way: First, all verb entries
with more than one definition in the Oxford Junior
Dictionary (Sansome et al., 2000) were collected
into a list. Next, a linguist (native speaker of En-
glish) annotated the semantic difference between
the definitions of each verb in a scale from 1 (sim-
ilar) to 5 (distinct). Only verbs with definitions
exhibiting completely distinct meanings (marked
with 5) were kept for the next step. For each one
of these verbs, a list was constructed with all the
nouns that appear at least 50 times under a verb-
object relationship in the corpus with the specific
verb. Then, each object in the list was manually
annotated as exclusively belonging to one of the
two senses; so, an object could be selected only if
it was related to a single sense, but not both. For
example, ‘attention’ was a valid object for the at-
tract sense of verb ‘draw’, since it is unrelated to
the sketch sense of that verb. On the other hand,
‘car’ is not an appropriate object for either sense
of ‘draw’, since it could actually appear under both
of them in different contexts. The verbs of Table
1 were the ones with the highest numbers of ex-
emplars per sense, creating a dataset of significant
size for the intended task (each holistic vector is
compared with 343 composite vectors).

We proceed as follows: We apply linear regres-
sion in order to train verb matrices using jointly
the object sets for both meanings of each verb, as
well as separately—so in this latter case we get
two matrices for each verb, one for each sense. For
each verb phrase, we create a composite vector by
matrix-multiplying the verb matrix with the vector
of the specific object. Then we use 4-fold cross
validation to evaluate which version of composite
vectors (the one created by the ambiguous tensors
or the one created by the unambiguous ones) ap-
proximates better the holistic vectors of the verb
phrases in our test set. This is done by comparing
each holistic vector with all the composite ones,
and then evaluating the rank of the correct com-
posite vector within the list of results.

In order to get a proper mixing of objects from
both senses of a verb in training and testing sets,
we set the cross-validation process as follows: We
first split both sets of objects in 4 parts. For each
fold then, our training set is comprised by 3

4 of set
#1 plus 3

4 of set #2, while the test set consists of
the remaining 1

4 of set #1 plus 1
4 of set #2. The

data points of the training set are presented in the

Accuracy MRR Avg Sim
Amb. Dis. Amb. Dis. Amb. Dis.

break 0.19 0.28 0.41 0.50 0.41 0.43
catch 0.35 0.37 0.58 0.61 0.51 0.57
play 0.20 0.28 0.41 0.49 0.60 0.68
admit 0.33 0.43 0.57 0.64 0.41 0.46
draw 0.24 0.29 0.45 0.51 0.40 0.44

Table 2: Results for the supervised task. ‘Amb.’
refers to models without the explicit disambigua-
tion step, and ‘Dis.’ to models with that step.

learning algorithm in random order.
We measure approximation in three different

metrics. The first one, accuracy, is the strictest,
and evaluates in how many cases the composite
vector of a verb phrase is the closest one (the first
one in the result list) to the corresponding holistic
vector. A more relaxed and perhaps more repre-
sentative method is to calculate the mean recipro-
cal rank (MRR), which is given by:

MRR =
1
m

m∑
i=1

1
ranki

(6)

where m is the number of objects and ranki refers
to the rank of the correct composite vector for the
ith object.

Finally, a third way to evaluate the efficiency of
each model is to simply calculate the average co-
sine similarity between every holistic vector and
its corresponding composite vector. The results
are presented in Table 2, reflecting a clear supe-
riority (p < 0.001 for average cosine similarity)
of the prior disambiguation method for every verb
and every metric.

7 Unsupervised disambiguation

In Section 6 we used a controlled procedure to col-
lect genuinely ambiguous verbs and we trained our
models from manually annotated data. In this sec-
tion we briefly outline how the process of creat-
ing tensors for distinct senses of a verb can be au-
tomated, and we test this idea on a generic verb
phrase similarity task.

First, we use unsupervised learning in order to
detect the latent senses of each verb in the corpus,
following a procedure first described by Schütze
(1998). For every occurrence of the verb, we cre-
ate a vector representing the surrounding context
by averaging the vectors of every other word in
the same sentence. Then, we apply hierarchical
agglomerative clustering (HAC) in order to cluster
these context vectors, hoping that different groups
of contexts will correspond to the different senses
under which the word has been used in the corpus.
The clustering algorithm uses Ward’s method as
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inter-cluster measure, and Pearson correlation for
measuring the distance of vectors within a clus-
ter. Since HAC returns a dendrogram embedding
all possible groupings, we measure the quality of
each partitioning by using the variance ratio crite-
rion (Caliński and Harabasz, 1974) and we select
the partitioning that achieves the best score (so the
number of senses varies from verb to verb).

The next step is to classify every noun that has
been used as an object with that verb to the most
probable verb sense, and then use these sets of
nouns as before for training tensors for the vari-
ous verb senses. Being equipped with a number of
sense clusters created as above for every verb, the
classification of each object to a relevant sense is
based on the cosine distance of the object vector
from the centroids of the clusters.1 Every sense
with less than 3 training exemplars is merged to
the dominant sense of the verb. The union of all
object sets is used for training a single unambigu-
ous tensor for the verb. As usual, data points are
presented to learning algorithm in random order.
No objects in our test set are used for training.

We test this system on a verb phase similarity
task introduced in (Mitchell and Lapata, 2010).
The goal is to assess the similarity between pairs
of short verb phrases (verb-object constructs) and
evaluate the results against human annotations.
The dataset consists of 72 verb phrases, paired
in three different ways to form groups of various
degrees of phrase similarity—a total of 108 verb
phrase pairs.

The experiment has the following form: For ev-
ery pair of verb phrases, we construct composite
vectors and then we evaluate their cosine similar-
ity. For the ambiguous regression model, the com-
position is done by matrix-multiplying the am-
biguous verb matrix (learned by the union of all
object sets) with the vector of the noun. For the
disambiguated version, we first detect the most
probable sense of the verb given the noun, again
by comparing the vector of the noun with the
centroids of the verb clusters; then, we matrix-
multiply the corresponding unambiguous tensor
created exclusively from objects that have been
classified as closer to this specific sense of the
verb with the noun. We also test a number
of baselines: the ‘verbs-only’ model is a non-
compositional baseline where only the two verbs
are compared; ‘additive’ and ‘multiplicative’ com-
pose the word vectors of each phrase by applying
simple element-wise operations.

1In general, our approach is quite close to the multi-
prototype models of Reisinger and Mooney (2010).

Model Spearman’s ρ
Verbs-only 0.331
Additive 0.379
Multiplicative 0.301
Linear regression (ambiguous) 0.349
Linear regression (disamb.) 0.399
Holistic verb phrase vectors 0.403
Human agreement 0.550

Table 3: Results for the phrase similarity task. The
difference between the ambiguous and the disam-
biguated version is s.s. with p < 0.001.

The results are presented in Table 3, where
again the version with the prior disambiguation
step shows performance superior to that of the am-
biguous version. There are two interesting obser-
vations that can be made on the basis of Table
3. First of all, the regression model is based on
the assumption that the holistic vectors of the ex-
emplar verb phrases follow an ideal distributional
behaviour that the model aims to approximate as
close as possible. The results of Table 3 confirm
this: using just the holistic vectors of the corre-
sponding verb phrases (no composition is involved
here) returns the best correlation with human an-
notations (0.403), providing a proof that the holis-
tic vectors of the verb phrases are indeed reli-
able representations of each verb phrase’s mean-
ing. Next, observe that the prior disambiguation
model approximates this behaviour very closely
(0.399) on unseen data, with a difference not sta-
tistically significant. This is very important, since
a regression model can only perform as well as its
training dataset allows it; and in our case this is
achieved to a very satisfactory level.

8 Conclusion and future work

This paper adds to existing evidence from previ-
ous research that the introduction of an explicit
disambiguation step before the composition im-
proves the quality of the produced composed rep-
resentations. The use of a robust regression model
rejects the hypothesis that the proposed methodol-
ogy is helpful only for relatively “weak” composi-
tional approaches. As for future work, an interest-
ing direction would be to see how a prior disam-
biguation step can affect deep learning composi-
tional settings similar to (Socher et al., 2012) and
(Kalchbrenner and Blunsom, 2013b).
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Abstract

In this paper, we propose a novel model for
enriching the content of microblogs by ex-
ploiting external knowledge, thus improv-
ing the data sparseness problem in short
text classification. We assume that mi-
croblogs share the same topics with ex-
ternal knowledge. We first build an opti-
mization model to infer the topics of mi-
croblogs by employing the topic-word dis-
tribution of the external knowledge. Then
the content of microblogs is further en-
riched by relevant words from external
knowledge. Experiments on microblog
classification show that our approach is
effective and outperforms traditional text
classification methods.

1 Introduction

During the past decade, the short text represen-
tation has been intensively studied. Previous re-
searches (Phan et al., 2008; Guo and Diab, 2012)
show that while traditional methods are not so
powerful due to the data sparseness problem, some
semantic analysis based approaches are proposed
and proved effective, and various topic models are
among the most frequently used techniques in this
area. Meanwhile, external knowledge has been
found helpful (Hu et al., 2009) in tackling the da-
ta scarcity problem by enriching short texts with
informative context. Well-organized knowledge
bases such as Wikipedia and WordNet are com-
mon tools used in relevant methods.

Nowadays, most of the work on short text fo-
cuses on microblog. As a new form of short tex-
t, microblog has some unique features like infor-
mal spelling and emerging words, and many mi-
croblogs are strongly related to up-to-date topics
as well. Every day, a great quantity of microblogs

∗Corresponding author

more than we can read is pushed to us, and find-
ing what we are interested in becomes rather dif-
ficult, so the ability of choosing what kind of mi-
croblogs to read is urgently demanded by common
user. Such ability can be implemented by effective
short text classification.

Treating microblogs as standard texts and di-
rectly classifying them cannot achieve the goal of
effective classification because of sparseness prob-
lem. On the other hand, news on the Internet is
of information abundance and many microblogs
are news-related. They share up-to-date topics
and sometimes quote each other. Thus, external
knowledge, such as news, provides rich supple-
mentary information for analysing and mining mi-
croblogs.

Motivated by the idea of using topic model and
external knowledge mentioned above, we present
an LDA-based enriching method using the news
corpus, and apply it to the task of microblog clas-
sification. The basic assumption in our model is
that news articles and microblogs tend to share the
same topics. We first infer the topic distribution
of each microblog based on the topic-word distri-
bution of news corpus obtained by the LDA esti-
mation. With the above two distributions, we then
add a number of words from news as additional
information to microblogs by evaluating the relat-
edness of between each word and microblog, since
words not appearing in the microblog may still be
highly relevant.

To sum up, our contributions are:

(1) We formulate the topic inference problem for
short texts as a convex optimization problem.

(2) We enrich the content of microblogs by infer-
ring the association between microblogs and
external words in a probabilistic perspective.

(3) We evaluate our method on the real dataset-
s and experiment results outperform the base-
line methods.
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2 Related Work

Based on the idea of exploiting external knowl-
edge, many methods are proposed to improve the
representation of short texts for classification and
clustering. Among them, some directly utilize
the structure information of organized knowledge
base or search engine. Banerjee et al. (2007) use
the title and the description of news article as two
separate query strings to select related concept-
s as additional feature. Hu et al. (2009) present
a framework to improve the performance of short
text clustering by mining informative context with
the integration of Wikipedia and WordNet.

However, to better leverage external resource,
some other methods introduce topic models. Phan
et al. (2008) present a framework including an
approach for short text topic inference and adds
abstract words as extra feature. Guo and Diab
(2012) modify classic topic models and propos-
es a matrix-factorization based model for sentence
similarity calculation tasks.

Those methods without topic model usually re-
ly greatly on the performance of search system or
the completeness of knowledge base, and lack in-
depth analysis for external resources. Compared
with our method, the topic model based method-
s mentioned above remain in finding latent space
representation of short text and ignore that rele-
vant words from external knowledge are informa-
tive as well.

3 Our Model

We formulate the problem as follows. Let
EK = {de

1, . . . , d
e
Me} denote external knowl-

edge consisting of M e documents. V e =
{we

1, . . . , w
e
Ne} represents its vocabulary. Let

MB = {dm
1 , . . . , dm

Mm} denote microblog set and
its vocabulary is V m = {wm

1 , . . . , wm
Nm}. Our

task is to enrich each microblog with additional
information so as to improve microblog’s repre-
sentation.

The model we proposed mainly consists of three
steps:

(a) Topic inference for external knowledge by
running LDA estimation.

(b) Topic inference for microblogs by employing
the word distributions of topics obtained from
step (a).

(c) Select relevant words from external knowl-
edge to enrich the content of microblogs.

3.1 Topic Inference for External Knowledge

We do topic analysis for EK using LDA esti-
mation (Blei et al., 2003) in this section and we
choose LDA as the topic analysis model because
of its broadly proved effectivity and ease of under-
standing.

In LDA, each document has a distribution over
all topics P (zk|dj), and each topic has a distri-
bution over all words P (wi|zk), where zk, dj and
wi represent the topic, document and word respec-
tively. The optimization problem is formulated as
maximizing the log likelihood on the corpus:

max
∑

i

∑
j

Xij log
∑

k

P (zk|dj)P (wi|zk) (1)

In this formulation, Xij represents the term fre-
quency of word wi in document dj . P (zk|dj)
and P (wi|zk) are parameters to be inferred, cor-
responding to the topic distribution of each doc-
ument and the word distribution of each topic re-
spectively. Estimating parameters for LDA by di-
rectly and exactly maximizing the likelihood of
the corpus in (1) is intractable, so we use Gibbs
Sampling for estimation.

After performing LDA model (K topics) esti-
mation on EK , we obtain the topic distribution-
s of document de

j (j = 1, . . . ,M e), denoted as
P (ze

k|de
j) (k = 1, . . . ,K), and the word distri-

bution of topic ze
k (k = 1, . . . ,K), denoted as

P (we
i |ze

k) (i = 1, . . . , N e). Step (b) greatly re-
lies on the word distributions of topics we have
obtained here.

3.2 Topic Inference for Microblog

In this section, we infer the topic distribution of
each microblog. Because of the assumption that
microblogs share the same topics with external
corpus, the “topic distribution” here refers to a dis-
tribution over all topics on EK .

Differing from step (a), the method used for
topic inference for microblogs is not directly run-
ning LDA estimation on microblog collection but
following the topics from external knowledge to
ensure topic consistence. We employ the word
distributions of topics obtained from step (a), i.e.
P (we

i |ze
k), and formulate the optimization prob-

lem in a similar form to Formula (1) as follows:
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max
P (ze

k|dm
j )

∑
i

∑
j

Xij log
∑

k

P (ze
k|dm

j )P (we
i |ze

k),

(2)
where X ij represents the term frequency of word
we

i in microblog dm
j , and P (ze

k|dm
j ) denote the dis-

tribution of microblog dm
j over all topics on EK .

Obviously most X ij are zero and we ignore those
words that do not appear in V e.

Compared with the original LDA optimization
problem (1), the topic inference problem for mi-
croblog (2) follows the idea of document gener-
ation process, but replaces topics to be estimated
with known topics from other corpus. As a result,
parameters to be inferred are only the topic distri-
bution of every microblog.

It is noteworthy that since the word distribution
of every topic P (we

i |ze
k) is known, Formula (2) can

be further solved by separating it into Mm sub-
problems:

max
P (ze

k|dm
j )

∑
i

X ij log
∑

k

P (ze
k|dm

j )P (we
i |ze

k)

for j = 1, . . . ,Mm

(3)

These Mm subproblems correspond to the Mm

microblogs and can be easily proved convexity.
After solving them, we obtain the topic distribu-
tions of microblog dm

j (j = 1, . . . ,Mm), denoted
as P (ze

k|dm
j ) (k = 1, . . . ,K).

3.3 Select Relevant Words for Microblog

To enrich the content of every microblog, we s-
elect relevant words from external knowledge in
this section.

Based on the results of step (a)&(b), we calcu-
late the word distributions of microblogs as fol-
lows:

P (we
i |dm

j ) =
∑

k

P (ze
k|dm

j )P (we
i |ze

k), (4)

where P (we
i |dm

j ) represents the probability that
word we

i will appear in microblog dm
j . In other

words, though some words may not actually ap-
pears in a microblog, there is still a probability that
it is highly relevant to the microblog. Intuitively,
this probability indicates the strength of associa-
tion between a word and a microblog. The word

distribution of every microblog is based on topic
analysis and its accuracy relies heavily on the ac-
curacy of topic inference in step (b). In fact, the
more words a microblog includes, the more accu-
rate its topic inference will be, and this can be re-
garded as an explanation of the low efficiency of
data sparseness problem.

For microblog dm
j , we sort all words by

P (we
i |dm

j ) in descending order. Having known
the top L relevant words according to the result of
sorting, we redefine the “term frequency” of every
word after adding these L words to microblog dm

j

as additional content. Supposing these L words
are we

j1, w
e
j2, . . . , w

e
jL, the revised term frequency

of word w ∈ {we
j1, . . . , w

e
jL} is defined as fol-

lows:

RTF (w, dm
j ) =

P (w|dm
j )∑L

p=1 P (we
jp|dm

j )
∗ L, (5)

where RTF (·) is the revised term frequency.
As the Equation (5) shows, the revised term fre-

quency of every word is proportional to probabili-
ty P (wi|dm

j ) rather than a constant.
So far, we can add these L words and their re-

vised term frequency as additional information to
microblog dm

j . The revised term frequency plays
the same role as TF in common text representation
vector, so we calculate the TFIDF of the added
words as:

TFIDF (w, dm
j ) = RTF (w, dm

j ) ·IDF (w) (6)

Note that IDF (w) is changed as arrival of new
words for each microblog. The TFIDF vector of
a microblog with additional words is called en-
hanced vector.

4 Experiment

4.1 Experimental Setup
To evaluate our method, we build our own dataset-
s. We crawl 95028 Chinese news reports from
Sina News website, segment them, and remove
stop words and rare words. After preprocessing,
these news documents are used as external knowl-
edge. As for microblog, we crawl a number of
microblogs from Sina Weibo, and ask unbiased
assessors to manually classify them into 9 cate-
gories following the column setting of Sina News.

Sina News: http://news.sina.com.cn/
Sina Weibo: http://www.weibo.com/
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After the manual classification, we remove short
microblogs (less than 10 words), usernames, links
and some special characters, then we segmen-
t them and remove rare words as well. Finally, we
get 1671 classified microblogs as our microblog
dataset. The size of each category is shown in Ta-
ble 1.

Category #Microblog
Finance 229
Stock 80

Entertainment 162
Military Affairs 179

Technologies 204
Digital Products 194

Sports 195
Society 214

Daily Life 214

Table 1: Microblog number of every category

There are some important details of our imple-
mentation. In step (a) of Section 3.1 we estimate
LDA model using GibbsLDA++, a C/C++ imple-
mentation of LDA using Gibbs Sampling. In step
(b) of Section3.2, OPTI toolbox on Matlab is used
to help solve the convex problems. In the clas-
sification tasks shown below, we use LibSVM as
classifier and perform ten-fold cross validation to
evaluate the classification accuracy.

4.2 Classification Results

Representation Average Accuracy
TFIDF vector 0.7552

Boolean vector 0.7203
Enhanced vector 0.8453

Table 2: Classification accuracy with different rep-
resentations

In this section, we report the average preci-
sion of each method as shown in Table 2. The
enhanced vector is the representation generated
by our method. Two baselines are TFIDF vec-
tor (Jones, 1972) and boolean vector (word oc-
currence) of the original microblog. In the table,
our method increases the classification accuracy

GibbsLDA++: http://gibbslda.sourceforge.net
OPTI Toolbox: http://www.i2c2.aut.ac.nz/Wiki/OPTI/
SVM.NET: http://www.matthewajohnson.org/software

/svm.html

from 75.52% to 84.53% when considering addi-
tional information, which means our method in-
deed improves the representation of microblogs.

4.3 Parameter Tuning
4.3.1 Effect of Added Words
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Figure 1: Classification accuracy changes accord-
ing to topics and added words

The experiment corresponding to Figure 1 is to
discover how the classification accuracy changes
when we fix the number of topics (K = 100)
and change the number of added words (L) in our
method. Result shows that more added words do
not mean higher accuracy. By studying some cas-
es, we find out that if we add too many words,
the proportion of “noisy words” will increase. We
reach the best result when number of added words
is 300.

4.3.2 Effect of Topic Number
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Figure 2: Classification accuracy changing ac-
cording to the number of topics

The experiment corresponding to Figure 2 is to
discover how the classification accuracy changes
when we fix the number of added words (L =
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Microblog (Translated) Top Relevant Words (Translated)
Kim Jong Un held an emergency meeting this morn-
ing, and commanded the missile units to prepare for
attacking U.S. military bases at any time.

South Korea, America, North Korea, work,
safety, claim, military, exercise, united, report

Shenzhou Nine will carry three astronauts, including
the first Chinese female astronaut, and launch in a
proper time during the middle of June.

day, satellite, launch, research, technology,
system, mission, aerospace, success, Chang’e
Two

Table 3: Case study (Translated from Chinese)

300) and change the number of topics (K) in
our method. As we can see, the accuracy does
not grow monotonously as the number of topic-
s increases. Blindly enlarging the topic number
will not improve the accuracy. The best result is
reached when topic number is 100, and similar ex-
periments adding different number of words show
the same condition of reaching the best result.

4.3.3 Effect of Revised Term Frequency
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Figure 3: Classification accuracy changing ac-
cording to the redefinition of term frequency

The experiment corrsponding to Figure 3 is to
discover whether our redefining “term frequency”
as revised term frequency in step (c) of Section
3.3 will affect the classification accuracy and how.
The results should be analysed in two aspects. On
one hand, without redefinition, the accuracy re-
mains in a stable high level and tends to decrease
as we add more words. One reason for the de-
creasing is that “noisy words” have a increasing
negative impact on the accuracy as the propor-
tion of “noisy words” grows with the number of
added words. On the other hand, the best result
is reached when we use the revise term frequen-
cy. This suggests that our redefinition for term fre-
quency shows better improvement for microblog

representation under certain conditions, but is not
optimal under all situations.

4.4 Case Study

In Table 3, we select several cases consisting of
microblogs and their top relevant words .

In the first case, we successfully find the country
name according to its leader’s name and limited
information in the sentence. Other related coun-
tries and events are also selected by our model as
they often appear together in news. In the other
case, relevant words are among the most frequent-
ly used words in news and have close semantic re-
lations with the microblogs in certain aspects.

As we can see, based on topic analysis, our
model shows strong ability of mining relevan-
t words. Other cases show that the model can be
further improved by removing the noisy and mean-
ingless ones among added words.

5 Conclusion and Future Work

We propose an effective content enriching method
for microblog, to enhance classification accuracy.
News corpus is exploited as external knowledge.
As for techniques, our method uses LDA as its
topic analysis model and formulates topic infer-
ence for new data as convex optimization prob-
lems. Compared with traditional representation,
enriched microblog shows great improvement in
classification tasks.

As we do not control the quality of added words,
our future work starts from building a filter to se-
lect better additional information. And to make the
most of external knowledge, better ways to build
topic space should be considered.
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Abstract

We present a probabilistic model that si-
multaneously learns alignments and dis-
tributed representations for bilingual data.
By marginalizing over word alignments
the model captures a larger semantic con-
text than prior work relying on hard align-
ments. The advantage of this approach is
demonstrated in a cross-lingual classifica-
tion task, where we outperform the prior
published state of the art.

1 Introduction

Distributed representations have become an in-
creasingly important tool in machine learning.
Such representations—typically continuous vec-
tors learned in an unsupervised setting—can fre-
quently be used in place of hand-crafted, and thus
expensive, features. By providing a richer rep-
resentation than what can be encoded in discrete
settings, distributed representations have been suc-
cessfully used in many areas. This includes AI and
reinforcement learning (Mnih et al., 2013), image
retrieval (Kiros et al., 2013), language modelling
(Bengio et al., 2003), sentiment analysis (Socher
et al., 2011; Hermann and Blunsom, 2013), frame-
semantic parsing (Hermann et al., 2014), and doc-
ument classification (Klementiev et al., 2012).

In Natural Language Processing (NLP), the use
of distributed representations is motivated by the
idea that they could capture semantics and/or syn-
tax, as well as encoding a continuous notion of
similarity, thereby enabling information sharing
between similar words and other units. The suc-
cess of distributed approaches to a number of
tasks, such as listed above, supports this notion
and its implied benefits (see also Turian et al.
(2010) and Collobert and Weston (2008)).

While most work employing distributed repre-
sentations has focused on monolingual tasks, mul-
tilingual representations would also be useful for

several NLP-related tasks. Such problems include
document classification, machine translation, and
cross-lingual information retrieval, where multi-
lingual data is frequently the norm. Furthermore,
learning multilingual representations can also be
useful for cross-lingual information transfer, that
is exploiting resource-fortunate languages to gen-
erate supervised data in resource-poor ones.

We propose a probabilistic model that simulta-
neously learns word alignments and bilingual dis-
tributed word representations. As opposed to pre-
vious work in this field, which has relied on hard
alignments or bilingual lexica (Klementiev et al.,
2012; Mikolov et al., 2013), we marginalize out
the alignments, thus capturing more bilingual se-
mantic context. Further, this results in our dis-
tributed word alignment (DWA) model being the
first probabilistic account of bilingual word repre-
sentations. This is desirable as it allows better rea-
soning about the derived representations and fur-
thermore, makes the model suitable for inclusion
in higher-level tasks such as machine translation.

The contributions of this paper are as follows.
We present a new probabilistic similarity measure
which is based on an alignment model and prior
language modeling work which learns and relates
word representations across languages. Subse-
quently, we apply these embeddings to a standard
document classification task and show that they
outperform the current published state of the art
(Hermann and Blunsom, 2014b). As a by-product
we develop a distributed version of FASTALIGN

(Dyer et al., 2013), which performs on par with
the original model, thereby demonstrating the ef-
ficacy of the learned bilingual representations.

2 Background

The IBM alignment models, introduced by Brown
et al. (1993), form the basis of most statistical ma-
chine translation systems. In this paper we base
our alignment model on FASTALIGN (FA), a vari-
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ation of IBM model 2 introduced by Dyer et al.
(2013). This model is both fast and produces
alignments on par with the state of the art. Further,
to induce the distributed representations we incor-
porate ideas from the log-bilinear language model
presented by Mnih and Hinton (2007).

2.1 IBM Model 2

Given a parallel corpus with aligned sentences, an
alignment model can be used to discover matching
words and phrases across languages. Such mod-
els are an integral part of most machine translation
pipelines. An alignment model learns p(f ,a|e) (or
p(e,a′|f)) for the source and target sentences e
and f (sequences of words). a represents the word
alignment across these two sentences from source
to target. IBM model 2 (Brown et al., 1993) learns
alignment and translation probabilities in a gener-
ative style as follows:

p(f ,a|e) = p(J |I)
J∏

j=1

p(aj |j, I, J) p
(
fj |eaj

)
,

where p(J |I) captures the two sentence lengths;
p(aj |j, I, J) the alignment and p

(
fj |eaj

)
the

translation probability. Sentence likelihood is
given by marginalizing out the alignments, which
results in the following equation:

p(f |e) = p(J |I)
J∏

j=1

I∑
i=0

p(i|j, I, J) p(fj |ei) .

We use FASTALIGN (FA) (Dyer et al., 2013), a
log-linear reparametrization of IBM model 2. This
model uses an alignment distribution defined by
a single parameter that measures how close the
alignment is to the diagonal. This replaces the
original multinomial alignment distribution which
often suffered from sparse counts. This improved
model was shown to run an order of magnitude
faster than IBM model 4 and yet still outperformed
it in terms of the BLEU score and, on Chinese-
English data, in alignment error rate (AER).

2.2 Log-Bilinear Language Model

Language models assign a probability measure
to sequences of words. We use the log-bilinear
language model proposed by Mnih and Hinton
(2007). It is an n-gram based model defined in
terms of an energy function E(wn;w1:n−1). The
probability for predicting the next word wn given
its preceding context of n − 1 words is expressed

using the energy function

E(wn;w1:n−1)=−
(

n−1∑
i=1

rT
wi
Ci

)
rwn−bTr rwn−bwn

as p(wn|w1:n−1) = 1
Zc

exp (−E(wn;w1:n−1))
where Zc =

∑
wn

exp (−E(wn;w1:n−1)) is the
normalizer, rwi ∈ Rd are word representations,
Ci ∈ Rd×d are context transformation matrices,
and br ∈ Rd, bwn ∈ R are representation and word
biases respectively. Here, the sum of the trans-
formed context-word vectors endeavors to be close
to the word we want to predict, since the likelihood
in the model is maximized when the energy of the
observed data is minimized.

This model can be considered a variant of a
log-linear language model in which, instead of
defining binary n-gram features, the model learns
the features of the input and output words, and
a transformation between them. This provides a
vastly more compact parameterization of a lan-
guage model as n-gram features are not stored.

2.3 Multilingual Representation Learning
There is some recent prior work on multilin-
gual distributed representation learning. Simi-
lar to the model presented here, Klementiev et
al. (2012) and Zou et al. (2013) learn bilingual
embeddings using word alignments. These two
models are non-probabilistic and conditioned on
the output of a separate alignment model, un-
like our model, which defines a probability dis-
tribution over translations and marginalizes over
all alignments. These models are also highly re-
lated to prior work on bilingual lexicon induc-
tion (Haghighi et al., 2008). Other recent ap-
proaches include Sarath Chandar et al. (2013),
Lauly et al. (2013) and Hermann and Blunsom
(2014a, 2014b). These models avoid word align-
ment by transferring information across languages
using a composed sentence-level representation.

While all of these approaches are related to the
model proposed in this paper, it is important to
note that our approach is novel by providing a
probabilistic account of these word embeddings.
Further, we learn word alignments and simultane-
ously use these alignments to guide the represen-
tation learning, which could be advantageous par-
ticularly for rare tokens, where a sentence based
approach might fail to transfer information.

Related work also includes Mikolov et al.
(2013), who learn a transformation matrix to
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reconcile monolingual embedding spaces, in an
l2 norm sense, using dictionary entries instead of
alignments, as well as Schwenk et al. (2007) and
Schwenk (2012), who also use distributed repre-
sentations for estimating translation probabilities.
Faruqui and Dyer (2014) use a technique based on
CCA and alignments to project monolingual word
representations to a common vector space.

3 Model

Here we describe our distributed word alignment
(DWA) model. The DWA model can be viewed
as a distributed extension of the FA model in that
it uses a similarity measure over distributed word
representations instead of the standard multino-
mial translation probability employed by FA. We
do this using a modified version of the log-bilinear
language model in place of the translation proba-
bilities p(fj |ei) at the heart of the FA model. This
allows us to learn word representations for both
languages, a translation matrix relating these vec-
tor spaces, as well as alignments at the same time.

Our modifications to the log-bilinear model are
as follows. Where the original log-bilinear lan-
guage model uses context words to predict the next
word—this is simply the distributed extension of
an n-gram language model—we use a word from
the source language in a parallel sentence to pre-
dict a target word. An additional aspect of our
model, which demonstrates its flexibility, is that it
is simple to include further context from the source
sentence, such as words around the aligned word
or syntactic and semantic annotations. In this pa-
per we experiment with a transformed sum over
k context words to each side of the aligned source
word. We evaluate different context sizes and re-
port the results in Section 5. We define the energy
function for the translation probabilities to be

E(f, ei) = −
(

k∑
s=−k

rT
ei+s

Ts

)
rf−bTr rf−bf (1)

where rei , rf ∈ Rd are vector representations for
source and target words ei+s ∈ VE , f ∈ VF in
their respective vocabularies, Ts ∈ Rd×d is the
transformation matrix for each surrounding con-
text position, br ∈ Rd are the representation bi-
ases, and bf ∈ R is a bias for each word f ∈ VF .

The translation probability is given by
p(f |ei) = 1

Zei
exp (−E(f, ei)) , where

Zei =
∑

f exp (−E(f, ei)) is the normalizer.
In addition to these translation probabilities, we

have parameterized the translation probabilities
for the null word using a softmax over an addi-
tional weight vector.

3.1 Class Factorization
We improve training performance using a class
factorization strategy (Morin and Bengio, 2005)
as follows. We augment the translation probabil-
ity to be p(f |e) = p(cf |e) p(f |cf , e) where cf
is a unique predetermined class of f ; the class
probability is modeled using a similar log-bilinear
model as above, but instead of predicting a word
representation rf we predict the class representa-
tion rcf

(which is learned with the model) and we
add respective new context matrices and biases.
Note that the probability of the word f depends
on both the class and the given context words: it is
normalized only over words in the class cf .

In our training we create classes based on word
frequencies in the corpus as follows. Considering
words in the order of their decreasing frequency,
we add word types into a class until the total fre-
quency of the word types in the currently consid-
ered class is less than total tokens√

|VF |
and the class size is

less than
√|VF |. We have found that the maximal

class size affects the speed the most.

4 Learning

The original FA model optimizes the likelihood
using the expectation maximization (EM) algo-
rithm where, in the M-step, the parameter update
is analytically solvable, except for the λ parameter
(the diagonal tension), which is optimized using
gradient descent (Dyer et al., 2013). We modified
the implementations provided with CDEC (Dyer et
al., 2010), retaining its default parameters.

In our model, DWA, we optimize the likelihood
using the EM as well. However, while training we
fix the counts of the E-step to those computed by
FA, trained for the default 5 iterations, to aid the
convergence rate, and optimize the M-step only.
Let θ be the parameters for our model. Then the
gradient for each sentence is given by

∂

∂θ
log p(f |e) =

J∑
k=1

I∑
l=0

[
p(l|k, I, J) p(fk|el)∑I
i=0 p(i|k, I, J) p(fk|ei)

· ∂
∂θ

log(p(l|k, I, J) p(fk|el))
]
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where the first part are the counts from the FA
model and second part comes from our model.

We compute the gradient for the alignment
probabilities in the same way as in the FA model,
and the gradient for the translation probabilities
using back-propagation (Rumelhart et al., 1986).
For parameter update, we use ADAGRAD as the
gradient descent algorithm (Duchi et al., 2011).

5 Experiments

We first evaluate the alignment error rate of our
approach, which establishes the model’s ability to
both learn alignments as well as word representa-
tions that explain these alignments. Next, we use
a cross-lingual document classification task to ver-
ify that the representations are semantically useful.
We also inspect the embedding space qualitatively
to get some insight into the learned structure.

5.1 Alignment Evaluation

We compare the alignments learned here with
those of the FASTALIGN model which produces
very good alignments and translation BLEU
scores. We use the same language pairs and
datasets as in Dyer et al. (2013), that is the FBIS
Chinese-English corpus, and the French-English
section of the Europarl corpus (Koehn, 2005). We
used the preprocessing tools from CDEC and fur-
ther replaced all unique tokens with UNK. We
trained our models with 100 dimensional repre-
sentations for up to 40 iterations, and the FA
model for 5 iterations as is the default.

Table 1 shows that our model learns alignments
on part with those of the FA model. This is in line
with expectation as our model was trained using
the FA expectations. However, it confirms that
the learned word representations are able to ex-
plain translation probabilities. Surprisingly, con-
text seems to have little impact on the alignment
error, suggesting that the model receives sufficient
information from the aligned words themselves.

5.2 Document Classification

A standard task for evaluating cross-lingual word
representations is document classification where
training is performed in one and evaluation in an-
other language. This tasks require semantically
plausible embeddings (for classification) which
are valid across two languages (for the semantic
transfer). Hence this task requires more of the
word embeddings than the previous task.

Languages Model

FA DWA DWA
k = 0 k = 3

ZH|EN 49.4 48.4 48.7
EN|ZH 44.9 45.3 45.9
FR|EN 17.1 17.2 17.0
EN|FR 16.6 16.3 16.1

Table 1: Alignment error rate (AER) compar-
ison, in both directions, between the FASTAL-
IGN (FA) alignment model and our model (DWA)
with k context words (see Equation 1). Lower
numbers indicate better performance.

We mainly follow the setup of Klementiev et al.
(2012) and use the German-English parallel cor-
pus of the European Parliament proceedings to
train the word representations. We perform the
classification task on the Reuters RCV1/2 corpus.
Unlike Klementiev et al. (2012), we do not use that
corpus during the representation learning phase.
We remove all words occurring less than five times
in the data and learn 40 dimensional word embed-
dings in line with prior work.

To train a classifier on English data and test it
on German documents we first project word rep-
resentations from English into German: we select
the most probable German word according to the
learned translation probabilities, and then compute
document representations by averaging the word
representations in each document. We use these
projected representations for training and subse-
quently test using the original German data and
representations. We use an averaged perceptron
classifier as in prior work, with the number of
epochs (3) tuned on a subset of the training set.

Table 2 shows baselines from previous work
and classification accuracies. Our model outper-
forms the model by Klementiev et al. (2012), and
it also outperforms the most comparable models
by Hermann and Blunsom (2014b) when training
on German data and performs on par with it when
training on English data.1 It seems that our model
learns more informative representations towards
document classification, even without additional
monolingual language models or context informa-
tion. Again the impact of context is inconclusive.

1From Hermann and Blunsom (2014a, 2014b) we only
compare with models equivalent with respect to embedding
dimensionality and training data. They still achieve the state
of the art when using additional training data.
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Model en→ de de→ en

Majority class 46.8 46.8
Glossed 65.1 68.6
MT 68.1 67.4
Klementiev et al. 77.6 71.1
BiCVM ADD 83.7 71.4
BiCVM BI 83.4 69.2

DWA (k = 0) 82.8 76.0
DWA (k = 3) 83.1 75.4

Table 2: Document classification accuracy when
trained on 1,000 training examples of the RCV1/2
corpus (train→test). Baselines are the majority
class, glossed, and MT (Klementiev et al., 2012).
Further, we are comparing to Klementiev et al.
(2012), BiCVM ADD (Hermann and Blunsom,
2014a), and BiCVM BI (Hermann and Blunsom,
2014b). k is the context size, see Equation 1.

5.3 Representation Visualization

Following the document classification task we
want to gain further insight into the types of fea-
tures our embeddings learn. For this we visu-
alize word representations using t-SNE projec-
tions (van der Maaten and Hinton, 2008). Fig-
ure 1 shows an extract from our projection of the
2,000 most frequent German words, together with
an expected representation of a translated English
word given translation probabilities. Here, it is
interesting to see that the model is able to learn
related representations for words chair and rat-
spräsidentschaft (presidency) even though these
words were not aligned by our model. Figure 2
shows an extract from the visualization of the
10,000 most frequent English words trained on an-
other corpus. Here again, it is evident that the em-
beddings are semantically plausible with similar
words being closely aligned.

6 Conclusion

We presented a new probabilistic model for learn-
ing bilingual word representations. This dis-
tributed word alignment model (DWA) learns both
representations and alignments at the same time.
We have shown that the DWA model is able
to learn alignments on par with the FASTALIGN

alignment model which produces very good align-
ments, thereby determining the efficacy of the
learned representations which are used to calculate

Figure 1: A visualization of the expected represen-
tation of the translated English word chair among
the nearest German words: words never aligned
(green), and those seen aligned (blue) with it.

Figure 2: A cluster of English words from the
10,000 most frequent English words visualized us-
ing t-SNE. Word representations were optimized
for p(zh|en) (k = 0).

word translation probabilities for the alignment
task. Subsequently, we have demonstrated that
our model can effectively be used to project doc-
uments from one language to another. The word
representations our model learns as part of the
alignment process are semantically plausible and
useful. We highlighted this by applying these em-
beddings to a cross-lingual document classifica-
tion task where we outperform prior work, achieve
results on par with the current state of the art and
provide new state-of-the-art results on one of the
tasks. Having provided a probabilistic account of
word representations across multiple languages,
future work will focus on applying this model to
machine translation and related tasks, for which
previous approaches of learning such embeddings
are less suited. Another avenue for further study
is to combine this method with monolingual lan-
guage models, particularly in the context of se-
mantic transfer into resource-poor languages.
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Abstract

When a system fails to correctly recog-
nize a voice search query, the user will fre-
quently retry the query, either by repeat-
ing it exactly or rephrasing it in an attempt
to adapt to the system’s failure. It is de-
sirable to be able to identify queries as
retries both offline, as a valuable quality
signal, and online, as contextual informa-
tion that can aid recognition. We present
a method than can identify retries offline
with 81% accuracy using similarity mea-
sures between two subsequent queries as
well as system and user signals of recogni-
tion accuracy. The retry rate predicted by
this method correlates significantly with a
gold standard measure of accuracy, sug-
gesting that it may be useful as an offline
predictor of accuracy.

1 Introduction

With ever more capable smartphones connecting
users to cloud-based computing, voice has been a
rapidly growing modality for searching for infor-
mation online. Our voice search application con-
nects a speech recognition service with a search
engine, providing users with structured answers to
questions, Web results, voice actions such as set-
ting an alarm, and more. In the multimodal smart-
phone interface, users can press a button to ac-
tivate the microphone, and then speak the query
when prompted by a beep; after receiving results,
the microphone button is available if they wish to
follow up with a subsequent voice query.

Traditionally, the evaluation of speech recogni-
tion systems has been carried by preparing a test
set of annotated utterances and comparing the ac-
curacy of a system’s transcripts of those utterances

∗This work was done while the first author was an intern
at Google Inc.

against the annotations. In particular, we seek to
measure and minimize the word error rate (WER)
of a system, with a WER of zero indicating perfect
transcription. For voice search interfaces such as
the present one, though, query-level metrics like
WER only tell part of the story. When a user is-
sues two queries in a row, she might be seeking the
same information for a second time due to a sys-
tem failure the first time. When this happens, from
an evaluation standpoint it is helpful to break down
why the first query was unsuccessful: it might be
a speech recognition issue (in particular, a mis-
taken transcription), a search quality issue (where
a correct transcript is interpreted incorrectly by the
semantic understanding systems), a user interface
issue, or another factor. As a second voice query
may also be a new query or a follow-up query, as
opposed to a retry of the first query, the detection
of voice search retry pairs in the query steam is
non-trivial.

Correctly identifying a retry situation in the
query stream has two main benefits. The first
involves offline evaluation and monitoring. We
would like to know the rate at which users were
forced to retry their voice queries, as a measure of
quality. The second has a more immediate ben-
efit for individual users: if we can detect in real
time that a new voice search is really a retry of a
previous voice search, we can take immediate cor-
rective action, such as reranking transcription hy-
potheses to avoid making the same mistake twice,
or presenting alternative searches in the user inter-
face to indicate that the system acknowledges it is
having difficulty.

In this paper, we describe a method for the clas-
sification of subsequent voice searches as either
retry pairs of a certain type, or non-retry pairs. We
identify four salient types of retry pairs, describe
a test set and identify the features we extracted to
build an automatic classifier. We then describe the
models we used to build the classifier and their rel-
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ative performance on the task, and leave the issue
of real-time corrective action to future work.

2 Related Work

Previous work in voice-enabled information re-
trieval has investigated the problem of identifying
voice retries, and some has taken the additional
step of taking corrective action in instances where
the user is thought to be retrying an earlier utter-
ance. Zweig (2009) describes a system switching
approach in which the second utterance is recog-
nized by a separate model, one trained differently
than the primary model. The “backup” system is
found to be quite effective at recognizing those
utterances missed by the primary system. Retry
cases are identified with joint language modeling
across multiple transcripts, with the intuition that
retry pairs tend to be closely related or exact dupli-
cates. They also propose a joint acoustic model in
which portions of both utterances are averaged for
feature extraction. Zweig et al. (2008) similarly
create a joint decoding model under the assump-
tion that a discrete sent of entities (names of busi-
nesses with directory information) underlies both
queries. While we follow this work in our usage of
joint language modeling, our application encom-
passes open domain voice searches and voice ac-
tions (such as placing calls), so we cannot use sim-
plifying domain assumptions.

Other approaches include Cevik, Weng and Lee
(2008), who use dynamic time warping to de-
fine pattern boundaries using spectral features, and
then consider the best matching patterns to be re-
peated. Williams (2008) measures the overlap be-
tween the two utterances’ n-best lists (alternate hy-
potheses) and upweights hypotheses that are com-
mon to both attempts; similarly, Orlandi, Culy and
Franco (2003) remove hypotheses that are seman-
tically equivalent to a previously rejected hypoth-
esis. Unlike these approaches, we do not assume a
strong notion of dialog state to maintain per-state
models.

Another consequence of the open-domain na-
ture of our service is that users are conditioned
to interact with the system as they would with a
search engine, e.g., if the results of a search do
not satisfy their information need, they rephrase
queries in order to refine their results. This can
happen even if the first transcript was correct and
the rephrased query can be easily confused for a
retry of a utterance where the recognition failed.

Figure 1: Retry annotation decision tree.

For purposes of latently monitoring the accuracy
of the recognizer from usage logs, this is a signifi-
cant complicating factor.

3 Data and Annotation

Our data consists of pairs of queries sampled from
anonymized session logs. We consider a pair of
voice searches (spoken queries) to be a potential
retry pair if they are consecutive; we assume that
a voice search cannot be a retry of another voice
search if a typed search occurs between them. We
also exclude pairs for which either member has no
recognition result. For the purpose of our analy-
sis, we further restricted our data to query pairs
whose second member had been previously ran-
domly selected for transcription. A set of 8,254
query pairs met these requirements and are consid-
ered potential retry pairs. 1,000 randomly selected
pairs from this set were separated out and anno-
tated by the authors, leaving a test set of 7,254 po-
tential retry pairs. Among the annotated develop-
ment set, 18 inaudible or unintelligible pairs were
discarded, for a final development set of 982 pairs.

The problem as we have formulated it requires
a labeling system that identifies repetitions and
rephrases as retries, while excluding query pairs
that are superficially similar but have different
search intents. Our system includes five labels.
Figure 1 shows the guidelines for annotation that
define each category.

The first distinction is between query pairs with
the same search intent (”Is the user looking for
the same information?”) and those with different
search intents. We define search intent as the re-
sponse the user wants and expects from the sys-
tem. If the second query’s search intent is differ-
ent, it is by definition no retry.

The second distinction we make is between
cases where the first query was recognized cor-
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rectly and those where it was not. Although
a query that was recognized correctly may be
retried—for example, the user may want to be
reminded of information she already received
(other)—we are only interested in cases where the
system is in error.

If the search intent is the same for both queries,
and the system incorrectly recognized the first,
we consider the second query a retry. We dis-
tinguish between cases where the user repeated
the query exactly, repetition, and where the user
rephrased the query in an attempt to adapt to the
system’s failure, rephrase. This category includes
many kinds of rephrasings, such as adding or drop-
ping terms, or replacing them with synonyms.
The rephrased query may be significantly differ-
ent from the original, as in the following example:

Q1. Navigate to chaparral ease. (“Navigate to Chiappar-
elli’s.”)

Q2. Chipper rally’s Little Italy Baltimore. (“Chiappar-

elli’s Little Italy Baltimore.”)

The rephrased query dropped a term (“Navigate
to”) and added another (“Little Italy Baltimore”).

This example illustrates another difficulty of the
data: the unreliability of the automatic speech
recognition (ASR) means that terms that are in
fact identical (“Chiapparelli’s”) may be recog-
nized very differently (“chaparral ease” or “chip-
per rally’s”). In the next example, the recognition
hypotheses of two identical queries have only a
single word in common:

Q1. I get in the house Google. (“I did it Google”)

Q2. I did it crash cool. (“I did it Google”)

Conversely, recognition hypotheses that are
nearly identical are not necessarily retries. Often,
these are “serial queries,” a series of queries the
user is making of the same form or on the same
topic, often to test the system.

Q1. How tall is George Clooney?
Q2. How old is George Clooney?

Q1. Weather in New York.

Q2. Weather in Los Angeles.

These complementary problems mean that we
cannot use naı̈ve text similarity features to identify
retries. Instead, we combine features that model
the first query’s likely accuracy to broader similar-
ity features to form a more nuanced picture of a
likely retry.

The five granular retry labels were collapsed
into binary categories: search retry, other, and no
retry were mapped to NO RETRY; and repetition
and rephrase were mapped to RETRY. The label

(a) Granular labels (b) Collapsed (binary) labels

Figure 2: Retry label distribution.

distribution of the final dataset is shown in Figure
2.

4 Features

The features we consider can be divided into three
main categories. The first group of features, sim-
ilarity, is intended to measure the similarity be-
tween the two queries, as similar queries are (with
the above caveats) more likely to be retries. We
calculate the edit distance between the two tran-
scripts at the character and word level, as well as
the two most similar phonetic rewrites. We include
both raw and normalized values as features. We
also count the number of unigrams the two tran-
scripts have in common and the length, absolute
and relative, of the longest unigram overlap.

As we have shown in the previous section, sim-
ilarity features alone cannot identify a retry, since
ASR errors and user rephrases can result in recog-
nition hypotheses that are significantly different
from the original query, while a nearly identical
pair of queries can have different search intents.
Our second group of features, correctness, goes
up a level in our labeling decision tree (Figure 1)
and attempts to instead answer the question: “Was
the first query transcribed incorrectly?” We use
the confidence score assigned by the recognizer to
the first recognition hypothesis as a measure of the
system’s opinion of its own performance. Since
this score, while informative, may be inaccurate,
we also consider signals from the user that might
indicate the accuracy of the hypothesis. A boolean
feature indicates whether the user interacted with
any of the results (structured or unstructured) that
were presented by the system in response to the
first query, which should constitute an implicit ac-
ceptance of the system’s recognition hypothesis.
The length of the interval between the two queries
is another feature, since a query that occurs imme-
diately after another is likely to be a retry. We also
include the difference and ratio of the two queries’
speaking rate, roughly calculated as the number
of vowels divided by the audio duration in sec-
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onds, since a speaker is likely to hyperarticulate
(speak more loudly and slowly) after being misun-
derstood ((Wade et al., 1992; Oviatt et al., 1996;
Levow, 1998; Bell and Gustafson, 1999; Soltau
and Waibel, 1998)).

The third feature group, recognizability, at-
tempts to model the characteristics of a query that
is likely to be misrecognized (for the first query
of the pair) or is likely to be a retry of a previ-
ous query (for the second query). We look at the
language model (LM) score and the number of al-
ternate pronunciations of the first query, predicting
that a misrecognized query will have a lower LM
score and more alternate pronunciations. In ad-
dition, we look at the number of characters and
unigrams and the audio duration of each query,
with the intuition that the length of a query may
be correlated with its likelihood of being retried
(or a retry). This feature group also includes
two heuristic features intended to flag the “serial
queries” mentioned before: the number of capital-
ized words in each query, and whether each one
begins with a question word (who, what, etc.).

5 Prediction task

5.1 Experimental Results

A logistic regression model was trained on these
features to predict the collapsed binary categories
of NO RETRY (search retry, other, no retry) vs.
RETRY (rephrase, repetition). The results of run-
ning this model with each combination of the fea-
ture groups are shown in Table 1.

Features Precision Recall F1 Accuracy
Similarity 0.54 0.65 0.59 0.72
Correctness 0.53 0.67 0.59 0.73
Recognizability 0.49 0.63 0.55 0.70
Sim. & Corr. 0.67 0.71 0.69 0.77
Sim. & Rec. 0.62 0.70 0.66 0.76
Corr. & Rec. 0.65 0.71 0.68 0.77
All Features 0.70 0.76 0.73 0.81

Table 1: Results of the binary prediction task.

Individually, each feature group peformed sig-
nificantly better than the baseline strategy of al-
ways predicting NO RETRY (62.4%). Each pair
of feature groups performed better than any indi-
vidual group, and the final combination of all three
feature groups had the highest precision, recall,
and accuracy, suggesting that each aspect of the
retry conceptualization provides valuable informa-
tion to the model.

Of the similarity features, the ones that con-
tributed significantly in the final model were char-
acter edit distance (normalized) and phoneme edit
distance (raw and normalized); as expected, re-
tries are associated with more similar query pairs.
Of the correctness features, high recognizer con-
fidence, the presence of a positive reaction from
the user such as a link click, and a long inter-
val between queries were all negatively associated
with retries. The significant recognizability fea-
tures included length of the first query in charac-
ters (longer queries were less likely to be retried)
and the number of capital letters in each query (as
our LM is case-sensitive): queries transcribed with
more capital letters were more likely to be retried,
but less likely to themselves be retries. In addition,
the language model likelihood for the first query
was, as expected, significantly lower for retries.
Interestingly, the score of the second query was
lower for retries as well. This accords with our
finding that retries of misrecognized queries are
themselves misrecognized 60%-70% of the time,
which highlights the potential value of corrective
action informed by the retry context.

Several features, though not significant in the
model, are significantly different between the
RETRY and NO RETRY categories, which affords
us further insight into the characteristics of a retry.
T -tests between the two categories showed that all
edit distance features—character, word, reduced,
and phonetic; raw and normalized—are signifi-
cantly more similar between retry query pairs.1

Similarly, the number of unigrams the two queries
have in common is significantly higher for retries.
The duration of each member of the query pair,
in seconds and word count, is significantly more
similar between retry pairs, and each member of a
retry pair tends to be shorter than members of a no
retry pair. Finally, members of NO RETRY query
pairs were significantly more similar in speaking
rate, and the relative speaking rate of the second
query was significantly slower for RETRY pairs,
possibly due to hyperarticulation.

5.2 Analysis
Figure 3 shows a breakdown of the true granular
labels versus the predicted binary labels. The pri-
mary source of error is the REPHRASE category,
which is identified as a retry with only 16.5% ac-

1T -tests reported here use a conservative significance
threshold of p < 0.00125 to control for family-wise type I
error (“data dredging” effects).
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Figure 3: Performance on each of the granular categories.

curacy. This result reflects the fact that although
rephrases conceptually belong in the retry cate-
gory, their characteristics are materially different.
Most notably, all edit distance features are signif-
icantly greater for rephrases. Differences in du-
ration between the two queries in a pair, in sec-
onds and words, are significantly greater as well.
Rephrases also are significantly longer, in seconds
and words, than strict retries. The model includ-
ing only correctness and recognizability features
does significantly better on rephrases than the full
model, identifying them as retries with 25.6% ac-
curacy, confirming that the similarity features are
the primary culprit. Future work may address this
issue by including features crafted to examine the
similarity between substrings of the two queries,
rather than the query as a whole, and by expand-
ing the similarity definition to include synonyms.

To test the model’s performance with a larger,
unseen dataset, we looked at how many retries
it detected in the test set of potential retry pairs
(n=7,254). We do not have retry annotations for
this larger set, but we have transcriptions for the
first member of each query pair, enabling us to cal-
culate the word error rate (WER) of each query’s
recognition hypothesis, and thus obtain ground
truth for half of our retry definition. A perfect
model should never predict RETRY when the first
query is transcribed correctly (WER==0). As
shown in Figure 4, our model assigns a RETRY
label to approximately 14% of the queries follow-
ing an incorrectly recognized search, and only 2%
of queries following a correctly recognized search.
While this provides us with only a lower bound on
our model’s error, this significant correlation with
an orthogonal accuracy metric shows that we have
modeled at least this aspect of retries correctly, and
suggests a correlation between retry rate and tradi-
tional WER-based evaluation.

Figure 4: Performance on unseen data. A perfect model
would have a predicted retry rate of 0 when WER==0.

6 Conclusion

We have presented a method for characterizing re-
tries in an unrestricted voice interface to a search
system. One particular challenge is the lack of
simplifying assumptions based on domain and
state (as users may consider the system to be
stateless when issuing subsequent queries). We
introduce a labeling scheme for retries that en-
compasses rephrases—cases in which the user re-
worded her query to adapt to the system’s error—
as well as repetitions.

Our model identifies retries with 81% accuracy,
significantly above baseline. Our error analysis
confirms that user rephrasings complicate the bi-
nary class separation; an approach that models
typical typed rephrasings may help overcome this
difficulty. However, our model’s performance to-
day correlates strongly with an orthogonal accu-
racy metric, word error rate, on unseen data. This
suggests that “retry rate” is a reasonable offline
quality metric, to be considered in context among
other metrics and traditional evaluation based on
word error rate.
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Abstract

The primary way of providing real-time
speech to text captioning for hard of hear-
ing people is to employ expensive profes-
sional stenographers who can type as fast
as natural speaking rates. Recent work has
shown that a feasible alternative is to com-
bine the partial captions of ordinary typ-
ists, each of whom is able to type only
part of what they hear. In this paper, we
extend the state of the art fixed-window
alignment algorithm (Naim et al., 2013)
for combining the individual captions into
a final output sequence. Our method per-
forms alignment on a sliding window of
the input sequences, drastically reducing
both the number of errors and the latency
of the system to the end user over the pre-
viously published approaches.

1 Introduction

Real-time captioning provides deaf or hard of
hearing people access to speech in mainstream
classrooms, at public events, and on live televi-
sion. Studies performed in the classroom set-
ting show that the latency between when a word
was said and when it is displayed must be under
five seconds to maintain consistency between the
captions being read and other visual cues (Wald,
2005; Kushalnagar et al., 2014). The most com-
mon approach to real-time captioning is to recruit
a trained stenographer with a special purpose pho-
netic keyboard, who transcribes the speech to text
with less than five seconds of latency. Unfortu-
nately, professional captionists are quite expensive
($150 per hour), must be recruited in blocks of an
hour or more, and are difficult to schedule on short

Figure 1: General layout of crowd captioning sys-
tems. Captionists (C1, C2, C3) submit partial cap-
tions that are automatically combined into a high-
quality output.

notice. Automatic speech recognition (ASR) sys-
tems (Saraclar et al., 2002), on the other hand, at-
tempts to provide a cheap and fully automated so-
lution to this problem. However, the accuracy of
ASR quickly plummets to below 30% when used
on an untrained speaker’s voice, in a new environ-
ment, or in the absence of a high quality micro-
phone (Wald, 2006). The accuracy of the ASR
systems can be improved using the ‘re-speaking’
technique, which requires a person that the ASR
has been trained on to repeat the words said by a
speaker as he hears them. Simultaneously hearing
and speaking, however, is not straightforward, and
requires some training.

An alternative approach is to combine the ef-
forts of multiple non-expert captionists (anyone
who can type), instead of relying on trained work-
ers (Lasecki et al., 2012; Naim et al., 2013). In
this approach, multiple non-expert human work-
ers transcribe an audio stream containing speech
in real-time. Workers type as much as they can of
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the input, and, while no one worker’s transcript is
complete, the portions captured by various work-
ers tend to overlap. For each input word, a time-
stamp is recorded, indicating when the word is
typed by a worker. The partial inputs are com-
bined to produce a final transcript (see Figure 1).
This approach has been shown to dramatically out-
perform ASR in terms of both accuracy and Word
Error Rate (WER) (Lasecki et al., 2012; Naim et
al., 2013). Furthermore, recall of individual words
irrespective of their order approached and even ex-
ceeded that of a trained expert stenographer with
seven workers contributing, suggesting that the in-
formation is present to meet the performance of
a stenographer (Lasecki et al., 2012). However,
aligning these individual words in the correct se-
quential order remains a challenging problem.

Lasecki et al. (2012) addressed this alignment
problem using off-the-shelf multiple sequence
alignment tools, as well as an algorithm based on
incrementally building a precedence graph over
output words. Improved results for the alignment
problem were shown using weighted A∗ search
by Naim et al. (2013). To speed the search for
the best alignment, Naim et al. (2013) divided se-
quences into chunks of a fixed time duration, and
applied the A∗ alignment algorithm to each chunk
independently. Although this method speeds the
search for the best alignment, it introduces a sig-
nificant number of errors to the output of the sys-
tem due to inconsistency at the boundaries of the
chunks. In this paper, we introduce a novel slid-
ing window technique which avoids the errors pro-
duced by previous systems at the boundaries of
the chunks used for alignment. This technique
produces dramatically fewer errors for the same
amount of computation time.

2 Problem Overview and Background

The problem of aligning and combining multiple
transcripts can be mapped to the well-studied Mul-
tiple Sequence Alignment (MSA) problem (Edgar
and Batzoglou, 2006). Let S1, . . . , SK , K ≥ 2,
be the K sequences over an alphabet Σ, and hav-
ing length N1, . . . , NK . For the caption align-
ment task, we treat each individual word as a sym-
bol in our alphabet Σ. The special gap symbol
‘−’ represents a missing word and does not be-
long to Σ. Let A = (aij) be a K × Nf matrix,
where aij ∈ Σ ∪ {−}, and the ith row has exactly
(Nf −Ni) gaps and is identical to Si if we ignore

Algorithm 1 MSA-A∗ Algorithm
Require: K input sequences S = {S1, . . . , SK} having

length N1, . . . , NK , heuristic weight w, beam size b
input start ∈ NK , goal ∈ Nk

output an N ×K matrix of integers indicating the index into
each input sequence of each position in the output se-
quence

1: g(start)← 0, f(start)← w × h(start).
2: Q← {start}
3: while Q 6= ∅ do
4: n← EXTRACT-MIN(Q)
5: for all s ∈ {0, 1}K − {0K} do
6: ni ← n + s
7: if ni = goal then
8: Return the alignment matrix for the recon-

structed path from start to ni

9: else if ni 6∈ Beam(b) then
10: continue;
11: else
12: g(ni)← g(n) + c(n, ni)
13: f(ni)← g(ni) + w × h(ni)
14: INSERT-ITEM(Q, ni, f(ni))
15: end if
16: end for
17: end while

the gaps. Every column of A must have at least
one non-gap symbol. Therefore, the jth column
of A indicates an alignment state for the jth posi-
tion, where the state can have one of the 2K − 1
possible combinations. Our goal is to find the op-
timum alignment matrix AOPT that minimizes the
sum of pairs (SOP) cost function:

c(A) =
∑

1≤i≤j≤K

c(Aij) (1)

where c(Aij) is the cost of the pairwise align-
ment between Si and Sj according to A. Formally,
c(Aij) =

∑Nf

l=1 sub(ail, ajl), where sub(ail, ajl)
denotes the cost of substituting ajl for ail. If ail

and ajl are identical, the substitution cost is zero.
The substitution cost for two words is estimated
based on the edit distance between two words. The
exact solution to the SOP optimization problem is
NP-Complete (Wang and Jiang, 1994), but many
methods solve it approximately. Our approach is
based on weighted A∗ search for approximately
solving the MSA problem (Lermen and Reinert,
2000; Naim et al., 2013).

2.1 Weighted A∗ Search for MSA
The problem of minimizing the SOP cost function
for K sequences is equivalent to estimating the
shortest path between a single source node and a
single sink node in a K-dimensional mesh graph,
where each node corresponds to a distinct position
in the K sequences. The source node is [0, . . . , 0]
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Algorithm 2 Fixed Window Algorithm
Require: K input sequences S = {S1, . . . , SK} having

length N1, . . . , NK , window parameter chunk length.
1: start time← 0
2: while goal ≺ [N1, . . . , NK ] do
3: for all i do
4: start[i]← closest word(i, start time)
5: end for
6: end time← start time + chunk length
7: for all i do
8: goal[i]← closest word(i, end time)− 1
9: end for

10: alignmatrix←MSA-A∗(start, goal)
11: concatenate alignmatrix onto end of finalmatrix
12: start time← end time
13: end while
14: Return finalmatrix

and the sink node is [N1, . . . , NK ]. The total num-
ber of nodes in the lattice is (N1 +1)×(N2 +1)×
· · ·×(NK +1), and each node has 2K−1 possible
successors and predecessors. The A∗ search algo-
rithm treats each node position n = [n1, . . . , nK ]
as a search state, and estimates the cost function
g(n) and the heuristic function h(n) for each state.
The cost function g(n) represents the exact min-
imum SOP cost to align the K sequences from
the beginning to the current position. The heuris-
tic function represents the approximate minimum
cost of aligning the suffixes of the K sequences,
starting after the current position n. The com-
monly used heuristic function is hpair(n):

hpair(n) = L(n → t) =
∑

1≤i<j≤K

c(A∗
p(σ

n
i , σn

j ))

(2)
where L(n → t) denotes the lower bound on the
cost of the shortest path from n to destination t,
A∗

p is the optimal pairwise alignment, and σn
i is

the suffix of node n in the i-th sequence. The
weighted A∗ search uses a priority queue Q to
store the search states n. At each step of the A∗

search algorithm, the node with the smallest eval-
uation function, f(n) = g(n)+whpair(n) (where
w ≥ 1), is extracted from the priority queue Q and
expanded by one edge. The search continues un-
til the goal node is extracted from Q. To further
speed up the search, a beam constraint is applied
on the search space using the timestamps of each
individual input words. If the beam size is set to b
seconds, then any state that aligns two words hav-
ing more than b seconds time lag is ignored. The
detailed procedure is shown in Algorithm 1. Af-
ter the alignment, the captions are combined via
majority voting at each position of the alignment

matrix. We ignore the alignment columns where
the majority vote is below a certain threshold tv
(typically tv = 2), and thus filter out spurious er-
rors and spelling mistakes.

Although weighted A∗ significantly speeds the
search for the best alignment, it is still too slow
for very long sequences. For this reason, Naim
et al. (2013) divided the sequences into chunks of
a fixed time duration, and applied the A∗ align-
ment algorithm to each chunk independently. The
chunks were concatenated to produce the final out-
put sequence, as shown in Algorithm 2.

2.2 Limitations of Fixed Window Algorithm

The fixed window based alignment has two key
limitations. First, aligning disjoint chunks inde-
pendently tends to introduce a large number of
errors at the boundary of each chunk. This is
because the chunk boundaries are defined with
respect to the timestamps associated with each
word in the captions, but the timestamps can
vary greatly between words that should in fact be
aligned. After all, if the timestamps corresponded
precisely to the original time at which each word
was spoken, the entire alignment problem would
be trivial. The fact that the various instances of
a single word in each transcription may fall on ei-
ther side of a chunk boundary leads to errors where
a word is either duplicated in the final output for
more than one chunk, or omitted entirely. This
problem also causes errors in ordering among the
words remaining within one chunk, because there
is less information available to constrain the order-
ing relations between transcriptions. Second, the
fixed window alignment algorithm requires longer
chunks (≥ 10 seconds) to obtain reasonable accu-
racy, and thus introduces unsatisfactory latency.

3 Sliding Alignment Windows

In order to address the problems described above,
we explore a technique based on a sliding align-
ment window, shown in Algorithm 3. We start
with alignment with a fixed chunk size. After
aligning the first chunk, we use the information
derived from the alignment to determine where
the next chunk should begin within each transcrip-
tion. We use a single point in the aligned output
as the starting point for the next chunk, and de-
termine the corresponding starting position within
each original transcription. This single point is
determined by a tunable parameter keep length
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Algorithm 3 Sliding Window Algorithm
Require: K input sequences S = {S1, . . . , SK}

having length N1, . . . , NK , window parameters
chunk length and keep length.

1: start← 0K , goal← 0K

2: while goal ≺ [N1, . . . , NK ] do
3: endtime← chunk length+maxi time(start[i])
4: for all i do
5: goal[i]← closest word(i, endtime)
6: end for
7: alignmatrix←MSA-A∗(start, goal)
8: concatenate first keep length columns of

alignmatrix onto end of finalmatrix
9: for all i do

10: start[i]← alignmatrix[keep length][i]
11: end for
12: end while
13: Return finalmatrix
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Figure 2: Evaluation of different systems on using
WER metric for measuring transcription quality.

(line 10 of Algorithm 3). The materials in the
output alignment that follow this point is thrown
away, and replaced with the output produced by
aligning the next chunk starting from this point
(line 8). The process continues iteratively, allow-
ing us to avoid using the erroneous output align-
ments in the neighborhood of the arbitrary end-
points for each chunk.

4 Experimental Results

We evaluate our system on a dataset of four 5-
minute long audio clips of lectures in electrical
engineering and chemistry lectures taken from
MIT OpenCourseWare. The same dataset used
by (Lasecki et al., 2012) and (Naim et al., 2013).
Each audio clip is transcribed by 10 non-expert
human workers in real time. We measure the ac-
curacy in terms of Word Error Rate (WER) with
respect to a reference transcription.

We are interested in investigating how the three
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Figure 3: Tradeoff between speed and accuracy
for different heuristic wights and keep-lengths

key parameters of the algorithm, i.e., the chunk
size (c), the heuristic weight (w) and the keep-
length (k), affect the system latency, the search
speed, and the alignment accuracy. The chunk size
directly determines the latency of the system to the
end user, as alignment cannot begin until an entire
chunk is captured. Furthermore, the chunk size,
the heuristic weight, and the keep-length help us
to trade-off speed versus accuracy. We also com-
pare the performance of our algorithm with that
of the most accurate fixed alignment window al-
gorithm (Naim et al., 2013). The performance
in terms of WER for sliding and fixed alignment
windows is presented in Figure 2. Out of the sys-
tems in Figure 2, the first three systems consist of
sliding alignment window algorithm with different
values of keep-length parameter: (1) keep-length
= 0.5; (2) keep-length = 0.67; and (3) keep-length
= 0.85. The other systems are the graph-based al-
gorithm of (Lasecki et al., 2012), the MUSCLE
algorithm of (Edgar, 2004), and the most accu-
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rate fixed alignment window algorithm of (Naim
et al., 2013). We set the heuristic weight param-
eter (w) to 3 and the chunk size parameter (c) to
5 seconds for all the three sliding window sys-
tems and the fixed window system. Sliding align-
ment window produces better results and outper-
forms the other algorithms even for large values of
the keep-length parameter. The sliding alignment
window with keep-length 0.5 achieves 0.5679 av-
erage accuracy in terms of (1-WER), providing a
18.09% improvement with respect to the most ac-
curate fixed alignment window (average accuracy
0.4857). On the same dataset, Lasecki et al. (2012)
reported 36.6% accuracy using the Dragon Natu-
rally Speaking ASR system (version 11.5 for Win-
dows).

To show the trade-off between latency and ac-
curacy, we fix the heuristic weight (w = 3) and
plot the accuracy as a function of chunk size in
Figure 3. We repeat this experiment for different
values of keep-length. We observe that the slid-
ing window approach dominates the fixed window
approach across a wide range of chunk sizes. Fur-
thermore, we can see that for smaller values of the
chunk size parameter, increasing the keep-length
makes the system less accurate. As the chunk
size parameter increases, the performance of slid-
ing window systems with different values of keep-
length parameter converges. Therefore, at larger
chunk sizes, for which there are smaller number of
boundaries, the keep-length parameter has lower
impact.

Next, we show the trade-off between computa-
tion speed and accuracy in Figure 3, as we fix the
heuristic weight and vary the chunk size over the
range [5, 10, 15, 20, 30] seconds. Larger chunks
are more accurately aligned but require computa-
tion time that grows as NK in the chunk size N in
the worst case. Furthermore, smaller weights al-
low faster alignment, but provide lower accuracy.

5 Conclusion

In this paper, we present a novel sliding win-
dow based text alignment algorithm for real-time
crowd captioning. By effectively addressing the
problem of alignment errors at chunk boundaries,
our sliding window approach outperforms the ex-
isting fixed window based system (Naim et al.,
2013) in terms of word error rate, particularly
when the chunk size is small, and thus achieves
higher accuracy at lower latency.
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Abstract

This paper presents a method for detect-
ing words related to a topic (we call them
topic words) over time in the stream of
documents. Topic words are widely dis-
tributed in the stream of documents, and
sometimes they frequently appear in the
documents, and sometimes not. We pro-
pose a method to reinforce topic words
with low frequencies by collecting docu-
ments from the corpus, and applied Latent
Dirichlet Allocation (Blei et al., 2003) to
these documents. For the results of LDA,
we identified topic words by using Mov-
ing Average Convergence Divergence. In
order to evaluate the method, we applied
the results of topic detection to extractive
multi-document summarization. The re-
sults showed that the method was effective
for sentence selection in summarization.

1 Introduction

As the volume of online documents has drastically
increased, the analysis of topic bursts, topic drift
or detection of topic is a practical problem attract-
ing more and more attention (Allan et al., 1998;
Swan and Allan, 2000; Allan, 2003; Klinken-
berg, 2004; Lazarescu et al., 2004; Folino et al.,
2007). The earliest known approach is the work
of Klinkenberg and Joachims (Klinkenberg and
Joachims, 2000). They have attempted to han-
dle concept changes by focusing a window with
documents sufficiently close to the target concept.
Mane et. al. proposed a method to generate
maps that support the identification of major re-
search topics and trends (Mane and Borner, 2004).
The method used Kleinberg’s burst detection al-
gorithm, co-occurrences of words, and graph lay-
out technique. Scholzet. al. have attempted to
use different ensembles obtained by training sev-
eral data streams to detect concept drift (Scholz,

2007). However the ensemble method itself re-
mains a problem that how to manage several clas-
sifiers effectively. He and Parket attempted to find
bursts, periods of elevated occurrence of events as
a dynamic phenomenon instead of focusing on ar-
rival rates (He and Parker, 2010). However, the
fact that topics are widely distributed in the stream
of documents, and sometimes they frequently ap-
pear in the documents, and sometimes not often
hamper such attempts.

This paper proposes a method for detecting
topic over time in series of documents. We rein-
forced words related to a topic with low frequen-
cies by collecting documents from the corpus, and
applied Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) to these documents in order to ex-
tract topic candidates. For the results of LDA, we
applied Moving Average Convergence Divergence
(MACD) to find topic words while Heet. al., ap-
plied it to find bursts. The MACD is a technique
to analyze stock market trends (Murphy, 1999). It
shows the relationship between two moving av-
erages of prices modeling bursts as intervals of
topic dynamics,i.e., positive acceleration. Fuku-
moto et. al also applied MACD to find topics.
However, they applied it only to the words with
high frequencies in the documents (Fukumoto et
al., 2013). In contrast, we applied it to the topic
candidates obtained by LDA.

We examined our method by extrinsic evalua-
tion, i.e., we applied the results of topic detection
to extractive multi-document summarization. We
assume that a salient sentence includes words re-
lated to the target topic, and an event of each doc-
uments. Here, an event is something that occurs
at a specific place and time associated with some
specific actions(Allan et al., 1998). We identified
event words by using the traditional tf∗idf method
applied to the results of named entities. Each sen-
tence in documents is represented using a vector
of frequency weighted words that can be event
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or topic words. We used Markov Random Walk
(MRW) to compute the rank scores for the sen-
tences (Page et al., 1998). Finally, we selected a
certain number of sentences according to the rank
score into a summary.

2 Topic Detection

2.1 Extraction of Topic Candidates

LDA presented by (Blei et al., 2003) models
each document as a mixture of topics (we call
it lda topic to discriminate ourtopic candidates),
and generates a discrete probability distribution
over words for each ldatopic. The generative pro-
cess for LDA can be described as follows:

1. For each topick = 1, · · · , K, generateφk,
multinomial distribution of words specific to
the topick from a Dirichlet distribution with
parameterβ;

2. For each documentd = 1, · · · , D, generateθd,
multinomial distribution of topics specific to
the documentd from a Dirichlet distribution
with parameterα;

3. For each wordn = 1, · · · , Nd in documentd;

(a) Generate a topiczdn of the nth word
in the documentd from the multinomial
distributionθd

(b) Generate a wordwdn, the word associ-
ated with thenth word in documentd
from multinomialφzdn

Like much previous work on LDA, we used Gibbs
sampling to estimateφ andθ. The sampling prob-
ability for topiczi in documentd is given by:

P (zi | z\i, W ) =
(nv

\i,j + β)(nd
\i,j + α)

(n·
\i,j + Wβ)(nd

\i,· + Tα)
. (1)

z\i refers to a topic setZ, not including the cur-
rent assignmentzi. nv

\i,j is the count of wordv
in topic j that does not include the current assign-
mentzi, andn·

\i,j indicates a summation over that
dimension.W refers to a set of documents, andT
denotes the total number of unique topics. After
a sufficient number of sampling iterations, the ap-
proximated posterior can be used to estimateφ and
θ by examining the counts of word assignments to
topics and topic occurrences in documents. The
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Figure 1: Ldatopic cluster and task cluster

approximated probability of topick in the docu-

mentd, θ̂k
d , and the assignments wordw to topic

k, φ̂w
k are given by:

θ̂k
d =

Ndk + α

Nd + αK
. (2)

φ̂w
k =

Nkw + β

Nk + βV
. (3)

We used documents prepared by summarization
tasks, NTCIR and DUC data as each task consists
of series of documents with the same topic. We
applied LDA to the set consisting of all documents
in the summarization tasks and documents from
the corpus. We need to estimate the appropriate
number of ldatopic.

Let k′ be the number of ldatopics andd′ be
the number of topmostd′ documents assigned to
each ldatopic. We note that the result obtained
by LDA can be regarded as the two types of clus-
tering result shown in Figure 1: (i) each cluster
corresponds to each ldatopic (topic id0, topic id1
· · · in Figure 1), and each element of the clusters
is the document in the summarization tasks (task1,
task2,· · · in Figure 1) or from the corpus (doc in
Figure 1), and (ii) each cluster corresponds to the
summarization task and each element of the clus-
ters is the document in the summarization tasks
or the document from the corpus assigned topic
id. For example, DUC2005 consists of 50 tasks.
Therefore the number of different clusters is 50.
We call the former ldatopic cluster and the latter
task cluster. We estimatedk′ andd′ by using En-
tropy measure given by:

E = − 1

log l

∑

j

Nj

N

∑

i

P (Ai, Cj) log P (Ai, Cj).(4)

242



l refers to the number of clusters.P (Ai, Cj) is a
probability that the elements of the clusterCj as-
signed to the correct classAi. N denotes the total
number of elements andNj shows the total num-
ber of elements assigned to the clusterCj . The
value of E ranges from 0 to 1, and the smaller
value ofE indicates better result. LetEtopic and
Etask are entropy value of ldatopic cluster and
task cluster, respectively. We chose the parame-
ters k′ and d′ whose value of the summation of
Etopic andEtask is smallest. For each ldatopic,
we extracted words whose probabilities are larger
than zero, and regarded these as topic candidates.

2.2 Topic Detection by MACD

The proposed method does not simply use MACD
to find bursts, but instead determines topic words
in series of documents. Unlike Dynamic Topic
Models (Blei and Lafferty, 2006), it does not as-
sume Gaussian distribution so that it is a natural
way to analyze bursts which depend on the data.
We applied it to extract topic words in series of
documents. MACD histogram defined by Eq. (6)
shows a difference between the MACD and its
moving average. MACD of a variablext is defined
by the difference ofn1-day andn2-day moving
averages, MACD(n1,n2) = EMA(n1) - EMA(n2).
Here, EMA(ni) refers toni-day Exponential Mov-
ing Average (EMA). For a variablex = x(t) which
has a corresponding discrete time seriesx = {xt | t
= 0,1,· · · }, then-day EMA is defined by Eq. (5).

EMA(n)[x]t = αxt + (1− α)EMA(n− 1)[x]t−1

=
n
∑

k=0

α(1− α)kxt−k. (5)

α refers to a smoothing factor and it is often taken
to be 2

(n+1) . MACD histogram shows a difference

between the MACD and its moving average1.

hist(n1, n2, n3) = MACD(n1, n2)−
EMA(n3)[MACD(n1, n2)]. (6)

The procedure for topic detection with MACD
is illustrated in Figure 2. LetA be a series of doc-
uments andw be one of the topic candidates ob-
tained by LDA. Each document inA is sorted in
chronological order. We setA to the documents
from the summarization task. Whether or not a
wordw is a topic word is judged as follows:

1In the experiment, we setn1, n2, andn3 to 4, 8 and 5,
respectively (He and Parker, 2010).

T T

T

Correct histogram Bursts histogram

Histogram similarity

bursts bursts

bursts

Figure 2: Topic detection with MACD

1. Create document-based MACD histogram
where X-axis refers toT , i.e., a period of time
(numbered from day 1 to 365). Y-axis is the
document count inA per day. Hereafter, re-
ferred to as correct histogram.

2. Create term-based MACD histogram where
X-axis refers toT , and Y-axis denotes bursts
of word w in A. Hereafter, referred to as
bursts histogram.

3. We assume that if a termw is informative
for summarizing a particular documents in
a collection, its burstiness approximates the
burstiness of documents in the collection.
Becausew is a representative word of each
document in the task. Based on this assump-
tion, we computed similarity between correct
and word histograms by using KL-distance2.
Let P and Q be a normalized distance of
correct histogram, and bursts histogram, re-
spectively. KL-distance is defined byD(P ||
Q) =

∑
i=1 P (xi) log P (xi)

Q(xi)
wherexi refers

bursts in timei. If the value ofD(P || Q)
is smaller than a certain threshold value,w is
regarded as a topic word.

3 Extrinsic Evaluation to Summarization

3.1 Event detection

An event word is something that occurs at a spe-
cific place and time associated with some spe-
cific actions (Allan, 2003; Allan et al., 1998). It
refers to notions of who(person), where(place),

2We tested KL-distance, histogram intersection and Bhat-
tacharyya distance to obtain similarities. We reported only
the result obtained by KL-distance as it was the best results
among them.
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when(time) including what, why and how in a doc-
ument. Therefore, we can assume that named en-
tities(NE) are linguistic features for event detec-
tion. An event word refers to thetheme of the
document itself, and frequently appears in the doc-
ument but not frequently appear in other docu-
ments. Therefore, we first applied NE recogni-
tion to the target documents to be summarized, and
then calculated tf∗idf to the results of NE recogni-
tion. We extracted words whose tf∗idf values are
larger than a certain threshold value, and regarded
these as event words.

3.2 Sentence extraction

We recall that our hypothesis about key sentences
in multiple documents is that they include topic
and event words. Each sentence in the docu-
ments is represented using a vector of frequency
weighted words that can be event or topic words.

Like much previous work on extractive sum-
marization (Erkan and Radev, 2004; Mihalcea
and Tarau, 2005; Wan and Yang, 2008), we used
Markov Random Walk (MRW) model to compute
the rank scores for the sentences. Given a set
of documents to be summarized,G = (S, E) is
a graph reflecting the relationships between two
sentences.S is a set of vertices, and each vertex
si in S is a sentence.E is a set of edges, and each
edgeeij in E is associated with an affinity weight
f(i → j) between sentencessi andsj (i 6= j). The
affinity weight is computed using cosine measure
between the two sentences,si andsj . Two ver-
tices are connected if their affinity weight is larger
than 0 and we letf(i → i)= 0 to avoid self tran-
sition. The transition probability fromsi to sj is
then defined as follows:

p(i → j) =



















f(i→j)
|S|
∑

k=1

f(i→k)

, if Σf 6= 0

0 , otherwise.

(7)

We used the row-normalized matrixUij =
(Uij)|S|×|S| to describeG with each entry corre-
sponding to the transition probability, whereUij =
p(i → j). To makeU a stochastic matrix, the rows
with all zero elements are replaced by a smoothing
vector with all elements set to1|S| . The final transi-
tion matrix is given by formula (8), and each score
of the sentence is obtained by the principal eigen-
vector of the matrixM .

M = µUT +
(1− µ)

| S | ~e~eT . (8)

We selected a certain number of sentences accord-
ing to rank score into the summary.

4 Experiments

4.1 Experimental settings

We applied the results of topic detection to ex-
tractive multi-document summarization task, and
examined how the results of topic detection af-
fect the overall performance of the salient sen-
tence selection. We used two tasks, Japanese and
English summarization tasks, NTCIR-33 SUMM
Japanese and DUC4 English data. The baselines
are (i) MRW model (MRW): The method ap-
plies the MRW model only to the sentences con-
sisted of noun words, (ii) Event detection (Event):
The method applies the MRW model to the result
of event detection, (iii) Topic Detection by LDA
(LDA): MRW is applied to the result of topic can-
didates detection by LDA and (iv) Topic Detec-
tion by LDA and MACD (LDA & MACD): MRW
is applied to the result of topic detection by LDA
and MACD only,i.e., the method does not include
event detection.

4.2 NTCIR data

The data used in the NTCIR-3 multi-document
summarization task is selected from 1998 to 1999
of Mainichi Japanese Newspaper documents. The
gold standard data provided to human judges con-
sists of FBFREE DryRun and FormalRun. Each
data consists of 30 tasks. There are two types of
correct summary according to the character length,
“long” and “short”, All series of documents were
tagged by CaboCha (Kudo and Matsumoto, 2003).
We used person name, organization, place and
proper name extracted from NE recognition (Kudo
and Matsumoto, 2003) for event detection, and
noun words including named entities for topic de-
tection. FBFREE DryRun data is used to tuning
parameters,i.e., the number of extracted words ac-
cording to the tf∗idf value, and the threshold value
of KL-distance. The size that optimized the aver-
age Rouge-1(R-1) score across 30 tasks was cho-
sen. As a result, we set tf∗idf and KL-distance to
100 and 0.104, respectively.

We used FormalRun as a test data, and another
set consisted of 218,724 documents from 1998 to
1999 of Mainichi newspaper as a corpus used in

3http://research.nii.ac.jp/ntcir/
4http://duc.nist.gov/pubs.html
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Number of documents

Entropy

Figure 3: Entropy against the # of topics and doc-
uments

Method Short Long
R-1 R-1

MRW .369 .454
Event .625 .724
LDA .525 .712
LDA & MACD .630 .742
Event & Topic .678 .744

Table 1: Sentence Extraction (NTCIR-3 test data)

LDA and MACD. We estimated the number ofk′

andd′ in LDA, i.e., we searchedk′ andd′ in steps
of 100 from 200 to 900. Figure 3 illustrates en-
tropy value against the number of topicsk′ and
documentsd′ using 30 tasks of FormalRun data.
Each plot shows that at least one of the docu-
ments for each summarization task is included in
the cluster. We can see from Figure 3 that the
value of entropy depends on the number of doc-
uments rather than the number of topics. From
the result shown in Figure 3, the minimum entropy
value was 0.025 and the number of topics and doc-
uments were 400 and 300, respectively. We used
them in the experiment. The summarization re-
sults are shown in Table 1.

Table 1 shows that our approach, “Event &
Topic” outperforms other baselines, regardless of
the summary type (long/short). Topic candidates
include surplus words that are not related to the
topic because the results obtained by “LDA” were
worse than those obtained by “LDA & MACD”,
and even worse than “Event” in both short and
long summary. This shows that integration of
LDA and MACD is effective for topic detection.

4.3 DUC data

We used DUC2005 consisted of 50 tasks for train-
ing, and 50 tasks of DUC2006 data for testing in
order to estimate parameters. We set tf∗idf and

Method R-1 Method R-1
MRW .381 Event .407
LDA .402 LDA & MACD .428
Event & Topic .438
PYTHY .426 HybHSum .456
hPAM .412 TTM .447

Table 2: Comparative results (DUC2007 test data)

KL-distance to 80 and 0.9. The minimum en-
tropy value was 0.050 and the number of topics
and documents were 500 and 600, respectively.
45 tasks from DUC2007 were used to evaluate
the performance of the method. All documents
were tagged by Tree Tagger (Schmid, 1995) and
Stanford Named Entity Tagger5 (Finkel et al.,
2005). We used person name, organization and lo-
cation for event detection, and noun words includ-
ing named entities for topic detection. AQUAINT
corpus6 which consists of 1,033,461 documents
are used as a corpus in LDA and MACD. Table
2 shows Rouge-1 against unigrams.

We can see from Table 2 that Rouge-1 obtained
by our approach was also the best compared to the
baselines. Table 2 also shows the performance of
other research sites reported by (Celikylmaz and
Hakkani-Tur, 2010). The top site was “HybH-
Sum” by (Celikylmaz and Hakkani-Tur, 2010).
However, the method is a semi-supervised tech-
nique that needs a tagged training data. Our ap-
proach achieves performance approaching the top-
performing unsupervised method, “TTM” (Ce-
likylmaz and Hakkani-Tur, 2011), and is compet-
itive to “PYTHY” (Toutanoval et al., 2007) and
“hPAM” (Li and McCallum, 2006). Prior work
including “TTM” has demonstrated the usefulness
of semantic concepts for extracting salient sen-
tences. For future work, we should be able to
obtain further advantages in efficacy in our topic
detection and summarization approach by disam-
biguating topic senses.

5 Conclusion

The research described in this paper explores a
method for detecting topic words over time in se-
ries of documents. The results of extrinsic evalu-
ation showed that integration of LDA and MACD
is effective for topic detection.

5http://nlp.stanford.edu/software/CRF-NER.shtml
6http://catalog.ldc.upenn.edu/LDC2002T31

245



References

J. Allan, J. Carbonell, G. Doddington, J. Yamron, and
Y. Yang. 1998. Topic Detection and Tracking Pilot
Study Final Report. InProc. of the DARPA Broad-
cast News Transcription and Understanding Work-
shop.

J. Allan, editor. 2003.Topic Detection and Tracking.
Kluwer Academic Publishers.

D. M. Blei and J. D. Lafferty. 2006. Dynamic Topic
Models. InProc. of the 23rd International Confer-
ence on Machine Learning, pages 113–120.

D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. La-
tent Dirichlet Allocation. InThe Journal of Machine
Learning Research, volume 3, pages 993–1022.

A. Celikylmaz and D. Hakkani-Tur. 2010. A Hy-
bird Hierarchical Model for Multi-Document Sum-
marization. InProc. of the 48th Annual Meeting
of the Association for Computational Linguistics,
pages 815–824.

A. Celikylmaz and D. Hakkani-Tur. 2011. Discovery
of Topically Coherent Sentences for Extractive Sum-
marization. InProc. of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 491–499.

G. Erkan and D. Radev. 2004. LexPageRank: Prestige
in Multi-Document Text Summarization. InProc. of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing, pages 365–371.

J. R. Finkel, T. Grenager, and C. Manning. 2005. In-
corporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. InProc.
of the 43rd Annual Meeting of the Association for
Computational Linguistics, pages 363–370.

G. Folino, C. Pizzuti, and G. Spezzano. 2007. An
Adaptive Distributed Ensemble Approach to Mine
Concept-Drifting Data Streams. InProc. of the 19th
IEEE International Conference on Tools with Artifi-
cial Intelligence, pages 183–188.

F. Fukumoto, Y. Suzuki, A. Takasu, and S. Matsuyoshi.
2013. Multi-document summarization based on
event and topic detection. InProc. of the 6th Lan-
guage and Technology Conference: Human Lan-
guage Technologies as a Challenge for Computer
Science and Linguistics, pages 117–121.

D. He and D. S. Parker. 2010. Topic Dynamics: An
Alternative Model of Bursts in Streams of Topics.
In Proc. of the 16th ACM Special Interest Group on
Knowledge Discovery and Data Mining, pages 443–
452.

R. Klinkenberg and T. Joachims. 2000. Detecting
Concept Drift with Support Vector Machines. In
Proc. of the 17th International Conference on Ma-
chine Learning, pages 487–494.

R. Klinkenberg. 2004. Learning Drifting Concepts:
Example Selection vs. Example Weighting.Intel-
leginet Data Analysis, 8(3):281–300.

T. Kudo and Y. Matsumoto. 2003. Fast methods for
kernel-based text analysis. InProc. of 41st Annual
Meeting of the Association for Computational Lin-
guistics, pages 24–31.

M. M. Lazarescu, S. Venkatesh, and H. H. Bui. 2004.
Using Multiple Windows to Track Concept Drift.
Intelligent Data Analysis, 8(1):29–59.

W. Li and A. McCallum. 2006. Pachinko Alloca-
tion: Dag-Structure Mixture Model of Topic Cor-
relations. InProc. of the 23rd International Confer-
ence on Machine Learning, pages 577–584.

K. Mane and K. Borner. 2004. Mapping Topics
and Topic Bursts in PNAS.Proc. of the National
Academy of Sciences of the United States of Amer-
ica, 101:5287–5290.

R. Mihalcea and P. Tarau. 2005. Language Indepen-
dent Extractive Summarization. InIn Proc. of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 49–52.

J. Murphy. 1999.Technical Analysis of the Financial
Markets. Prentice Hall.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998.
The Pagerank Citation Ranking: Bringing Order to
the Web. InTechnical report, Stanford Digital Li-
braries.

H. Schmid. 1995. Improvements in Part-of-Speech
Tagging with an Application to German. InProc. of
the European chapter of the Association for Compu-
tational Linguistics SIGDAT Workshop.

M. Scholz. 2007. Boosting Classifiers for Drifting
Concepts.Intelligent Data Analysis, 11(1):3–28.

R. Swan and J. Allan. 2000. Automatic Generation
of Overview Timelines. InProc. of the 23rd An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 38–45.

K. Toutanoval, C. Brockett, M. Gammon, J. Jagarla-
mudi, H. Suzuki, and L. Vanderwende. 2007. The
Phthy Summarization System: Microsoft Research
at DUC. InProc. of Document Understanding Con-
ference 2007.

X. Wan and J. Yang. 2008. Multi-Document Summa-
rization using Cluster-based Link Analysis. InProc.
of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, pages 299–306.

246



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 247–252,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Content Importance Models for Scoring Writing From Sources

Beata Beigman Klebanov Nitin Madnani Jill Burstein Swapna Somasundaran
Educational Testing Service

660 Rosedale Road
Princeton, NJ 08541

{bbeigmanklebanov,nmadnani,jburstein,ssomasundaran}@ets.org

Abstract

Selection of information from external
sources is an important skill assessed in
educational measurement. We address an
integrative summarization task used in an
assessment of English proficiency for non-
native speakers applying to higher educa-
tion institutions in the USA. We evaluate a
variety of content importance models that
help predict which parts of the source ma-
terial should be selected by the test-taker
in order to succeed on this task.

1 Introduction

Selection and integration of information from ex-
ternal sources is an important academic and life
skill, mentioned as a critical competency in the
Common Core State Standards for English Lan-
guage Arts/Literacy: College-ready students will
be able to “gather relevant information from mul-
tiple print and digital sources, assess the credibi-
lity and accuracy of each source, and integrate the
information while avoiding plagiarism.”1

Accordingly, large-scale assessments of writing
incorporate tasks that test this skill. One such test
requires test-takers to read a passage, then to lis-
ten to a lecture discussing the same topic from
a different point of view, and to summarize the
points made in the lecture, explaining how they
cast doubt on points made in the reading. The qua-
lity of the information selected from the lecture is
emphasized in excerpts from the scoring rubric for
this test (below); essays are scored on a 1-5 scale:

Score 5 successfully selects the important infor-
mation from the lecture and coherently and
accurately presents this information in rela-
tion to the relevant information presented in
the reading.

1http://www.corestandards.org/
ELA-Literacy/CCRA/W.

Score 4 is generally good in selecting the impor-
tant information from the lecture ..., but it
may have a minor omission.

Score 3 contains some important information
from the lecture ..., but it may omit one major
key point.

Score 2 contains some relevant information from
the lecture ... The response significantly
omits or misrepresents important points.

Score 1 provides little or no meaningful or rele-
vant coherent content from the lecture.

The ultimate goal of our project is to improve
automated scoring of such essays by taking into
account the extent to which a response integrates
important information from the lecture. This pa-
per reports on the first step aimed at automatically
assigning importance scores to parts of the lecture.
The next step – developing an essay scoring sys-
tem using content importance models along with
other features of writing quality, will be addressed
in future work. A simple essay scoring mechanism
will be used for evaluation purposes in this paper,
as described in the next section.

2 Design of Experiment

In evaluations of summarization algorithms, it is
common practice to derive the gold standard con-
tent importance scores from human summaries, as
done, for example, in the pyramid method, where
the importance of a content element corresponds
to the number of reference human summaries that
make use of it (Nenkova and Passonneau, 2004).
Selection of the appropriate content plays a cru-
cial role in attaining a high score for the essays
we consider here, as suggested by the quotes from
the scoring rubric in §1, as well as by a corpus
study by Plakans and Gebril (2013). We therefore
observe that high-scoring essays can be thought
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of as high-quality human summaries of the lec-
ture, albeit containing, in addition, references to
the reading material and language that contrasts
the different viewpoints, making them a somewhat
noisy gold standard. On the other hand, since low-
scoring essays contain deficient summaries of the
lecture, our setup allows for a richer evaluation
than typical in studies using gold standard human
data only, in that a good model should not only
agree with the gold standard human summaries
but should also disagree with sub-standard human
summaries. We therefore use correlation with es-
say score to evaluate content importance models.

The evaluation will proceed as follows. Every
essay E is responding to a test prompt that con-
tains a lecture L and a reading R. We identify the
essay’s overlap with the lecture:

O(E,L) = {x|x ∈ L, x ∈ E} (1)

where the exact definition of x, that is, what is
taken to be a single unit of information, will be
one of the parameters to be studied. The essay is
then assigned the following score by the content
importance model M :

SM (E) =
Σx∈O(E,L)wM (x)× C(x,E)

nE
(2)

where wM (x) is the importance weight as-
signed by model M to item x in the lecture,
C(x,E) is the count of tokens in E that realize
the information unit x, and nE is the number of
tokens in the essay. In this paper, the distinction
between x and C is that between type and token
count of instances of that type.2 This simple sco-
ring mechanism quantifies the rate of usage of im-
portant information per token in the essay. Finally,
we calculate the correlation of scores assigned to
essays by model M with scores assigned to the
same essays by human graders.

This design ensures that once x is fixed, all the
content importance models are evaluated within
the same scoring scheme, so any differences in the
correlations can be attributed to the differences in
the weights assigned by the importance models.

2In the future, we intend to explore more complex rea-
lization functions, allowing paraphrase, skip n-grams (as in
ROUGE (Lin, 2004)), and other approximate matches, such
as misspellings and inflectional variants.

3 Content Importance Models

Our setting can be thought of as a special kind
of summarization task. Test-takers are required
to summarize the lecture while referencing the
reading, making this a hybrid of single- and multi-
document summarization, where one source is
treated as primary and the other as secondary.

We therefore consider models of content impor-
tance that had been found useful in the summariza-
tion literature, as well as additional models that
utilize a special feature of our scenario: We have
hundreds of essays of varying quality responding
to any given prompt, as opposed to a typical news
summarization scenario where a small number of
high quality human summaries are available for a
given article. A sample of these essays can be used
when developing a content importance model.

We define the following importance models.
For all definitions, x is a unit of information
in the lecture; C(x, t) is the number of tokens in
text t that realize x; nL and nR are the number of
tokens in the lecture and the reading, respectively.3

Naı̈ve: w(x) = 1. This is a simple overlap model.

Prob: w(x) = C(x,L)
nL

, an MLE estimate of
the probability that x appears in the lecture.
Those x that appear more are more important.

Position: w(x) = FP (x)
nL

, where FP (x) is the
offset of the first occurrence of x in the lec-
ture. The offset corresponds to the token’s
serial number in the text, 1 through nL.

LectVsRead: w(x) = C(x,L)
nL
−C(x,R)

nR
, that is, the

difference in the probabilities of occurrence
of x in the lecture and in the reading passage
that accompanies the lecture. This model at-
tempts to capture the contrastive aspect of
importance – the content that is unique to
the lecture is more important than the content
that is shared by the lecture and the reading.

The following two models capitalize on evi-
dence of use of information in better and worse es-
says. For estimating these models, we sample, for
each prompt, a development set of 750 essays re-
sponding to the prompt (that is, addressing a given
pair of lecture and reading stimuli). Out of these,
we take, for each prompt, all essays at score points

3Prob, Position, and LectVsRead models normalize by
nR and nL to enable comparison of essays responding to dif-
ferent lecture + reading stimuli (prompts).
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4 and 5 (EGood) and all essays at score points 1
and 2 (EBad). These data do not overlap with the
experimental data described in section 4. In both
definitions below, e is an essay.

Good: w(x) = |{e∈EGood|x∈e}|
|EGood| . An x is more im-

portant if more good essays use it. Hong and
Nenkova (2014) showed that a variant of this
measure used on pairs of articles and their ab-
stracts from the New York Times effectively
identified words that typically go into sum-
maries, across topics. In contrast, our mea-
surements are prompt-specific.

GoodVsBad: w(x) = |{e∈EGood|x∈e}|
|EGood| −

|{e∈EBad|x∈e}|
|EBad| . An x is more important if

good essays use it more than bad essays.
To our knowledge, this measure has not
been used in the summarization literature,
probably because a large sample of human
summaries of varying quality is typically not
available.

4 Data

We use 116 prompts drawn from an assessment of
English proficiency for non-native speakers. Each
prompt contains a lecture and a reading passage.
For each prompt, we sample about 750 essays.
Each essay has an operational score provided by
a human grader. Table 1 shows the distribution of
essay scores; mean score is 3. Text transcripts of
the lectures were used.

Score 1 2 3 4 5
Proportion 0.13 0.18 0.35 0.25 0.09

Table 1: Distribution of essay scores.

5 Results

Independently from the content importance
models, we address the effect of the granularity of
the unit of information. Intuitively, since all the
materials for a given prompt deal with the same
topic, we expect large unigram overlaps between
lecture and reading, and between good and bad
essays, whereas n-grams with larger n can be
more distinctive. On the other hand, larger n lead
to misses, where an information unit would fail
to be identified in an essay due to a paraphrase,
thus impairing the ability of the scoring function
to use the content importance model effectively.

We therefore evaluate each content importance
model for different granularities of the content
unit x: n-grams for n = 1, 2, 3, 4. Table 2 shows
the correlations with essay scores.

Content Pearson’s r
Importance
Model n=1 n=2 n=3 n=4
Naı̈ve 0.24 0.27* 0.24 0.20
Prob 0.04 0.14 0.17 0.14
Position 0.22 0.30* 0.26* 0.20
LectVsRead 0.09 0.25* 0.31* 0.26*
Good 0.07 0.15 0.10 0.07
GoodVsBad 0.54* 0.42* 0.32* 0.21

Table 2: Correlations with essay scores attained by
content models, for various definitions of informa-
tion unit (n-grams with n = 1, 2, 3, 4). Five top
scores are boldfaced. The baseline performance
is shown in underlined italics. Correlations that
are significantly better (p < 0.05) than the naı̈ve
n = 1 model are marked with an asterisk. We
use McNemar (1955, p. 148) test for significance
of difference between same-sample correlations.
N = 85, 252 for all correlations.

6 Discussion

The Naı̈ve model with n = 1 can be considered a
baseline, corresponding to unweighted word over-
lap between the lecture and the essay. This model
attains a significant positive correlation with essay
score (r = 0.24), suggesting that, in general, bet-
ter writers use more material from the lecture.

Our next observation is that the Prob and Good
models do not improve over the baseline, that is,
their weighting schemes generally assign higher
weights to the wrong units. We believe the rea-
son for this is that the most highly used n-grams,
in the lecture and in the essays, correspond to ge-
neral topical and functional elements. The impor-
tance of these elements is discounted in the more
effective Position, LectVsRead, and GoodVsBad
models, highlighting subtler aspects of the lecture.

Next, let us consider the granularity of the units
of information. We observe that 4-grams are in-
ferior to trigrams for all models, suggesting that
data sparsity is becoming a problem for matching
4-word sequences. For models that assign weight
based on one or two sources (lecture, or lecture
and reading) – Naı̈ve, Position, LectVsRead – un-
igram models are generally ineffective, while bi-
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gram and trigram models significantly outperform
the baseline. We interpret this as suggesting that
it is certain particular, detailed aspects of the top-
ical concepts that constitute the important nuggets
in the lecture; these are usually realized by multi-
word sequences.

The GoodVsBad models show a different pat-
tern, obtaining the best performance with a uni-
gram version. These models are sensitive to data
sparsity not only when matching essays to the
lecture (this problem is common to all models)
but also during model building. Recall that the
weights in a GoodVsBad model are estimated
based on differential use in samples of good and
bad essays. The estimation of use-in-a-corpus is
more accurate for smaller n, because longer n-
grams are more susceptible to paraphrasing, which
leads to under-estimation of use. Assuming that
paraphrasing behavior of good and bad writers is
not the same – in fact, there is corpus evidence
that better writers paraphrase more (Burstein et
al., 2012) – the resulting inaccuracies might im-
pact the estimation of differential use in a sys-
tematic manner, making the n > 1 models less
effective than the unigrams. Given that (a) the
GoodVsBad bigram model is the second best over-
all in spite of the shortcomings of the estimation
process, and (b) that the bigram models worked
better than unigram models for all the other con-
tent importance models, the GoodVsBad bigram
model could probably be improved significantly
by using a more flexible information realization
mechanism.

To illustrate the information assigned high im-
portance by different models, consider a lec-
ture discussing advantages of fish farming. The
top-scoring Good bigrams are topical expressions
(fish farming), functional bigrams around fish and
farming,4 aspects of content dealt with at length
in the lecture (wild fish, commercial fishing), bi-
grams referencing some of the claims – fish con-
taining less fat and being used for fish meal. In
addition, this model picks out some sequences of
function words and punctuation (of the, are not,
“, and”, “, the”) that suggest that better essays
tend to give more detail (hence have more com-
plex noun phrases and coordinated constructions)
and to draw contrast.

For the bigram GoodVsBad model, the topi-
cal bigram fish farming is not in the top 20 bi-

4such as that fish, of fish, farming is, “, fish”

grams. Although some bigrams are shared with
the Good model, the GoodVsBad model selects
additional details about the claims, such as the
contrast between inedible fish and edible fish that
is eaten by humans, as well as reference to chemi-
cals used in farming and to the claim that wild fish
are already endangered by other practices.

The most important bigrams according to the
LectVsRead model include functional bigrams
around fish and farming, functional sequences
(that the, is a), as well as commercial fishing and
edible fish. Also selected are functional bigrams
around consumption and species, hinting, indi-
rectly, at the edibility differences between species.
Finally, this model selects almost all bigrams in
the reading passage makes, the reading makes
claims that and the reading says. While distin-
guishing the lecture from the reading, these do not
capture topic-relevant content of the lecture.

The GoodVsBad unigram model selects poul-
try, endangered, edible, chemicals among its top 6
unigrams,5 effectively touching upon the connec-
tion with other farm-raised foods (poultry, chemi-
cals), with wild fish (endangered) and with human
benefit (edible) that are made in the lecture.

7 Related work

Modern essay scoring systems are complex and
cover various aspects of the writing construct,
such as grammar, organization, vocabulary (Sher-
mis and Burstein, 2013). The quality of content
is often addressed by features that quantify the
similarity between the vocabulary used in an es-
say and reference essays from given score points
(Attali and Burstein, 2006; Foltz et al., 2013; At-
tali, 2011). For example, Attali (2011) proposed a
measure of differential use of words in higher and
lower scoring essays defined similarly to Good-
VsBad, without, however, considering the source
text at all. Such features can be thought of as con-
tent quality features, as they implicitly assume that
writers of better essays use better content. How-
ever, there are various kinds of better content, only
one of them being selection of important informa-
tion from the source; other elements of content
originate with the writer, such as examples, dis-
course markers, evaluations, introduction and con-
clusion, etc. Our approach allows focusing on a
particular aspect of content quality, namely, selec-
tion of appropriate materials from the source.

5the other two being fishing and used.
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Our results are related to the findings of Gure-
vich and Deane (2007) who studied the difference
between the reading and the lecture in their im-
pact on essay scores for this test. Using data from
a single prompt, they showed that the difference
between the essay’s average cosine similarity to
the reading and its average cosine similarity to the
lecture is predictive of the score for non-native
speakers of English, thus using a model similar
to LectVsRead, although they took all lecture,
reading, and essay words into account, in contrast
to our model that looks only at n-grams that ap-
pear in the lecture. Our study shows that the ef-
fectiveness of lecture-reading contrast models for
essay scoring generalizes to a large set of prompts.
Similarly, Evanini et al. (2013) found that over-
lap with material that is unique to the lecture (not
shared with the reading) was predictive of scores
in a spoken source-based question answering task.

In the vast literature on summarization, our
work is closest to Hong and Nenkova (2014) who
studied models of word importance for multi-
document summarization of news. The Prob, Po-
sition, and Good models are inspired by their
findings of the effectiveness of similar models in
their setting. We found that, in our setting, Prob
and Good models performed worse than assigning
a uniform weight to all words. We note, however,
that models from Hong and Nenkova (2014) are
not strictly comparable, since their word proba-
bility models were calculated after stopword ex-
clusion, and their model that inspired our Good
model was defined somewhat differently and val-
idated using content words only. The defini-
tion of our Position model and its use in the es-
say scoring function S (equation 2) correspond to
Hong and Nenkova (2014) average first location
model for scoring summaries. Differently from
their findings, this model is not effective for sin-
gle words in our setting. Position models over n-
grams with n > 1 are effective, but their predic-
tion is in the opposite direction of that found for
the news data – the more important materials tend
to appear later in the lecture, as indicated by the
positive r between average first position and essay
score. These findings underscore the importance
of paying attention to the genre of the source ma-
terial when developing summarization systems.

Our summarization task incorporates elements
of contrastive opinion summarization (Paul et al.,
2010; Kim and Zhai, 2009), since the lecture and

the reading sometimes interpret the same facts in
a positive or negative light (for example, the fact
that chemicals are used in fish farms is negative
if compared to wild fish, but not so if compared
to other farm-raised foods like poultry). Relation-
ships between aspect and sentiment (Brody and
Elhadad, 2010; Lazaridou et al., 2013) are also
relevant, since aspects of the same fact are em-
phasized with different evaluations (the quantity
vs the variety of species that go into fish meal for
farmed fish). We hypothesize that units participat-
ing in sentiment and aspect contrasts are of higher
importance; this is a direction for future work.

8 Conclusion

In this paper, we addressed the task of automati-
cally assigning importance scores to parts of a lec-
ture that is to be summarized as part of an English
language proficiency test. We investigated the op-
timal units of information to which importance
should be assigned, as well as a variety of impor-
tance scoring models, drawing on the news sum-
marization and essay scoring literature.

We found that bigrams and trigrams were ge-
nerally more effective than unigrams and 4-grams
across importance models, with some exceptions.

We also found that the most effective impor-
tance models are those that equate importance
of an n-gram with its preferential use in higher-
scoring essays than in lower-scoring ones, above
and beyond merely looking at the n-grams used in
good essays. This demonstrates the utility of using
not only gold, high-quality human summaries, but
also sub-standard ones when developing content
importance models.

Additional importance criteria that are intrinsic
to the lecture, as well as those that capture contrast
with a different source discussing the same topic,
were also found to be reasonably effective. Since
different importance models often select different
items as most important, we intend to investigate
complementarity of the different models.

Finally, our results highlight that the effective-
ness of an importance model depends on the genre
of the source text. Thus, while a first sentence
baseline is very competitive in news summariza-
tion, we found that important information tends
not to be located in the opening sentences in our
data (these tend to provide general, introductory
information), but appears later on, when more de-
tailed, specific claims are put forward.
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Abstract 

The focus of recent studies on Chinese word 

segmentation, part-of-speech (POS) tagging 

and parsing has been shifting from words to 

characters. However, existing methods have 

not yet fully utilized the potentials of Chinese 

characters. In this paper, we investigate the 

usefulness of character-level part-of-speech 

in the task of Chinese morphological analysis. 

We propose the first tagset designed for the 

task of character-level POS tagging. We pro-

pose a method that performs character-level 

POS tagging jointly with word segmentation 

and word-level POS tagging. Through exper-

iments, we demonstrate that by introducing 

character-level POS information, the perfor-

mance of a baseline morphological analyzer 

can be significantly improved. 

1 Introduction 

In recent years, the focus of research on Chinese 

word segmentation, part-of-speech (POS) tag-

ging and parsing has been shifting from words 

toward characters. Character-based methods 

have shown superior performance in these tasks 

compared to traditional word-based methods (Ng 

and Low, 2004; Nakagawa, 2004; Zhao et al., 

2006; Kruengkrai et al., 2009; Xue, 2003; Sun, 

2010). Studies investigating the morphological-

level and character-level internal structures of 

words, which treat character as the true atom of 

morphological and syntactic processing, have 

demonstrated encouraging results (Li, 2011; Li 

and Zhou, 2012; Zhang et al., 2013). This line of 

research has provided great insight in revealing 

the roles of characters in word formation and 

syntax of Chinese language. 

However, existing methods have not yet fully 

utilized the potentials of Chinese characters. 

While Li (2011) pointed out that some characters  

Character-level 

Part-of-Speech 
Examples of Verb 

verb + noun 投资 (invest : throw + wealth) 

noun + verb 心疼 (feel sorry : heart + hurt) 

verb + adjective 
认清 (realize : recognize + 

clear) 

adjective + verb 痛恨 (hate : pain + hate) 

verb + verb 
审查 (inspect : examine + re-

view) 

Table 1. Character-level POS sequence as a 

more specified version of word-level POS: an 

example of verb. 

can productively form new words by attaching to 

existing words, these characters consist only a 

portion of all Chinese characters and appear in 

35% of the words in Chinese Treebank 5.0 

(CTB5) (Xue et al., 2005). Zhang (2013) took 

one step further by investigating the character-

level structures of words; however, the machine 

learning of inferring these internal structures re-

lies on the character forms, which still suffers 

from data sparseness.  

In our view, since each Chinese character is in 

fact created as a word in origin with complete 

and independent meaning, it should be treated as 

the actual minimal morphological unit in Chinese 

language, and therefore should carry specific 

part-of-speech. For example, the character “打” 

(beat) is a verb and the character “破” (broken) is 

an adjective. A word on the other hand, is either 

single-character, or a compound formed by sin-

gle-character words. For example, the verb “打

破” (break) can be seen as a compound formed 

by the two single-character words with the con-

struction “verb + adjective”. 

Under this treatment, we observe that words 

with the same construction in terms of character-

level POS tend to also have similar syntactic 

roles. For example, the words having the con-
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struction “verb + adjective” are typically verbs, 

and those having the construction “adjective + 

noun” are typically nouns, as shown in the fol-

lowing examples:  

 
(a) verb : verb + adjective  

“打破”(break) : “打”(beat) + “破”(broken) 

“更新”(update) : “更”(replace) + “新”(new) 

“漂白”(bleach) : “漂”(wash) + “白”(white) 

 

(b) noun : adjective + noun 

“主题”(theme) : “主”(main) + “题”(topic) 

“新人”(newcomer) : “新”(new) + “人”(person) 

“快车”(express) : “快”(fast) + “车”(car) 

 

This suggests that character-level POS can be 

used as cues in predicting the part-of-speech of 

unknown words. 

Another advantage of character-level POS is 

that, the sequence of character-level POS in a 

word can be seen as a more fine-grained version 

of word-level POS. An example is shown in Ta-

ble 1. The five words in this table are very likely 

to be tagged with the same word-level POS as 

verb in any available annotated corpora, while it 

can be commonly agreed among native speakers 

of Chinese that the syntactic behaviors of these 

words are different from each other, due to their 

distinctions in word constructions. For example, 

verbs having the construction “verb + noun” (e.g. 

投资) or “verb + verb” (e.g. 审查) can also be 

nouns in some context, while others cannot; And 

verbs having the constructions “verb + adjective” 

(e.g. 认清) require exact one object argument, 

while others generally do not. Therefore, com-

pared to word-level POS, the character-level 

POS can produce information for more expres-

sive features during the learning process of a 

morphological analyzer. 

In this paper, we investigate the usefulness of 

character-level POS in the task of Chinese mor-

phological analysis. We propose the first tagset 

designed for the task of character-level POS tag-

ging, based on which we manually annotate the 

entire CTB5. We propose a method that performs 

character-level POS tagging jointly with word 

segmentation and word-level POS tagging. 

Through experiments, we demonstrate that by 

introducing character-level POS information, the 

performance of a baseline morphological analyz-

er can be significantly improved. 

 

 

 

 

Tag Part-of-Speech Example 

n noun 法案/NN (bill) 

v verb 发布/VV (publish) 

j adj./adv. 广阔/VA (vast)  

t numerical 三点一四/CD (3.14) 

m quantifier 一/CD 件/M (a piece of) 

d date 九五年/NT (1995) 

k proper noun 中美/NR (sino-US) 

b prefix 副市长/NN (vice mayor) 

e suffix 
建筑业/NN (construction 

inductry) 

r transliteration 阿尔帕德/NR (Árpád) 

u punctuation 
查尔斯·狄更斯/NR 

(Charles Dickens) 

f foreign chars X射线/NN (X-ray) 

o onomatopoeia 隆隆/AD (rumble) 

s surname 
王新民/NR (Wang 

Xinmin) 

p pronoun 他们/PN (they) 

c other functional 用于/VV (be used for) 

Table 2. Tagset for character-level part-of-

speech tagging. The underlined characters in 

the examples correspond to the tags on the 

left-most column. The CTB-style word-level 

POS are also shown for the examples. 

2 Character-level POS Tagset 

We propose a tagset for the task of character-

level POS tagging. This tagset contains 16 tags, 

as illustrated in Table 2. The tagset is designed 

by treating each Chinese character as a single-

character word, and each (multi-character) word 

as a phrase of single-character words. Some of 

these tags are directly derived from the common-

ly accepted word-level part-of-speech, such as 

noun, verb, adjective and adverb. It should be 

noted that, for single-character words, the differ-

ence between adjective and adverb can almost be 

ignored, because for any of such words that can 

be used as an adjective, it usually can also be 

used as an adverb. Therefore, we have merged 

these two tags into one.  

On the other hand, some other tags are de-

signed specifically for characters, such as trans-

literation, surname, prefix and suffix. Unlike 

some Asian languages such as Japanese, there is 

no explicit character set in Chinese that are used 

exclusively for expressing names of foreign per-

sons, places or organizations. However, some 

characters are used much more frequently than 

others in these situations. For example, in the 

person’s name “阿尔帕德” (Árpád), all the four 

characters can be frequently observed in words  
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Figure 1. A Word-character hybrid lattice of a Chinese sentence. Correct path is represented by blue 

bold lines. 
 

 

Word Length 1 2 3 4 5 6 7 or more 

Tags S BE BB2E BB2B3E BB2B3ME BB2B3MME BB2B3M...ME 

Table 3. Word representation with a 6-tag tagset: S, B, B2, B3, M, E 

 

of transliterations. Similarly, surnames in Chi-

nese are also drawn from a set of limited number 

of characters. We therefore assign specific tags 

for this kind of character sets. The tags for pre-

fixes and suffixes are motivated by the previous 

studies (Li, 2011; Li and Zhou, 2012). 

We have annotated character-level POS for all 

words in CTB5
1

. Fortunately, character-level 

POS in most words are independent of context, 

which means it is sufficient to annotate word 

forms unless there is an ambiguity. The annota-

tion was conducted by two persons, where each 

one of them was responsible for about 70% of 

the documents in the corpus. The redundancy 

was set for the purposes of style unification and 

quality control, on which we find that the inter- 

annotator agreement is 96.2%. Although the an-

notation also includes the test set, we blind this 

portion in all the experiments.  

                                                 
1 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?CharPosCN 

3 Chinese Morphological Analysis with 

Character-level POS 

3.1 System Description 

Previous studies have shown that jointly pro-

cessing word segmentation and POS tagging is 

preferable to pipeline processing, which can 

propagate errors (Nakagawa and Uchimoto, 2007; 

Kruengkrai et al., 2009). Based on these studies, 

we propose a word-character hybrid model 

which can also utilize the character-level POS 

information. This hybrid model constructs a lat-

tice that consists of word-level and character-

level nodes from a given input sentence. Word-

level nodes correspond to words found in the 

system’s lexicon, which has been compiled from 

training data. Character-level nodes have special 

tags called position-of-character (POC) that indi-

cate the word-internal position (Asahara, 2003; 

Nakagawa, 2004). We have adopted the 6-tag 

tagset, which (Zhao et al., 2006) reported to be 

optimal. This tagset is illustrated in Table 3. 

Figure 2 shows an example of a lattice for the 

Chinese sentence: “陈德铭答记者问” (Chen 

Deming answers to journalists’ questions). The 

correct path is marked with blue bold lines. The 
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Category Template Condition 

Baseline-unigram 〈  〉 〈  〉 〈     〉 〈     〉 〈            〉 〈          〉    
 〈                    〉 
 〈      〉 〈      〉 〈     〉 〈     〉 〈     〉    
 〈          〉 〈         〉 〈        〉 〈        〉 〈         〉 
Baseline-bigram 〈      〉 〈      〉 〈      〉 〈      〉 〈          〉 〈         〉 

       
 〈          〉 〈         〉 〈             〉 〈          〉 〈         〉 
 〈          〉 〈         〉 〈             〉 〈           〉 
 〈             〉 〈               〉 〈                〉 
 〈      〉 〈      〉 〈          〉 〈         〉        
 〈          〉 〈         〉 〈             〉 
 〈      〉 Otherwise 

Proposed-unigram 〈         〉    

Proposed-bigram 〈              〉 〈                  〉         
 〈             〉 〈                 〉 
 〈                      〉 〈                     〉        
 〈                     〉 〈                    〉  
 〈          〉 〈             〉        

 〈          〉 〈              〉        

 〈                  〉 〈                 〉 〈                     〉        

Table 4. Feature templates. The “Condition” column describes when to apply the templates:     

and    denote the previous and the current word-level node;     and    denote the previous and 

the current character-level node;     and    denote the previous and the current node of any 

types. Word-level nodes represent known words that can be found in the system’s lexicon. 

 

upper part of the lattice (word-level nodes) rep-

resents known words, where each node carries 

information such as character form, character-

level POS , and word-level POS. A word that 

contains multiple characters is represented by a 

sub-lattice (the dashed rectangle in the figure), 

where a path stands for a possible sequence of 

character-level POS for this word. For example, 

the word “记者” (journalist) has two possible 

paths of character-level POS: “verb + suffix” and 

“noun + suffix”. Nodes that are inside a sub-

lattice cannot be linked to nodes that are outside, 

except from the boundaries. The lower part of 

the lattice (character-level nodes) represents un-

known words, where each node carries a posi-

tion-of-character tag, in addition to other types of 

information that can also be found on a word-

level node. A sequence of character-level nodes 

are considered as an unknown word if and only if 

the sequence of POC tags forms one of the cases 

listed in Table 3. This table also illustrates the 

permitted transitions between adjacent character-

level nodes. We use the standard dynamic pro-

gramming technique to search for the best path in 

the lattice. We use the averaged perceptron (Col-

lins, 2002), an efficient online learning algorithm, 

to train the model. 

3.2 Features 

We show the feature templates of our model in 

Table 4. The features consist of two categories: 

baseline features, which are modified from the 

templates proposed in (Kruengkrai et al., 2009); 

and proposed features, which encode character-

level POS information.  

Baseline features: For word-level nodes that 

represent known words, we use the symbols  ,   

and   to denote the word form, POS tag and 

length of the word, respectively. The functions 

         and        return the first and last 

character of  . If   has only one character, we 

omit the templates that contain          or 

      . We use the subscript indices 0 and -1 to 

indicate the current node and the previous node 

during a Viterbi search, respectively. For charac-

ter-level nodes,   denotes the surface character, 

and   denotes the combination of POS and POC 

(position-of-character) tags.  

Proposed features: For word-level nodes, the 

function           returns the pair of the char-

acter-level POS tags of the first and last charac-

ters of  , and          returns the sequence of 

character-level POS tags of  . If either the pair 

or the sequence of character-level POS is ambig-

uous, which means there are multiple paths in the 

sub-lattice of the word-level node, then the val-

ues on the current best path (with local context) 

during the Viterbi search will be returned. If   

has only one character, we omit the templates 

that contain          . For character-level nodes, 

the function       returns its character-level 

POS. The subscript indices 0 and -1 as well as 
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other symbols stand for the same meaning as 

they are in the baseline features.  

4 Evaluation 

4.1 Settings 

To evaluate our proposed method, we have con-

ducted two sets of experiments on CTB5: word 

segmentation, and joint word segmentation and 

word-level POS tagging. We have adopted the 

same data division as in (Jiang et al., 2008a; 

Jiang et al., 2008b; Kruengkrai et al., 2009; 

Zhang and Clark, 2010; Sun, 2011): the training 

set, dev set and test set have 18,089, 350 and 348 

sentences, respectively. The models applied on 

all test sets are those that result in the best per-

formance on the CTB5 dev set. 

We have annotated character-level POS in-

formation for all 508,768 word tokens in CTB5. 

As mentioned in section 2, we blind the annota-

tion in the test set in all the experiments. To learn 

the characteristics of unknown words, we built 

the system’s lexicon using only the words in the 

training data that appear at least 3 times. We ap-

plied a similar strategy in building the lexicon for 

character-level POS, where the threshold we 

choose is 2. These thresholds were tuned using 

the development data.  

We have used precision, recall and the F-score 

to measure the performance of the systems. Pre-

cision ( ) is defined as the percentage of output 

tokens that are consistent with the gold standard 

test data, and recall ( ) is the percentage of to-

kens in the gold standard test data that are recog-

nized in the output. The balanced F-score ( ) is 

defined as  
     

   
. 

4.2 Experimental Results 

We compare the performance between a baseline 

model and our proposed approach. The results of 

the word segmentation experiment and the joint 

experiment of segmentation and POS tagging are 

shown in Table 5(a) and Table 5(b), respectively. 

Each row in these tables shows the performance 

of the corresponding system. “CharPos” stands 

for our proposed model which has been de-

scribed in section 3. “Baseline” stands for the 

same model except it only enables features from 

the baseline templates. 

The results show that, while the differences 

between the baseline model and the proposed 

model in word segmentation accuracies are small, 

the proposed model achieves significant im-

provement in the experiment of joint segmentati- 

(a) Word Segmentation Results 

System P R F 

Baseline 97.48 98.44 97.96 

CharPOS 97.55 98.51 98.03 

 

(b) Joint Segmentation and POS Tagging Results 

System P R F 

Baseline 93.01 93.95 93.48 

CharPOS 93.42 94.18 93.80 

Table 5. Experimental results on CTB5. 

 
System Segmentation Joint 

Baseline 97.96 93.48 

CharPOS 98.03 93.80 

Jiang2008a 97.85 93.41 

Jiang2008b 97.74 93.37 

Kruengkrai2009 97.87 93.67 

Zhang2010 97.78 93.67 

Sun2011 98.17 94.02 

Table 6. Comparison with previous studies on 

CTB5. 

on and POS tagging
2
. This suggests that our pro-

posed method is particularly effective in predict-

ing the word-level POS, which is consistent with 

our observations mentioned in section 1. 

In Table 6 we compare our approach with 

morphological analyzers in previous studies. The 

accuracies of the systems in previous work are 

directly taken from the original paper. As the 

results show, despite the fact that the perfor-

mance of our baseline model is relatively weak 

in the joint segmentation and POS tagging task, 

our proposed model achieves the second-best 

performance in both segmentation and joint tasks. 

5 Conclusion 

We believe that by treating characters as the true 

atoms of Chinese morphological and syntactic 

analysis, it is possible to address the out-of-

vocabulary problem that word-based methods 

have been long suffered from. In our error analy-

sis, we believe that by exploring the character-

level POS and the internal word structure (Zhang 

et al., 2013) at the same time, it is possible to 

further improve the performance of morphologi-

cal analysis and parsing. We will address these 

issues in our future work. 

  

                                                 
2        in McNemar’s test. 
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Abstract

We discuss part-of-speech (POS) tagging
in presence of large, fine-grained la-
bel sets using conditional random fields
(CRFs). We propose improving tagging
accuracy by utilizing dependencies within
sub-components of the fine-grained labels.
These sub-label dependencies are incor-
porated into the CRF model via a (rela-
tively) straightforward feature extraction
scheme. Experiments on five languages
show that the approach can yield signifi-
cant improvement in tagging accuracy in
case the labels have sufficiently rich inner
structure.

1 Introduction

We discuss part-of-speech (POS) tagging using
the well-known conditional random field (CRF)
model introduced originally by Lafferty et al.
(2001). Our focus is on scenarios, in which the
POS labels have a rich inner structure. For exam-
ple, consider

PRON+1SG V+NON3SG+PRES N+SG
I like ham ,

where the compound labels PRON+1SG,
V+NON3SG+PRES, and N+SG stand for pro-
noun first person singular, verb non-third singular
present tense, and noun singular, respectively.
Fine-grained labels occur frequently in mor-
phologically complex languages (Erjavec, 2010;
Haverinen et al., 2013).

We propose improving tagging accuracy by uti-
lizing dependencies within the sub-labels (PRON,
1SG, V, NON3SG, N, and SG in the above ex-
ample) of the compound labels. From a technical
perspective, we accomplish this by making use of
the fundamental ability of the CRFs to incorporate
arbitrarily defined feature functions. The newly-
defined features are expected to alleviate data spar-

sity problems caused by the fine-grained labels.
Despite the (relative) simplicity of the approach,
we are unaware of previous work exploiting the
sub-labels to the extent presented here.

We present experiments on five languages (En-
glish, Finnish, Czech, Estonian, and Romanian)
with varying POS annotation granularity. By uti-
lizing the sub-labels, we gain significant improve-
ment in model accuracy given a sufficiently fine-
grained label set. Moreover, our results indi-
cate that exploiting the sub-labels can yield larger
improvements in tagging compared to increasing
model order.

The rest of the paper is organized as follows.
Section 2 describes the methodology. Experimen-
tal setup and results are presented in Section 3.
Section 4 discusses related work. Lastly, we pro-
vide conclusions on the work in Section 5.

2 Methods

2.1 Conditional Random Fields

The (unnormalized) CRF model (Lafferty et al.,
2001) for a sentence x = (x1, . . . , x|x|) and a POS
sequence y = (y1, . . . , y|x|) is defined as

p (y |x;w) ∝
|x|∏
i=n

exp
(
w·φ(yi−n, . . . , yi, x, i)

)
,

(1)
where n denotes the model order,w the model pa-
rameter vector, and φ the feature extraction func-
tion. We denote the tag set as Y , that is, yi ∈ Y
for i ∈ 1 . . . |x|.

2.2 Baseline Feature Set

We first describe our baseline feature set
{φj(yi−1, yi, x, i)}|φ|j=1 by defining emission and
transition features. The emission feature set as-
sociates properties of the sentence position i with
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the corresponding label as

{χj(x, i)1(yi = y′i) | j ∈ 1 . . . |X | , ∀y′i ∈ Y} ,
(2)

where the function 1(q) returns one if and only if
the proposition q is true and zero otherwise, that is

1(yi = y′i) =
{

1 if yi = y′i
0 otherwise , (3)

and X = {χj(x, i)}|X |j=1 is the set of functions
characterizing the word position i. Following the
classic work of Ratnaparkhi (1996), our X com-
prises simple binary functions:

1. Bias (always active irrespective of input).

2. Word forms xi−2, . . . , xi+2.

3. Prefixes and suffixes of the word form xi up
to length δsuf = 4.

4. If the word form xi contains (one or more)
capital letter, hyphen, dash, or digit.

Binary functions have a return value of either zero
(inactive) or one (active). Meanwhile, the transi-
tion features

{1(yi−k = y′i−k) . . .1(yi = y′i) |
y′i−k, . . . , y

′
i ∈ Y ,∀k ∈ 1 . . . n} (4)

capture dependencies between adjacent labels ir-
respective of the input x.

2.2.1 Expanded Feature Set Leveraging
Sub-Label Dependencies

The baseline feature set described above can yield
a high tagging accuracy given a conveniently sim-
ple label set, exemplified by the tagging results
of Collins (2002) on the Penn Treebank (Mar-
cus et al., 1993). (Note that conditional random
fields correspond to discriminatively trained hid-
den Markov models and Collins (2002) employs
the latter terminology.) However, it does to some
extent overlook some beneficial dependency infor-
mation in case the labels have a rich sub-structure.
In what follows, we describe expanded feature sets
which explicitly model the sub-label dependen-
cies.

We begin by defining a function P(yi) which
partitions any label yi into its sub-label compo-
nents and returns them in an unordered set. For
example, we could define P(PRON+1+SG) =

{PRON, 1, SG}. (Label partitions employed in
the experiments are described in Section 3.2.) We
denote the set of all sub-label components as S.

Subsequently, instead of defining only (2), we
additionally associate the feature functionsX with
all sub-labels s ∈ S by defining

{χj(x, i)1(s ∈ P(yi)) | ∀j ∈ 1 . . . |X | ,∀s ∈ S} ,
(5)

where 1(s ∈ P(yi)) returns one in case s is in
P(yi) and zero otherwise. Second, we exploit sub-
label transitions using features

{1(si−k ∈ P(yi−k)) . . .1(si ∈ P(yi)) |
∀si−k, . . . , si ∈ S ,∀k ∈ 1 . . .m} . (6)

Note that we define the sub-label transitions up
to order m, 1 ≤ m ≤ n, that is, an nth-order
CRF model is not obliged to utilize sub-label tran-
sitions all the way up to order n. This is be-
cause employing high-order sub-label transitions
may potentially cause overfitting to training data
due to substantially increased number of features
(equivalent to the number of model parameters,
|w| = |φ|). For example, in a second-order
(n = 2) model, it might be beneficial to em-
ploy the sub-label emission feature set (5) and
first-order sub-label transitions while discarding
second-order sub-label transitions. (See the exper-
imental results presented in Section 3.)

In the remainder of this paper, we use the fol-
lowing notations.

1. A standard CRF model incorporating (2) and
(4) is denoted as CRF(n,-).

2. A CRF model incorporating (2), (4), and (5)
is denoted as CRF(n,0).

3. A CRF model incorporating (2), (4), (5), and
(6) is denoted as CRF(n,m).

2.3 On Linguistic Intuition
This section aims to provide some intuition on the
types of linguistic phenomena that can be captured
by the expanded feature set. To this end, we con-
sider an example on the plural number in Finnish.

First, consider the plural nominative word form
kissat (cats) where the plural number is denoted
by the 1-suffix -t. Then, by employing the features
(2), the suffix -t is associated solely with the com-
pound label NOMINATIVE+PLURAL. However,
by incorporating the expanded feature set (5), -t
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will also be associated to the sub-label PLURAL.
This can be useful because, in Finnish, also adjec-
tives and numerals are inflected according to num-
ber and denote the plural number with the suffix
-t (Hakulinen et al., 2004, §79). Therefore, one
can exploit -t to predict the plural number also in
words such as mustat (plural of black) with a com-
pound analysis ADJECTIVE+PLURAL.

Second, consider the number agreement (con-
gruence). For example, in the sentence fragment
mustat kissat juoksevat (black cats are running),
the words mustat and kissat share the plural num-
ber. In other words, the analyses of both mustat
and kissat are required to contain the sub-label
PLURAL. This short-span dependency between
sub-labels will be captured by a first-order sub-
label transition feature included in (6).

Lastly, we note that the feature expansion sets
(5) and (6) will, naturally, capture any short-span
dependencies within the sub-labels irrespective if
the dependencies have a clear linguistic interpre-
tation or not.

3 Experiments

3.1 Data

For a quick overview of the data sets, see Table 1.

Penn Treebank. The English Penn Treebank
(Marcus et al., 1993) is divided into 25 sections
of newswire text extracted from the Wall Street
Journal. We split the data into training, develop-
ment, and test sets using the sections 0-18, 19-21,
and 22-24, according to the standardly applied di-
vision introduced by Collins (2002).

Turku Depedency Treebank. The Finnish
Turku Depedendency Treebank (Haverinen et al.,
2013) contains text from 10 different domains.
The treebank does not have default partition to
training and test sets. Therefore, from each 10
consecutive sentences, we assign the 9th and 10th
to the development set and the test set, respec-
tively. The remaining sentences are assigned to
the training set.

Multext-East. The third data we consider is the
multilingual Multext-East (Erjavec, 2010) corpus,
from which we utilize the Czech, Estonian and Ro-
manian sections. The corpus corresponds to trans-
lations of the novel 1984 by George Orwell. We
apply the same data splits as for Turku Depen-
dency Treebank.

lang. train. dev. test tags train. tags
Eng 38,219 5,527 5,462 45 45
Rom 5,216 652 652 405 391
Est 5,183 648 647 413 408
Cze 5,402 675 675 955 908
Fin 5,043 630 630 2,355 2,141

Table 1: Overview on data. The training (train.),
development (dev.) and test set sizes are given in
sentences. The columns titled tags and train. tags
correspond to total number of tags in the data set
and number of tags in the training set, respectively.

3.2 Label Partitions

This section describes the employed compound la-
bel splits. The label splits for all data sets are sub-
mitted as data file attachments. All the splits are
performed a priori to model learning, that is, we
do not try to optimize them on the development
sets.

The POS labels in the Penn Treebank are split
in a way which captures relevant inflectional cat-
egories, such as tense and number. Consider, for
example, the split for the present tense third sin-
gular verb label P(VBZ) = {VB, Z}.

In the Turku Dependency Treebank, each
morphological tag consists of sub-labels mark-
ing word-class, relevant inflectional categories,
and their respective values. Each inflec-
tional category, such as case or tense, com-
bined with its value, such as nominative or
present, constitutes one sub-label. Consider,
for example, the split for the singular, adessive
noun P(N+CASE_ADE+NUM_SG) = {POS_N,
CASE_ADE, NUM_SG}.

The labeling scheme employed in the Multext-
East data set represents a considerably different
annotation approach compared to the Penn and
Turku Treebanks. Each morphological analysis is
a sequence of feature markers, for example Pw3–
r. The first feature marker (P) denotes word class
and the rest (w, 3, and r) encode values of inflec-
tional categories relevant for that word class. A
feature marker may correspond to several differ-
ent values depending on word class and its posi-
tion in the analysis. Therefore it becomes rather
difficult to split the labels into similar pairs of in-
flectional category and value as we are able to do
for the Turku Dependency Treebank. Since the in-
terpretation of a feature marker depends on its po-
sition in the analysis and the word class, the mark-
ers have to be numbered and appended with the

261



word class marker. For example, consider the split
P(Pw3–r) = {0 : P, 1 : Pw, 2 : P3, 5 : Pr}.
3.3 CRF Model Specification
We perform experiments using first-order and
second-order CRFs with zeroth-order and first-
order sub-label features. Using the notation
introduced in Section 2, the employed mod-
els are CRF(1,-), CRF(1,1), CRF(2,-), CRF(2,0),
and CRF(2,1). We do not report results us-
ing CRF(2,2) since, based on preliminary exper-
iments, this model overfits on all languages.

The CRF model parameters are estimated using
the averaged perceptron algorithm (Collins, 2002).
The model parameters are initialized with a zero
vector. We evaluate the latest averaged parameters
on the held-out development set after each pass
over the training data and terminate training if no
improvement in accuracy is obtained during three
last passes. The best-performing parameters are
then applied on the test instances.

We accelerate the perceptron learning using
beam search (Zhang and Clark, 2011). The beam
width, b, is optimized separately for each lan-
guage on the development sets by considering b =
1, 2, 4, 8, 16, 32, 64, 128 until the model accuracy
does not improve by at least 0.01 (absolute).

Development and test instances are decoded us-
ing Viterbi search in combination with the tag dic-
tionary approach of Ratnaparkhi (1996). In this
approach, candidate tags for known word forms
are limited to those observed in the training data.
Meanwhile, word forms that were unseen during
training consider the full label set.

3.4 Software and Hardware
The experiments are run on a standard desktop
computer (Intel Xeon E5450 with 3.00 GHz and
64 GB of memory). The methods discussed in
Section 2 are implemented in C++.

3.5 Results
The obtained tagging accuracies and training
times are presented in Table 2. The times in-
clude running the averaged perceptron algorithm
and evaluation of the development sets. The col-
umn labeled it. corresponds to the number of
passes over the training data made by the percep-
tron algorithm before termination. We summarize
the results as follows.

First, compared to standard feature extraction
approach, employing the sub-label transition fea-

tures resulted in improved accuracy on all lan-
guages apart from English. The differences were
statistically significant on Czech, Estonian, and
Finnish. (We establish statistical significance
(with confidence level 0.95) using the standard 1-
sided Wilcoxon signed-rank test performed on 10
randomly divided, non-overlapping subsets of the
complete test sets.) This results supports the in-
tuition that the sub-label features should be most
useful in presence of large, fine-grained label sets,
in which case the learning is most affected by data
sparsity.

Second, on all languages apart from English,
employing a first-order model with sub-label fea-
tures yielded higher accuracy compared to a
second-order model with standard features. The
differences were again statistically significant on
Czech, Estonian, and Finnish. This result suggests
that, compared to increasing model order, exploit-
ing the sub-label dependencies can be a preferable
approach to improve the tagging accuracy.

Third, applying the expanded feature set in-
evitably causes some increase in the computa-
tional cost of model estimation. However, as
shown by the running times, this increase is not
prohibitive.

4 Related Work

In this section, we compare the approach pre-
sented in Section 2 to two prior systems which at-
tempt to utilize sub-label dependencies in a similar
manner.

Smith et al. (2005) use a CRF-based system
for tagging Czech, in which they utilize expanded
emission features similar to our (5). However, they
do not utilize the full expanded transition features
(6). More specifically, instead of utilizing a sin-
gle chain as in our approach, Smith et al. employ
five parallel structured chains. One of the chains
models the sequence of word-class labels such as
noun and adjective. The other four chains model
gender, number, case, and lemma sequences, re-
spectively. Therefore, in contrast to our approach,
their system does not capture cross-dependencies
between inflectional categories, such as the de-
pendence between the word-class and case of ad-
jacent words. Unsurprisingly, Smith et al. fail
to achieve improvement over a generative HMM-
based POS tagger of Hajič (2001). Meanwhile,
our system outperforms the generative trigram tag-
ger HunPos (Halácsy et al., 2007) which is an im-
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model it. time (min) acc. OOV.

English

CRF(1, -) 8 9 97.04 88.65
CRF(1, 0) 6 17 97.02 88.44
CRF(1, 1) 8 22 97.02 88.82

CRF(2, -) 9 15 97.18 88.82
CRF(2, 0) 11 36 97.17 89.23
CRF(2, 1) 8 27 97.15 89.04

Romanian

CRF(1, -) 14 29 97.03 85.01
CRF(1, 0) 13 68 96.96 84.59
CRF(1, 1) 16 146 97.24 85.94

CRF(2, -) 7 19 97.08 85.21
CRF(2, 0) 18 99 97.02 85.42
CRF(2, 1) 12 118 97.29 86.25
Estonian

CRF(1, -) 15 28 93.39 78.66
CRF(1, 0) 17 66 93.81 80.44
CRF(1, 1) 13 129 93.77 79.37

CRF(2, -) 15 30 93.48 77.13
CRF(2, 0) 13 53 93.78 79.60
CRF(2, 1) 16 105 94.01 79.53
Czech

CRF(1, -) 6 28 89.28 70.90
CRF(1, 0) 10 112 89.94 74.44
CRF(1, 1) 10 365 90.78 76.83

CRF(2, -) 19 91 89.81 72.44
CRF(2, 0) 13 203 90.35 76.37
CRF(2, 1) 24 936 91.00 77.75

Finnish

CRF(1, -) 10 80 87.37 59.29
CRF(1, 0) 13 249 88.58 63.46
CRF(1, 1) 12 474 88.41 62.63

CRF(2, -) 11 106 86.74 56.96
CRF(2, 0) 13 272 88.52 63.46
CRF(2, 1) 12 331 88.68 63.62

Table 2: Results.

proved open-source implementation of the well-
known TnT tagger of Brants (2000). The obtained
HunPos results are presented in Table 3.

Eng Rom Est Cze Fin
HunPos 96.58 96.96 92.76 89.57 85.77

Table 3: Results using a generative HMM-based
HunPos tagger of Halacsy et al. (2007).

Ceauşu (2006) uses a maximum entropy
Markov model (MEMM) based system for tag-
ging Romanian which utilizes transitional behav-
ior between sub-labels similarly to our feature set
(6). However, in addition to ignoring the most in-

formative emission-type features (5), Ceauşu em-
beds the MEMMs into the tiered tagging frame-
work of Tufis (1999). In tiered tagging, the full
morphological analyses are mapped into a coarser
tag set and a tagger is trained for this reduced tag
set. Subsequent to decoding, the coarser tags are
mapped into the original fine-grained morpholog-
ical analyses. There are several problems associ-
ated with this tiered tagging approach. First, the
success of the approach is highly dependent on a
well designed coarse label set. Consequently, it
requires intimate knowledge of the tag set and lan-
guage. Meanwhile, our model can be set up with
relatively little prior knowledge of the language
or the tagging scheme (see Section 3.2). More-
over, a conversion to a coarser label set is neces-
sarily lossy (at least for OOV words) and poten-
tially results in reduced accuracy since recovering
the original fine-grained tags from the coarse tags
may induce errors. Indeed, the accuracy 96.56, re-
ported by Ceauşu on the Romanian section of the
Multext-East data set, is substantially lower than
the accuracy 97.29 we obtain. These accuracies
were obtained using identical sized training and
test sets (although direct comparison is impossible
because Ceauşu uses a non-documented random
split).

5 Conclusions

We studied improving the accuracy of CRF-based
POS tagging by exploiting sub-label dependency
structure. The dependencies were included in the
CRF model using a relatively straightforward fea-
ture expansion scheme. Experiments on five lan-
guages showed that the approach can yield signif-
icant improvement in tagging accuracy given suf-
ficiently fine-grained label sets.

In future work, we aim to perform a more
fine-grained error analysis to gain a better under-
standing where the improvement in accuracy takes
place. One could also attempt to optimize the
compound label splits to maximize prediction ac-
curacy instead of applying a priori partitions.

Acknowledgements

This work was financially supported by Langnet
(Finnish doctoral programme in language studies)
and the Academy of Finland under the grant no
251170 (Finnish Centre of Excellence Program
(2012-2017)). We would like to thank the anony-
mous reviewers for their useful comments.

263



References
Thorsten Brants. 2000. Tnt: A statistical part-of-

speech tagger. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing,
pages 224–231.

A. Ceausu. 2006. Maximum entropy tiered tagging.
In The 11th ESSLI Student session, pages 173–179.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the 2002 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2002), vol-
ume 10, pages 1–8.

Tomaz̆ Erjavec. 2010. Multext-east version 4: Multi-
lingual morphosyntactic specifications, lexicons and
corpora. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC’10).
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Abstract

We present a new approach to inducing the
syntactic categories of words, combining
their distributional and morphological prop-
erties in a joint nonparametric Bayesian
model based on the distance-dependent
Chinese Restaurant Process. The prior
distribution over word clusterings uses a
log-linear model of morphological similar-
ity; the likelihood function is the probabil-
ity of generating vector word embeddings.
The weights of the morphology model
are learned jointly while inducing part-of-
speech clusters, encouraging them to co-
here with the distributional features. The
resulting algorithm outperforms competi-
tive alternatives on English POS induction.

1 Introduction

The morphosyntactic function of words is reflected
in two ways: their distributional properties, and
their morphological structure. Each information
source has its own advantages and disadvantages.
Distributional similarity varies smoothly with syn-
tactic function, so that words with similar syntactic
functions should have similar distributional proper-
ties. In contrast, there can be multiple paradigms
for a single morphological inflection (such as past
tense in English). But accurate computation of
distributional similarity requires large amounts of
data, which may not be available for rare words;
morphological rules can be applied to any word
regardless of how often it appears.

These observations suggest that a general ap-
proach to the induction of syntactic categories
should leverage both distributional and morpho-
logical features (Clark, 2003; Christodoulopoulos

et al., 2010). But these features are difficult to
combine because of their disparate representations.
Distributional information is typically represented
in numerical vectors, and recent work has demon-
strated the utility of continuous vector represen-
tations, or “embeddings” (Mikolov et al., 2013;
Luong et al., 2013; Kim and de Marneffe, 2013;
Turian et al., 2010). In contrast, morphology is
often represented in terms of sparse, discrete fea-
tures (such as morphemes), or via pairwise mea-
sures such as string edit distance. Moreover, the
mapping between a surface form and morphology
is complex and nonlinear, so that simple metrics
such as edit distance will only weakly approximate
morphological similarity.

In this paper we present a new approach for in-
ducing part-of-speech (POS) classes, combining
morphological and distributional information in a
non-parametric Bayesian generative model based
on the distance-dependent Chinese restaurant pro-
cess (ddCRP; Blei and Frazier, 2011). In the dd-
CRP, each data point (word type) selects another
point to “follow”; this chain of following links
corresponds to a partition of the data points into
clusters. The probability of word w1 following w2

depends on two factors: 1) the distributional simi-
larity between all words in the proposed partition
containing w1 and w2, which is encoded using a
Gaussian likelihood function over the word embed-
dings; and 2) the morphological similarity between
w1 and w2, which acts as a prior distribution on the
induced clustering. We use a log-linear model to
capture suffix similarities between words, and learn
the feature weights by iterating between sampling
and weight learning.

We apply our model to the English section of
the the Multext-East corpus (Erjavec, 2004) in or-
der to evaluate both against the coarse-grained and
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fine-grained tags, where the fine-grained tags en-
code detailed morphological classes. We find that
our model effectively combines morphological fea-
tures with distributional similarity, outperforming
comparable alternative approaches.

2 Related work

Unsupervised POS tagging has a long history in
NLP. This paper focuses on the POS induction
problem (i.e., no tag dictionary is available), and
here we limit our discussion to very recent sys-
tems. A review and comparison of older systems
is provided by Christodoulopoulos et al. (2010),
who found that imposing a one-tag-per-word-type
constraint to reduce model flexibility tended to
improve system performance; like other recent
systems, we impose that constraint here. Recent
work also shows that the combination of morpho-
logical and distributional information yields the
best results, especially cross-linguistically (Clark,
2003; Berg-Kirkpatrick et al., 2010). Since then,
most systems have incorporated morphology in
some way, whether as an initial step to obtain pro-
totypes for clusters (Abend et al., 2010), or as
features in a generative model (Lee et al., 2010;
Christodoulopoulos et al., 2011; Sirts and Alumäe,
2012), or a representation-learning algorithm (Yat-
baz et al., 2012). Several of these systems use a
small fixed set of orthographic and/or suffix fea-
tures, sometimes obtained from an unsupervised
morphological segmentation system (Abend et al.,
2010; Lee et al., 2010; Christodoulopoulos et al.,
2011; Yatbaz et al., 2012). Blunsom and Cohn’s
(2011) model learns an n-gram character model
over the words in each cluster; we learn a log-
linear model, which can incorporate arbitrary fea-
tures. Berg-Kirkpatrick et al. (2010) also include
a log-linear model of morphology in POS induc-
tion, but they use morphology in the likelihood
term of a parametric sequence model, thereby en-
couraging all elements that share a tag to have the
same morphological features. In contrast, we use
pairwise morphological similarity as a prior in a
non-parametric clustering model. This means that
the membership of a word in a cluster requires only
morphological similarity to some other element in
the cluster, not to the cluster centroid; which may
be more appropriate for languages with multiple
morphological paradigms. Another difference is
that our non-parametric formulation makes it un-
necessary to know the number of tags in advance.

3 Distance-dependent CRP

The ddCRP (Blei and Frazier, 2011) is an extension
of the CRP; like the CRP, it defines a distribution
over partitions (“table assignments”) of data points
(“customers”). Whereas in the regular CRP each
customer chooses a table with probability propor-
tional to the number of customers already sitting
there, in the ddCRP each customer chooses another
customer to follow, and sits at the same table with
that customer. By identifying the connected compo-
nents in this graph, the ddCRP equivalently defines
a prior over clusterings.

If ci is the index of the customer followed by
customer i, then the ddCRP prior can be written

P (ci = j) ∝
{
f(dij) if i 6= j

α if i = j,
(1)

where dij is the distance between customers i and j
and f is a decay function. A ddCRP is sequential if
customers can only follow previous customers, i.e.,
dij =∞ when i > j and f(∞) = 0. In this case,
if dij = 1 for all i < j then the ddCRP reduces to
the CRP.

Separating the distance and decay function
makes sense for “natural” distances (e.g., the num-
ber of words between word i and j in a document,
or the time between two events), but they can also
be collapsed into a single similarity function. We
wish to assign higher similarities to pairs of words
that share meaningful suffixes. Because we do not
know which suffixes are meaningful a priori, we
use a maximum entropy model whose features in-
clude all suffixes up to length three that are shared
by at least one pair of words. Our prior is then:

P (ci = j|w, α) ∝
{
ew

Tg(i,j) if i 6= j

α if i = j,
(2)

where gs(i, j) is 1 if suffix s is shared by ith and
jth words, and 0 otherwise.

We can create an infinite mixture model by com-
bining the ddCRP prior with a likelihood function
defining the probability of the data given the cluster
assignments. Since we are using continuous-valued
vectors (word embeddings) to represent the distri-
butional characteristics of words, we use a multi-
variate Gaussian likelihood. We will marginalize
over the mean µ and covariance Σ of each clus-
ter, which in turn are drawn from Gaussian and
inverse-Wishart (IW) priors respectively:

Σ ∼ IW (ν0,Λ0) µ ∼ N (µ0,
Σ/κ0) (3)
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The full model is then:

P (X,c,µ,Σ|Θ,w, α) (4)

=
K∏
k=1

P (Σk|Θ)p(µk|Σk,Θ)

×
n∏
i=1

(P (ci|w, α)P (xi|µzi ,Σzi)),

where Θ are the hyperparameters for (µ,Σ) and zi
is the (implicit) cluster assignment of the ith word
xi. With a CRP prior, this model would be an infi-
nite Gaussian mixture model (IGMM; Rasmussen,
2000), and we will use the IGMM as a baseline.

4 Inference

The Gibbs sampler for the ddCRP integrates over
the Gaussian parameters, sampling only follower
variables. At each step, the follower link ci for a
single customer i is sampled, which can implicitly
shift the entire block of n customers fol(i) who fol-
low i into a new cluster. Since we marginalize over
the cluster parameters, computing P (ci = j) re-
quires computing the likelihood P (fol(i),Xj |Θ),
where Xj are the k customers already clustered
with j. However, if we do not merge fol(i)
with Xj , then we have P (Xj |Θ) in the overall
joint probability. Therefore, we can decompose
P (fol(i),Xj |Θ) = P (fol(i)|Xj ,Θ)P (Xj |Θ) and
need only compute the change in likelihood due to
merging in fol(i):1:

P (fol(i)|Xj ,Θ) = π−nd/2
κ
d/2
k |Λk|νk/2

κ
d/2
n+k|Λn+k|νn+k/2

×
d∏
i=1

Γ
(
νn+k+1−i

2

)
Γ
(
νk+1−i

2

) , (5)

where the hyperparameters are updated as κn =
κ0 + n, νn = ν0 + n, and

µn =
κ0µ0 + x̄

κ0 + n
(6)

Λn = Λ0 +Q+ κ0µ0µ0
T − κnµnµTn , (7)

where Q =
∑n

i=1 xixTi .
Combining this likelihood term with the prior,

the probability of customer i following j is

P (ci = j|X,Θ,w, α)
∝ P (fol(i)|Xj ,Θ)P (ci = j|w, α). (8)

1http://www.stats.ox.ac.uk/˜teh/re-
search/notes/GaussianInverseWishart.pdf

Our non-sequential ddCRP introduces cycles
into the follower structure, which are handled in the
sampler as described by Socher et al. (2011). Also,
the block of customers being moved around can po-
tentially be very large, which makes it easy for the
likelihood term to swamp the prior. In practice we
found that introducing an additional parameter a
(used to exponentiate the prior) improved results—
although we report results without this exponent as
well. This technique was also used by Titov and
Klementiev (2012) and Elsner et al. (2012).

Inference also includes optimizing the feature
weights for the log-linear model in the ddCRP
prior (Titov and Klementiev, 2012). We interleave
L-BFGS optimization within sampling, as in Monte
Carlo Expectation-Maximization (Wei and Tanner,
1990). We do not apply the exponentiation parame-
ter a when training the weights because this proce-
dure affects the follower structure only, and we do
not have to worry about the magnitude of the like-
lihood. Before the first iteration we initialize the
follower structure: for each word, we choose ran-
domly a word to follow from amongst those with
the longest shared suffix of up to 3 characters. The
number of clusters starts around 750, but decreases
substantially after the first sampling iteration.

5 Experiments

Data For our experiments we used the English
word embeddings from the Polyglot project (Al-
Rfou’ et al., 2013)2, which provides embeddings
trained on Wikipedia texts for 100,000 of the most
frequent words in many languages.

We evaluate on the English part of the Multext-
East (MTE) corpus (Erjavec, 2004), which provides
both coarse-grained and fine-grained POS labels
for the text of Orwell’s “1984”. Coarse labels con-
sist of 11 main word classes, while the fine-grained
tags (104 for English) are sequences of detailed
morphological attributes. Some of these attributes
are not well-attested in English (e.g. gender) and
some are mostly distinguishable via semantic anal-
ysis (e.g. 1st and 2nd person verbs). Many tags are
assigned only to one or a few words. Scores for the
fine-grained tags will be lower for these reasons,
but we argue below that they are still informative.

Since Wikipedia and MTE are from different
domains their lexicons do not fully overlap; we

2https://sites.google.com/site/rmyeid/
projects/polyglot
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Wikipedia tokens 1843M
Multext-East tokens 118K
Multext-East types 9193
Multext-East & Wiki types 7540

Table 1: Statistics for the English Polyglot word embeddings
and English part of MTE: number of Wikipedia tokens used
to train the embeddings, number of tokens/types in MTE, and
number of types shared by both datasets.

take the intersection of these two sets for training
and evaluation. Table 1 shows corpus statistics.

Evaluation With a few exceptions (Biemann,
2006; Van Gael et al., 2009), POS induction sys-
tems normally require the user to specify the num-
ber of desired clusters, and the systems are evalu-
ated with that number set to the number of tags in
the gold standard. For corpora such as MTE with
both fine-grained and coarse-grained tages, pre-
vious evaluations have scored against the coarse-
grained tags. Though coarse-grained tags have
their place (Petrov et al., 2012), in many cases
the distributional and morphological distinctions
between words are more closely aligned with the
fine-grained tagsets, which typically distinguish
between verb tenses, noun number and gender,
and adjectival scale (comparative, superlative, etc.),
so we feel that the evaluation against fine-grained
tagset is more relevant here. For better comparison
with previous work, we also evaluate against the
coarse-grained tags; however, these numbers are
not strictly comparable to other scores reported on
MTE because we are only able to train and evalu-
ate on the subset of words that also have Polyglot
embeddings. To provide some measure of the dif-
ficulty of the task, we report baseline scores using
K-means clustering, which is relatively strong base-
line in this task (Christodoulopoulos et al., 2011).

There are several measures commonly used for
unsupervised POS induction. We report greedy
one-to-one mapping accuracy (1-1) (Haghighi and
Klein, 2006) and the information-theoretic score V-
measure (V-m), which also varies from 0 to 100%
(Rosenberg and Hirschberg, 2007). In previous
work it has been common to also report many-to-
one (m-1) mapping but this measure is particularly
sensitive to the number of induced clusters (more
clusters yield higher scores), which is variable for
our models. V-m can be somewhat sensitive to the
number of clusters (Reichart and Rappoport, 2009)
but much less so than m-1 (Christodoulopoulos

et al., 2010). With different number of induced
and gold standard clusters the 1-1 measure suffers
because some induced clusters cannot be mapped
to gold clusters or vice versa. However, almost half
the gold standard clusters in MTE contain just a
few words and we do not expect our model to be
able to learn them anyway, so the 1-1 measure is
still useful for telling us how well the model learns
the bigger and more distinguishable classes.

In unsupervised POS induction it is standard to
report accuracy on tokens even when the model it-
self works on types. Here we report also type-based
measures because these can reveal differences in
model behavior even when token-based measures
are similar.

Experimental setup For baselines we use K-
means and the IGMM, which both only learn from
the word embeddings. The CRP prior in the IGMM
has one hyperparameter (the concentration param-
eter α); we report results for α = 5 and 20. Both
the IGMM and ddCRP have four hyperparameters
controlling the prior over the Gaussian cluster pa-
rameters: Λ0, µ0, ν0 and κ0. We set the prior scale
matrix Λ0 by using the average covariance from
a K-means run with K = 200. When setting the
average covariance as the expected value of the IW
distribution the suitable scale matrix can be com-
puted as Λ0 = E [X] (ν0 − d− 1), where ν0 is the
prior degrees of freedom (which we set to d + 10)
and d is the data dimensionality (64 for the Poly-
glot embeddings). We set the prior mean µ0 equal
to the sample mean of the data and κ0 to 0.01.

We experiment with three different priors for the
ddCRP model. All our ddCRP models are non-
sequential (Socher et al., 2011), allowing cycles
to be formed. The simplest model, ddCRP uni-
form, uses a uniform prior that sets the distance
between any two words equal to one.3 The second
model, ddCRP learned, uses the log-linear prior
with weights learned between each two Gibbs iter-
ations as explained in section 4. The final model,
ddCRP exp, adds the prior exponentiation. The α
parameter for the ddCRP is set to 1 in all experi-
ments. For ddCRP exp, we report results with the
exponent a set to 5.

Results and discussion Table 2 presents all re-
sults. Each number is an average of 5 experiments

3In the sequential case this model would be equivalent to
the IGMM (Blei and Frazier, 2011). Due to the nonsequen-
tiality this equivalence does not hold, but we do expect to see
similar results to the IGMM.
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Fine types Fine tokens Coarse tokens

Model K Model K-means Model K-means Model K-means

K-means 104 or 11 16.1 / 47.3 - 39.2 / 62.0 - 44.4 / 45.5 -
IGMM, α = 5 55.6 41.0 / 45.9 23.1 / 49.5 48.0 / 64.8 37.2 / 61.0 48.3 / 58.3 40.8 / 55.0
IGMM, α = 20 121.2 35.0 / 47.1 14.7 / 46.9 50.6 / 67.8 44.7 / 65.5 48.7 / 60.0 48.3 / 57.9
ddCRP uniform 80.4 50.5 / 52.9 18.6 / 48.2 52.4 / 68.7 35.1 / 60.3 52.1 / 62.2 40.3 / 54.2
ddCRP learned 89.6 50.1 / 55.1 17.6 / 48.0 51.1 / 69.7 39.0 / 63.2 48.9 / 62.0 41.1 / 55.1
ddCRP exp, a = 5 47.2 64.0 / 60.3 25.0 / 50.3 55.1 / 66.4 33.0 / 59.1 47.8 / 55.1 36.9 / 53.1

Table 2: Results of baseline and ddCRP models evaluated on word types and tokens using fine-grained tags, and on tokens
using coarse-grained tags. For each model we present the number of induced clusters K (or fixed K for K-means) and 1-1 / V-m
scores. The second column under each evaluation setting gives the scores for K-means with K equal to the number of clusters
induced by the model in that row.

with different random initializations. For each eval-
uation setting we provide two sets of scores—first
are the 1-1 and V-m scores for the given model,
second are the comparable scores for K-means run
with the same number of clusters as induced by the
non-parametric model.

These results show that all non-parametric mod-
els perform better than K-means, which is a strong
baseline in this task (Christodoulopoulos et al.,
2011). The poor performace of K-means can be
explained by the fact that it tends to find clusters
of relatively equal size, although the POS clus-
ters are rarely of similar size. The common noun
singular class is by far the largest in English, con-
taining roughly a quarter of the word types. Non-
parametric models are able to produce cluster of
different sizes when the evidence indicates so, and
this is clearly the case here.

From the token-based evaluation it is hard to
say which IGMM hyperparameter value is better
even though the number of clusters induced differs
by a factor of 2. The type-base evaluation, how-
ever, clearly prefers the smaller value with fewer
clusters. Similar effects can be seen when com-
paring IGMM and ddCRP uniform. We expected
these two models perform on the same level, and
their token-based scores are similar, but on the type-
based evaluation the ddCRP is clearly superior. The
difference could be due to the non-sequentiality,
or becuase the samplers are different—IGMM en-
abling resampling only one item at a time, ddCRP
performing blocked sampling.

Further we can see that the ddCRP uniform and
learned perform roughly the same. Although the
prior in those models is different they work mainly
using the the likelihood. The ddCRP with learned
prior does produce nice follower structures within
each cluster but the prior is in general too weak
compared to the likelihood to influence the cluster-
ing decisions. Exponentiating the prior reduces the

number of induced clusters and improves results,
as it can change the cluster assignment for some
words where the likelihood strongly prefers one
cluster but the prior clearly indicates another.

The last column shows the token-based evalua-
tion against the coarse-grained tagset. This is the
most common evaluation framework used previ-
ously in the literature. Although our scores are not
directly comparable with the previous results, our
V-m scores are similar to the best published 60.5
(Christodoulopoulos et al., 2010) and 66.7 (Sirts
and Alumäe, 2012).

In preliminary experiments, we found that di-
rectly applying the best-performing English model
to other languages is not effective. Different lan-
guages may require different parametrizations of
the model. Further study is also needed to verify
that word embeddings effectively capture syntax
across languages, and to determine the amount of
unlabeled text necessary to learn good embeddings.

6 Conclusion

This paper demonstrates that morphology and dis-
tributional features can be combined in a flexi-
ble, joint probabilistic model, using the distance-
dependent Chinese Restaurant Process. A key ad-
vantage of this framework is the ability to include
arbitrary features in the prior distribution. Future
work may exploit this advantage more thoroughly:
for example, by using features that incorporate
prior knowledge of the language’s morphological
structure. Another important goal is the evaluation
of this method on languages beyond English.
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cal Dirichlet process model for joint part-of-speech
and morphology induction. In Proceedings of Hu-
man Language Technologies: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 407–416.

Richard Socher, Andrew L Maas, and Christopher D
Manning. 2011. Spectral chinese restaurant pro-
cesses: Nonparametric clustering based on similar-
ities. In Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics,
pages 698–706.

270



Ivan Titov and Alexandre Klementiev. 2012. A
bayesian approach to unsupervised semantic role in-
duction. In Proceedings of the 13th Conference of
the European Chapter of the Association for Com-
putational Linguistics.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 384–394, Up-
psala, Sweden, July. Association for Computational
Linguistics.

Jurgen Van Gael, Andreas Vlachos, and Zoubin
Ghahramani. 2009. The infinite HMM for unsu-
pervised PoS tagging. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 678–687, Singapore.

Greg CG Wei and Martin A Tanner. 1990. A
monte carlo implementation of the em algorithm
and the poor man’s data augmentation algorithms.
Journal of the American Statistical Association,
85(411):699–704.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic
representations of word context. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 940–951.

271



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 272–277,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Improving the Recognizability of Syntactic Relations Using
Contextualized Examples

Aditi Muralidharan
Computer Science Division

University of California, Berkeley
Berkeley, CA

asm@berkeley.edu

Marti A. Hearst
School of Information

University of California, Berkeley
Berkeley, CA

hearst@berkeley.edu

Abstract

A common task in qualitative data analy-
sis is to characterize the usage of a linguis-
tic entity by issuing queries over syntac-
tic relations between words. Previous in-
terfaces for searching over syntactic struc-
tures require programming-style queries.
User interface research suggests that it is
easier to recognize a pattern than to com-
pose it from scratch; therefore, interfaces
for non-experts should show previews of
syntactic relations. What these previews
should look like is an open question that
we explored with a 400-participant Me-
chanical Turk experiment. We found
that syntactic relations are recognized with
34% higher accuracy when contextual ex-
amples are shown than a baseline of nam-
ing the relations alone. This suggests
that user interfaces should display contex-
tual examples of syntactic relations to help
users choose between different relations.

1 Introduction

The ability to search over grammatical relation-
ships between words is useful in many non-
scientific fields. For example, a social scientist
trying to characterize different perspectives on im-
migration might ask how adjectives applying to
‘immigrant’ have changed in the last 30 years. A
scholar interested in gender might search a col-
lection to find out whether different nouns enter
into possessive relationships with ‘his’ and ‘her’
(Muralidharan and Hearst, 2013). In other fields,
grammatical queries can be used to develop pat-
terns for recognizing entities in text, such as med-
ical terms (Hirschman et al., 2005; MacLean and
Heer, 2013), and products and organizations (Cu-
lotta and McCallum, 2005), and for coding quali-
tative data such as survey results.

Most existing interfaces for syntactic search
(querying over grammatical and syntactic struc-
tures) require structured query syntax. For exam-
ple, the popular Stanford Parser includes Tregex,
which allows for sophisticated regular expression
search over syntactic tree structures (Levy and An-
drew, 2006). The Finite Structure Query tool for
querying syntactically annotated corpora requires
its queries to be stated in first order logic (Kepser,
2003). In the Corpus Query Language (Jakubicek
et al., 2010), a query is a pattern of attribute-
value pairs, where values can include regular ex-
pressions containing parse tree nodes and words.
Several approaches have adopted XML represen-
tations and the associated query language families
of XPATH and SPARQL. For example, LPath aug-
ments XPath with additional tree operators to give
it further expressiveness (Lai and Bird, 2010).

However, most potential users do not have pro-
gramming expertise, and are not likely to be at
ease composing rigidly-structured queries. One
survey found that even though linguists wished
to make very technical linguistic queries, 55% of
them did not know how to program (Soehn et
al., 2008). In another (Gibbs and Owens, 2012),
humanities scholars and social scientists are fre-
quently skeptical of digital tools, because they are
often difficult to use. This reduces the likelihood
that existing structured-query tools for syntactic
search will be usable by non-programmers (Ogden
and Brooks, 1983).

A related approach is the query-by-example
work seen in the past in interfaces to database sys-
tems (Androutsopoulos et al., 1995). For instance,
the Linguist’s Search Engine (Resnik et al., 2005)
uses a query-by-example strategy in which a user
types in an initial sentence in English, and the sys-
tem produces a graphical view of a parse tree as
output, which the user can alter. The user can ei-
ther click on the tree or modify the LISP expres-
sion to generalize the query. SPLICR also contains
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a graphical tree editor tool (Rehm et al., 2009).
According to Shneiderman and Plaisant (2010),
query-by-example has largely fallen out of favor
as a user interface design approach. A downside
of QBE is that the user must manipulate an exam-
ple to arrive at the desired generalization.

More recently auto-suggest, a faster technique
that does not require the manipulation of query by
example, has become a widely-used approach in
search user interfaces with strong support in terms
of its usability (Anick and Kantamneni, 2008;
Ward et al., 2012; Jagadish et al., 2007). A list
of selectable options is shown under the search
bar, filtered to be relevant as the searcher types.
Searchers can recognize and select the option that
matches their information need, without having to
generate the query themselves.

The success of auto-suggest depends upon
showing users options they can recognize. How-
ever, we know of no prior work on how to dis-
play grammatical relations so that they can be
easily recognized. One current presentation (not
used with auto-suggest) is to name the relation
and show blanks where the words that satisfy it
would appear as in X is the subject of Y (Muralid-
haran and Hearst, 2013); we used this as the base-
line presentation in our experiments because it em-
ploys the relation definitions found in the Stan-
ford Dependency Parser’s manual (De Marneffe et
al., 2006). Following the principle of recognition
over recall, we hypothesized that showing contex-
tualized usage examples would make the relations
more recognizable.

Our results confirm that showing examples in
the form of words or phrases significantly im-
proves the accuracy with which grammatical re-
lationships are recognized over the standard base-
line of showing the relation name with blanks. Our
findings also showed that clausal relationships,
which span longer distances in sentences, bene-
fited significantly more from example phrases than
either of the other treatments.

These findings suggest that a query interface in
which a user enters a word of interest and the sys-
tem shows candidate grammatical relations aug-
mented with examples from the text will be more
successful than the baseline of simply naming the
relation and showing gaps where the participating
words appear.

2 Experiment

We gave participants a series of identification
tasks. In each task, they were shown a list of sen-
tences containing a particular syntactic relation-
ship between highlighted words. They were asked
to identify the relationship type from a list of four
options. We presented the options in three differ-
ent ways, and compared the accuracy.

We chose Amazon’s Mechanical Turk (MTurk)
crowdsourcing platform as a source of study par-
ticipants. The wide range of backgrounds pro-
vided by MTurk is desirable because our goal is to
find a representation that is understandable to most
people, not just linguistic experts or programmers.
This platform has become widely used for both
obtaining language judgements and for usability
studies (Kittur et al., 2008; Snow et al., 2008).

Our hypothesis was:

Grammatical relations are identified
more accurately when shown with ex-
amples of contextualizing words or
phrases than without.

To test it, participants were given a series of
identification tasks. In each task, they were shown
a list of 8 sentences, each containing a particu-
lar relationship between highlighted words. They
were asked to identify the relationship from a list
of 4 choices. Additionally, one word was chosen
as a focus word that was present in all the sen-
tences, to make the relationship more recognizable
(“life” in Figure 1).

The choices were displayed in 3 different ways
(Figure 1). The baseline presentation (Figure 1a)
named the linguistic relation and showed a blank
space with a pink background for the varying word
in the relationship, the focus word highlighted in
yellow and underlined, and any necessary addi-
tional words necessary to convey the relationship
(such as “of” for the prepositional relationship
“of”, the third option).

The words presentation showed the baseline de-
sign, and in addition beneath was the word “Exam-
ples:” followed by a list of 4 example words that
could fill in the pink blank slot (Figure 1b). The
phrases presentation again showed the baseline
design, beneath which was the phrase “Patterns
like:” and a list of 4 example phrases in which
fragments of text including both the pink and the
yellow highlighted portions of the relationship ap-
peared (Figure 1c).
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(a) The options as they appear in the baseline condition. (b) The same options as they appear in the words condition.

(c) The same options in the phrases condition, shown as they appeared in an identification task for the relationship
amod(life, ) (where different adjectives modify the noun ‘life’). The correct answer is ‘adjective modifier’ (4th option),
and the remaining 3 options are distractors.

Figure 1: The appearance of the choices shown in the three experiment conditions.

Method: We used a between-subjects design.
The task order and the choice order were not var-
ied: the only variation between participants was
the presentation of the choices. To avoid the pos-
sibility of guessing the right answer by pattern-
matching, we ensured that there was no overlap
between the list of sentences shown, and the ex-
amples shown in the choices as words or phrases.

Tasks: The tasks were generated using the
Stanford Dependency Parser (De Marneffe et al.,
2006) on the text of Moby Dick by Herman
Melville. We tested the 12 most common gram-
matical relationships in the novel in order to cover
the most content and to be able to provide as many
real examples as possible. These relationships fell

into two categories, listed below with examples.
Clausal or long-distance relations:
− Adverbial clause: I walk while talking
− Open clausal complement: I love to sing
− Clausal complement: he saw us leave
− Relative clause modifier: the letter I wrote

reached
Non-clausal relations:
− Subject of verb: he threw the ball
− Object of verb: he threw the ball
− Adjective modifier red ball
− Preposition (in): a hole in a bucket
− Preposition (of): the piece of cheese
− Conjunction (and) mind and body
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− Adverb modifier: we walk slowly
− Noun compound: Mr. Brown

We tested each of these 12 relations with 4 dif-
ferent focus words, 2 in each role. For example,
the Subject of Verb relation was tested in the fol-
lowing forms:
− (Ahab, ): the sentences each contained

‘Ahab’, highlighted in yellow, as the subject of
different verbs highlighted in pink.

− (captain, )

− ( , said): the sentences each contained
the verb ‘said’, highlighted in yellow, but with
different subjects, highlighted in pink.

− ( , stood)

To maximize coverage, yet keep the total task
time reasonable (average 6.8 minutes), we divided
the relations above into 4 task sets, each testing
recognition of 3 different relations. Each of rela-
tions was tested with 4 different words, making a
total of 12 tasks per participant.

Participants: 400 participants completed the
study distributed randomly over the 4 task sets and
the 3 presentations. Participants were paid 50c
(U.S.) for completing the study, with an additional
50c bonus if they correctly identified 10 or more
of the 12 relationships. They were informed of the
possibility of the bonus before starting.

To gauge their syntactic familiarity, we also
asked them to rate how familiar they were with
the terms ‘adjective’ (88% claimed they could de-
fine it), ‘infinitive’ (43%), and ‘clausal comple-
ment’ (18%). To help ensure the quality of effort,
we included a multiple-choice screening question,
“What is the third word of this sentence?” The 27
participants (out of 410) who answered incorrectly
were eliminated.

Results: The results (Figure 2) confirm our hy-
pothesis. Participants in conditions that showed
examples (phrases and words) were significantly
more accurate at identifying the relations than
participants in the baseline condition. We used
the Wilcoxson signed-rank test, an alternative to
the standard T-test that does not assume sam-
ples are normally distributed. The average suc-
cess rate in the baseline condition was 41%,
which is significantly less accurate than words:
52%, (p=0.00019, W=6136), and phrases: 55%,
(p=0.00014, W=5546.5).

Clausal relations operate over longer distances
in sentences, and so it is to be expected that show-
ing longer stretches of context would perform bet-

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

Overall! Clausal Relations! Non-Clausal 
Relations!

Adverb Modifier!

Average Recognition Success Rate per Relation!
Baseline! Phrases! Words!

Figure 2: Recognition rates for different types of
relations under the 3 experiment conditions, with
95% confidence intervals.

ter in these cases; that is indeed what the re-
sults showed. Phrases significantly outperformed
words and baseline for clausal relations. The av-
erage success rate was 48% for phrases, which
is significantly more than words: 38%, (p=0.017
W=6976.5) and baseline: 24%, (p=1.9×10−9

W=4399.0), which was indistinguishable from
random guessing (25%). This is a strong improve-
ment, given that only 18% of participants reported
being able to define ‘clausal complement’.

For the non-clausal relations, there was no sig-
nificant difference between phrases and words,
although they were both overall significantly bet-
ter than the baseline (words: p=0.0063 W=6740,
phrases: p=0.023 W=6418.5). Among these rela-
tions, adverb modifiers stood out (Figure 2), be-
cause evidence suggested that words (63% suc-
cess) made the relation more recognizable than
phrases (47% success, p=0.056, W=574.0) – but
the difference was only almost significant, due to
the smaller sample size (only 96 participants en-
countered this relation). This may be because the
words are the most salient piece of information in
an adverbial relation – adverbs usually end in ‘ly’
– and in the phrases condition the additional infor-
mation distracts from recognition of this pattern.

3 Conclusions

The results imply that user interfaces for syntactic
search should show candidate relationships aug-
mented with a list of phrases in which they occur.
A list of phrases is the most recognizable presenta-
tion for clausal relationships (34% better than the
baseline), and is as good as a list of words for the
other types of relations, except adverb modifiers.
For adverb modifiers, the list of words is the most
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recognizable presentation. This is likely because
Enlglish adverbs usually end in ‘-ly’ are therefore
a distinctive set of words.

The list of candidates can be ordered by fre-
quency of occurrence in the collection, or by an
interestingness measure given the search word. As
the user becomes more familiar with a given re-
lation, it may be expedient to shorten the cues
shown, and then re-introduce them if a relation
has not been selected after some period of time
has elapsed. If phrases are used, there is a tradeoff
between recognizability and the space required to
display the examples of usage. However, it is im-
portant to keep in mind that because the sugges-
tions are populated with items from the collection
itself, they are informative.

The best strategy, phrases, had an overall suc-
cess rate of only 55%, although the intended user
base may have more familiarity with grammatical
relations than the participants did, and therefore
may perform better in practice. Nonetheless, there
is room for improvement in scores, and it may be
that additional visual cues, such as some kind of
bracketing, will improve results. Furthermore, the
current study did not test three-word relationships
or more complex combinations of structures, and
those may require improvements to the design.
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Abstract

We develop a system that lets people over-
come language barriers by letting them
speak a language they do not know. Our
system accepts text entered by a user,
translates the text, then converts the trans-
lation into a phonetic spelling in the user’s
own orthography. We trained the sys-
tem on phonetic spellings in travel phrase-
books.

1 Introduction

Can people speak a language they don’t know?
Actually, it happens frequently. Travel phrase-
books contain phrases in the speaker’s language
(e.g., “thank you”) paired with foreign-language
translations (e.g., “ спасибо”). Since the speaker
may not be able to pronounce the foreign-language
orthography, phrasebooks additionally provide
phonetic spellings that approximate the sounds of
the foreign phrase. These spellings employ the fa-
miliar writing system and sounds of the speaker’s
language. Here is a sample entry from a French
phrasebook for English speakers:

English: Leave me alone.
French: Laissez-moi tranquille.
Franglish: Less-ay mwah trahn-KEEL.

The user ignores the French and goes straight
to the Franglish. If the Franglish is well designed,
an English speaker can pronounce it and be under-
stood by a French listener.

Figure 1 shows a sample entry from another
book—an English phrasebook for Chinese speak-
ers. If a Chinese speaker wants to say “非常
感谢你这顿美餐”, she need only read off the
Chinglish “三可油否热斯弯德否米欧”, which
approximates the sounds of “Thank you for this
wonderful meal” using Chinese characters.

Phrasebooks permit a form of accurate, per-
sonal, oral communication that speech-to-speech

Figure 1: Snippet from phrasebook

translation devices lack. However, the user is lim-
ited to a small set of fixed phrases. In this paper,
we lift this restriction by designing and evaluating
a software program with the following:

• Input: Text entered by the speaker, in her own
language.

• Output: Phonetic rendering of a foreign-
language translation of that text, which, when
pronounced by the speaker, can be under-
stood by the listener.

The main challenge is that different languages
have different orthographies, different phoneme
inventories, and different phonotactic constraints,
so mismatches are inevitable. Despite this, the
system’s output should be both unambiguously
pronounceable by the speaker and readily under-
stood by the listener.

Our goal is to build an application that covers
many language pairs and directions. The current
paper describes a single system that lets a Chinese
person speak English.

We take a statistical modeling approach to this
problem, as is done in two lines of research that are
most related. The first is machine transliteration
(Knight and Graehl, 1998), in which names and
technical terms are translated across languages
with different sound systems. The other is re-
spelling generation (Hauer and Kondrak, 2013),
where an English speaker is given a phonetic hint
about how to pronounce a rare or foreign word
to another English speaker. By contrast, we aim
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Chinese 已经八点了

English It’s eight o’clock now
Chinglish 意思埃特额克劳克闹 (yi si ai te e ke lao ke nao)
Chinese 这件衬衫又时髦又便宜

English this shirt is very stylish and not very expensive
Chinglish 迪思舍特意思危锐思掉利失安的闹特危锐伊克思班西五

Chinese 我们外送的最低金额是15美金
English our minimum charge for delivery is fifteen dollars

Chinglish 奥儿米尼们差只佛低利沃锐意思发五听到乐思

Table 1: Examples of <Chinese, English, Chinglish> tuples from a phrasebook.

to help people issue full utterances that cross lan-
guage barriers.

2 Evaluation

Our system’s input is Chinese. The output is
a string of Chinese characters that approximate
English sounds, which we call Chinglish. We
build several candidate Chinese-to-Chinglish sys-
tems and evaluate them as follows:

• We compute the normalized edit distance
between the system’s output and a human-
generated Chinglish reference.

• A Chinese speaker pronounces the system’s
output out loud, and an English listener takes
dictation. We measure the normalized edit
distance against an English reference.

• We automate the previous evaluation by re-
place the two humans with: (1) a Chinese
speech synthesizer, and (2) a English speech
recognizer.

3 Data

We seek to imitate phonetic transformations found
in phrasebooks, so phrasebooks themselves are a
good source of training data. We obtained a col-
lection of 1312 <Chinese, English, Chinglish>
phrasebook tuples 1 (see Table 1).

We use 1182 utterances for training, 65 for de-
velopment, and 65 for test. We know of no other
computational work on this type of corpus.

Our Chinglish has interesting gross empirical
properties. First, because Chinglish and Chinese
are written with the same characters, they render
the same inventory of 416 distinct syllables. How-
ever, the distribution of Chinglish syllables differs

1Dataset can be found at http://www.isi.edu/
natural-language/mt/chinglish-data.txt

a great deal from Chinese (Table 2). Syllables “si”
and “te” are very popular, because while conso-
nant clusters like English “st” are impossible to re-
produce exactly, the particular vowels in “si” and
“te” are fortunately very weak.

Frequency Rank Chinese Chinglish
1 de si
2 shi te
3 yi de
4 ji yi
5 zhi fu

Table 2: Top 5 frequent syllables in Chinese
(McEnery and Xiao, 2004) and Chinglish

We find that multiple occurrences of an English
word type are generally associated with the same
Chinglish sequence. Also, Chinglish characters do
not generally span multiple English words. It is
reasonable for “can I” to be rendered as “kan nai”,
with “nai” spanning both English words, but this
is rare.

4 Model

We model Chinese-to-Chinglish translation with
a cascade of weighted finite-state transducers
(wFST), shown in Figure 2. We use an online
MT system to convert Chinese to an English word
sequence (Eword), which is then passed through
FST A to generate an English sound sequence
(Epron). FST A is constructed from the CMU Pro-
nouncing Dictionary (Weide, 2007).

Next, wFST B translates English sounds into
Chinese sounds (Pinyin-split). Pinyin is an official
syllable-based romanization of Mandarin Chinese
characters, and Pinyin-split is a standard separa-
tion of Pinyin syllables into initial and final parts.
Our wFST allows one English sound token to map
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Figure 2: Finite-state cascade for modeling the re-
lation between Chinese and Chinglish.

to one or two Pinyin-split tokens, and it also allows
two English sounds to map to one Pinyin-split to-
ken.

Finally, FST C converts Pinyin-split into Pinyin,
and FST D chooses Chinglish characters. We also
experiment with an additional wFST E that trans-
lates English words directly into Chinglish.

5 Training

FSTs A, C, and D are unweighted, and remain so
throughout this paper.

5.1 Phoneme-based model

We must now estimate the values of FST B pa-
rameters, such as P(si|S). To do this, we first
take our phrasebook triples and construct sample
string pairs <Epron, Pinyin-split> by pronounc-
ing the phrasebook English with FST A, and by
pronouncing the phrasebook Chinglish with FSTs
D and C. Then we run the EM algorithm to learn
FST B parameters (Table 3) and Viterbi align-
ments, such as:

g r ae n d
g e r uan d e

5.2 Phoneme-phrase-based model

Mappings between phonemes are context-
sensitive. For example, when we decode English
“grandmother”, we get:

labeled Epron Pinyin-split P (p|e)
d d 0.46

d e 0.40
d i 0.06
s 0.01

ao r u 0.26
o 0.13
ao 0.06
ou 0.01

Table 3: Learned translation tables for the
phoneme based model

g r ae n d m ah dh er
g e r an d e m u e d e

where as the reference Pinyin-split sequence is:

g e r uan d e m a d e

Here, “ae n” should be decoded as “uan” when
preceded by “r”. Following phrase-based meth-
ods in statistical machine translation (Koehn et
al., 2003) and machine transliteration (Finch and
Sumita, 2008), we model substitution of longer se-
quences. First, we obtain Viterbi alignments using
the phoneme-based model, e.g.:

g r ae n d m ah dh er
g e r uan d e m a d e

Second, we extract phoneme phrase pairs con-
sistent with these alignments. We use no phrase-
size limit, but we do not cross word boundaries.
From the example above, we pull out phrase pairs
like:

g→ g e
g r→ g e r
...
r→ r
r ae n→ r uan
...

We add these phrase pairs to FST B, and call
this the phoneme-phrase-based model.

5.3 Word-based model
We now turn to WFST E, which short-cuts di-
rectly from English words to Pinyin. We create
<English, Pinyin> training pairs from our phrase-
book simply by pronouncing the Chinglish with
FST D. We initially allow each English word type
to map to any sequence of Pinyin, up to length 7,
with uniform probability. EM learns values for pa-
rameters like P (nai te|night), plus Viterbi align-
ments such as:
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Model
Top-1 Overall Top-1 Valid

Coverage
Average Edit Distance Average Edit Distance

Word based 0.664 0.042 29/65
Word-based hybrid training 0.659 0.029 29/65

Phoneme based 0.611 0.583 63/65
Phoneme-phrase based 0.194 0.136 63/65

Hybrid training and decoding 0.175 0.115 63/65

Table 4: English-to-Pinyin decoding accuracy on a test set of 65 utterances. Numbers are average edit
distances between system output and Pinyin references. Valid average edit distance is calculated based
only on valid outputs (e.g. 29 outputs for word based model).

accept tips
a ke sha pu te ti pu si

Notice that this model makes alignment errors
due to sparser data (e.g., the word “tips” and “ti pu
si” only appear once each in the training data).

5.4 Hybrid training

To improve the accuracy of word-based EM align-
ment, we use the phoneme based model to de-
code each English word in the training data to
Pinyin. From the 100-best list of decodings, we
collect combinations of start/end Pinyin syllables
for the word. We then modify the initial, uniform
English-to-Pinyin mapping probabilities by giving
higher initial weight to mappings that respect ob-
served start/end pairs. When we run EM, we find
that alignment errors for “tips” in section 5.3 are
fixed:

accept tips
a ke sha pu te ti pu si

5.5 Hybrid decoding

The word-based model can only decode 29 of the
65 test utterances, because wFST E fails if an ut-
terance contains a new English word type, pre-
viously unseen in training. The phoneme-based
models are more robust, able to decode 63 of the
65 utterances, failing only when some English
word type falls outside the CMU pronouncing dic-
tionary (FST A).

Our final model combines these two, using the
word-based model for known English words, and
the phoneme-based models for unknown English
words.

6 Experiments

Our first evaluation (Table 4) is intrinsic, measur-
ing our Chinglish output against references from

the test portion of our phrasebook, using edit dis-
tance. Here, we start with reference English and
measure the accuracy of Pinyin syllable produc-
tion, since the choice of Chinglish character does
not affect the Chinglish pronunciation. We see that
the Word-based method has very high accuracy,
but low coverage. Our best system uses the Hy-
brid training/decoding method. As Table 6 shows,
the ratio of unseen English word tokens is small,
thus large portion of tokens are transformed us-
ing word-based method. The average edit dis-
tance of phoneme-phrase model and that of hy-
brid training/decoding model are close, indicating
that long phoneme-phrase pairs can emulate word-
pinyin mappings.

Unseen Total Ratio
Word Type 62 249 0.249

Token 62 436 0.142

Table 6: Unseen English word type and tokens in
test data.

Model
Valid Average
Edit Distance

Reference English 0.477
Phoneme based 0.696

Hybrid training and decoding 0.496

Table 7: Chinglish-to-English accuracy in dicta-
tion task.

Our second evaluation is a dictation task. We
speak our Chinglish character sequence output
aloud and ask an English monolingual person to
transcribe it. (Actually, we use a Chinese synthe-
sizer to remove bias.) Then we measure edit dis-
tance between the human transcription and the ref-
erence English from our phrasebook. Results are
shown in Table 7.
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Chinese 年夜饭都要吃些什么

Reference English what do you have for the Reunion dinner
Reference Chinglish 沃特杜又海夫佛则锐又尼恩低呢

Hybrid training/decoding Chinglish 我忒度优嗨佛佛得瑞优你恩低呢

Dictation English what do you have for the reunion dinner
ASR English what do you high for 43 Union Cena

Chinese 等等我

Reference English wait for me
Reference Chinglish 唯特佛密 (wei te fo mi)

Hybrid training/decoding Chinglish 位忒佛密 (wei te fo mi)
Dictation English wait for me

ASR English wait for me

Table 5: Chinglish generated by hybrid training and decoding method and corresponding recognized
English by dictation and automatic synthesis-recognition method.

Model
Valid Average
Edit Distance

Word based 0.925
Word-based hybrid training 0.925

Phoneme based 0.937
Phoneme-phrase based 0.896

Hybrid training and decoding 0.898

Table 8: Chinglish-to-English accuracy in auto-
matic synthesis-recognition (ASR) task. Numbers
are average edit distance between recognized En-
glish and reference English.

Finally, we repeat the last experiment, but re-
moving the human from the loop, using both
automatic Chinese speech synthesis and English
speech recognition. Results are shown in Table 8.
Speech recognition is more fragile than human
transcription, so edit distances are greater. Table 5
shows a few examples of the Chinglish generated
by the hybrid training and decoding method, as
well as the recognized English from the dictation
and ASR tasks.

7 Conclusions

Our work aims to help people speak foreign lan-
guages they don’t know, by providing native pho-
netic spellings that approximate the sounds of for-
eign phrases. We use a cascade of finite-state
transducers to accomplish the task. We improve
the model by adding phrases, word boundary con-
straints, and improved alignment.

In the future, we plan to cover more language
pairs and directions. Each target language raises

interesting new challenges that come from its nat-
ural constraints on allowed phonemes, syllables,
words, and orthography.

References
Andrew Finch and Eiichiro Sumita. 2008. Phrase-

based machine transliteration. In Proceedings of the
Workshop on Technologies and Corpora for Asia-
Pacific Speech Translation (TCAST), pages 13–18.

Bradley Hauer and Grzegorz Kondrak. 2013. Auto-
matic generation of English respellings. In Proceed-
ings of NAACL-HLT, pages 634–643.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48–54. Association for Computa-
tional Linguistics.

Anthony McEnery and Zhonghua Xiao. 2004. The
lancaster corpus of Mandarin Chinese: A corpus for
monolingual and contrastive language study. Reli-
gion, 17:3–4.

R Weide. 2007. The CMU pronunciation dictionary,
release 0.7a.

282



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 283–288,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Assessing the Discourse Factors that Influence the Quality of Machine
Translation

Junyi Jessy Li
University of Pennsylvania

ljunyi@seas.upenn.edu

Marine Carpuat
National Research Council Canada
marine.carpuat@nrc.gc.ca

Ani Nenkova
University of Pennsylvania

nenkova@seas.upenn.edu

Abstract

We present a study of aspects of discourse
structure — specifically discourse devices
used to organize information in a sen-
tence — that significantly impact the qual-
ity of machine translation. Our analysis
is based on manual evaluations of trans-
lations of news from Chinese and Ara-
bic to English. We find that there is a
particularly strong mismatch in the no-
tion of what constitutes a sentence in Chi-
nese and English, which occurs often and
is associated with significant degradation
in translation quality. Also related to
lower translation quality is the need to em-
ploy multiple explicit discourse connec-
tives (because, but, etc.), as well as the
presence of ambiguous discourse connec-
tives in the English translation. Further-
more, the mismatches between discourse
expressions across languages significantly
impact translation quality.

1 Introduction

In this study we examine how the use of dis-
course devices to organize information in a sen-
tence — and the mismatch in their usage across
languages — influence machine translation (MT)
quality. The goal is to identify discourse process-
ing tasks with high potential for improving trans-
lation systems.

Historically MT researchers have focused their
attention on the mismatch of linear realization of
syntactic arguments (Galley et al., 2004; Collins
et al., 2005), lexico-morphological mismatch
(Minkov et al., 2007; Habash and Sadat, 2006)
and word polysemy (Carpuat and Wu, 2007; Chan
et al., 2007). Discourse structure has largely been
considered irrelevant to MT, mostly due to the as-
sumption that discourse analysis is needed to inter-

pret multi-sentential text while statistical MT sys-
tems are trained to translate a single sentence in
one language into a single sentence in another.

However, discourse devices are at play in the or-
ganization of information into complex sentences.
The mere definition of sentence may differ across
languages. Chinese for example is anecdotally
known to allow for very long sentences which at
times require the use of multiple English sentences
to express the same content and preserve gram-
maticality. Similarly discourse connectives like
because, but, since and while often relate informa-
tion expressed in simple sentential clauses. There
are a number of possible complications in trans-
lating these connectives: they may be ambiguous
between possible senses, e.g., English while is am-
biguous between COMPARISON and TEMPORAL;
explicit discourse connectives may be translated
into implicit discourse relations or translated in
morphology rather than lexical items (Meyer and
Webber, 2013; Meyer and Poláková, 2013).

In our work, we quantify the relationship be-
tween information packaging, discourse devices,
and translation quality.

2 Data and experiment settings

We examine the quality of translations to English
from Chinese and Arabic using Human-targeted
Translation Edit Rates (HTER) (Snover et al.,
2006), which roughly captures the minimal num-
ber of edits necessary to transform the system
output into an acceptable English translation of
the source sentence. By comparing MT output
with post-edited references, HTER provides more
reliable estimates of translation quality than us-
ing translated references, especially at the seg-
ment level. The data for the analysis is drawn
from an extended set of newswire reports in the
2008/2010 NIST Metrics for Machine Translation
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GALE Evaluation set1. For Chinese, there are
305 sentences (segments) translated to English by
three different translation systems. For Arabic,
there are 363 Arabic sentences (segments) trans-
lated by two systems.

The presence of discourse devices is analyzed
only on the English side: the reference, the system
hypothesis and its edited translation. Discourse
connectives and their senses are identified using
existing tools developed for English. Beyond its
practical limitations, analyzing the reference inter-
estingly reflects the choices made by the human
translator: whether to choose to use a discourse
connective, or to insert one to make an implicit re-
lation on the source side explicit on the target side.

We first conduct analysis of variance (ANOVA)
with HTER as dependent variable and the dis-
course factors as independent variables, and sys-
tems as subjects. We examine within-subject sig-
nificance in each ANOVA model. For discourse
factors that are significant at the 95% confidence
level or higher according to the ANOVA analy-
sis, we provide detailed breakdown of the system
HTER for each value of the discourse factor.

In this paper we do not compare the perfor-
mance of individual systems, but instead seek to
understand if a discourse phenomena is problem-
atic across systems.2

3 Sentence length and HTER

The presence of complex discourse structure is
likely to be associated with longer sentences. It
stands to reason that long sentences will be harder
to process automatically and this reasoning has
motivated the first approaches to text simplifica-
tion (Chandrasekar et al., 1996). So before turning
to the analysis of discourse phenomena, we exam-
ine the correlation between translation quality and
sentence length. A strong correlation between the
two would call for revival of interest in text sim-
plification where syntactically complex sentences
are transformed into several shorter sentences as a
preprocessing step.

We find however that no strong relationship ex-
ists between the two, as shown by the correlation
coefficients between HTER values and the number
of words in each segment in Table 1.

1Data used in this work includes more documents and the
human edits not present in the official release.

2For the readers with keen interest in system comparison,
we note that according to ANOVA none of the differences in
system performance on this data is statistically significant.

Lan. Sys1 Sys2 Sys3
ZH 0.097 (0.099) 0.117 (0.152) 0.144 (0.173)
AR 0.071(0.148) -0.089 (-0.029) -

Table 1: Pearson (Spearman) correlation coeffi-
cient between segment length and HTER values.

Next we examine if sentence–discourse diver-
gence between languages and the presence of (am-
biguous) discourse connectives would be more in-
dicative of the expected translation quality.

4 When a sentence becomes discourse

Some languages allow more information to be
packed into a single sentence than is possible in
another language, making single-sentence transla-
tions cumbersome and often ungrammatical. Chi-
nese is known for sentences of this kind; for exam-
ple, the usage of punctuation is very different in
Chinese in the sense that a comma can sometimes
function as a full stop in English, motivating a se-
ries of disambiguation tasks (Jin et al., 2004; Xue
and Yang, 2011; Xu and Li, 2013). Special han-
dling of long Chinese sentences were also shown
to improve machine translation (Jin and Liu, 2010;
Yin et al., 2007).

To investigate the prevalence of sentences in the
source language (Chinese and Arabic in our case)
that do not confirm to the notion of sentence in the
target language (English for the purposes of this
study), we separate the translation segments in the
source language into two classes: a source sen-
tence is considered 1-1 if the reference translation
consists of exactly one sentence, and 1-many if the
reference contains more than one sentence.

For Chinese, 26.2% of the source segments are
1-many. These sentences tend to be much longer
than average (36.6% of all words in all reference
translations are part of such segments). For Ara-
bic, the numbers are 15.2% and 26.3%, respec-
tively. Below is an example of a 1-many Chinese
segment, along with the human reference and its
translation by one of the systems:
[source] 俄警方宣称，Erinys有一重要竞争对手RISC，
利特维年科生前最后见面的人卢戈沃伊与友人都是从事
这些行业。
[ref] Russian police claim that Erinys has an important com-
petitor RISC. The last people Litvinenko saw while he was
alive, Lugovoi and his friends, were all engaged in these in-
dustries.
[sys] Russian police have claimed that a major competitor,
Litvinenko his last meeting with friends are engaged in these
industries.

We conducted ANOVA on HTER, separately
for each language, with type of segment (1-1 or
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AOV Arabic Chinese
Pr(> F ) 0.209 0.0045*

1-1 1-many
System HTER HTER

ZH-Sys1 16.22 19.03*
ZH-Sys2 19.54 21.02
ZH-Sys3 20.64 23.86*

Table 2: ANOVA for both languages; average
HTER for the three Chinese to English systems,
stratified on type of segment (1-1 and 1-many). An
(*) denotes significance at p < 0.05.

1-many) as the independent variable and systems
treated as subjects. The test revealed that there is
a significant difference in translation quality be-
tween 1-1 and 1-many segments for Chinese but
not for Arabic. For the Chinese to English systems
we further ran a Wilcoxon rank sum test to iden-
tify the statistical significance in performance for
individual systems. For two of the three systems
the difference is significant, as shown in Table 2.

We have now established that 1-many segments
in Chinese to English translation are highly preva-
lent and their translations are of consistently lower
quality compared to 1-1 segments. This finding
suggests a cross language discourse analysis task
of identifying Chinese sentences that cannot be
translated into single English sentences. This task
may be related to existing efforts in comma dis-
ambiguation in Chinese (Jin et al., 2004; Xue and
Yang, 2011; Xu and Li, 2013) but the relation-
ship between the two problems needs to be clar-
ified in follow up work. Once 1-many segments
are identified, source-side text simplification tech-
niques may be developed (Siddharthan, 2006) to
improve translation quality.

5 Explicit discourse relations

Explicit discourse relations such as COMPARISON,
CONTINGENCY or TEMPORAL are signaled by
an explicit connective, i.e., however or because.
The Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) provides annotations for the arguments
and relation senses of one hundred pre-selected
discourse connectives over the news portion of
the Penn Treebank corpus (Marcus et al., 1993).
Based on the PDTB, accurate systems for explicit
discourse relation identification have been devel-
oped (Pitler and Nenkova, 2009; Lin et al., 2014).
The accuracy of these systems is 94% or higher,
close to human performance on the task. Here we

AOV Arabic Chinese
Pr(> F ) 0.39 0.0058*

No Conn > 1 Conn
all % data (ZH) 53.77 15.08

1-many % data (ZH) 13.77 5.25
HTER mean HTER mean

all ZH-Sys1 16.11 19.84+

ZH-Sys2 19.96 22.39
ZH-Sys3 20.70 25.00*

1-many ZH-Sys1 16.94 22.75+

ZH-Sys2 20.47 23.25
ZH-Sys3 22.30 29.68*

Table 3: Number of connectives: ANOVA for both
languages; proportion of data in each factor level
and average HTER for the three Chinese-English
systems, of the entire dataset and of 1-many trans-
lations. An (*) or (+) sign denotes significance at
95% and 90% confidence levels, respectively.

study the influence of explicit discourse relations
on machine translation quality and their interac-
tion with 1-1 and 1-many segments.

5.1 Number of connectives

We identify discourse connectives and their senses
(TEMPORAL, COMPARISON, CONTINGENCY or
EXPANSION) in each reference segment using the
system in Pitler and Nenkova (2009)3. We com-
pare the translation quality obtained on segments
with reference translation containing no discourse
connective, exactly one discourse connective and
more than one discourse connective.

The ANOVA indicates that the number of con-
nectives is not a significant factor for Arabic trans-
lation, but significantly impacts Chinese transla-
tion quality. A closer inspection using Wilcoxon
rank sum tests reveals that the difference in trans-
lation quality is statistically significant only be-
tween the groups of segments with no connective
vs. those with more than one connective. Addi-
tionally, we ran Wilcoxon rank sum test over 1-
1 and 1-many segments individually and find that
the presence of discourse connectives is associated
with worse quality only in the latter case. Effects
above are illustrated in Table 3.

5.2 Ambiguity of connectives

A number of discourse connectives are ambiguous
with respect to the discourse relation they convey.
For example, while can signal either COMPARI-

3http://www.cis.upenn.edu/∼epitler/discourse.html; We
used the Stanford Parser (Klein and Manning, 2003).
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AOV Arabic Chinese
Pr(> F ) 0.57 0.00014*

has-amb-conn no-amb-conn
System HTER mean HTER mean

ZH-Sys1 21.57 16.34*
ZH-Sys2 21.44 19.72
ZH-Sys3 27.47 20.69*

Table 4: ANOVA for both languages; average
HTER for the three Chinese systems for segments
with (11.80% of all data) and without an ambigu-
ous connective in the reference translation. An (*)
denotes significance at p < 0.05.

SON or TEMPORAL relations and since can signal
either CONTINGENCY or TEMPORAL. In transla-
tion this becomes a problem when the ambiguity
is present in one language but not in the other.
In such cases the sense in source ought to be dis-
ambiguated before translation. Here we compare
the translation quality of segments which contain
ambiguous discourse connectives in the reference
translation to those that do not. This analysis gives
lower bound on the translation quality degradation
associated with discourse phenomena as it does
not capture problems arising from connective am-
biguity on the source side.

We base our classification of discourse connec-
tives into ambiguous or not according to the dis-
tribution of their senses in the PDTB. We call a
connective ambiguous if its most frequent sense
among COMPARISON, CONTINGENCY, EXPAN-
SION, TEMPORAL accounts for less than 80% of
occurrence of that connective in the PDTB. Nine-
teen connectives meet this criterion of ambiguity.4

In the ANOVA tests for each language, we com-
pared the quality of segments which contained an
ambiguous connective in the reference with those
that do not, with systems treated as subjects. For
Arabic the presence of ambiguous connective did
not yield a statistically significant difference. The
difference however was highly significant for Chi-
nese, as shown in Table 4.

The finding that discourse connective ambigu-
ity is associated with change in translation quality
for Chinese but not for Arabic is rather interesting.
It appears that the language pair in translation im-
pacts the expected gains from discourse analysis
on translation.

4The ambiguous connectives are: as, as if, as long as, as
though, finally, if and when, in the end, in turn, lest, mean-
while, much as, neither...nor, now that, rather, since, ulti-
mately, when, when and if, while

AOV Event Arabic Chinese
Pr(> F ) Contingency 0.61 0.028*

Comp.:Temp. 0.047* 0.0041*

Chinese HTER HTER
Contingency ¬ Contingency

Sys1 20.15 16.72
Sys2 21.69 19.80
Sys3 25.87 21.16+

Comp.∧Temp. ¬(Comp.∧Temp.)
Sys1 23.58 16.64*
Sys2 26.16 19.63*
Sys3 27.20 21.21+

Table 5: ANOVA for both languages; average
HTER for Chinese sentences containing a CON-
TINGENCY relation (6.89% of all data) or both
COMPARISON and TEMPORAL (4.59% of all data).
An (*) or (+) sign denotes significance at 95% and
90% confidence levels, respectively.

5.3 Relation senses

Here we study whether discourse relations of spe-
cific senses pose more difficulties on translations
than others and whether there are interactions be-
tween senses. In the ANOVA analysis we used a
binary factor for each of the four possible senses.
For example, we compare the translation quality
of segments that contain COMPARISON relations
in the reference translation with those that do not.

The relation sense makes a significant differ-
ence in translation quality for Chinese but not for
Arabic. For Chinese specifically sentences that ex-
press CONTINGENCY relations have worse qual-
ity translations than sentences that do not express
CONTINGENCY. One explanation for this ten-
dency may be that CONTINGENCY in Chinese con-
tains more ambiguity with other relations such as
TEMPORAL, as tense is expressed lexically in Chi-
nese (no morphological tense marking on verbs).
Finally, the interaction between COMPARISON and
TEMPORAL is significant for both languages.

Table 5 shows the effect of relation sense on
HTER values for Chinese.

6 Human edits of discourse connectives

A relation expressed implicitly without a connec-
tive in one language may need to be explicit in
another. Moreover, the expressions themselves
are used differently; for example, the paired con-
nective “虽然...但是” (despite...but) in Chinese
should not be translated into two redundant con-
nectives in English. It is also possible that the
source language contains an explicit discourse
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connective which is not translated in the target lan-
guage, as has been quantitatively studied recently
by Meyer and Webber (2013). An example from
our dataset is shown below:
[source] 还有些人可到大学的游戏专业深造，而后被聘
请为大游戏厂商的技术顾问等。

[ref] Still some others can receive further professional game
training in universities and later(Temporal) be employed as
technical consultants by large game manufacturers, etc.
[sys] Some people may go to the university games profes-
sional education, which is appointed as the big game manu-
facturers such as technical advisers.
[edited] Some people may go to university to receive profes-
sional game education, and later(Temporal) be appointed by
the big game manufacturers as technical advisers.

The system fails to translate the discourse con-
nective “而后” (later), leading to a probable mis-
interpretation between receiving education and be-
ing appointed as technical advisors.

Due to the lack of reliable tools and resources,
we approximate mismatches between discourse
expressions in the source and MT output using
discourse-related edits. We identify explicit dis-
course connectives and their senses in the system
translation and the human edited version of that
translation. Then we consider the following mu-
tually exclusive possibilities: (i) there are no dis-
course connectives in either the system output or
the edit; (ii) the system output and its edited ver-
sion contain exactly the same discourse connec-
tives with the same senses; (iii) there is a discourse
connective present in the system output but not in
the edit or vice versa. In the ANOVA we use a
factor with three levels corresponding to the three
cases described above. The factor is significant for
both Chinese and Arabic. In both languages, the
mismatch case (iii) involves significantly higher
HTER than either case (i) or (ii). The human edit
rate in the mismatch class is on average four points
greater than that in the other classes.

Obviously, the mismatch in implicit/explicit ex-
pression of discourse relation is related to the
first problem we studied, i.e., if the source seg-
ment is translated into one or multiple sentences
in English, since discourse relations between adja-
cent sentences are more often implicit (than intra-
sentence ones). For this reason we performed a
Wilcoxon rank sum test for the translation qual-
ity of segments with discourse mismatch condi-
tioned on whether the segment was 1-1 or 1-many.
For both languages a significant difference was
found for 1-1 sentences but not 1-many. Table 6
shows the proportion of data in each of the con-
ditioned classes and the average HTER for sen-

% data Mismatch Mismatch ¬Mismatch
(1-1) (1-1)

Arabic 21.27 15.47 69.34
Chinese 29.51 17.05 56.82

AOV Arabic Chinese
Pr(> F ) 4.0× 10−6* 4.1× 10−11*

HTER HTER
¬Mismatch Mismatch

AR-Sys1 11.23 15.92*
AR-Sys2 11.64 15.74*
ZH-Sys1 15.57 20.72*
ZH-Sys2 19.02 22.34*
ZH-Sys3 11.64 15.74*

¬Mismatch|1-1 Mismatch|1-1
AR-Sys1 10.86 16.24*
AR-Sys2 11.58 16.65*
ZH-Sys1 15.47 19.13*
ZH-Sys2 18.68 22.52*
ZH-Sys3 19.57 26.07*

Table 6: Data portions, ANOVA for both lan-
guages and average HTER for segments where
there is a discourse mismatch between system and
edited translations. An (*) denotes significance at
p < 0.05.

tences from the mismatch case (iii) where a dis-
course connective was edited and the others (no
such edits). Translation quality degrades signifi-
cantly for all systems for the mismatch case, over
all data as well as 1-1 segments.

7 Conclusion

We showed that translation from Chinese to En-
glish is made more difficult by various discourse
events such as the use of discourse connectives,
the ambiguity of the connectives and the type of
relations they signal. None of these discourse fac-
tors has a significant impact on translation qual-
ity from Arabic to English. Translation quality
from both languages is adversely affected by trans-
lations of discourse relations expressed implicitly
in one language but explicitly in the other or by
paired connectives. Our experiments indicate that
discourse usage may affect machine translation
between some language pairs but not others, and
for particular relations such as CONTINGENCY.
Finally, we established the need to identify sen-
tences in the source language that would be trans-
lated into multiple sentences in English. Espe-
cially in translating from Chinese to English, there
is a large number of such sentences which are cur-
rently translated much worse than other sentences.
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Abstract

We show that it is possible to automati-
cally detect machine translated text at sen-
tence level from monolingual corpora, us-
ing text classification methods. We show
further that the accuracy with which a
learned classifier can detect text as ma-
chine translated is strongly correlated with
the translation quality of the machine
translation system that generated it. Fi-
nally, we offer a generic machine transla-
tion quality estimation technique based on
this approach, which does not require ref-
erence sentences.

1 Introduction

The recent success and proliferation of statistical
machine translation (MT) systems raise a number
of important questions. Prominent among these
are how to evaluate the quality of such a system
efficiently and how to detect the output of such
systems (for example, to avoid using it circularly
as input for refining MT systems).

In this paper, we will answer both these ques-
tions. First, we will show that using style-related
linguistic features, such as frequencies of parts-
of-speech n-grams and function words, it is pos-
sible to learn classifiers that distinguish machine-
translated text from human-translated or native
English text. While this is a straightforward and
not entirely novel result, our main contribution is
to relativize the result. We will see that the suc-
cess of such classifiers are strongly correlated with
the quality of the underlying machine translation
system. Specifically, given a corpus consisting of
both machine-translated English text (English be-
ing the target language) and native English text
(not necessarily the reference translation of the
machine-translated text), we measure the accuracy
of the system in classifying the sentences in the

corpus as machine-translated or not. This accu-
racy will be shown to decrease as the quality of
the underlying MT system increases. In fact, the
correlation is strong enough that we propose that
this accuracy measure itself can be used as a mea-
sure of MT system quality, obviating the need for
a reference corpus, as for example is necessary for
BLEU (Papineni et al., 2001).

The paper is structured as follows: In the next
section, we review previous related work. In the
third section, we describe experiments regarding
the detection of machine translation and in the
fourth section we discuss the use of detection tech-
niques as a machine translation quality estimation
method. In the final section we offer conclusions
and suggestions for future work.

2 Previous Work

2.1 Translationese

The special features of translated texts have been
studied widely for many years. Attempts to de-
fine their characteristics, often called ”Translation
Universals”, include (Toury, 1980; Blum-Kulka
and Levenston, 1983; Baker, 1993; Gellerstam,
1986). The differences between native and trans-
lated texts found there go well beyond systematic
translation errors and point to a distinct ”Transla-
tionese” dialect.

Using automatic text classification methods in
the field of translation studies had many use cases
in recent years, mainly as an empirical method
of measuring, proving or contradicting translation
universals. Several works (Baroni and Bernar-
dini, 2006; Kurokawa et al., 2009; Ilisei et al.,
2010) used text classification techniques in order
to distinguish human translated text from native
language text at document or paragraph level, us-
ing features like word and POS n-grams, propor-
tion of grammatical words in the text, nouns, fi-
nite verbs, auxiliary verbs, adjectives, adverbs, nu-
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merals, pronouns, prepositions, determiners, con-
junctions etc. Koppel and Ordan (2011) classi-
fied texts to original or translated, using a list
of 300 function words taken from LIWC (Pen-
nebaker et al., 2001) as features. Volanski et
al. (2013) also tested various hypotheses regarding
”Translationese”, using 32 different linguistically-
informed features, to assess the degree to which
different sets of features can distinguish between
translated and original texts.

2.2 Machine Translation Detection

Regarding the detection of machine translated
text, Carter and Inkpen (2012) translated the
Hansards of the 36th Parliament of Canada us-
ing the Microsoft Bing MT web service, and
conducted three detection experiments at docu-
ment level, using unigrams, average token length,
and type-token ratio as features. Arase and
Zhou (2013) trained a sentence-level classifier to
distinguish machine translated text from human
generated text on English and Japanese web-page
corpora, translated by Google Translate, Bing and
an in-house SMT system. They achieved very high
detection accuracy using application-specific fea-
ture sets for this purpose, including indicators of
the ”Phrase Salad” (Lopez, 2008) phenomenon or
”Gappy-Phrases” (Bansal et al., 2011).

While Arase and Zhou (2013) considered MT
detection at sentence level, as we do in this pa-
per, they did not study the correlation between the
translation quality of the machine translated text
and the ability to detect it. We show below that
such detection is possible with very high accuracy
only on low-quality translations. We examine this
detection accuracy vs. quality correlation, with
various MT systems, such as rule-based and sta-
tistical MT, both commercial and in-house, using
various feature sets.

3 Detection Experiments

3.1 Features

We wish to distinguish machine translated En-
glish sentences from either human-translated sen-
tences or native English sentences. Due to the
sparseness of the data at the sentence level, we
use common content-independent linguistic fea-
tures for the classification task. Our features are
binary, denoting the presence or absence of each
of a set of part-of-speech n-grams acquired using
the Stanford POS tagger (Toutanova et al., 2003),

as well as the presence or absence of each of 467
function words taken from LIWC (Pennebaker et
al., 2001). We consider only those entries that ap-
pear at least ten times in the entire corpus, in order
to reduce sparsity in the data. As our learning al-
gorithm we use SVM with sequential minimal op-
timization (SMO), taken from the WEKA machine
learning toolkit (Hall et al., 2009).

3.2 Detecting Different MT Systems

In the first experiment set, we explore the ability
to detect outputs of machine translated text from
different MT systems, in an environment contain-
ing both human generated and machine translated
text. For this task, we use a portion of the Cana-
dian Hansard corpus (Germann, 2001), containing
48,914 parallel sentences from French to English.
We translate the French portion of the corpus using
several MT systems, respectively: Google Trans-
late, Systran, and five other commercial MT sys-
tems available at the http://itranslate4.eu website,
which enables to query example MT systems built
by several european MT companies. After trans-
lating the sentences, we take 20,000 sentences
from each engine output and conduct the detection
experiment by labeling those sentences as MT sen-
tences, and another 20,000 sentences, which are
the human reference translations, labeled as ref-
erence sentences. We conduct a 10-fold cross-
validation experiment on the entire 40,000 sen-
tence corpus. We also conduct the same exper-
iment using 20,000 random, non-reference sen-
tences from the same corpus, instead of the ref-
erence sentences. Using simple linear regression,
we also obtain an R2 value (coefficient of deter-
mination) over the measurements of detection ac-
curacy and BLEU score, for each of three feature
set combinations (function words, POS tags and
mixed) and the two data combinations (MT vs.
reference and MT vs. non reference sentences).
The detection andR2 results are shown in Table 1.

As can be seen, best detection results are ob-
tained using the full combined feature set. It can
also be seen that, as might be expected, it is easier
to distinguish machine-translated sentences from
a non-reference set than from the reference set. In
Figure 1, we show the relationship of the observed
detection accuracy for each system with the BLEU
score of that system. As is evident, regardless
of the feature set or non-MT sentences used, the
correlation between detection accuracy and BLEU
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Figure 1: Correlation between detection accu-
racy and BLEU score on commercial MT systems,
using POS, function words and mixed features
against reference and non-reference sentences.

score is very high, as we can also see from the R2

values in Table 1.

3.3 In-House SMT Systems

Parallel Monolingual BLEU
SMT-1 2000k 2000k 28.54
SMT-2 1000k 1000k 27.76
SMT-3 500k 500k 29.18
SMT-4 100k 100k 23.83
SMT-5 50k 50k 24.34
SMT-6 25k 25k 22.46
SMT-7 10k 10k 20.72

Table 3: Details for Moses based SMT systems

In the second experiment set, we test our de-
tection method on SMT systems we created, in
which we have control over the training data and
the expected overall relative translation quality. In
order to do so, we use the Moses statistical ma-
chine translation toolkit (Koehn et al., 2007). To
train the systems, we take a portion of the Europarl
corpus (Koehn, 2005), creating 7 different SMT
systems, each using a different amount of train-
ing data, for both the translation model and lan-
guage model. We do this in order to create dif-
ferent quality translation systems, details of which
are described in Table 3. For purposes of classifi-
cation, we use the same content independent fea-
tures as in the previous experiment, based on func-
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Figure 2: Correlation between detection accu-
racy and BLEU score on in-house Moses-based
SMT systems against non-reference sentences us-
ing content independent features.

tion words and POS tags, again with SMO-based
SVM as the classifier. For data, we use 20,000 ran-
dom, non reference sentences from the Hansard
corpus, against 20,000 sentences from one MT
system per experiment, again resulting in 40,000
sentence instances per experiment. The relation-
ship between the detection results for each MT
system and the BLEU score for that system, re-
sulting in R2 = 0.774, is shown in Figure 2.

4 Machine Translation Evaluation

4.1 Human Evaluation Experiments

As can be seen in the above experiments, there is
a strong correlation between the BLEU score and
the MT detection accuracy of our method. In fact,
results are linearly and negatively correlated with
BLEU, as can be seen both on commercial systems
and our in-house SMT systems. We also wish to
consider the relationship between detection accu-
racy and a human quality estimation score. To
do this, we use the French-English data from the
8th Workshop on Statistical Machine Translation
- WMT13’ (Bojar et al., 2013), containing out-
puts from 13 different MT systems and their hu-
man evaluations. We conduct the same classifi-
cation experiment as above, with features based
on function words and POS tags, and SMO-based
SVM as the classifier. We first use 3000 refer-
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Features Data Google Moses Systran ProMT Linguatec Skycode Trident R2

mixed MT/non-ref 63.34 72.02 72.36 78.2 79.57 80.9 89.36 0.946
mixed MT/ref 59.51 69.47 69.77 75.86 78.11 79.24 88.85 0.944

func. w. MT/non-ref 60.43 69.17 69.87 69.78 71.38 75.46 84.97 0.798
func. w. MT/ref 57.27 66.05 67.48 67.06 68.58 73.37 84.79 0.779

POS MT/non-ref 60.32 64.39 66.61 73 73.9 74.33 79.6 0.978
POS MT/ref 57.21 65.55 64.12 70.29 73.06 73.04 78.84 0.948

Table 1: Classifier performance, including the R2 coefficient describing the correlation with BLEU.

MT Engine Example
Google Translate ”These days, all but one were subject to a vote,

and all had a direct link to the post September 11th.”
Moses ”these days , except one were the subject of a vote ,

and all had a direct link with the after 11 September .”
Systran ”From these days, all except one were the object of a vote,

and all were connected a direct link with after September 11th.”
Linguatec ”Of these days, all except one were making the object of a vote

and all had a straightforward tie with after September 11.”
ProMT ”These days, very safe one all made object a vote,

and had a direct link with after September 11th.”
Trident ”From these all days, except one operated object voting,

and all had a direct rope with after 11 septembre.”
Skycode ”In these days, all safe one made the object in a vote

and all had a direct connection with him after 11 of September.”

Table 2: Outputs from several MT systems for the same source sentence (function words marked in bold)
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Figure 3: Correlation between detection accuracy
and human evaluation scores on systems from
WMT13’ against reference sentences.
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Figure 4: Correlation between detection accu-
racy and human evaluation scores on systems from
WMT 13’ against non-reference sentences.
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Figure 5: Correlation between detection accu-
racy and human evaluation scores on systems from
WMT 13’ against non-reference sentences, using
the syntactic CFG features described in section 4.2

ence sentences from the WMT13’ English refer-
ence translations, against the matching 3000 out-
put sentences from one MT system at a time, re-
sulting in 6000 sentence instances per experiment.
As can be seen in Figure 3, the detection accuracy
is strongly correlated with the evaluations scores,
yielding R2 = 0.774. To provide another mea-
sure of correlation, we compared every pair of
data points in the experiment to get the proportion
of pairs ordered identically by the human evalu-
ators and our method, with a result of 0.846 (66
of 78). In the second experiment, we use 3000
random, non reference sentences from the new-
stest 2011-2012 corpora published in WMT12’
(Callison-Burch et al., 2012) against 3000 output
sentences from one MT system at a time, again re-
sulting in 6000 sentence instances per experiment.
While applying the same classification method as
with the reference sentences, the detection accu-
racy rises, while the correlation with the transla-
tion quality yields R2 = 0.556, as can be seen in
Figure 4. Here, the proportion of identically or-
dered pairs is 0.782 (61 of 78).

4.2 Syntactic Features

We note that the second leftmost point in Figures
3, 4 is an outlier: that is, our method has a hard
time detecting sentences produced by this system
although it is not highly rated by human evalu-

ators. This point represents the Joshua (Post et
al., 2013) SMT system. This system is syntax-
based, which apparently confound our POS and
FW-based classifier, despite it’s low human evalu-
ation score. We hypothesize that the use of syntax-
based features might improve results. To ver-
ify this intuition, we create parse trees using the
Berkeley parser (Petrov and Klein, 2007) and ex-
tract the one-level CFG rules as features. Again,
we represent each sentence as a boolean vector,
in which each entry represents the presence or ab-
sence of the CFG rule in the parse-tree of the sen-
tence. Using these features alone, without the FW
and POS tag based features presented above, we
obtain an R2 = 0.829 with a proportion of iden-
tically ordered pairs at 0.923 (72 of 78), as shown
in Figure 5.

5 Discussion and Future Work

We have shown that it is possible to detect ma-
chine translation from monolingual corpora con-
taining both machine translated text and human
generated text, at sentence level. There is a strong
correlation between the detection accuracy that
can be obtained and the BLEU score or the human
evaluation score of the machine translation itself.
This correlation holds whether or not a reference
set is used. This suggests that our method might be
used as an unsupervised quality estimation method
when no reference sentences are available, such
as for resource-poor source languages. Further
work might include applying our methods to other
language pairs and domains, acquiring word-level
quality estimation or integrating our method in
a machine translation system. Furthermore, ad-
ditional features and feature selection techniques
can be applied, both for improving detection ac-
curacy and for strengthening the correlation with
human quality estimation.
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Abstract

We show that asymmetric models based on
Tversky (1977) improve correlations with
human similarity judgments and nearest
neighbor discovery for both frequent and
middle-rank words. In accord with Tver-
sky’s discovery that asymmetric similarity
judgments arise when comparing sparse
and rich representations, improvement on
our two tasks can be traced to heavily
weighting the feature bias toward the rarer
word when comparing high- and mid-
frequency words.

1 Introduction

A key assumption of most models of similarity is
that a similarity relation is symmetric. This as-
sumption is foundational for some conceptions,
such as the idea of a similarity space, in which
similarity is the inverse of distance; and it is deeply
embedded into many of the algorithms that build
on a similarity relation among objects, such as
clustering algorithms. The symmetry assumption
is not, however, universal, and it is not essential
to all applications of similarity, especially when it
comes to modeling human similarity judgments.
Citing a number of empirical studies, Tversky
(1977) calls symmetry directly into question, and
proposes two general models that abandon sym-
metry. The one most directly related to a large
body of word similarity work that followed is what
he calls the ratio model, which defines sim(a, b)
as:

f(A ∩ B)
f(A ∩ B) + αf(A\B) + βf(B\A)

(1)

Here A and B represent feature sets for the objects
a and b respectively; the term in the numerator is a
function of the set of shared features, a measure of

similarity, and the last two terms in the denomina-
tor measure dissimilarity: α and β are real-number
weights; when α 6= β, symmetry is abandoned.

To motivate such a measure, Tversky presents
experimental data with asymmetric similarity re-
sults, including similarity comparisons of coun-
tries, line drawings of faces, and letters. Tversky
shows that many similarity judgment tasks have
an inherent asymmetry; but he also argues, fol-
lowing Rosch (1975), that certain kinds of stimuli
are more naturally used as foci or standards than
others. Goldstone (in press) summarizes the re-
sults succinctly: “Asymmetrical similarity occurs
when an object with many features is judged as
less similar to a sparser object than vice versa; for
example, North Korea is judged to be more like
China than China is [like] North Korea.” Thus,
one source of asymmetry is the comparison of
sparse and dense representations.

The relevance of such considerations to word
similarity becomes clear when we consider that
for many applications, word similarity measures
need to be well-defined when comparing very fre-
quent words with infrequent words. To make this
concrete, let us consider a word representation
in the word-as-vector paradigm (Lee, 1997; Lin,
1998), using a dependency-based model. Sup-
pose we want to measure the semantic similarity
of boat, rank 682 among the nouns in the BNC
corpus studied below, which has 1057 nonzero
dependency features based on 50 million words
of data, with dinghy, rank 6200, which has only
113 nonzero features. At the level of the vec-
tor representations we are using, these are events
of very different dimensionality; that is, there are
ten times as many features in the representation of
boat as there are in the representation of dinghy. If
in Tversky/Rosch terms, the more frequent word
is also a more likely focus, then this is exactly
the kind of situation in which asymmetric similar-
ity judgments will arise. Below we show that an
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asymmetric measure, using α and β biased in fa-
vor of the less frequent word, greatly improves the
performance of a dependency-based vector model
in capturing human similarity judgments.

Before presenting these results, it will be help-
ful to slightly reformulate and slightly generalize
Tversky’s ratio model. The reformulation will al-
low us to directly draw the connection between
the ratio model and a set of similarity measures
that have played key roles in the similarity litera-
ture. First, since Tversky has primarily additive f
in mind, we can reformulate f(A ∩ B) as follows

f(A ∩ B) =
∑

f∈A∩B

wght(f) (2)

Next, since we are interested in generalizing from
sets of features, to real-valued vectors of features,
w1, w2, we define

σSI(w1, w2) =
∑

f∈w1∩w2
SI(w1[f ], w2[f ]).

(3)
Here SI is some numerical operation on real-
number feature values (SI stands for shared infor-
mation). If the operation is MIN and w1[f ] and
w2[f ] both contain the feature weights for f , then∑
f∈A∩B

wght(f)= σMIN(w1, w2)
=

∑
f∈w1∩w2

MIN(w1[f ], w2[f ]),

so with SI set to MIN, Equation (3) includes Equa-
tion (2) as a special case. Similarly, σ(w1, w1)
represents the summed feature weights of w1, and
therefore,

f(w1\w2) = σ(w1, w1) − σ(w1, w2)

In this generalized form, then, (1) becomes

σ(w1,w2)
σ(w1,w2)+α[σ(w1,w1)−σ(w1,w2)]+β[σ(w2,w2)−σ(w1,w2)]

= σ(w1,w2)
ασ(w1,w1)+βσ(w2,w2)+σ(w1,w2)−(α+β)σ(w1,w2)

(4)
Thus, if α + β = 1, Tversky’s ratio model be-

comes simply:

sim(w1, w2) = σ(w1,w2)
ασ(w1,w1)+(1−α)σ(w2 ,w2)

(5)
The computational advantage of this reformula-
tion is that the core similarity operation σ(w1, w2)
is done on what is generally only a small number
of shared features, and the σ(wi, wi) calculations
(which we will call self-similarities), can be com-
puted in advance. Note that sim(w1, w2) is sym-
metric if and only if α = 0.5. When α > 0.5,

sim(w1, w2) is biased in favor of w1 as the refer-
ent; When α < 0.5, sim(w1, w2) is biased in favor
of w2.

Consider four similarity functions that have
played important roles in the literature on similar-
ity:

DICE PROD(w1, w2) = 2∗w1·w2

‖w1‖2+‖w2‖2

DICE†(w1, w2) =
2∗∑f∈w1∩w2

min(w1[f ], w2[f ])
∑

w1[f ]+
∑

w2[f ]

LIN(w1, w2) =
∑

f∈w1∩w2
w1[f ]+ w2[f ]

∑
w1[f ]+

∑
w2[f ]

COS(w1, w2) = DICE PROD applied
to unit vectors

(6)
The function DICE PROD is not well known in the
word similarity literature, but in the data mining
literature it is often just called Dice coefficient, be-
cause it generalized the set comparison function
of Dice (1945). Observe that cosine is a special
case of DICE PROD. DICE† was introduced in Cur-
ran (2004) and was the most successful function
in his evaluation. Since LIN was introduced in Lin
(1998); several different functions have born that
name. The version used here is the one used in
Curran (2004).

The three distinct functions in Equation 6 have
a similar form. In fact, all can be defined in terms
of σ functions differing only in their SI operation.

Let σSI be a shared feature sum for operation SI,
as defined in Equation (3). We define the Tversky-
normalized version of σSI, written TSI, as:1

TSI(w1, w2) =
2 · σSI(w1, w2)

σSI(w1, w1) + σSI(w2, w2)
(7)

Note that TSI is just the special case of Tversky’s
ratio model (5) in which α = 0.5 and the similarity
measure is symmetric.

We define three SI operations σPROD
2, σMIN, and

σAVG as follows:

SI σSI(w1, w2)
PROD

∑
f∈w1∩w2

w1[f ] ∗ w2[f ]
AVG

∑
f∈w1∩w2

w1[f ]+w2[f ]
2

MIN
∑

f∈w1∩w2
MIN(w1[f ], w2[f ])

1Paralleling (7) is Jaccard-family normalization:

σJACC(w1, w2) =
σ(w1, w2)

σ(w1, w1) + σ(w2, w2)− σ(w1, w2)

It is easy to generalize the result from van Rijsbergen (1979)
for the original set-specific versions of Dice and Jaccard, and
show that all of the Tversky family functions discussed above
are monotonic in Jaccard.

2σPROD , of course, is dot product.
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This yields the three similarity functions cited
above:

DICE PROD(w1, w2) = TPROD(w1, w2)

DICE†(w1, w2) = TMIN(w1, w2)

LIN(w1, w2) = TAVG(w1, w2)

(8)

Thus, all three of these functions are special cases
of symmetric ratio models. Below, we investigate
asymmetric versions of all three, which we write
as Tα,SI(w1, w2), defined as:

σSI(w1, w2)
α · σSI(w1, w1) + (1 − α) · σSI(w2, w2)

(9)

Following Lee (1997), who investigates a different
family of asymmetric similarity functions, we will
refer to these as α-skewed measures.

We also will look at a rank-biased family of
measures:

Rα,SI(w1, w2) = Tα,SI(wh, wl)
where wl = arg min w∈{w1,w2} Rank(w)

wh = arg max w∈{w1,w2} Rank(w)
(10)

Here, Tα,SI(wh, wl) is as defined in (9), and the α-
weighted word is always the less frequent word.
For example, consider comparing the 100-feature
vector for dinghy to the 1000 feature vector for
boat: if α is high, we give more weight to the pro-
portion of dinghy’s features that are shared than
we give to the proportion of boat’s features that
are shared.

In the following sections we present data show-
ing that the performance of a dependency-based
similarity system in capturing human similarity
judgments can be greatly improved with rank-
bias and α-skewing. We will investigate the three
asymmetric functions defined above.3 We argue
that the advantages of rank bias are tied to im-
proved similarity estimation when comparing vec-
tors of very different dimensionality. We then
turn to the problem of finding a word’s nearest
semantic neighbors. The nearest neighbor prob-
lem is a rather a natural ground in which to try
out ideas on asymmetry, since the nearest neigh-
bor relation is itself not symmetrical. We show
that α-skewing can be used to improve the quality
of nearest neighbors found for both high- and mid-
frequency words.

3Interestingly, Equation (9) does not yield an asymmetric
version of cosine. Plugging unit vectors into the α-skewed
version of DICE PROD still leaves us with a symmetric func-
tion (COS), whatever the value of α.

2 Systems

1. We parsed the BNC with the Malt Depen-
dency parser (Nivre, 2003) and the Stanford
parser (Klein and Manning, 2003), creating
two dependency DBs, using basically the de-
sign in Lin (1998), with features weighted by
PMI (Church and Hanks, 1990).

2. For each of the 3 rank-biased similarity sys-
tems (Rα,SI) and cosine, we computed corre-
lations with human judgments for the pairs
in 2 standard wordsets: the combined Miller-
Charles/Rubenstein-Goodenough word sets
(Miller and Charles, 1991; Rubenstein and
Goodenough, 1965) and the Wordsim 353
word set (Finkelstein et al., 2002), as well as
to a subset of the Wordsim set restricted to
reflect semantic similarity judgments, which
we will refer to as Wordsim 201.

3. For each of 3 α-skewed similarity systems
(Tα,SI) and cosine, we found the nearest
neighbor from among BNC nouns (of any
rank) for the 10,000 most frequent BNC
nouns using the the dependency DB created
in step 2.

4. To evaluate of the quality of the nearest
neighbors pairs found in Step 4, we scored
them using the Wordnet-based Personalized
Pagerank system described in Agirre (2009)
(UKB), a non distributional WordNet based
measure, and the best system in Table 1.

3 Human correlations

Table 1 presents the Spearman’s correlation
with human judgments for Cosine, UKB, and
our 3 α-skewed models using Malt-parser
based vectors applied to the combined Miller-
Charles/Rubenstein-Goodenough word sets, the
Wordsim 353 word set, and the Wordsim 202
word set.

The first of each of the column pairs is a sym-
metric system, and the second a rank-biased vari-
ant, based on Equation (10). In all cases, the bi-
ased system improves on the performance of its
symmetric counterpart; in the case of DICE†and
DICE PROD, that improvement is enough for the
biased system to outperform cosine, the best of
the symmetric distributionally based systems. The
value .97 was chosen for α because it produced the
best α-system on the MC/RG corpus. That value
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MC/RG Wdsm201 Wdsm353
α = .5 α = .97 α = .5 α = .97 α = .5 α = .97

Dice DICE PROD .59 .71 .50 .60 .35 .44
LIN .48 .62 .42 .54 .29 .39
DICE† .58 .67 .49 .58 .34 .43

Euc Cosine .65 NA .56 NA .41 NA
WN UKB WN .80 NA .75 NA .68 NA

Table 1: System/Human correlations. Above the line: MALT Parser-based systems
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Figure 1: Scores monotonically increase with α

is probably probably an overtrained optimum. The
point is that α-skewing always helps: For all three
systems, the improvement shown in raising α from
.5 to whatever the optimum is is monotonic. This
is shown in Figure 1. Table 2 shows very simi-
lar results using the Stanford parser, demonstrat-
ing the pattern is not limited to a single parsing
model.

In Table 3, we list the pairs whose reranking
on the MC/RG dataset contributed most to the im-
provement of the α = .9 system over the default
α = .5 system. In the last column an approxi-
mation of the amount of correlation improvement
provided by that pair (δ):4 Note the 3 of the 5
items contributing the most improvement this sys-
tem were pairs with a large difference in rank.
Choosing α = .9, weights recall toward the rarer
word. We conjecture that the reason this helps is
Tversky’s principle: It is natural to use the sparser

4The approximation is based on the formula for comput-
ing Spearman’s R with no ties. If n is the number of items,
then the improvement on that item is:

6 ∗ [(baseline − gold)2 − (test − gold)2]

n ∗ (n2 − 1)

Word 1 Rank Word 2 Rank δ

automobile 7411 car 100 0.030
asylum 3540 madhouse 14703 0.020
coast 708 hill 949 0.018
mound 3089 stove 2885 0.017
autograph 10136 signature 2743 0.009

Table 3: Pairs contributing the biggest improve-
ment, MC/RG word set

representation as the focus in the comparison.

4 Nearest neighbors

Figure 2 gives the results of our nearest neighbor
study on the BNC for the case of DICE PROD. The
graphs for the other two α-skewed systems are
nearly identical, and are not shown due to space
limitations. The target word, the word whose
nearest neighbor is being found, always receives
the weight 1 − α. The x-axis shows target word
rank; the y-axis shows the average UKB simi-
larity scores assigned to nearest neighbors every
50 ranks. All the systems show degraded nearest
neighbor quality as target words grow rare, but at
lower ranks, the α = .04 nearest neighbor system
fares considerably better than the symmetric α =
.50 system; the line across the bottom tracks the
score of a system with randomly generated near-
est neighbors. The symmetric DICE PROD sys-
tem is as an excellent nearest neighbor system at
high ranks but drops below the α = .04 system at
around rank 3500. We see that the α = .8 system
is even better than the symmetric system at high
ranks, but degrades much more quickly.

We explain these results on the basis of the prin-
ciple developed for the human correlation data: To
reflect natural judgments of similarity for compar-
isons of representations of differing sparseness, α
should be tipped toward the sparser representation.

Thus, α = .80 works best for high rank tar-
get words, because most nearest neighbor candi-

299



MC/RG Wdsm201 Wdsm353
α = .5 opt opt α α = .5 opt opt α α = .5 opt opt α

DICE PROD .65 .70 .86 .42 .57 .99 .36 .44 .98
LIN .58 .68 .90 .41 .56 .94 .30 .41 .99
DICE† .60 .71 .91 .43 .53 .99 .32 .43 .99

Table 2: System/Human correlations for Stanford parser systems
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Figure 2: UKB evaluation scores for nearest
neighbor pairs across word ranks, sampled every
50 ranks.

dates are less frequent, and α = .8 tips the bal-
ance toward the nontarget words. On the other
hand, when the target word is a low ranking word,
a high α weight means it never receives the high-
est weight, and this is disastrous, since most good
candidates are higher ranking. Conversely, α =
.04 works better.

5 Previous work

The debt owed to Tversky (1977) has been made
clear in the introduction. Less clear is the debt
owed to Jimenez et al. (2012), which also pro-
poses an asymmetric similarity framework based
on Tversky’s insights. Jimenez et al. showed the
continued relevance of Tversky’s work.

Motivated by the problem of measuring how
well the distribution of one word w1 captures the
distribution of another w2, Weeds and Weir (2005)
also explore asymmetric models, expressing sim-
ilarity calculations as weighted combinations of
several variants of what they call precision and re-
call. Some of their models are also Tverskyan ratio
models. To see this, we divide (9) everywhere by
σ(w1, w2):

TSI(w1, w2) =
1

α·σ(w1,w1)
σ(w1,w2)

+ (1−α)·σ(w2 ,w2)
σ(w1,w2)

If the SI is MIN, then the two terms in the de-
nominator are the inverses of what W&W call
difference-weighted precision and recall:

PREC(w1, w2) = σMIN(w1,w2)
σMIN(w1,w1)

REC(w1, w2) = σMIN(w1,w2)
σMIN(w2,w2)

,

So for TMIN, (9) can be rewritten:

1
α

PREC(w1,w2)
+ 1−α

REC(w1,w2)

That is, TMIN is a weighted harmonic mean of
precision and recall, the so-called weighted F-
measure (Manning and Schütze, 1999). W&W’s
additive precision/recall models appear not to be
Tversky models, since they compute separate
sums for precision and recall from the f ∈ w1 ∩
w2, one using w1[f ], and one using w2[f ].

Long before Weed and Weir, Lee (1999) pro-
posed an asymmetric similarity measure as well.
Like Weeds and Weir, her perspective was to cal-
culate the effectiveness of using one distribution as
a proxy for the other, a fundamentally asymmetric
problem. For distributions q and r, Lee’s α-skew
divergence takes the KL-divergence of a mixture
of q and r from q, using the α parameter to define
the proportions in the mixture.

6 Conclusion

We have shown that Tversky’s asymmetric ratio
models can improve performance in capturing
human judgments and produce better nearest
neighbors. To validate these very preliminary
results, we need to explore applications compat-
ible with asymmetry, such as the TOEFL-like
synonym discovery task in Freitag et al. (2005),
and the PP-attachment task in Dagan et al. (1999).
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Abstract

While continuous word embeddings are
gaining popularity, current models are
based solely on linear contexts. In this
work, we generalize the skip-gram model
with negative sampling introduced by
Mikolov et al. to include arbitrary con-
texts. In particular, we perform exper-
iments with dependency-based contexts,
and show that they produce markedly
different embeddings. The dependency-
based embeddings are less topical and ex-
hibit more functional similarity than the
original skip-gram embeddings.

1 Introduction

Word representation is central to natural language
processing. The default approach of represent-
ing words as discrete and distinct symbols is in-
sufficient for many tasks, and suffers from poor
generalization. For example, the symbolic repre-
sentation of the words “pizza” and “hamburger”
are completely unrelated: even if we know that
the word “pizza” is a good argument for the verb
“eat”, we cannot infer that “hamburger” is also
a good argument. We thus seek a representation
that captures semantic and syntactic similarities
between words. A very common paradigm for ac-
quiring such representations is based on the distri-
butional hypothesis of Harris (1954), stating that
words in similar contexts have similar meanings.

Based on the distributional hypothesis, many
methods of deriving word representations were ex-
plored in the NLP community. On one end of the
spectrum, words are grouped into clusters based
on their contexts (Brown et al., 1992; Uszkor-
eit and Brants, 2008). On the other end, words

∗ Supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no. 287923 (EXCITEMENT).

are represented as a very high dimensional but
sparse vectors in which each entry is a measure
of the association between the word and a particu-
lar context (see (Turney and Pantel, 2010; Baroni
and Lenci, 2010) for a comprehensive survey).
In some works, the dimensionality of the sparse
word-context vectors is reduced, using techniques
such as SVD (Bullinaria and Levy, 2007) or LDA
(Ritter et al., 2010; Séaghdha, 2010; Cohen et
al., 2012). Most recently, it has been proposed
to represent words as dense vectors that are de-
rived by various training methods inspired from
neural-network language modeling (Bengio et al.,
2003; Collobert and Weston, 2008; Mnih and
Hinton, 2008; Mikolov et al., 2011; Mikolov et
al., 2013b). These representations, referred to as
“neural embeddings” or “word embeddings”, have
been shown to perform well across a variety of
tasks (Turian et al., 2010; Collobert et al., 2011;
Socher et al., 2011; Al-Rfou et al., 2013).

Word embeddings are easy to work with be-
cause they enable efficient computation of word
similarities through low-dimensional matrix op-
erations. Among the state-of-the-art word-
embedding methods is the skip-gram with nega-
tive sampling model (SKIPGRAM), introduced by
Mikolov et al. (2013b) and implemented in the
word2vec software.1 Not only does it produce
useful word representations, but it is also very ef-
ficient to train, works in an online fashion, and
scales well to huge copora (billions of words) as
well as very large word and context vocabularies.

Previous work on neural word embeddings take
the contexts of a word to be its linear context –
words that precede and follow the target word, typ-
ically in a window of k tokens to each side. How-
ever, other types of contexts can be explored too.

In this work, we generalize the SKIP-
GRAM model, and move from linear bag-of-words
contexts to arbitrary word contexts. Specifically,

1code.google.com/p/word2vec/
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following work in sparse vector-space models
(Lin, 1998; Padó and Lapata, 2007; Baroni and
Lenci, 2010), we experiment with syntactic con-
texts that are derived from automatically produced
dependency parse-trees.

The different kinds of contexts produce no-
ticeably different embeddings, and induce differ-
ent word similarities. In particular, the bag-of-
words nature of the contexts in the “original”
SKIPGRAM model yield broad topical similari-
ties, while the dependency-based contexts yield
more functional similarities of a cohyponym na-
ture. This effect is demonstrated using both quali-
tative and quantitative analysis (Section 4).

The neural word-embeddings are considered
opaque, in the sense that it is hard to assign mean-
ings to the dimensions of the induced represen-
tation. In Section 5 we show that the SKIP-
GRAM model does allow for some introspection
by querying it for contexts that are “activated by” a
target word. This allows us to peek into the learned
representation and explore the contexts that are
found by the learning process to be most discrim-
inative of particular words (or groups of words).
To the best of our knowledge, this is the first work
to suggest such an analysis of discriminatively-
trained word-embedding models.

2 The Skip-Gram Model

Our departure point is the skip-gram neural em-
bedding model introduced in (Mikolov et al.,
2013a) trained using the negative-sampling pro-
cedure presented in (Mikolov et al., 2013b). In
this section we summarize the model and train-
ing objective following the derivation presented by
Goldberg and Levy (2014), and highlight the ease
of incorporating arbitrary contexts in the model.

In the skip-gram model, each word w ∈ W is
associated with a vector vw ∈ Rd and similarly
each context c ∈ C is represented as a vector
vc ∈ Rd, where W is the words vocabulary, C
is the contexts vocabulary, and d is the embed-
ding dimensionality. The entries in the vectors
are latent, and treated as parameters to be learned.
Loosely speaking, we seek parameter values (that
is, vector representations for both words and con-
texts) such that the dot product vw · vc associated
with “good” word-context pairs is maximized.

More specifically, the negative-sampling objec-
tive assumes a dataset D of observed (w, c) pairs
of words w and the contexts c, which appeared in

a large body of text. Consider a word-context pair
(w, c). Did this pair come from the data? We de-
note by p(D = 1|w, c) the probability that (w, c)
came from the data, and by p(D = 0|w, c) =
1 − p(D = 1|w, c) the probability that (w, c) did
not. The distribution is modeled as:

p(D = 1|w, c) = 1
1+e−vw·vc

where vw and vc (each a d-dimensional vector) are
the model parameters to be learned. We seek to
maximize the log-probability of the observed pairs
belonging to the data, leading to the objective:

arg maxvw,vc

∑
(w,c)∈D log 1

1+e−vc·vw

This objective admits a trivial solution in which
p(D = 1|w, c) = 1 for every pair (w, c). This can
be easily achieved by setting vc = vw and vc ·vw =
K for all c, w, where K is large enough number.

In order to prevent the trivial solution, the ob-
jective is extended with (w, c) pairs for which
p(D = 1|w, c) must be low, i.e. pairs which are
not in the data, by generating the set D′ of ran-
dom (w, c) pairs (assuming they are all incorrect),
yielding the negative-sampling training objective:

arg maxvw,vc

(∏
(w,c)∈D p(D = 1|c, w)

∏
(w,c)∈D′ p(D = 0|c, w)

)
which can be rewritten as:

arg maxvw,vc

(∑
(w,c)∈D log σ(vc · vw) +

∑
(w,c)∈D′ log σ(−vc · vw)

)
where σ(x) = 1/(1+ex). The objective is trained
in an online fashion using stochastic-gradient up-
dates over the corpus D ∪D′.

The negative samples D′ can be constructed in
various ways. We follow the method proposed by
Mikolov et al.: for each (w, c) ∈ D we construct
n samples (w, c1), . . . , (w, cn), where n is a hy-
perparameter and each cj is drawn according to its
unigram distribution raised to the 3/4 power.

Optimizing this objective makes observed
word-context pairs have similar embeddings,
while scattering unobserved pairs. Intuitively,
words that appear in similar contexts should have
similar embeddings, though we have not yet found
a formal proof that SKIPGRAM does indeed max-
imize the dot product of similar words.

3 Embedding with Arbitrary Contexts

In the SKIPGRAM embedding algorithm, the con-
texts of a word w are the words surrounding it
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in the text. The context vocabulary C is thus
identical to the word vocabulary W . However,
this restriction is not required by the model; con-
texts need not correspond to words, and the num-
ber of context-types can be substantially larger
than the number of word-types. We generalize
SKIPGRAM by replacing the bag-of-words con-
texts with arbitrary contexts.

In this paper we experiment with dependency-
based syntactic contexts. Syntactic contexts cap-
ture different information than bag-of-word con-
texts, as we demonstrate using the sentence “Aus-
tralian scientist discovers star with telescope”.

Linear Bag-of-Words Contexts This is the
context used by word2vec and many other neu-
ral embeddings. Using a window of size k around
the target word w, 2k contexts are produced: the
k words before and the k words after w. For
k = 2, the contexts of the target word w are
w−2, w−1, w+1, w+2. In our example, the contexts
of discovers are Australian, scientist, star, with.2

Note that a context window of size 2 may miss
some important contexts (telescope is not a con-
text of discovers), while including some acciden-
tal ones (Australian is a context discovers). More-
over, the contexts are unmarked, resulting in dis-
covers being a context of both stars and scientist,
which may result in stars and scientists ending
up as neighbours in the embedded space. A win-
dow size of 5 is commonly used to capture broad
topical content, whereas smaller windows contain
more focused information about the target word.

Dependency-Based Contexts An alternative to
the bag-of-words approach is to derive contexts
based on the syntactic relations the word partic-
ipates in. This is facilitated by recent advances
in parsing technology (Goldberg and Nivre, 2012;
Goldberg and Nivre, 2013) that allow parsing to
syntactic dependencies with very high speed and
near state-of-the-art accuracy.

After parsing each sentence, we derive word
contexts as follows: for a target word w with
modifiers m1, . . . ,mk and a head h, we consider
the contexts (m1, lbl1), . . . , (mk, lblk), (h, lbl−1

h ),

2word2vec’s implementation is slightly more compli-
cated. The software defaults to prune rare words based on
their frequency, and has an option for sub-sampling the fre-
quent words. These pruning and sub-sampling happen before
the context extraction, leading to a dynamic window size. In
addition, the window size is not fixed to k but is sampled
uniformly in the range [1, k] for each word.

Australian scientist discovers star with telescope

amod nsubj dobj

prep

pobj

Australian scientist discovers star telescope

amod nsubj dobj

prep with

WORD CONTEXTS

australian scientist/amod−1

scientist australian/amod, discovers/nsubj−1

discovers scientist/nsubj, star/dobj, telescope/prep with
star discovers/dobj−1

telescope discovers/prep with−1

Figure 1: Dependency-based context extraction example.
Top: preposition relations are collapsed into single arcs,
making telescope a direct modifier of discovers. Bottom: the
contexts extracted for each word in the sentence.

where lbl is the type of the dependency relation be-
tween the head and the modifier (e.g. nsubj, dobj,
prep with, amod) and lbl−1 is used to mark the
inverse-relation. Relations that include a preposi-
tion are “collapsed” prior to context extraction, by
directly connecting the head and the object of the
preposition, and subsuming the preposition itself
into the dependency label. An example of the de-
pendency context extraction is given in Figure 1.

Notice that syntactic dependencies are both
more inclusive and more focused than bag-of-
words. They capture relations to words that are
far apart and thus “out-of-reach” with small win-
dow bag-of-words (e.g. the instrument of discover
is telescope/prep with), and also filter out “coinci-
dental” contexts which are within the window but
not directly related to the target word (e.g. Aus-
tralian is not used as the context for discovers). In
addition, the contexts are typed, indicating, for ex-
ample, that stars are objects of discovery and sci-
entists are subjects. We thus expect the syntactic
contexts to yield more focused embeddings, cap-
turing more functional and less topical similarity.

4 Experiments and Evaluation

We experiment with 3 training conditions: BOW5
(bag-of-words contexts with k = 5), BOW2
(same, with k = 2) and DEPS (dependency-based
syntactic contexts). We modified word2vec to
support arbitrary contexts, and to output the con-
text embeddings in addition to the word embed-
dings. For bag-of-words contexts we used the
original word2vec implementation, and for syn-
tactic contexts, we used our modified version. The
negative-sampling parameter (how many negative
contexts to sample for every correct one) was 15.
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All embeddings were trained on English
Wikipedia. For DEPS, the corpus was tagged
with parts-of-speech using the Stanford tagger
(Toutanova et al., 2003) and parsed into labeled
Stanford dependencies (de Marneffe and Man-
ning, 2008) using an implementation of the parser
described in (Goldberg and Nivre, 2012). All to-
kens were converted to lowercase, and words and
contexts that appeared less than 100 times were
filtered. This resulted in a vocabulary of about
175,000 words, with over 900,000 distinct syntac-
tic contexts. We report results for 300 dimension
embeddings, though similar trends were also ob-
served with 600 dimensions.

4.1 Qualitative Evaluation

Our first evaluation is qualitative: we manually in-
spect the 5 most similar words (by cosine similar-
ity) to a given set of target words (Table 1).

The first target word, Batman, results in similar
sets across the different setups. This is the case for
many target words. However, other target words
show clear differences between embeddings.

In Hogwarts - the school of magic from the
fictional Harry Potter series - it is evident that
BOW contexts reflect the domain aspect, whereas
DEPS yield a list of famous schools, capturing
the semantic type of the target word. This ob-
servation holds for Turing3 and many other nouns
as well; BOW find words that associate with w,
while DEPS find words that behave like w. Turney
(2012) described this distinction as domain simi-
larity versus functional similarity.

The Florida example presents an ontologi-
cal difference; bag-of-words contexts generate
meronyms (counties or cities within Florida),
while dependency-based contexts provide cohy-
ponyms (other US states). We observed the same
behavior with other geographical locations, partic-
ularly with countries (though not all of them).

The next two examples demonstrate that simi-
larities induced from DEPS share a syntactic func-
tion (adjectives and gerunds), while similarities
based on BOW are more diverse. Finally, we ob-
serve that while both BOW5 and BOW2 yield top-
ical similarities, the larger window size result in
more topicality, as expected.

3DEPS generated a list of scientists whose name ends with
“ing”. This is may be a result of occasional POS-tagging
errors. Still, the embedding does a remarkable job and re-
trieves scientists, despite the noisy POS. The list contains
more mathematicians without “ing” further down.

Target Word BOW5 BOW2 DEPS

batman

nightwing superman superman
aquaman superboy superboy
catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman

hogwarts

dumbledore evernight sunnydale
hallows sunnydale collinwood
half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield

turing

nondeterministic non-deterministic pauling
non-deterministic finite-state hotelling
computability nondeterministic heting
deterministic buchi lessing
finite-state primality hamming

florida

gainesville fla texas
fla alabama louisiana
jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

object-oriented

aspect-oriented aspect-oriented event-driven
smalltalk event-driven domain-specific
event-driven objective-c rule-based
prolog dataflow data-driven
domain-specific 4gl human-centered

dancing

singing singing singing
dance dance rapping
dances dances breakdancing
dancers breakdancing miming
tap-dancing clowning busking

Table 1: Target words and their 5 most similar words, as in-
duced by different embeddings.

We also tried using the subsampling option
(Mikolov et al., 2013b) with BOW contexts (not
shown). Since word2vec removes the subsam-
pled words from the corpus before creating the
window contexts, this option effectively increases
the window size, resulting in greater topicality.

4.2 Quantitative Evaluation

We supplement the examples in Table 1 with
quantitative evaluation to show that the qualita-
tive differences pointed out in the previous sec-
tion are indeed widespread. To that end, we use
the WordSim353 dataset (Finkelstein et al., 2002;
Agirre et al., 2009). This dataset contains pairs of
similar words that reflect either relatedness (top-
ical similarity) or similarity (functional similar-
ity) relations.4 We use the embeddings in a re-
trieval/ranking setup, where the task is to rank the
similar pairs in the dataset above the related ones.

The pairs are ranked according to cosine sim-
ilarities between the embedded words. We then
draw a recall-precision curve that describes the
embedding’s affinity towards one subset (“sim-
ilarity”) over another (“relatedness”). We ex-
pect DEPS’s curve to be higher than BOW2’s
curve, which in turn is expected to be higher than

4Some word pairs are judged to exhibit both types of sim-
ilarity, and were ignored in this experiment.
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Figure 2: Recall-precision curve when attempting to rank the
similar words above the related ones. (a) is based on the
WordSim353 dataset, and (b) on the Chiarello et al. dataset.

BOW5’s. The graph in Figure 2a shows this is in-
deed the case. We repeated the experiment with a
different dataset (Chiarello et al., 1990) that was
used by Turney (2012) to distinguish between do-
main and functional similarities. The results show
a similar trend (Figure 2b). When reversing the
task such that the goal is to rank the related terms
above the similar ones, the results are reversed, as
expected (not shown).5

5 Model Introspection

Neural word embeddings are often considered
opaque and uninterpretable, unlike sparse vec-
tor space representations in which each dimen-
sion corresponds to a particular known context, or
LDA models where dimensions correspond to la-
tent topics. While this is true to a large extent, we
observe that SKIPGRAM does allow a non-trivial
amount of introspection. Although we cannot as-
sign a meaning to any particular dimension, we
can indeed get a glimpse at the kind of informa-
tion being captured by the model, by examining
which contexts are “activated” by a target word.

Recall that the learning procedure is attempting
to maximize the dot product vc ·vw for good (w, c)
pairs and minimize it for bad ones. If we keep the
context embeddings, we can query the model for
the contexts that are most activated by (have the
highest dot product with) a given target word. By
doing so, we can see what the model learned to be
a good discriminative context for the word.

To demonstrate, we list the 5 most activated
contexts for our example words with DEPS em-
beddings in Table 2. Interestingly, the most dis-
criminative syntactic contexts in these cases are

5Additional experiments (not presented in this paper) re-
inforce our conclusion. In particular, we found that DEPS
perform dramatically worse than BOW contexts on analogy
tasks as in (Mikolov et al., 2013c; Levy and Goldberg, 2014).

batman hogwarts turing
superman/conj−1 students/prep at−1 machine/nn−1

spider-man/conj−1 educated/prep at−1 test/nn−1

superman/conj student/prep at−1 theorem/poss−1

spider-man/conj stay/prep at−1 machines/nn−1

robin/conj learned/prep at−1 tests/nn−1

florida object-oriented dancing
marlins/nn−1 programming/amod−1 dancing/conj
beach/appos−1 language/amod−1 dancing/conj−1

jacksonville/appos−1 framework/amod−1 singing/conj−1

tampa/appos−1 interface/amod−1 singing/conj
florida/conj−1 software/amod−1 ballroom/nn

Table 2: Words and their top syntactic contexts.

not associated with subjects or objects of verbs
(or their inverse), but rather with conjunctions, ap-
positions, noun-compounds and adjectivial modi-
fiers. Additionally, the collapsed preposition rela-
tion is very useful (e.g. for capturing the school
aspect of hogwarts). The presence of many con-
junction contexts, such as superman/conj for
batman and singing/conj for dancing, may
explain the functional similarity observed in Sec-
tion 4; conjunctions in natural language tend to en-
force their conjuncts to share the same semantic
types and inflections.

In the future, we hope that insights from such
model introspection will allow us to develop better
contexts, by focusing on conjunctions and prepo-
sitions for example, or by trying to figure out why
the subject and object relations are absent and
finding ways of increasing their contributions.

6 Conclusions

We presented a generalization of the SKIP-
GRAM embedding model in which the linear bag-
of-words contexts are replaced with arbitrary ones,
and experimented with dependency-based con-
texts, showing that they produce markedly differ-
ent kinds of similarities. These results are ex-
pected, and follow similar findings in the distri-
butional semantics literature. We also demon-
strated how the resulting embedding model can be
queried for the discriminative contexts for a given
word, and observed that the learning procedure
seems to favor relatively local syntactic contexts,
as well as conjunctions and objects of preposition.
We hope these insights will facilitate further re-
search into improved context modeling and better,
possibly task-specific, embedded representations.
Our software, allowing for experimentation with
arbitrary contexts, together with the embeddings
described in this paper, are available for download
at the authors’ websites.
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Abstract

This paper describes an application of dis-
tributional semantics to the study of syn-
tactic productivity in diachrony, i.e., the
property of grammatical constructions to
attract new lexical items over time. By
providing an empirical measure of seman-
tic similarity between words derived from
lexical co-occurrences, distributional se-
mantics not only reliably captures how the
verbs in the distribution of a construc-
tion are related, but also enables the use
of visualization techniques and statistical
modeling to analyze the semantic develop-
ment of a construction over time and iden-
tify the semantic determinants of syntactic
productivity in naturally occurring data.

1 Introduction

Language change does not exclusively consist of
drastic shifts in ‘core’ aspects of grammar, such as
changes in word order. Variation in usage, which
can occur in no more than a few decades, is much
more common, and to many linguists constitutes
linguistic change in the making. Among these as-
pects of language use that are subject to diachronic
change, this paper is concerned with the productiv-
ity of syntactic constructions, i.e., the range of lex-
ical items with which a construction can be used.
A given construction might occur with very differ-
ent distributions at different points in time, even
when the function it conveys remains the same.
This is what Israel (1996) finds for the pattern
“Verb one’s way Path”, commonly called the way-
construction (Goldberg, 1995), exemplified by (1)
and (2) below.

(1) They hacked their way through the jungle.
(2) She typed her way to a promotion.

As reported by Israel, examples like (1), in
which the main verb describes the physical means

whereby motion towards a goal is enabled, are at-
tested as early as the 16th century, but it was not
until the 19th century that examples like (2) started
to appear, in which the action depicted by the verb
provides a more indirect (and abstract) way of at-
taining the agent’s goal.

The productivity of a construction may appear
partly arbitrary, but a growing body of evidence
suggests that it is tied to the previous experience
of speakers with that construction (Barðdal, 2008;
Bybee and Eddington, 2006; Suttle and Goldberg,
2011). More specifically, previous research points
to a strong semantic component, in that the pos-
sibility of a novel use depends on how it seman-
tically relates to prior usage. Along these lines,
Suttle and Goldberg (2011, 1254) posit a criterion
of coverage, defined as “the degree to which at-
tested instances ‘cover’ the category determined
jointly by attested instances together with the tar-
get coinage”. Coverage relates to how the seman-
tic domain of a construction is populated in the
vicinity of a given target coinage, and in particular
to the density of the semantic space.

The importance of semantics for syntactic pro-
ductivity implies that the meaning of lexical items
must be appropriately taken into account when
studying the distribution of constructions, which
calls for an empirical operationalization of seman-
tics. Most existing studies rely either on the se-
mantic intuitions of the analyst, or on semantic
norming studies (Bybee and Eddington, 2006). In
this paper, I present a third alternative that takes
advantage of advances in computational linguis-
tics and draws on a distributionally-based measure
of semantic similarity. On the basis of a case study
of the construction “V the hell out of NP”, I show
how distributional semantics can profitably be ap-
plied to the study of syntactic productivity.
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2 The hell-construction

The case study presented in this paper considers
the syntactic pattern “V the hell out of NP”, as ex-
emplified by the following sentences from the Cor-
pus of Contemporary American English (COCA;
Davies, 2008):

(3) Snakes just scare the hell out of me.
(4) It surprised the hell out of me when I heard

what he’s been accused of.
(5) You might kick the hell out of me like you

did that doctor.

The construction generally conveys an in-
tensifying function (very broadly defined).
Thus, scare/surprise the hell out of means
“scare/surprise very much”, and kick the hell out
of means “kick very hard”. The particular aspect
that is intensified may be highly specific to the
verb and depend to some extent on the context.
Scare and beat are the most typical verbs in that
construction (and arguably the two that first come
to mind), but a wide and diverse range of other
verbs can also be found, such that avoid in (6),
drive (a car) in (7) and even an intransitive verb
(listen) in (8):

(6) I [...] avoided the hell out of his presence.
(7) But you drove the hell out of it!
(8) I’ve been listening the hell out of your tape.

To examine how the construction evolved over
time, I used diachronic data from the Corpus
of Historical American English (COHA; Davies
2010), which contains about 20 million words
of written American English for each decade be-
tween 1810 and 2009 roughly balanced for genre
(fiction, magazines, newspapers, non-fiction). In-
stances of the hell-construction were filtered out
manually from the results of the query “[v*] the
hell out of”, mostly ruling out locative construc-
tions like get the hell out of here. The diachronic
evolution of the verb slot in terms of token and
type frequency is plotted in Figure 1. Since the
corpus size varies slightly in each decade, the to-
ken frequencies are normalized per million words.

The construction is first attested in the corpus
in the 1930s. Since then, it has been steadily in-
creasing in token frequency (to the exception of
a sudden decrease in the 1990s). Also, more and
more different verbs are attested in the construc-
tion, as shown by the increase in type frequency.
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Figure 1: Diachronic development of the hell-
construction in terms of normalized token fre-
quency and type frequency

This reflects a general expansion of the productiv-
ity of the construction, but it does not show what
this productivity consists of. For instance, it does
not say what kinds of verbs joined the distribu-
tion and to what extent the distribution becomes
semantically more diverse over time. To answer
these questions, I will analyze the distribution of
the construction from a semantic point of view
by using a measure of semantic similarity derived
from distributional information.

3 Distributional measure of semantic
similarity

Drawing on the observation that words occurring
in similar contexts tend to have related mean-
ings (Miller and Charles, 1991), distributional ap-
proaches to semantics seek to capture the mean-
ing of words through their distribution in large text
corpora (Lenci, 2008; Turney and Pantel, 2010;
Erk, 2012). One benefit of the distributional se-
mantics approach is that it allows semantic sim-
ilarity between words to be quantified by mea-
suring the similarity in their distribution. This is
achieved by means of a vector-space model that
assigns an array of numerical values (i.e., a vector)
derived from distributional information to each
word. A wide range of distributional informa-
tion can be employed in vector-based models; the
present study uses the ‘bag of words’ approach,
which is based on the frequency of co-occurrence
of words within a given context window. Accord-
ing to Sahlgren (2008), this kind of model cap-
tures to what extent words can be substituted for
each other, which is a good measure of semantic
similarity between verbs. As it turns out, even this
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relatively coarse model captures semantic distinc-
tions in the distribution of the hell-construction
that make intuitive sense.

All instances of the relevant verbs were ex-
tracted from the COCA1 with their context of oc-
currence. In order to make sure that enough dis-
tributional information is available to reliably as-
sess semantic similarity, verbs with less than 2,000
occurrences were excluded, which left 92 usable
items (out of 105). The words in the sentence con-
texts extracted from the COCA were lemmatized
and annotated for part-of-speech using TreeTag-
ger (Schmid, 1994). The part-of-speech annotated
lemma of each collocate within a 5-word window
was extracted from the COCA data to build the co-
occurrence matrix recording the frequency of co-
occurrence of each verb with its collocates. Only
the nouns, verbs, adjectives, and adverbs listed
among the 5,000 most frequent words in the cor-
pus were considered (to the exclusion of be, have,
and do), thus ignoring function words (articles,
prepositions, conjunctions, etc.) and all words that
did not make the top 5,000.

The co-occurrence matrix was transformed by
applying a Point-wise Mutual Information weight-
ing scheme, using the DISSECT toolkit (Dinu et
al., 2013), to turn the raw frequencies into weights
that reflect how distinctive a collocate is for a
given target word with respect to the other tar-
get words under consideration. The resulting ma-
trix, which contains the distributional information
(in 4,683 columns) for 92 verbs occurring in the
hell-construction, constitutes the semantic space
under consideration in this case study. Pairwise
distances between the target verbs were calculated
using the cosine distance. The rest of the analysis
was conducted on the basis of this distance matrix
in the R environment (R Development Core Team,
2013).

1The COCA contains 464 million words of American En-
glish consisting of the same amount of spoken, fiction, mag-
azine, newspaper, and academic prose data for each year
between 1990 and 2012. Admittedly, a more ecologically
valid choice would have been to use data from a particular
time frame to build a vector-space model for the same time
frame, but even the twenty-odd million words per decade of
the COHA did not prove sufficient to achieve that purpose.
This is, however, not as problematic as it might sound, since
the meaning of the verbs under consideration are not likely
to have changed considerably within the time frame of this
study. Besides, using the same data presents the advantage
that the distribution is modeled with the same semantic space
in all time periods, which makes it easier to visualize changes.

4 Application of the vector-space model

4.1 Semantic plots
One of the advantages conferred by the quantifi-
cation of semantic similarity is that lexical items
can be precisely considered in relation to each
other, and by aggregating the similarity informa-
tion for all items in the distribution, we can pro-
duce a visual representation of the structure of
the semantic domain of the construction in order
to observe how verbs in that domain are related
to each other, and to immediately identify the re-
gions of the semantic space that are densely pop-
ulated (with tight clusters of verbs), and those that
are more sparsely populated (fewer and/or more
scattered verbs). Multidimensional scaling (MDS)
provides a way both to aggregate similarity infor-
mation and to represent it visually. This technique
aims to place objects in a space with two (or more)
dimensions such that the between-object distances
are preserved as much as possible.

The pairwise distances between verbs were sub-
mitted to multidimensional scaling into two di-
mensions.2 To visualize the semantic development
of the hell-construction over time, the diachronic
data was divided into four successive twenty-year
periods: 1930-1949, 1950-1969, 1970-1989, and
1990-2009. The semantic plots corresponding to
the distribution of the construction in each period
are presented in Figure 2. For convenience and
ease of visualization, the verbs are color-coded
according to four broad semantic groupings that
were identified inductively by means of hierarchi-
cal clustering (using Ward’s criterion).3

By comparing the plots in Figure 2, we can
follow the semantic development of the hell-
construction. The construction is strikingly cen-
tered around two kinds of verbs: mental verbs (in
red: surprise, please, scare, etc.) and verbs of
hitting (most verbs in green: smash, kick, whack,
etc.), a group that is orbited by other kinds of
forceful actions (such as pinch, push, and tear).
These two types of verbs account for most of
the distribution at the onset, and they continue to

2Non-metric MDS was employed (Kruskal, 1964), using
the function isoMDS from the R package MASS.

3Another benefit of combining clustering and MDS stems
from the fact that the latter often distorts the data when fitting
the objects into two dimensions, in that some objects might
have to be slightly misplaced if not all distance relations can
be simultaneously complied with. Since cluster analysis op-
erates with all 4,683 dimensions of the distributional space, it
is more reliable than MDS, although it lacks the visual appeal
of the latter.
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Figure 2: Semantic plots of the hell-construction
in four time periods.

weigh heavily throughout the history of the con-
struction. These two classes also correspond to
the regions of the semantic domain that attract the
most new members, and they constantly do so in
all periods. Outside of these two clusters, the se-
mantic space is much more sparsely populated. In
the first period (1930-1949), only a few peripheral
members are found. They are joined by other dis-
tantly related items in later periods, although by no
more than a handful in each. In other words, the
construction is markedly less productive in these
outer domains, which never form proper clusters
of verbs.

In sum, the semantic plots show that densely
populated regions of the semantic space appear to
be the most likely to attract new members. Out-
side of the two identified domains of predilection,
other classes never become important, assumedly
because they do not receive a “critical mass” of
items, and therefore attract new members more
slowly.

4.2 Statistical analysis
With the quantification of semantic similarity pro-
vided by the distributional semantic model, it is
also possible to properly test the hypothesis that
productivity is tied to the structure of the seman-
tic space. On the reasonable assumption that the
semantic contribution of the construction did not
change, and therefore that all verbs ever attested
in it are equally plausible from a semantic point
of view, the fact that some verbs joined the dis-
tribution later than others is in want of an expla-
nation. In view of the observations collected on
the semantic plots and in line with previous re-
search (especially Suttle and Goldberg’s notion of
coverage), I suggest that the occurrence of a new
item in the construction in a given period is related
to the density of the semantic space around that
item in the previous period. If the semantic space
around the novel item is dense, i.e., if there is a
high number of similar items, the coinage will be
very likely. The sparser the semantic space around
a given item, the less likely this item can be used.

The measure of density used in this study con-
siders the set of the N nearest neighbors of a given
item in the semantic space, and is defined by the
following formula:

DensityV,N = 1−
∑N

n=1 d(V, Vn)
N

where d(V, Vn) is the distance between a verb V
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and its nth nearest neighbor. In plain language,
density equals one minus the mean distance to the
N nearest neighbors. The latter value decreases
with space density (i.e., if there are many close
neighbors), and is therefore technically a measure
of sparsity; since cosine distances are between 0
and 1, subtracting the mean distance from one re-
turns a measure of density within the same bound-
aries.

This measure of density was used as a factor in
logistic regression to predict the first occurrence
of a verb in the construction, coded as the binary
variable OCCURRENCE, set to 1 for the first pe-
riod in which the verb is attested in the construc-
tion, and to 0 for all preceding periods (later pe-
riods were discarded). For each VERB-PERIOD-
OCCURRENCE triplet, the density of the semantic
space around the verb in the immediately preced-
ing period was calculated. Six different versions
of the density measure, with the number of neigh-
bors under consideration (N) varying between 3
and 8, were used to fit six mixed effects regres-
sion models with OCCURRENCE as the dependent
variable, DENSITY as a fixed effect, and random
by-verb intercepts and slopes (Bates et al., 2011).
The results of these models are summarized in Ta-
ble 1.

N Effect of DENSITY p-value
3 0.7211 0.195
4 0.8836 0.135
5 1.0487 0.091 (.)
6 1.2367 0.056 (.)
7 1.4219 0.034 (*)
8 1.6625 0.017 (*)

Table 1: Summary of logistic regression results
for different values of N. Model formula: OC-
CURRENCE ∼ DENSITY + (1 + DENSITY|VERB).
Marginally significant effects are marked with a
period (.), significant effects with a star (*).

For all values of N, we find a positive effect of
DENSITY, i.e., there is a positive relation between
the measure of density and the probability of first
occurrence of a verb in the construction. However,
the effect is only significant for N ≥ 7; hence, the
hypothesis that space density increases the odds of
a coinage occurs in the construction is supported
for measures of density based on these values of
N.

More generally, the p-value decreases as N in-

creases, which means that the positive relation be-
tween DENSITY and OCCURRENCE is less sys-
tematic when DENSITY is measured with fewer
neighbors. This is arguably because a higher N
helps to better discriminate between dense clusters
where all items are close together from looser ones
that consist of a few ‘core’ items surrounded by
more distant neighbors. This result illustrates the
role of type frequency in syntactic productivity: a
measure of density that is supported by a higher
number of types makes better prediction than a
measure supported by fewer types. This means
that productivity not only hinges on how the exist-
ing semantic space relates to the novel item, it also
occurs more reliably when this relation is attested
by more items. These finding support the view
that semantic density and type frequency, while
they both positively influence syntactic productiv-
ity, do so in different ways: density defines the
necessary conditions for a new coinage to occur,
while type frequency increases the confidence that
this coinage is indeed possible.

5 Conclusion

This paper reports the first attempt at using a dis-
tributional measure of semantic similarity derived
from a vector-space model for the study of syn-
tactic productivity in diachrony. On the basis of
a case study of the construction “V the hell out
of NP” from 1930 to 2009, the advantages of this
approach were demonstrated. Not only does dis-
tributional semantics provide an empirically-based
measure of semantic similarity that appropriately
captures semantic distinctions, it also enables the
use of methods for which quantification is neces-
sary, such as data visualization and statistical anal-
ysis. Using multidimensional scaling and logis-
tic regression, it was shown that the occurrence
of new items throughout the history of the con-
struction can be predicted by the density of the se-
mantic space in the neighborhood of these items
in prior usage. In conclusion, this work opens new
perspectives for the study of syntactic productivity
in line with the growing synergy between compu-
tational linguistics and other fields.
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Abstract

Many methods of text summarization
combining sentence selection and sen-
tence compression have recently been pro-
posed. Although the dependency between
words has been used in most of these
methods, the dependency between sen-
tences, i.e., rhetorical structures, has not
been exploited in such joint methods. We
used both dependency between words and
dependency between sentences by con-
structing a nested tree, in which nodes
in the document tree representing depen-
dency between sentences were replaced by
a sentence tree representing dependency
between words. We formulated a sum-
marization task as a combinatorial opti-
mization problem, in which the nested
tree was trimmed without losing impor-
tant content in the source document. The
results from an empirical evaluation re-
vealed that our method based on the trim-
ming of the nested tree significantly im-
proved the summarization of texts.

1 Introduction

Extractive summarization is one well-known ap-
proach to text summarization and extractive meth-
ods represent a document (or a set of documents)
as a set of some textual units (e.g., sentences,
clauses, and words) and select their subset as a
summary. Formulating extractive summarization
as a combinational optimization problem greatly
improves the quality of summarization (McDon-
ald, 2007; Filatova and Hatzivassiloglou, 2004;
Takamura and Okumura, 2009). There has re-
cently been increasing attention focused on ap-
proaches that jointly optimize sentence extraction
and sentence compression (Tomita et al., 2009;

Qian and Liu, 2013; Morita et al., 2013; Gillick
and Favre, 2009; Almeida and Martins, 2013;
Berg-Kirkpatrick et al., 2011). We can only ex-
tract important content by trimming redundant
parts from sentences.

However, as these methods did not include the
discourse structures of documents, the generated
summaries lacked coherence. It is important for
generated summaries to have a discourse struc-
ture that is similar to that of the source docu-
ment. Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988) is one way of introduc-
ing the discourse structure of a document to a
summarization task (Marcu, 1998; Daumé III and
Marcu, 2002; Hirao et al., 2013). Hirao et al.
recently transformed RST trees into dependency
trees and used them for single document summa-
rization (Hirao et al., 2013). They formulated the
summarization problem as a tree knapsack prob-
lem with constraints represented by the depen-
dency trees.

We propose a method of summarizing a single
document that utilizes dependency between sen-
tences obtained from rhetorical structures and de-
pendency between words obtained from a depen-
dency parser. We have explained our method with
an example in Figure 1. First, we represent a doc-
ument as a nested tree, which is composed of two
types of tree structures: a document tree and a
sentence tree. The document tree is a tree that has
sentences as nodes and head modifier relationships
between sentences obtained by RST as edges. The
sentence tree is a tree that has words as nodes
and head modifier relationships between words
obtained by the dependency parser as edges. We
can build the nested tree by regarding each node of
the document tree as a sentence tree. Finally, we
formulate the problem of single document sum-
marization as that of combinatorial optimization,
which is based on the trimming of the nested tree.
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John  was  running  on  a  track  in  the  park.

He  looks very tired. Mike  said  he  is  trainning  for  a  race.

The  race  is  held  on  next  month.

＊

  Source document                                   
John was running on a track in the park.
He looks very tired.
Mike said he is training for a race.
The race is held on next month.

  Summary                                              
John was running on a track.
he is training for a race. *
The race is held on next month.
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John  was  running  on  a  track  in  the  park.

He  looks very tired. Mike  said  he  is  training  for  a  race.

The  race  is  held  next  month.

＊

  Source document                                   
John was running on a track in the park.
He looks very tired.
Mike said he is training for a race.
The race is held next month.

  Summary                                              
John was running on a track.
he is training for a race. *
The race is held next month.

Figure 1: Overview of our method. The source document is represented as a nested tree. Our method
simultaneously selects a rooted document subtree and sentence subtree from each node.

Our method jointly utilizes relations between sen-
tences and relations between words, and extracts
a rooted document subtree from a document tree
whose nodes are arbitrary subtrees of the sentence
tree.

Elementary Discourse Units (EDUs) in RST are
defined as the minimal building blocks of dis-
course. EDUs roughly correspond to clauses.
Most methods of summarization based on RST use
EDUs as extraction textual units. We converted
the rhetorical relations between EDUs to the re-
lations between sentences to build the nested tree
structure. We could thus take into account both
relations between sentences and relations between
words.

2 Related work

Extracting a subtree from the dependency tree of
words is one approach to sentence compression
(Tomita et al., 2009; Qian and Liu, 2013; Morita
et al., 2013; Gillick and Favre, 2009). However,
these studies have only extracted rooted subtrees
from sentences. We allowed our model to extract
a subtree that did not include the root word (See
the sentence with an asterisk ∗ in Figure 1). The
method of Filippova and Strube (2008) allows the
model to extract non-rooted subtrees in sentence
compression tasks that compress a single sentence
with a given compression ratio. However, it is not
trivial to apply their method to text summariza-
tion because no compression ratio is given to sen-
tences. None of these methods use the discourse
structures of documents.

Daumé III and Marcu (2002) proposed a noisy-
channel model that used RST. Although their
method generated a well-organized summary, no
optimality of information coverage was guaran-
teed and their method could not accept large texts
because of the high computational cost. In addi-

- The scare over Alar, a growth regulator
- that makes apples redder and crunchier
- but may be carcinogenic,
- made consumers shy away from the Delicious,
- though they were less affected than the McIntosh.

Figure 2: Example of one sentence. Each line cor-
responds to one EDU.

tion, their method required large sets of data to cal-
culate the accurate probability. There have been
some studies that have used discourse structures
locally to optimize the order of selected sentences
(Nishikawa et al., 2010; Christensen et al., 2013).

3 Generating summary from nested tree

3.1 Building Nested Tree with RST

A document in RST is segmented into EDUs and
adjacent EDUs are linked with rhetorical relations
to build an RST-Discourse Tree (RST-DT) that has
a hierarchical structure of the relations. There are
78 types of rhetorical relations between two spans,
and each span has one of two aspects of a nu-
cleus and a satellite. The nucleus is more salient
to the discourse structure, while the other span, the
satellite, represents supporting information. RST-
DT is a tree whose terminal nodes correspond
to EDUs and whose nonterminal nodes indicate
the relations. Hirao et al. converted RST-DTs
into dependency-based discourse trees (DEP-DTs)
whose nodes corresponded to EDUs and whose
edges corresponded to the head modifier relation-
ships of EDUs. See Hirao et al. for details (Hirao
et al., 2013).

Our model requires sentence-level dependency.
Fortunately we can simply convert DEP-DTs to
obtain dependency trees between sentences. We
specifically merge EDUs that belong to the same
sentence. Each sentence has only one root EDU
that is the parent of all the other EDUs in the sen-
tence. Each root EDU in a sentence has the parent
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xi ≥ zij ; ∀i, j (4)∑mi
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j /∈Rc(i)

rij = 0; ∀i (7)

rij ≤ zij ; ∀i, j (8)

rij + zparent(i,j) ≤ 1; ∀i, j (9)

riroot(i) = ziroot(i); ∀i (10)∑
j∈sub(i) zij ≥ xi; ∀i (11)∑
j∈obj(i) zij ≥ xi; ∀i (12)

Figure 3: ILP formulation (xi, zij , rij ∈ {0, 1})

EDU in another sentence. Hence, we can deter-
mine the parent-child relations between sentences.
As a result, we obtain a tree that represents the
parent-child relations of sentences, and we can use
it as a document tree. After the document tree is
obtained, we use a dependency parser to obtain the
syntactic dependency trees of sentences. Finally,
we obtain a nested tree.

3.2 ILP formulation

Our method generates a summary by trimming a
nested tree. In particular, we extract a rooted docu-
ment subtree from the document tree, and sentence
subtrees from sentence trees in the document tree.
We formulate our problem of optimization in this
section as that of integer linear programming. Our
model is shown in Figure 3.

Let us denote by wij the term weight of word
ij (word j in sentence i). xi is a variable that
is one if sentence i is selected as part of a sum-
mary, and zij is a variable that is one if word ij
is selected as part of a summary. According to the
objective function, the score for the resulting sum-
mary is the sum of the term weights wij that are
included in the summary. We denote by rij the
variable that is one if word ij is selected as a root
of an extracting sentence subtree. Constraint (1)
guarantees that the summary length will be less
than or equal to limit L. Constraints (2) and (3)
are tree constraints for a document tree and sen-
tence trees. rij in Constraint (3) allows the system

to extract non-rooted sentence subtrees, as we pre-
viously mentioned. Function parent(i) returns the
parent of sentence i and function parent(i, j) re-
turns the parent of word ij. Constraint (4) guaran-
tees that words are only selected from a selected
sentence. Constraint (5) guarantees that each se-
lected sentence subtree has at least θ words. Func-
tion len(i) returns the number of words in sentence
i. Constraints (6)-(10) allow the model to extract
subtrees that have an arbitrary root node. Con-
straint (6) guarantees that there is only one root
per selected sentence. We can set the candidate
for the root node of the subtree by using constraint
(7). The Rc(i) returns a set of the nodes that are
the candidates of the root nodes in sentence i. It
returned the parser’s root node and the verb nodes
in this study. Constraint (8) maintains consistency
between zij and rij . Constraint (9) prevents the
system from selecting the parent node of the root
node. Constraint (10) guarantees that the parser’s
root node will only be selected when the system
extracts a rooted sentence subtree. The root(i) re-
turns the word index of the parser’s root. Con-
straints (11) and (12) guarantee that the selected
sentence subtree has at least one subject and one
object if it has any. The sub(i) and obj(i) return
the word indices whose dependency tag is “SUB”
and “OBJ”.

3.3 Additional constraint for grammaticality
We added two types of constraints to our model
to extract a grammatical sentence subtree from a
dependency tree:

zik = zil, (13)∑
k∈s(i,j)

zik = |s(i, j)|xi. (14)

Equation (13) means that words zik and zil have
to be selected together, i.e., a word whose depen-
dency tag is PMOD or VC and its parent word, a
negation and its parent word, a word whose de-
pendency tag is SUB or OBJ and its parent verb,
a comparative (JJR) or superlative (JJS) adjective
and its parent word, an article (a/the) and its par-
ent word, and the word “to” and its parent word.
Equation (14) means that the sequence of words
has to be selected together, i.e., a proper noun se-
quence whose POS tag is PRP$, WP%, or POS
and a possessive word and its parent word and the
words between them. The s(i, j) returns the set of
word indices that are selected together with word
ij.
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Table 1: ROUGE score of each model. Note that
the top two rows are both our proposals.

ROUGE-1
Sentence subtree 0.354
Rooted sentence subtree 0.352
Sentence selection 0.254
EDU selection (Hirao et al., 2013) 0.321
LEADEDU 0.240
LEADsnt 0.157

4 Experiment

4.1 Experimental Settings

We experimentally evaluated the test collection for
single document summarization contained in the
RST Discourse Treebank (RST-DTB) (Carlson et
al., 2001) distributed by the Linguistic Data Con-
sortium (LDC) 1. The RST-DTB Corpus includes
385 Wall Street Journal articles with RST anno-
tations, and 30 of these documents also have one
manually prepared reference summary. We set the
length constraint, L, as the number of words in
each reference summary. The average length of
the reference summaries corresponded to approxi-
mately 10% of the length of the source document.
This dataset was first used by Marcu et al. for
evaluating a text summarization system (Marcu,
1998). We used ROUGE (Lin, 2004) as an eval-
uation criterion.

We compared our method (sentence subtree)
with that of EDU selection (Hirao et al., 2013).
We examined two other methods, i.e., rooted sen-
tence subtree and sentence selection. These two
are different from our method in the way that they
select a sentence subtree. Rooted sentence subtree
only selects rooted sentence subtrees 2. Sentence
selection does not trim sentence trees. It simply
selects full sentences from a document tree3. We
built all document trees from the RST-DTs that
were annotated in the corpus.

We set the term weight, wij , for our model as:

wij =
log(1 + tfij)

depth(i)2
, (15)

where tfij is the term frequency of word ij in a
document and depth(i) is the depth of sentence

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2002T07

2We achieved this by making Rc(i) only return the
parser’s root node in Figure 7.

3We achieved this by setting θ to a very large number.

i within the sentence-level DEP-DT that we de-
scribed in Section 3.1. For Constraint (5), we set
θ to eight.

4.2 Results and Discussion

4.2.1 Comparing ROUGE scores

We have summarized the Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) scores for
each method in Table 1. The score for sentence
selection is low (0.254). However, introducing
sentence compression to the system greatly im-
proved the ROUGE score (0.354). The score is
also higher than that with EDU selection, which
is a state-of-the-art method. We applied a multi-
ple test by using Holm’s method and found that
our method significantly outperformed EDU se-
lection and sentence selection. The difference be-
tween the sentence subtree and the rooted sentence
subtree methods was fairly small. We therefore
qualitatively analyzed some actual examples that
will be discussed in Section 4.2.2. We also exam-
ined the ROUGE scores of two LEAD4 methods
with different textual units: EDUs (LEADEDU)
and sentences (LEADSNT). Although LEAD
works well and often obtains high ROUGE scores
for news articles, the scores for LEADEDU and
LEADSNT were very low.

4.2.2 Qualitative Evaluation of Sentence
Subtree Selection

This subsection compares the methods of subtree
selection and rooted subtree selection. Figure 4
has two example sentences for which both meth-
ods selected a subtree as part of a summary. The
{·} indicates the parser’s root word. The [·] indi-
cates the word that the system selected as the root
of the subtree. Subtree selection selected a root in
both examples that differed from the parser’s root.
As we can see, subtree selection only selected im-
portant subtrees that did not include the parser’s
root, e.g., purpose-clauses and that-clauses. This
capability is very effective because we have to
contain important content in summaries within
given length limits, especially when the compres-
sion ratio is high (i.e., the method has to gener-
ate much shorter summaries than the source docu-
ments).

4LEAD methods simply take the first K textual units from
a source document until the summary length reaches L.
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Original sentence : John Kriz, a Moody’s vice president, {said} Boston Safe Deposit’s performance has been
hurt this year by a mismatch in the maturities of its assets and liabilities.

Rooted subtree selection : John Kriz a Moody’s vice president [{said}] Boston Safe Deposit’s performance has been
hurt this year

Subtree selection : Boston Safe Deposit’s performance has [been] hurt this year
Original sentence : Recent surveys by Leo J. Shapiro & Associates, a market research firm in Chicago,

{suggest} that Sears is having a tough time attracting shoppers because it hasn’t yet done
enough to improve service or its selection of merchandise.

Rooted subtree selection : surveys [{suggest}] that Sears is having a time
Subtree selection : Sears [is] having a tough time attracting shoppers

Figure 4: Example sentences and subtrees selected by each method.

Table 2: Average number of words that individual
extracted textual units contained.

Subtree Sentence EDU
15.29 18.96 9.98

4.2.3 Fragmentation of Information

Many studies that have utilized RST have simply
adopted EDUs as textual units (Mann and Thomp-
son, 1988; Daumé III and Marcu, 2002; Hirao et
al., 2013; Knight and Marcu, 2000). While EDUs
are textual units for RST, they are too fine grained
as textual units for methods of extractive summa-
rization. Therefore, the models have tended to se-
lect small fragments from many sentences to max-
imize objective functions and have led to frag-
mented summaries being generated. Figure 2 has
an example of EDUs. A fragmented summary
is generated when small fragments are selected
from many sentences. Hence, the number of sen-
tences in the source document included in the re-
sulting summary can be an indicator to measure
the fragmentation of information. We counted
the number of sentences in the source document
that each method used to generate a summary5.
The average for our method was 4.73 and its me-
dian was four sentences. In contrast, methods
of EDU selection had an average of 5.77 and a
median of five sentences. This meant that our
method generated a summary with a significantly
smaller number of sentences6. In other words, our
method relaxed fragmentation without decreasing
the ROUGE score. There are boxplots of the num-
bers of selected sentences in Figure 5. Table 2 lists
the number of words in each textual unit extracted
by each method. It indicates that EDUs are shorter
than the other textual units. Hence, the number of
sentences tends to be large.

5Note that the number for the EDU method is not equal to
selected textual units because a sentence in the source docu-
ment may contain multiple EDUs.

6We used the Wilcoxon signed-rank test (p < 0.05).

John  was  running  on  a  track  in  the  park.

He  looks very tired. Mike  said  he  is  trainning  for  a  race.

The  race  is  held  on  next  month.

  Source document                                   
John was running on a track in the park.
He looks very tired.
Mike said he is training for a race.
The race is held on next month.

  Summary                                              
John was running on a track.
he is training for a race.
The race is held on next month.
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Figure 5: Number of sentences that each method
selected.

5 Conclusion

We proposed a method of summarizing a sin-
gle document that included relations between sen-
tences and relations between words. We built a
nested tree and formulated the problem of summa-
rization as that of integer linear programming. Our
method significantly improved the ROUGE score
with significantly fewer sentences than the method
of EDU selection. The results suggest that our
method relaxed the fragmentation of information.
We also discussed the effectiveness of sentence
subtree selection that did not restrict rooted sub-
trees. Although ROUGE scores are widely used
as evaluation metrics for text summarization sys-
tems, they cannot take into consideration linguis-
tic qualities such as human readability. Hence, we
plan to conduct evaluations with people7.

We only used the rhetorical structures between
sentences in this study. However, there were also
rhetorical structures between EDUs inside individ-
ual sentences. Hence, utilizing these for sentence
compression has been left for future work. In addi-
tion, we used rhetorical structures that were man-
ually annotated. There have been related studies
on building RST parsers (duVerle and Prendinger,
2009; Hernault et al., 2010) and by using such
parsers, we should be able to apply our model to
other corpora or to multi-document settings.

7For example, the quality question metric from the Docu-
ment Understanding Conference (DUC).
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Abstract
As students read expository text, compre-
hension is improved by pausing to answer
questions that reinforce the material. We
describe an automatic question generator
that uses semantic pattern recognition to
create questions of varying depth and type
for self-study or tutoring. Throughout, we
explore how linguistic considerations in-
form system design. In the described sys-
tem, semantic role labels of source sen-
tences are used in a domain-independent
manner to generate both questions and an-
swers related to the source sentence. Eval-
uation results show a 44% reduction in the
error rate relative to the best prior systems,
averaging over all metrics, and up to 61%
reduction in the error rate on grammatical-
ity judgments.

1 Introduction

Studies of student learning show that answering
questions increases depth of student learning, fa-
cilitates transfer learning, and improves students’
retention of material (McDaniel et al., 2007; Car-
penter, 2012; Roediger and Pyc, 2012). The aim
of this work is to automatically generate questions
for such pedagogical purposes.

2 Related Work

Approaches to automatic question generation from
text span nearly four decades. The vast ma-
jority of systems generate questions by select-
ing one sentence at a time, extracting portions
of the source sentence, then applying transfor-
mation rules or patterns in order to construct a
question. A well-known early work is Wolfe’s
AUTOQUEST (Wolfe, 1976), a syntactic pattern
matching system. A recent approach from Heil-
man and Smith (2009, 2010) uses syntactic pars-
ing and transformation rules to generate questions.

Syntactic, sentence-level approaches outnumber
other approaches as seen in the Question Gen-
eration Shared Task Evaluation Challenge 2010
(Boyer and Piwek, 2010) which received only one
paragraph-level, semantic entry. Argawal, Shah
and Mannem (2011) continue the paragraph-level
approach using discourse cues to find appropriate
text segments upon which to construct questions
at a deeper conceptual level. The uniqueness of
their work lies in their use of discourse cues to
extract semantic content for question generation.
They generate questions of types: why, when, give
an example, and yes/no.

In contrast to the above systems, other ap-
proaches have an intermediate step of transform-
ing input into some sort of semantic represen-
tation. Examples of this intermediate step can
be found in Yao and Zhang (2010) which uses
Minimal Recursive Semantics, and in Olney et
al. (2012) which uses concept maps. These ap-
proaches can potentially ask deeper questions due
to their focus on semantics. A novel question gen-
erator by Curto et al. (2012) leverages lexico-
syntactic patterns gleaned from the web with seed
question-answer pairs.

Another recent approach is Lindberg et al.
(2013), which used semantic role labeling to iden-
tify patterns in the source text from which ques-
tions can be generated. This work most closely
parallels our own with a few exceptions: our sys-
tem only asks questions that can be answered
from the source text, our approach is domain-
independent, and the patterns also identify the an-
swer to the question.

3 Approach

The system consists of a straightforward pipeline.
First, the source text is divided into sentences
which are processed by SENNA1 software, de-

1http://ml.nec-labs.com/senna/
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scribed in (Collobert et al., 2011). SENNA pro-
vides the tokenizing, pos tagging, syntactic con-
stituency parsing and semantic role labeling used
in the system. SENNA produces separate seman-
tic role labels for each predicate in the sentence.
For each predicate and its associated semantic ar-
guments, a matcher function is called which will
return a list of patterns that match the source sen-
tence’s predicate-argument structure. Then ques-
tions are generated and stored by question type in
a question hash table.

Generation patterns specify the text, verb forms
and semantic arguments from the source sentence
to form the question. Additionally, patterns indi-
cate the semantic arguments that provide the an-
swer to the question, required fields, and filter con-
dition fields. As these patterns are matched, they
will be rejected as candidates for generation for a
particular sentence if the required arguments are
absent or if filter conditions are present. For ex-
ample, a filter for personal pronouns will prevent
a question being generated with an argument that
starts with a personal pronoun. From: It means
that the universe is expanding, we do not want to
generate a vague question such as: What does it
mean? Coreference resolution, which could help
avoid vague question generation, is discussed in
Section 5. Table 1 shows selected required and fil-
ter fields, Section 3.3 gives examples of their use.

Patterns specify whether verbs should be in-
cluded in their lexical form or as they appear in the
source text. Either form will include subsequent
particles such as: The lungs take in air. The most
common use of the verb as it appears in the sen-
tence is with the verb be, as in: What were fused
into helium nuclei? This pattern takes the copu-
lar be as it appears in the source text. However,
most patterns use the lexical form of the main verb
along with the appropriate form of the auxiliary do
(do, does, did), for the subject-auxiliary inversion
required in forming interrogatives.

3.1 Pattern Authoring

The system at the time of this evaluation had 42
patterns. SENNA uses the 2005 PropBank cod-
ing scheme and we followed the documentation in
(Babko-Malaya, 2005) for the patterns. The most
commonly used semantic roles are A0, A1 and A2,
as well as the ArgM modifiers. 2

2Within PropBank, the precise roles of A0 - A6 vary by
predicate.

Field Meaning
Ax Sentence must contain an Ax
!Ax Sentence must not contain an Ax
AxPER Ax must refer to a person
AxGER Ax must contain a gerund
AxNN Ax must contain nouns
!AxIN Ax cannot start with a preposition
!AxPRP Ax cannot start with per. pronoun
V=verb Verb must be a form of verb
!be Verb cannot be a form of be
negation Sentence cannot contain negation

Table 1: Selected required and filter fields (Ax is a
semantic argument such as A0 or ArgM)

3.2 Software Tools and Source Text

The system was created using SENNA and
Python. Importing NLTK within Python provides
a simple interface to WordNet from which we de-
termine the lexical form of verbs. SENNA pro-
vided all the necessary processing of the data,
quickly, accurately and in one run.

In order to generate questions, passages were
selected from science textbooks downloaded from
www.ck12.org. Textbooks were chosen rather
than hand-crafted source material so that a more
realistic assessment of performance could be
achieved. For the experiments in this paper, we
selected three passages from the subjects of bi-
ology, chemistry, and earth science, filtering out
references to equations and figures. The passages
average around 60 sentences each, and represent
chapter sections. The average grade level is ap-
proximately grade 10 as indicated by the on-line
readability scorer read-able.com.

3.3 Examples

Table 2 provides examples of generated questions.
The pattern that generated Question 1 requires ar-
gument A1 (underlined in Table 2) and a causation
ArgM (italicized). The pattern also filters out sen-
tences with A0 or A2. The patterns are designed
to match only the arguments used as part of the
question or the answer, in order to prevent over
generation of questions. The system inserted the
correct forms of release and do, and ignored the
phrase As this occurs since it is not part of the se-
mantic argument.

The pattern that generated Question 2 requires
A0, A1 and a verb whose lexical form is mean
(V=mean in Table 1). In this pattern, A1 (itali-

322



Question 1: Why did potential energy release?
Answer: because the new bonds have lower potential energy than the original bonds
Source: As this occurs, potential energy is released because the new bonds have lower potential
energy than the original bonds.
Question 2: What does an increased surface area to volume ratio indicate?
Answer: increased exposure to the environment
Source: An increased surface area to volume ratio means increased exposure to the environment.
Question 3: What is another term for electrically neutral particles?
Answer: neutrons
Source: The nucleus contains positively charged particles called protons and
electrically neutral particles called neutrons.

Question 4: What happens if you continue to move atoms closer and closer together?
Answer: eventually the two nuclei will begin to repel each other
Source: If you continue to move atoms closer and closer together, eventually the two nuclei will
begin to repel each other.

Table 2: Selected generated questions with source sentences

cized) forms the answer and A0 (underlined) be-
comes part of the question along with the appro-
priate form of do. This pattern supplies the word
indicate instead of the source text’s mean which
broadens the question context.

Question 3 is from the source sentence’s 3rd
predicate-argument set because this matched the
pattern requirements: A1, A2, V=call. The answer
is the text from the A2 argument. The ability to
generate questions from any predicate-argument
set means that sentence simplification is not re-
quired as a preprocessing step, and that the sen-
tence can match multiple patterns. For example,
this sentence could also match patterns to gener-
ate questions such as: What are positively charged
particles called? or Describe the nucleus.

Question 4 requires A1 and an ArgM that in-
cludes the discourse cue if. The ArgM (under-
lined) becomes part of the question, while the rest
of the source sentence forms the answer. This pat-
tern also requires that ArgM contain nouns (AxNN
from Table 1), which helps filter vague questions.

4 Results

This paper focuses on evaluating generated ques-
tions primarily in terms of their linguistic quality,
as did Heilman and Smith (2010a). In a related
work (Mazidi and Nielsen, 2014) we evaluated
the quality of the questions and answers from a
pedagogical perspective, and our approach outper-
formed comparable systems in both linguistic and
pedagogical evaluations. However, the task here
is to explore the linguistic quality of generated

questions. The annotators are university students
who are science majors and native speakers of En-
glish. Annotators were given instructions to read a
paragraph, then the questions based on that para-
graph. Two annotators evaluated each set of ques-
tions using Likert-scale ratings from 1 to 5, where
5 is the best rating, for grammaticality, clarity, and
naturalness. The average inter-annotator agree-
ment, allowing a difference of one between the
annotators’ ratings was 88% and Pearson’s r=0.47
was statistically significant (p<0.001), suggesting
a high correlation and agreement between annota-
tors. The two annotator ratings were averaged for
all the evaluations reported here.

We present results on three linguistic evalua-
tions: (1) evaluation of our generated questions,
(2) comparison of our generated questions with
those from Heilman and Smith’s question gener-
ator, and (3) comparison of our generated ques-
tions with those from Lindberg, Popowich, Nesbit
and Winne. We compared our system to the H&S
and LPN&W systems because they produce ques-
tions that are the most similar to ours, and for the
same purpose: reading comprehension reinforce-
ment. The Heilman and Smith system is available
online;3 Lindberg graciously shared his code with
us.

4.1 Evaluation of our Generated Questions

This evaluation was conducted with one file
(Chemistry: Bonds) which had 59 sentences, from
which the system generated 142 questions. The

3http://www.ark.cs.cmu.edu/mheilman/questions/
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purpose of this evaluation was to determine if any
patterns consistently produce poor questions. The
average linguistics score per pattern in this evalu-
ation was 5.0 to 4.18. We were also interested to
know if first predicates make better questions than
later ones. The average score by predicate position
is shown in Table 3. Note that the Rating column
gives the average of the grammaticality, clarity and
naturalness scores.

Predicate Questions Rating
First 58 4.7
Second 35 4.7
Third 23 4.5
Higher 26 4.6

Table 3: Predicate depth and question quality

Based on this sample of questions there is
no significant difference in linguistic scores for
questions generated at various predicate positions.
Some question generation systems simplify com-
plex sentences in initial stages of their system. In
our approach this is unnecessary, and simplifying
could miss many valid questions.

4.2 Comparison with Heilman and Smith
This task utilized a file (Biology: the body) with
56 source sentences from which our system gener-
ated 102 questions. The Heilman and Smith sys-
tem, as they describe it, takes an over-generate and
rank approach. We only took questions that scored
a 2.0 or better with their ranking system,4 which
resulted in less than 27% of their top questions.
In all, 84 of their questions were evaluated. The
questions again were presented with accompany-
ing paragraphs of the source text. Questions from
the two systems were randomly intermingled. An-
notators gave 1 - 5 scores for each category of
grammaticality, clarity and naturalness.

As seen in Table 4, our results represent a 44%
reduction in the error rate relative to Heilman and
Smith on the average rating over all metrics, and
as high as 61% reduction in the error rate on gram-
maticality judgments. The error reduction calcu-
lation is shown below. Note that rating∗ is the
maximum rating of 5.0.

ratingsystem2 − ratingsystem1

rating∗ − ratingsystem1
× 100.0 (1)

4In our experiments, their rankings ranged from very
small negative numbers to 3.0.

System Gram Clarity Natural Avg
H&S 4.38 4.13 3.94 4.15
M&N 4.76 4.26 4.53 4.52
Err. Red. 61% 15% 56% 44%

Table 4: Comparison with Heilman and Smith

System Gram Clarity Natural Avg
LPN&W 4.57 4.56 4.55 4.57
M&N 4.80 4.69 4.78 4.76
Err. Red. 54% 30% 51% 44%

Table 5: Comparison with Lindberg et al.

4.3 Comparison with Lindberg et al.

For a comparison with the Lindberg, Popowich,
Nesbit and Winne system we used a file (Earth
science: weather fronts) that seemed most sim-
ilar to the text files for which their system was
designed. The file has 93 sentences and our sys-
tem generated 184 questions; the LPN&W sys-
tem generated roughly 4 times as many questions.
From each system, 100 questions were randomly
selected, making sure that the LPN&W questions
did not include questions generated from domain-
specific templates such as: Summarize the influ-
ence of the maximum amount on the environment.
The phrases Summarize the influence of and on
the environment are part of a domain-specific tem-
plate. The comparison results are shown in Table
5. Interestingly, our system again achieved a 44%
reduction in the error rate when averaging over all
metrics, just as it did in the Heilman and Smith
comparison.

5 Linguistic Challenges

Natural language generation faces many linguistic
challenges. Here we briefly describe three chal-
lenges: negation detection, coreference resolution,
and verb forms.

5.1 Negation Detection

Negation detection is a complicated task because
negation can occur at the word, phrase or clause
level, and because there are subtle shades of nega-
tion between definite positive and negative polar-
ities (Blanco and Moldovan, 2011). For our pur-
poses we focused on negation as identified by the
NEG label in SENNA which identified not in verb
phrases. We have left for future work the task of
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identifying other negative indicators, which occa-
sionally does lead to poor question/answer quality
as in the following:

Source sentence: In Darwin’s time and to-
day, many people incorrectly believe that evolu-
tion means humans come from monkeys.

Question: What does evolution mean?
Answer: that humans come from monkeys
The negation in the word incorrectly is not iden-

tified.

5.2 Coreference Resolution

Currently, our system does not use any type of
coreference resolution. Experiments with existing
coreference software performed well only for per-
sonal pronouns, which occur infrequently in most
expository text. Not having coreference resolution
leads to vague questions, some of which can be
filtered as discussed previously. However, further
work on filters is needed to avoid questions such
as:

Source sentence: Air cools when it comes into
contact with a cold surface or when it rises.

Question: What happens when it comes into
contact with a cold surface or when it rises?

Heilman and Smith chose to filter out ques-
tions with personal pronouns, possessive pronouns
and noun phrases composed simply of determiners
such as those. Lindberg et al. used the emPronoun
system from Charniak and Elsner, which only han-
dles personal pronouns. Since current state-of-the-
art systems do not deal well with relative and pos-
sessive pronouns, this will continue to be a limi-
tation of natural language generation systems for
the time being.

5.3 Verb Forms

Since our focus is on expository text, system pat-
terns deal primarily with the present and simple
past tenses. Some patterns look for modals and so
can handle future tense:

Source sentence: If you continue to move
atoms closer and closer together, eventually the
two nuclei will begin to repel each other.

Question: Discuss what the two nuclei will re-
pel.

Light verbs pose complications in NLG because
they are highly idiosyncratic and subject to syn-
tactic variability (Sag et al., 2002). Light verbs
can either carry semantic meaning (take your pass-
port) or can be bleached of semantic content when

combined with other words as in: make a deci-
sion, have a drink, take a walk. Common English
verbs that can be light verbs include give, have,
make, take. Handling these constructions as well
as other multi-word expressions may require both
rule-based and statistical approaches. The catena-
tive construction also potentially adds complexity
(Huddleston and Pullum, 2005), as shown in this
example: As the universe expanded, it became less
dense and began to cool. Care must be taken not
to generate questions based on one predicate in the
catenative construction.

We are also hindered at times by the perfor-
mance of the part of speech tagging and parsing
software. The most common error observed was
confusion between the noun and verb roles of a
word. For example in: Plant roots and bacterial
decay use carbon dioxide in the process of respira-
tion, the word use was classified as NN, leaving no
predicate and no semantic role labels in this sen-
tence.

6 Conclusions

Roediger and Pyc (2012) advocate assisting stu-
dents in building a strong knowledge base be-
cause creative discoveries are unlikely to occur
when students do not have a sound set of facts
and principles at their command. To that end, au-
tomatic question generation systems can facilitate
the learning process by alternating passages of text
with questions that reinforce the material learned.

We have demonstrated a semantic approach to
automatic question generation that outperforms
similar systems. We evaluated our system on
text extracted from open domain STEM textbooks
rather than hand-crafted text, showing the robust-
ness of our approach. Our system achieved a 44%
reduction in the error rate relative to both the Heil-
man and Smith, and the Lindberg et al. system on
the average over all metrics. The results shows are
statistically significant (p<0.001). Our question
generator can be used for self-study or tutoring,
or by teachers to generate questions for classroom
discussion or assessment. Finally, we addressed
linguistic challenges to question generation.
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Abstract

We propose two polynomial time infer-
ence algorithms to compress sentences un-
der bigram and dependency-factored ob-
jectives. The first algorithm is exact and
requires O(n6) running time. It extend-
s Eisner’s cubic time parsing algorithm
by using virtual dependency arcs to link
deleted words. Two signatures are added
to each span, indicating the number of
deleted words and the rightmost kept word
within the span. The second algorithm is
a fast approximation of the first one. It re-
laxes the compression ratio constraint us-
ing Lagrangian relaxation, and thereby re-
quires O(n4) running time. Experimental
results on the popular sentence compres-
sion corpus demonstrate the effectiveness
and efficiency of our proposed approach.

1 Introduction

Sentence compression aims to shorten a sentence
by removing uninformative words to reduce read-
ing time. It has been widely used in compres-
sive summarization (Liu and Liu, 2009; Li et al.,
2013; Martins and Smith, 2009; Chali and Hasan,
2012; Qian and Liu, 2013). To make the com-
pressed sentence readable, some techniques con-
sider the n-gram language models of the com-
pressed sentence (Clarke and Lapata, 2008; Mc-
Donald, 2006). Recent studies used a subtree dele-
tion model for compression (Berg-Kirkpatrick et
al., 2011; Morita et al., 2013; Qian and Liu, 2013),
which deletes a word only if its modifier in the
parse tree is deleted. Despite its empirical suc-
cess, such a model fails to generate compressions
that are not subject to the subtree constraint (see
Figure 1). In fact, we parsed the Edinburgh sen-
tence compression corpus using the MSTparser1,

1http://sourceforge.net/projects/mstparser/

Warren says the economy continues the steady improvementROOT

Warren says steadythe economy continues the improvementROOT

Figure 1: The compressed sentence is not a sub-
tree of the original sentence. Words in gray are
removed.

and found that 2561 of 5379 sentences (47.6%) do
not satisfy the subtree deletion model.

Methods beyond the subtree model are also ex-
plored. Trevor et al. proposed synchronous tree
substitution grammar (Cohn and Lapata, 2009),
which allows local distortion of the tree topolo-
gy and can thus naturally capture structural mis-
matches. (Genest and Lapalme, 2012; Thadani
and McKeown, 2013) proposed the joint compres-
sion model, which simultaneously considers the n-
gram model and dependency parse tree of the com-
pressed sentence. However, the time complexity
greatly increases since the parse tree dynamical-
ly depends on the compression. They used Integer
Linear Programming (ILP) for inference which re-
quires exponential running time in the worst case.

In this paper, we propose a new exact decod-
ing algorithm for the joint model using dynam-
ic programming. Our method extends Eisner’s
cubic time parsing algorithm by adding signa-
tures to each span, which indicate the number of
deleted words and the rightmost kept word with-
in the span, resulting in O(n6) time complexity
and O(n4) space complexity. We further propose a
faster approximate algorithm based on Lagrangian
relaxation, which has TO(n4) running time and
O(n3) space complexity (T is the iteration num-
ber in the subgradient decent algorithm). Experi-
ments on the popular Edinburgh dataset show that
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tion. In this example, words x2, xi, xi+1, xj are
kept, others are deleted. The value of the ob-
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the proposed approach is 10 times faster than a
high-performance commercial ILP solver.

2 Task Definition

We define the sentence compression task as: given
a sentence composed of n words, x = x1, . . . , xn,
and a length L ≤ n, we need to remove (n − L)
words from x, so that the sum of the weights of
the dependency tree and word bigrams of the re-
maining part is maximized. Formally, we solve
the following optimization problem:

max
z,y

∑
i

wtok
i zi +

∑
i,j

w
dep
ij zizjyij (1)

+
∑
i<j

w
bgr
ij zizj

∏
i<k<j

(1− zk)

s.t. z is binary ,
∑

i

zi = L

y is a projective parse tree over the

subgraph: {xi|zi = 1}

where z is a binary vector, zi indicates xi is kep-
t or not. y is a square matrix denoting the pro-
jective dependency parse tree over the remaining
words, yij indicates if xi is the head of xj (note
that each word has exactly one head). wtok

i is the
informativeness of xi, w

bgr
ij is the score of bigram

xixj in an n-gram model, wdep is the score of de-
pendency arc xi → xj in an arc-factored depen-
dency parsing model. Hence, the first part of the
objective function is the total score of the kep-
t words, the second and third parts are the scores
of the parse tree and bigrams of the compressed
sentence, zizj

∏
i<k<j(1− zk) = 1 indicates both

xi and xj are kept, and are adjacent after compres-
sion. A graph illustration of the objective function
is shown in Figure 2.

Warren says steadythe economy continues the improvementROOT

Figure 3: Connect deleted words using virtual arc-
s.

3 Proposed Method

3.1 Eisner’s Cubic Time Parsing Algorithm

Throughout the paper, we assume that all the parse
trees are projective. Our method is a generaliza-
tion of Eisner’s dynamic programming algorithm
(Eisner, 1996), where two types of structures are
used in each iteration, incomplete spans and com-
plete spans. A span is a subtree over a number of
consecutive words, with the leftmost or the right-
most word as its root. An incomplete span denoted
as Ii

j is a subtree inside a single arc xi → xj , with
root xi. A complete span is denoted as Ci

j , where
xi is the root of the subtree, and xj is the furthest
descendant of xi.

Eisner’s algorithm searches the optimal tree in
a bottom up order. In each step, it merges two
adjacent spans into a larger one. There are two
rules for merging spans: one merges two complete
spans into an incomplete span, the other merges an
incomplete span and a complete span into a large
complete span.

3.2 Exact O(n6) Time Algorithm

First we consider an easy case, where the bigram
scores w

bgr
ij in the objective function are ignored.

The scores of unigrams wtok
i can be transfered

to the dependency arcs, so that we can remove al-
l linear terms wtok

i zi from the objective function.
That is: ∑

i

wtok
i zi +

∑
i,j

w
dep
ij zizjyij

=
∑
i,j

(wdep
ij + wtok

j )zizjyij

This can be easily verifed. If zj = 0, then in both
equations, all terms having zj are zero; If zj = 1,
i.e., xj is kept, since it has exactly one head word
xk in the compressed sentence, the sum of the
terms having zj is wtok

j + w
dep
kj for both equations.

Therefore, we only need to consider the scores
of arcs. For any compressed sentence, we could
augment its dependency tree by adding a virtual
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Figure 4: Merging rules for dependency-factored
sentence compression. Incomplete spans and
complete spans are represented by trapezoids and
triangles respectively.

arc i− 1 → i for each deleted word xi. If the first
word x1 is deleted, we connect it to the root of the
parse tree x0, as shown in Figure 3. In this way,
we derive a full parse tree of the original sentence.
This is a one-to-one mapping. We can reversely
get the the compressed parse tree by removing all
virtual arcs from the full parse tree. We restrict
the score of all the virtual arcs to be zero, so that
scores of the two parse trees are equivalent.

Now the problem is to search the optimal full
parse tree with n− L virtual arcs.

We modify Eisner’s algorithm by adding a sig-
nature to each span indicating the number of vir-
tual arcs within the span. Let Ii

j(k) and Ci
j(k)

denote the incomplete and complete spans with k
virtual arcs respectively. When merging two span-
s, there are 4 cases, as shown in Figure 4.

• Case 1 Link two complete spans by a virtual
arc : Ii

i+1(1) = Ci
i (0) + Ci+1

i+1 (0).

The two complete spans must be single word-
s, as the length of the virtual arc is 1.

• Case 2 Link two complete spans by a non-
virtual arc: Ii

j(k) = Ci
r(k

′)+Cj
r+1(k

′′), k′ +
k′′ = k.

• Case 3 Merge an incomplete span and a com-
plete span. The incomplete span is covered
by a virtual arc: Ii

j(j − i) = Ii
i+1(1) +

Ci+1
j (j − i − 1). The number of the virtu-

al arcs within Ci+1
j must be j − i − 1, since

the descendants of the modifier of a virtual
arc xj must be removed.

• Case 4 Merge an incomplete span and a com-
plete span. The incomplete span is covered
by a non-virtual arc: Ci

j(k) = Ii
r(k

′) +
Cr

j (k′′), k′ + k′′ = k.

The score of the new span is the sum of the two
spans. For case 2, the weight of the dependency
arc i → j, w

dep
ij is also added to the final score.

The root node is allowed to have two modifiers:
one is the modifier in the compressed sentence, the
other is the first word if it is removed.

For each combination, the algorithm enumer-
ates the number of virtual arcs in the left and right
spans, and the split position (e.g., k′, k′′, r in case
2), thus it takes O(n3) running time. The overall
time complexity is O(n5) and the space complex-
ity is O(n3).

Next, we consider the bigram scores. The fol-
lowing proposition is obvious.

Proposition 1. For any right-headed span Ii
j or

Ci
j , i > j, words xi, xj must be kept.

Proof. Suppose xj is removed, there must be a vir-
tual arc j− 1 → j which is a conflict with the fact
that xj is the leftmost word. As xj is a descendant
of xi, xi must be kept.

When merging two spans, a new bigram is cre-
ated, which connects the rightmost kept words in
the left span and the leftmost kept word in the right
span. According to the proposition above, if the
right span is right-headed, its leftmost word is kep-
t. If the right span is left-headed, there are two
cases: its leftmost word is kept, or no word in the
span is kept. In any case, we only need to consider
the leftmost word in the right span.

Let Ii
j(k, p) and Ci

j(k, p) denote the single and
complete span with k virtual arcs and the right-
most kept word xp. According to the proposition
above, we have, for any right-headed span p = i.

We slightly modify the two merging rules
above, and obtain:

• Case 2’ Link two complete spans by a
non-virtual arc: Ii

j(k, j) = Ci
r(k

′, p) +
Cj

r+1(k
′′, j), k′ + k′′ = k. The score of the

new span is the sum of the two spans plus
w

dep
ij + w

bgr
p,r+1.
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• Case 4’ Merge an incomplete span and a
complete span. The incomplete span is cov-
ered by a non-virtual arc. For left-headed
spans, the rule is Ci

j(k, q) = Ii
r(k

′, p) +
Cr

j (k′′, q), k′ + k′′ = k, and the score of
the new span is the sum of the two span-
s plus w

bgr
pr ; for right-headed spans, the rule

is Ci
j(k, i) = Ii

r(k
′, i) + Cr

j (k′′, r), and the
score of the new span is the sum of the two
spans.

The modified algorithm requires O(n6) running
time and O(n4) space complexity.

3.3 Approximate O(n4) Time Algorithm

In this section, we propose an approximate algo-
rithm where the length constraint

∑
i zi = L is re-

laxed by Lagrangian Relaxation. The relaxed ver-
sion of Problem (1) is

min
λ

max
z,y

∑
i

wtok
i zi +

∑
i,j

w
dep
ij zizjyij (2)

+
∑
i<j

w
bgr
ij zizj

∏
i<k<j

(1− zk)

+λ(
∑

i

zi − L)

s.t. z is binary

y is a projective parse tree over the

subgraph: {xi|zi = 1}

Fixing λ, the optimal z,y can be found using a
simpler version of the algorithm above. We drop
the signature of the virtual arc number from each
span, and thus obtain an O(n4) time algorithm. S-
pace complexity is O(n3). Fixing z,y, the dual
variable is updated by

λ = λ + α(L−
∑

i

zi)

where α > 0 is the learning rate. In this paper, our
choice of α is the same as (Rush et al., 2010).

4 Experiments

4.1 Data and Settings

We evaluate our method on the data set from
(Clarke and Lapata, 2008). It includes 82
newswire articles with manually produced com-
pression for each sentence. We use the same par-
titions as (Martins and Smith, 2009), i.e., 1,188
sentences for training and 441 for testing.

Our model is discriminative – the scores of
the unigrams, bigrams and dependency arcs are
the linear functions of features, that is, wtok

i =
vT f(xi), where f is the feature vector of xi, and v
is the weight vector of features. The learning task
is to estimate the feature weight vector based on
the manually compressed sentences.

We run a second order dependency parser
trained on the English Penn Treebank corpus to
generate the parse trees of the compressed sen-
tences. Then we augment these parse trees by
adding virtual arcs and get the full parse trees
of their corresponding original sentences. In this
way, the annoation is transformed into a set of
sentences with their augmented parse trees. The
learning task is similar to training a parser. We run
a CRF based POS tagger to generate POS related
features.

We adopt the compression evaluation metric as
used in (Martins and Smith, 2009) that measures
the macro F-measure for the retained unigrams
(Fugr), and the one used in (Clarke and Lapata,
2008) that calculates the F1 score of the grammat-
ical relations labeled by RASP (Briscoe and Car-
roll, 2002).

We compare our method with other 4 state-of-
the-art systems. The first is linear chain CRFs,
where the compression task is casted as a bina-
ry sequence labeling problem. It usually achieves
high unigram F1 score but low grammatical rela-
tion F1 score since it only considers the local inter-
dependence between adjacent words. The second
is the subtree deletion model (Berg-Kirkpatrick et
al., 2011) which is solved by integer linear pro-
gramming (ILP)2. The third one is the bigram
model proposed by McDonald (McDonald, 2006)
which adopts dynamic programming for efficient
inference. The last one jointly infers tree struc-
tures alongside bigrams using ILP (Thadani and
McKeown, 2013). For fair comparison, system-
s were restricted to produce compressions that
matched their average gold compression rate if
possible.

4.2 Features

Three types of features are used to learn our mod-
el: unigram features, bigram features and depen-
dency features, as shown in Table 1. We also use
the in-between features proposed by (McDonald et

2We use Gurobi as the ILP solver in the paper.
http://www.gurobi.com/
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Features for unigram xi

wi−2, wi−1, wi, wi+1, wi+2

ti−2, ti−1, ti, ti+1, ti+2

witi

wi−1wi, wiwi+1

ti−2ti−1, ti−1ti, titi+1, ti+1ti+2

ti−2ti−1ti, ti−1titi+1, titi+1ti+2

whether wi is a stopword
Features for selected bigram xixj

distance between the two words: j − i
wiwj , wi−1wj , wi+1wj , wiwj−1, wiwj+1

titj , ti−1tj , ti+1tj , titj−1, titj+1

Concatenation of the templates above
{titktj |i < k < j}
Dependency Features for arc xh → xm

distance between the head and modifier h−m
dependency type
direction of the dependency arc (left/right)
whwm, wh−1wm, wh+1wm, whwm−1, whwm+1

thtm, th−1tm, th+1tm, thtm−1, thtm+1

th−1thtm−1tm, thth+1tm−1tm

th−1thtmtm+1, thth+1tmtm+1

Concatenation of the templates above
{thtktm|xk lies between xh and xm}

Table 1: Feature templates. wi denotes the word
form of token xi and ti denotes the POS tag of xi.

al., 2005), which were shown to be very effective
for dependency parsing.

4.3 Results

We show the comparison results in Table 2. As
expected, the joint models (ours and TM13) con-
sistently outperform the subtree deletion model, s-
ince the joint models do not suffer from the sub-
tree restriction. They also outperform McDon-
ald’s, demonstrating the effectiveness of consid-
ering the grammar structure for compression. It
is not surprising that CRFs achieve high unigram
F scores but low syntactic F scores as they do not

System C Rate Funi RASP Sec.
Ours(Approx) 0.68 0.802 0.598 0.056
Ours(Exact) 0.68 0.805 0.599 0.610

Subtree 0.68 0.761 0.575 0.022
TM13 0.68 0.804 0.599 0.592

McDonald06 0.71 0.776 0.561 0.010
CRFs 0.73 0.790 0.501 0.002

Table 2: Comparison results under various quality
metrics, including unigram F1 score (Funi), syn-
tactic F1 score (RASP), and compression speed
(seconds per sentence). C Rate is the compression
ratio of the system generated output. For fair com-
parison, systems were restricted to produce com-
pressions that matched their average gold com-
pression rate if possible.

consider the fluency of the compressed sentence.
Compared with TM13’s system, our model with

exact decoding is not significantly faster due to the
high order of the time complexity. On the oth-
er hand, our approximate approach is much more
efficient, about 10 times faster than TM13’ sys-
tem, and achieves competitive accuracy with the
exact approach. Note that it is worth pointing
out that the exact approach can output compressed
sentences of all lengths, whereas the approximate
method can only output one sentence at a specific
compression rate.

5 Conclusion

In this paper, we proposed two polynomial time
decoding algorithms using joint inference for sen-
tence compression. The first one is an exac-
t dynamic programming algorithm, and requires
O(n6) running time. This one does not show
significant advantage in speed over ILP. The sec-
ond one is an approximation of the first algorith-
m. It adopts Lagrangian relaxation to eliminate the
compression ratio constraint, yielding lower time
complexity TO(n4). In practice it achieves nearly
the same accuracy as the exact one, but is much
faster.3

The main assumption of our method is that the
dependency parse tree is projective, which is not
true for some other languages. In that case, our
method is invalid, but (Thadani and McKeown,
2013) still works. In the future, we will study the
non-projective cases based on the recent parsing
techniques for 1-endpoint-crossing trees (Pitler et
al., 2013).
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Abstract

In order to summarize a document, it is
often useful to have a background set
of documents from the domain to serve
as a reference for determining new and
important information in the input doc-
ument. We present a model based on
Bayesian surprise which provides an in-
tuitive way to identify surprising informa-
tion from a summarization input with re-
spect to a background corpus. Specifically,
the method quantifies the degree to which
pieces of information in the input change
one’s beliefs’ about the world represented
in the background. We develop sys-
tems for generic and update summariza-
tion based on this idea. Our method pro-
vides competitive content selection perfor-
mance with particular advantages in the
update task where systems are given a
small and topical background corpus.

1 Introduction

Important facts in a new text are those which devi-
ate from previous knowledge on the topic. When
people create summaries, they use their knowl-
edge about the world to decide what content in an
input document is informative to include in a sum-
mary. Understandably in automatic summariza-
tion as well, it is useful to keep a background set
of documents to represent general facts and their
frequency in the domain.

For example, in the simplest setting of multi-
document summarization of news, systems are
asked to summarize an input set of topically-
related news documents to reflect its central con-
tent. In this GENERIC task, some of the best re-
ported results were obtained by a system (Conroy
et al., 2006) which computed importance scores
for words in the input by examining if the word

occurs with significantly higher probability in the
input compared to a large background collection
of news articles. Other specialized summarization
tasks explicitly require the use of background in-
formation. In the UPDATE summarization task, a
system is given two sets of news documents on the
same topic; the second contains articles published
later in time. The system should summarize the
important updates from the second set assuming a
user has already read the first set of articles.

In this work, we present a Bayesian model for
assessing the novelty of a sentence taken from a
summarization input with respect to a background
corpus of documents.

Our model is based on the idea of Bayesian Sur-
prise (Itti and Baldi, 2006). For illustration, as-
sume that a user’s background knowledge com-
prises of multiple hypotheses about the current
state of the world and a probability distribution
over these hypotheses indicates his degree of be-
lief in each hypothesis. For example, one hypoth-
esis may be that the political situation in Ukraine
is peaceful, another where it is not. Apriori as-
sume the user favors the hypothesis about a peace-
ful Ukraine, i.e. the hypothesis has higher prob-
ability in the prior distribution. Given new data,
the evidence can be incorporated using Bayes Rule
to compute the posterior distribution over the hy-
potheses. For example, upon viewing news reports
about riots in the country, a user would update his
beliefs and the posterior distribution of the user’s
knowledge would have a higher probability for a
riotous Ukraine. Bayesian surprise is the differ-
ence between the prior and posterior distributions
over the hypotheses which quantifies the extent to
which the new data (the news report) has changed
a user’s prior beliefs about the world.

In this work, we exemplify how Bayesian sur-
prise can be used to do content selection for text
summarization. Here a user’s prior knowledge
is approximated by a background corpus and we
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show how to identify sentences from the input
set which are most surprising with respect to this
background. We use the method to do two types
of summarization tasks: a) GENERIC news sum-
marization which uses a large random collection
of news articles as the background, and b) UP-
DATE summarization where the background is a
smaller but specific set of news documents on
the same topic as the input set. We find that
our method performs competitively with a previ-
ous log-likelihood ratio approach which identifies
words with significantly higher probability in the
input compared to the background. The Bayesian
approach is more advantageous in the update task,
where the background corpus is smaller in size.

2 Related work

Computing new information is useful in many ap-
plications. The TREC novelty tasks (Allan et al.,
2003; Soboroff and Harman, 2005; Schiffman,
2005) tested the ability of systems to find novel
information in an IR setting. Systems were given
a list of documents ranked according to relevance
to a query. The goal is to find sentences in each
document which are relevant to the query, and at
the same time is new information given the content
of documents higher in the relevance list.

For update summarization of news, methods
range from textual entailment techniques (Ben-
tivogli et al., 2010) to find facts in the input which
are not entailed by the background, to Bayesian
topic models (Delort and Alfonseca, 2012) which
aim to learn and use topics discussed only in back-
ground, those only in the update input and those
that overlap across the two sets.

Even for generic summarization, some of the
best results were obtained by Conroy et al. (2006)
by using a large random corpus of news articles
as the background while summarizing a new arti-
cle, an idea first proposed by Lin and Hovy (2000).
Central to this approach is the use of a likelihood
ratio test to compute topic words, words that have
significantly higher probability in the input com-
pared to the background corpus, and are hence
descriptive of the input’s topic. In this work,
we compare our system to topic word based ones
since the latter is also a general method to find sur-
prising new words in a set of input documents but
is not a bayesian approach. We briefly explain the
topic words based approach below.

Computing topic words: Let us call the input

set I and the background B. The log-likelihood
ratio test compares two hypotheses:
H1: A word t is not a topic word and occurs

with equal probability in I and B, i.e. p(t|I) =
p(t|B) = p
H2: t is a topic word, hence p(t|I) = p1 and

p(t|B) = p2 and p1 > p2

A set of documents D containing N tokens is
viewed as a sequence of words w1w2...wN . The
word in each position i is assumed to be generated
by a Bernoulli trial which succeeds when the gen-
erated word wi = t and fails when wi is not t.
Suppose that the probability of success is p. Then
the probability of a word t appearing k times in a
dataset of N tokens is the binomial probability:

b(k,N, p) =
(
N

k

)
pk(1− p)N−k (1)

The likelihood ratio compares the likelihood of
the data D = {B, I} under the two hypotheses.

λ =
P (D|H1)
P (D|H2)

=
b(ct, N, p)

b(cI , NI , p1) b(cB, NB, p2)
(2)

p, p1 and p2 are estimated by maximum likeli-
hood. p = ct/N where ct is the number of times
word t appears in the total set of tokens compris-
ing {B, I}. p1 = cIt /NI and p2 = cBt /NB are the
probabilities of t estimated only from the input and
only from the background respectively.

A convenient aspect of this approach is that
−2 log λ is asymptotically χ2 distributed. So for a
resulting−2 log λ value, we can use the χ2 table to
find the significance level with which the null hy-
pothesis H1 can be rejected. For example, a value
of 10 corresponds to a significance level of 0.001
and is standardly used as the cutoff. Words with
−2 log λ > 10 are considered topic words. Con-
roy et al. (2006)’s system gives a weight of 1 to the
topic words and scores sentences using the number
of topic words normalized by sentence length.

3 Bayesian Surprise
First we present the formal definition of Bayesian
surprise given by Itti and Baldi (2006) without ref-
erence to the summarization task.

Let H be the space of all hypotheses represent-
ing the background knowledge of a user. The user
has a probability P (H) associated with each hy-
pothesis H ∈ H. Let D be a new observation. The
posterior probability of a single hypothesis H can
be computed as:

P (H|D) =
P (D|H)P (H)

P (D)
(3)

334



The surprise S(D,H) created by D on hypoth-
esis space H is defined as the difference between
the prior and posterior distributions over the hy-
potheses, and is computed using KL divergence.

S(D,H) = KL(P (H|D), P (H))) (4)

=
∫
H
P (H|D) log

P (H|D)
P (H)

(5)

Note that since KL-divergence is not symmet-
ric, we could also compute KL(P (H), P (H|D))
as the surprise value. In some cases, surprise can
be computed analytically, in particular when the
prior distribution is conjugate to the form of the
hypothesis, and so the posterior has the same func-
tional form as the prior. (See Baldi and Itti (2010)
for the surprise computation for different families
of probability distributions).

4 Summarization with Bayesian Surprise
We consider the hypothesis space H as the set of
all the hypotheses encoding background knowl-
edge. A single hypothesis about the background
takes the form of a multinomial distribution over
word unigrams. For example, one multinomial
may have higher word probabilities for ‘Ukraine’
and ‘peaceful’ and another multinomial has higher
probabilities for ‘Ukraine’ and ‘riots’. P (H) gives
a prior probability to each hypothesis based on
the information in the background corpus. In our
case, P (H) is a Dirichlet distribution, the conju-
gate prior for multinomials. Suppose that the vo-
cabulary size of the background corpus is V and
we label the word types as (w1, w2, ... wV ). Then,

P (H) = Dir(α1, α2, ...αV ) (6)

where α1:V are the concentration parameters of
the Dirichlet distribution (and will be set using the
background corpus as explained in Section 4.2).

Now consider a new observation I (a text, sen-
tence, or paragraph from the summarization input)
and the word counts in I given by (c1, c2, ..., cV ).
Then the posterior over H is the dirichlet:
P (H|I) = Dir(α1 + c1, α2 + c2, ..., αV + cV )

(7)
The surprise due to observing I , S(I,H) is the

KL divergence between the two dirichlet distribu-
tions. (Details about computing KL divergence
between two dirichlet distributions can be found
in Penny (2001) and Baldi and Itti (2010)).

Below we propose a general algorithm for sum-
marization using surprise computation. Then we
define the prior distribution P (H) for each of our
two tasks, GENERIC and UPDATE summarization.

4.1 Extractive summarization algorithm
We first compute a surprise value for each word
type in the summarization input. Word scores are
aggregated to obtain a score for each sentence.

Step 1: Word score. Suppose that word type
wi appears ci times in the summarization input
I . We obtain the posterior distribution after see-
ing all instances of this word (wi) as P (H|wi) =
Dir(α1, α2, ...αi + ci, ...αV ). The score for wi is
the surprise computed as KL divergence between
P (H|wi) and the prior P (H) (eqn. 6).

Step 2: Sentence score. The composition
functions to obtain sentence scores from word
scores can impact content selection performance
(Nenkova et al., 2006). We experiment with sum
and average value of the word scores.1

Step 3: Sentence selection. The goal is to se-
lect a subset of sentences with high surprise val-
ues. We follow a greedy approach to optimize the
summary surprise by choosing the most surprising
sentence, the next most surprising and so on. At
the same time, we aim to avoid redundancy, i.e.
selecting sentences with similar content. After a
sentence is selected for the summary, the surprise
for words from this sentence are set to zero. We re-
compute the surprise for the remaining sentences
using step 2 and the selection process continues
until the summary length limit is reached.

The key differences between our Bayesian ap-
proach and a method such as topic words are: (i)
The Bayesian approach keeps multiple hypothe-
ses about the background rather than a single one.
Surprise is computed based on the changes in
probabilities of all of these hypotheses upon see-
ing the summarization input. (ii) The computation
of topic words is local, it assumes a binomial dis-
tribution and the occurrence of a word is indepen-
dent of others. In contrast, word surprise although
computed for each word type separately, quantifies
the surprise when incorporating the new counts of
this word into the background multinomials.

4.2 Input and background

Here we describe the input sets and background
corpus used for the two summarization tasks and

1An alternative algorithm could directly compute the sur-
prise of a sentence by incorporating the words from the sen-
tence into the posterior. However, we found this specific
method to not work well probably because the few and un-
repeated content words from a sentence did not change the
posterior much. In future, we plan to use latent topic models
to assign a topic to a sentence so that the counts of all the
sentence’s words can be aggregated into one dimension.
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define the prior distribution for each. We use data
from the DUC2 and TAC3 summarization evalua-
tion workshops conducted by NIST.
Generic summarization. We use multidocument
inputs from DUC 2004. There were 50 inputs,
each contains around 10 documents on a common
topic. Each input is also provided with 4 manually
written summaries created by NIST assessors. We
use these manual summaries for evaluation.

The background corpus is a collection of 5000
randomly selected articles from the English Giga-
word corpus. We use a list of 571 stop words from
the SMART IR system (Buckley, 1985) and the re-
maining content word vocabulary has 59,497 word
types. The count of each word in the background
is calculated and used as the α parameters of the
prior Dirichlet distribution P (H) (eqn. 6).
Update summarization. This task uses data from
TAC 2009. An input has two sets of documents, A
and B, each containing 10 documents. Both A and
B are on same topic but documents in B were pub-
lished at a later time than A (background). There
were 44 inputs and 4 manual update summaries
are provided for each.

The prior parameters are the counts of words
in A for that input (using the same stoplist). The
vocabulary of these A sets is smaller, ranging from
400 to 3000 words for the different inputs.

In practice for both tasks, a new summarization
input can have words unseen in the background.
So new words in an input are added to the back-
ground corpus with a count of 1 and the counts of
existing words in the background are incremented
by 1 before computing the prior parameters. The
summary length limit is 100 words in both tasks.

5 Systems for comparison
We compare against three types of systems, (i)
those which similarly to surprise, use a back-
ground corpus to identify important sentences, (ii)
a system that uses information from the input set
only and no background, and (iii) systems that
combine scores from the input and background.

KLback: represents a simple baseline for sur-
prise computation from a background corpus. A
single unigram probability distribution B is cre-
ated from the background using maximum like-
lihood. The summary is created by greedily
adding sentences which maximize KL divergence

2http://www-nlpir.nist.gov/projects/
duc/index.html

3http://www.nist.gov/tac/

between B and the current summary. Suppose
the set of sentences currently chosen in the sum-
mary is S. The next step chooses the sentence
sl = arg maxsi KL({S ∪ si}||B) .

TSsum, TSavg: use topic words computed as de-
scribed in Section 2 and utilizing the same back-
ground corpus for the generic and update tasks
as the surprise-based methods. For the generic
task, we use a critical value of 10 (0.001 signif-
icance level) for the χ2 distribution during topic
word computation. In the update task however, the
background corpus A is smaller and for most in-
puts, no words exceeded this cutoff. We lower the
significance level to the generally accepted value
of 0.05 and take words scoring above this as topic
words. The number of topic words is still small
(ranging from 1 to 30) for different inputs.

The TSsum system selects sentences with greater
counts of topic words and TSavg computes the
number of topic words normalized by sentence
length. A greedy selection procedure is used. To
reduce redundancy, once a sentence is added, the
topic words contained in it are removed from the
topic word list before the next sentence selection.

KLinp: represents the system that does not use
background information. Rather the method cre-
ates a summary by optimizing for high similarity
of the summary with the input word distribution.

Suppose the input unigram distribution is I and
the current summary is S, the method chooses the
sentence sl = arg minsi KL({S ∪ si}||I) at each
iteration. Since {S ∪ si} is used to compute diver-
gence, redundancy is implicitly controlled in this
approach. Such a KL objective was used in com-
petitive systems in the past (Daumé III and Marcu,
2006; Haghighi and Vanderwende, 2009).

Input + background: These systems com-
bine (i) a score based on the background (KLback,
TS or SR) with (ii) the score based on the input
only (KLinp). For example, to combine TSsum and
KLinp: for each sentence, we compute its scores
based on the two methods. Then we normalize the
two sets of scores for candidate sentences using z-
scores and compute the best sentence as arg maxsi

(TSsum(si) - KLinp(si)). Redundancy control is
done similarly to the TS only systems.

6 Content selection results
For evaluation, we compare each summary to the
four manual summaries using ROUGE (Lin and
Hovy, 2003; Lin, 2004). All summaries were trun-
cated to 100 words, stemming was performed and
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ROUGE-1 ROUGE-2
KLback 0.2276 (TS, SR) 0.0250 (TS, SR)
TSsum 0.3078 0.0616
TSavg 0.2841 (TSsum , SRsum) 0.0493 (TSsum)
SRsum 0.3120 0.0580
SRavg 0.3003 0.0549
KLinp 0.3075 (KLinp+TSavg) 0.0684
KLinp+TSsum 0.3250 0.0725
KLinp+TSavg 0.3410 0.0795
KLinp+SRsum 0.3187 (KLinp+TSavg) 0.0660 (KLinp+TSavg)
KLinp+SRavg 0.3220 (KLinp+TSavg) 0.0696

Table 1: Evaluation results for generic summaries.
Systems in parentheses are significantly better.

stop words were not removed, as is standard in
TAC evaluations. We report the ROUGE-1 and
ROUGE-2 recall scores (average over the inputs)
for each system. We use the Wilcoxon signed-rank
test to check for significant differences in mean
scores. Table 1 shows the scores for generic sum-
maries and 2 for the update task. For each system,
the peer systems with significantly better scores
(p-value < 0.05) are indicated within parentheses.

We refer to the surprise-based summaries as
SRsum and SRavg depending on the type of com-
position function (Section 4.1).

First, consider GENERIC summarization and the
systems which use the background corpus only
(those above the horizontal line). The KLback
baseline performs significantly worse than topic
words and surprise summaries. Numerically,
SRsum has the highest ROUGE-1 score and TSsum
tops according to ROUGE-2. As per the Wilcoxon
test, TSsum, SRsum and SRavg scores are statisti-
cally indistinguishable at 95% confidence level.

Systems below the horizontal line in Table 1
use an objective which combines both similarity
with the input and difference from the background.
The first line here shows that a system optimiz-
ing only for input similarity, KLinp, by itself has
higher scores (though not significant) than those
using background information only. This result is
not surprising for generic summarization where all
the topical content is present in the input and the
background is a non-focused random collection.
At the same time, adding either TS or SR scores
to KLinp almost always leads to better results with
KLinp + TSavg giving the best score.

In UPDATE summarization, the surprise-based
methods have an advantage over the topic word
ones. SRavg is significantly better than TSavg
for both ROUGE-1 and ROUGE-2 scores and
better than TSsum according to ROUGE-1. In
fact, the surprise methods have numerically higher

ROUGE-1 ROUGE-2
KLback 0.2246 (TS, SR) 0.0213 (TS, SR)
TSsum 0.3037 (SRavg) 0.0563
TSavg 0.2909 (SRsum , SRavg) 0.0477 (SRsum , SRavg)
SRsum 0.3201 0.0640
SRavg 0.3226 0.0639
KLinp 0.3098 (KLinp+SRavg) 0.0710
KLinp+TSsum 0.3010 (KLinp+SRsum, avg) 0.0635
KLinp+TSavg 0.3021 (KLinp+SRsum, avg) 0.0543 (KLinp ,

KLinp+SRsum, avg)
KLinp+SRsum 0.3292 0.0721
KLinp+SRavg 0.3379 0.0767

Table 2: Evaluation results for update summaries.
Systems in parentheses are significantly better.

ROUGE-1 scores compared to input similarity
(KLinp) in contrast to generic summarization.
When combined with KLinp, the surprise meth-
ods provide improved results, significantly better
in terms of ROUGE-1 scores. The TS methods do
not lead to any improvement, and KLinp + TSavg
is significantly worse than KLinp only. The limi-
tation of the TS approach arises from the paucity
of topic words that exceed the significance cutoff
applied on the log-likelihood ratio. But Bayesian
surprise is robust on the small background corpus
and does not need any tuning for cutoff values de-
pending on the size of the background set.

Note that these models do not perform on par
with summarization systems that use multiple in-
dicators of content importance, involve supervised
training and which perform sentence compression.
Rather our goal in this work is to demonstrate a
simple and intuitive unsupervised model.

7 Conclusion
We have introduced a Bayesian summarization
method that strongly aligns with intuitions about
how people use existing knowledge to identify im-
portant events or content in new observations.

Our method is especially valuable when a sys-
tem must utilize a small background corpus.
While the update task datasets we have used were
carefully selected and grouped by NIST assesors
into initial and background sets, for systems on
the web, there is little control over the number of
background documents on a particular topic. A
system should be able to use smaller amounts of
background information and as new data arrives,
be able to incorporate the evidence. Our Bayesian
approach is a natural fit in such a setting.
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Abstract

We introduce the problem of predicting
who has power over whom in pairs of peo-
ple based on a single written dialog. We
propose a new set of structural features.
We build a supervised learning system to
predict the direction of power; our new
features significantly improve the results
over using previously proposed features.

1 Introduction

Computationally analyzing the social context in
which language is used has gathered great interest
within the NLP community recently. One of the
areas that has generated substantial research is the
study of how social power relations between peo-
ple affect and/or are revealed in their interactions
with one another. Researchers have proposed sys-
tems to detect social power relations between par-
ticipants of organizational email threads (Bramsen
et al., 2011; Gilbert, 2012; Prabhakaran and Ram-
bow, 2013), online forums (Danescu-Niculescu-
Mizil et al., 2012; Biran et al., 2012; Danescu-
Niculescu-Mizil et al., 2013), chats (Strzalkowski
et al., 2012), and off-line interactions such as pres-
idential debates (Prabhakaran et al., 2013; Nguyen
et al., 2013). Automatically identifying power and
influence from interactions can have many prac-
tical applications ranging from law enforcement
and intelligence to online marketing.

A significant number of these studies are per-
formed in the domain of organizational email
where there is a well defined notion of power (or-
ganizational hierarchy). Bramsen et al. (2011) and
Gilbert (2012) predict hierarchical power relations
between people in the Enron email corpus using
lexical features extracted from all the messages
exchanged between them. However, their ap-
proaches primarily apply to situations where large
collections of messages exchanged between pairs

of people are available. In (Prabhakaran and Ram-
bow, 2013), we introduced the problem of detect-
ing whether a participant of an email thread has
power over someone else in the thread and estab-
lished the importance of dialog structure in that
task. However, in that work we did not detect over
whom that person has power.

In this paper, we introduce a new problem for-
mulation. We predict the hierarchical power rela-
tion between pairs of participants in an email in-
teraction thread based solely on features extracted
from that thread. As a second major contribution,
we introduce a new set of features to capture as-
pects of participant behavior such as responsive-
ness, and we show that these features are signifi-
cantly correlated with the direction of power. We
present a fully automatic system for this task ob-
taining an accuracy of 73.0%, an improvement of
6.9% over 68.3% by a system using only lexical
features. This best-performing system uses our
new feature set.

2 Motivation

Early NLP-based approaches such as Bramsen et
al. (2011) and Gilbert (2012) built systems to pre-
dict hierarchical power relations between people
in the Enron email corpus using lexical features
from all the messages exchanged between them.
One limitation of this approach is that it relies
solely on lexical cues and hence works best when
large collections of messages exchanged between
the pairs of people are available. For example,
Bramsen et al. (2011) excluded sender-recipient
pairs who exchanged fewer than 500 words from
their evaluation set, since they found smaller text
samples are harder to classify. By taking the mes-
sage out of the context of the interaction in which
it was exchanged, they fail to utilize cues from the
structure of interactions, which complements the
lexical cues in detecting power relations, as we
showed in (Prabhakaran and Rambow, 2013).
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We modeled the problem of detecting power re-
lationships differently in (Prabhakaran and Ram-
bow, 2013): we predicted whether a participant
in an email thread has a certain type of power
or not. However, in that work we did not pre-
dict over whom he/she has that power. This
may result in noisy features; consider a thread in
which participant X has power over participant
Y , who has power over participant Z . By ag-
gregating features over all messages sent by Y ,
features salient to a subordinate-superior interac-
tion are incorrectly conflated with those salient to
superior-subordinate interaction. Another limita-
tion of (Prabhakaran and Rambow, 2013) is that
we used manual annotations for many of our fea-
tures such as dialog acts and overt displays of
power. Relying on manual annotations for features
limited our analysis to a small subset of the Enron
corpus, which has only 18 instances of hierarchi-
cal power. Consequently, our findings with respect
to hierarchical power were weak in terms of both
correlations of features and system performance.

In this paper, we introduce the problem of pre-
dicting who has power over whom in pairs of inter-
acting participants based on a single thread of in-
teractions. From (Bramsen et al., 2011) we retain
the idea that we want to predict the power relation
between pairs of people. But in contrast to their
formulation, we retain the goal from (Prabhakaran
and Rambow, 2013) that we want to study com-
munication in the context of an interaction, and
that we want to be able to make predictions us-
ing only the emails exchanged in a single thread.
Like (Prabhakaran and Rambow, 2013), we use
features to capture the dialog structure, but we use
automatic taggers to generate them and assume no
manual annotation at all at training or test time.
This allows us to use the entire Enron email cor-
pus for this study.

3 Data

In this work, we use the version of Enron email
corpus by Yeh and Harnly (2006) which captures
the thread structure of email exchanges. The cor-
pus contains 36,615 email threads. We excluded a
small subset of 419 threads that was used for pre-
vious manual annotation efforts, part of which was
also used to train the DA and ODP taggers (Sec-
tion 5) that generate features for our system. The
average number of email messages per thread was
around 3. We divided the remaining threads into

train (50%), dev (25%) and test (25%) sets by ran-
dom sampling. We then applied various basic NLP
preprocessing steps such as tokenization, POS tag-
ging and lemmatization to the body of email mes-
sages. We use the Enron gold organizational hier-
archy released by Agarwal et al. (2012) to model
hierarchical power. Their corpus was manually
built using information from Enron organizational
charts. It includes relations of 1,518 employees
and captures dominance relations between 13,724
pairs of them. Theirs is the largest such data set
available to the best of our knowledge.

4 Problem Formulation

Let t denote an email thread and Mt denote the
set of all messages in t . Also, let Pt be the set
of all participants in t , i.e., the union of senders
and recipients (To and CC) of all messages in
Mt . We are interested in detecting power rela-
tions between pairs of participants who interact
within a given email thread. Not every pair of par-
ticipants (p1 , p2 ) ∈ Pt × Pt interact with one an-
other within t . Let IMt(p1 , p2 ) denote the set of
Interaction Messages — non-empty messages in
t in which either p1 is the sender and p2 is one
of the recipients or vice versa. We call the set of
(p1 , p2 ) such that |IMt(p1 , p2 )| > 0 the interact-
ing participant pairs of t (IPPt ).

We focus on the manifestations of power in in-
teractions between people across different levels
of hierarchy. For every (p1 , p2 ) ∈ IPPt , we query
the set of dominance relations in the gold hierar-
chy to determine their hierarchical power relation
(HP(p1 , p2 )). We exclude pairs that do not exist
in the gold hierarchy from our analysis and denote
the remaining set of related interacting participant
pairs as RIPPt . We assign HP(p1 , p2 ) to be su-
perior if p1 dominates p2 , and subordinate if p2

dominates p1 . Table 1 shows the total number of
pairs in IPPt and RIPPt from all the threads in
our corpus and across train, dev and test sets.

Description Total Train Dev Test
# of threads 36,196 18,079 8,973 9,144∑

t |IPPt | 355,797 174,892 91,898 89,007∑
t |RIPPt | 15,048 7,510 3,578 3,960

Table 1: Data Statistics
Row 1 presents the total number of threads in different

subsets of the corpus. Row 2 and 3 present the number of
interacting participant pairs (IPP ) and related interacting

participant pairs (RIPP ) in those subsets.
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Given a thread t and a pair of participants
(p1 , p2 ) ∈ RIPPt , we want to automatically de-
tect HP(p1 , p2 ). This problem formulation is
similar to the ones in (Bramsen et al., 2011) and
(Gilbert, 2012). However, the difference is that for
us an instance is a pair of participants in a single
thread of interaction (which may or may not in-
clude other people), whereas for them an instance
constitutes all messages exchanged between a pair
of people in the entire corpus. Our formula-
tion also differs from (Prabhakaran and Rambow,
2013) in that we detect power relations between
pairs of participants, instead of just whether a par-
ticipant had power over anyone in the thread.

5 Structural Analysis

In this section we analyze various features that
capture the structure of interaction between the
pairs of participants in a thread. Each feature f
is extracted with respect to a person p over a ref-
erence set of messages M (denoted f p

M ). For a
pair (p1 , p2 ), we extract 4 versions of each fea-
ture f : f p1

IMt (p1 ,p2 ), f p2

IMt (p1 ,p2 ), f p1

Mt
and f p2

Mt
. The

first two capture behavior of the pair among them-
selves, while the third and fourth capture their
overall behavior in the entire thread. We group our
features into three categories — THRNew, THRPR

and DIAPR. THRNew is a set of new features we
propose, while THRPR and DIAPR incorporate fea-
tures we proposed in (Prabhakaran and Rambow,
2013). THRNew and THRPR capture the structure
of message exchanges without looking at the con-
tent of the emails (e.g., how many emails did a per-
son send), while DIAPR captures the pragmatics of
the dialog and requires an analysis of the content
of the emails (e.g., did they issue any requests).

THRNew: This is a new set of features we in-
troduce in this paper. It includes the average num-
ber of recipients (AvgRecipients) and To recipients
(AvgToRecipients) in emails sent by p, the per-
centage of emails p received in which he/she was
in the To list (InToList%), boolean features de-
noting whether p added or removed people when
responding to a message (AddPerson and Re-
movePerson), average number of replies received
per message sent by p (ReplyRate) and average
number of replies received from the other person
of the pair to messages where he/she was a To re-
cipient (ReplyRateWithinPair). ReplyRateWithin-
Pair applies only to IMt(p1 , p2 ).

THRPR: This feature set includes two meta-

data based feature sets — positional and verbosity.
Positional features include a boolean feature to de-
note whether p sent the first message (Initiate),
and relative positions of p’s first and last messages
(FirstMsgPos and LastMsgPos) in M . Verbosity
features include p’s message count (MsgCount),
message ratio (MsgRatio), token count (Token-
Count), token ratio (TokenRato) and tokens per
message (TokenPerMsg), all calculated over M .

DIAPR: In (Prabhakaran and Rambow, 2013),
we used dialog features derived from manual an-
notations — dialog acts (DA) and overt displays
of power (ODP) — to model the structure of inter-
actions within the message content. In this work,
we obtain DA and ODP tags on the entire cor-
pus using automatic taggers trained on those man-
ual annotations. The DA tagger (Omuya et al.,
2013) obtained an accuracy of 92%. The ODP
tagger (Prabhakaran et al., 2012) obtained an ac-
curacy of 96% and F-measure of 54%. The DA
tagger labels each sentence to be one of the 4
dialog acts: Request Action, Request Informa-
tion, Inform, and Conventional. The ODP Tag-
ger identifies sentences (mostly requests) that ex-
press additional constraints on its response, be-
yond those introduced by the dialog act. We use
5 features: ReqAction%, ReqInform%, Inform%,
Conventional%, and ODP% to capture the per-
centage of sentences in messages sent by p that has
each of these labels. We also use a feature to cap-
ture the number of p’s messages with a request that
did not get a reply, i.e., dangling requests (Dan-
glingReq%), over all messages sent by p.

We perform an unpaired two-sample two-tailed
Student’s t-Test comparing mean values of each
feature for subordinates vs. superiors. For our
analysis, a data point is a related interacting pair,
and not a message. Hence, a message with mul-
tiple recipients who have a superior/subordinate
relation with the sender will contribute to features
for multiple data points. We limit our analysis to
the related interacting pairs from only our train
set. Table 2 presents mean values of features for
subordinates and superiors at the interaction level.
Thread level versions of these features also ob-
tained similar results overall in terms of direction
of difference and significance. We denote three
significance levels — * (p < .05 ), ** (p < .01 ),
and *** (p < .001 ). To control false discovery
rates in multiple testing, we adjusted the p-values
(Benjamini and Hochberg, 1995). We summarize
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Feature Name Mean(f sub
IMt

) Mean(f sup
IMt

)

THRNew

AvgRecipients∗∗∗ 21.14 43.10
AvgToRecipients∗∗∗ 18.19 38.94
InToList% 0.82 0.80
ReplyRate∗∗∗ 0.86 1.23
ReplyRateWithinPair∗∗∗ 0.16 0.10
AddPerson 0.48 0.47
RemovePerson∗∗∗ 0.41 0.37

THRPR

Initiate∗∗∗ 0.45 0.56
FirstMsgPos 0.04 0.03
LastMsgPos∗∗∗ 0.15 0.11
MsgCount∗∗∗ 0.64 0.70
MsgRatio∗∗∗ 0.44 0.56
TokenCount 91.22 83.26
TokenRatio∗∗∗ 0.45 0.55
TokenPerMsg∗ 140.60 120.87

DIAPR

Conventional%∗∗∗ 0.15 0.17
Inform%∗∗∗ 0.78 0.72
ReqAction%∗∗∗ 0.02 0.04
ReqInform%∗∗∗ 0.05 0.06
DanglingReq%∗∗∗ 0.12 0.15
ODP%∗∗∗ 0.03 0.06

Table 2: Student’s t-Test Results of fp
IMt

.
THRNew: new meta-data features; THRPR, DIAPR: meta-data

and dialog-act features from previous studies;
* (p < .05 ); ** (p < .01 ); *** (p < .001 )

the main findings on the significant features below.

1. Superiors send messages addressed to more
people (AvgRecipients and AvgToRecipi-
ents). Consequently, they get more replies to
their messages (ReplyRate). However, con-
sidering messages where the other person of
the pair is addressed in the To list (ReplyRate-
WithinPair), subordinates get more replies.

2. Superiors issue more requests (ReqAction%
and ReqInform%) and overt displays of
power (ODP%). Subordinates issue more
informs (Inform%) and, surprisingly, have
fewer unanswered requests (DanglingReq%).

3. Superiors initiate the interactions more often
than subordinates (Initiate). They also leave
interactions earlier (LastMsgPos).

4. Superiors send shorter messages (Token-
PerMsg). They also send more messages
(MsgCount & MsgRatio) and even contribute
a higher ratio of tokens in the thread (Token-
Ratio) despite sending shorter messages.

Finding 1 goes in line with findings from stud-
ies analyzing social networks that superiors have
higher connectivity in the networks that they are
part of (Rowe et al., 2007). Intuitively, those who
have higher connectivity also send emails to larger
number of people, and hence our result. Since su-
periors address more people in their emails, they
also have a higher chance of getting replies. Find-
ing 2 also aligns with the general intuition about
how superiors and subordinates behave within in-
teractions (e.g., superiors exhibit more overt dis-
plays of power than subordinates).

Findings 3 & 4 are interesting since they re-
veal special characteristics of threads involving hi-
erarchically related participants. In (Prabhakaran
and Rambow, 2013), we had found that persons
with hierarchical power rarely initiated threads
and contributed less within the threads. But that
problem formulation was different — we were
identifying whether a person in a given thread had
hierarchical power over someone else or not. The
data points in that formulation included partici-
pants from threads that did not have any hierar-
chically related people, whereas our current for-
mulation do not. These findings suggest that if a
person starts an email thread, he’s likely not to be
the one who has power, but if a thread includes a
pair of people who are hierarchically related, then
it is likely to be initiated by the superior and he/she
tends to contribute more in such threads.

6 Predicting Direction of Power

We build an SVM-based supervised learning sys-
tem that can predict HP(p1 , p2 ) to be either su-
perior or subordinate based on the interaction
within a thread t for any pair of participants
(p1 , p2 ) ∈ RIPPt . We deterministically fix the
order of participants in (p1 , p2 ) such that p1 is the
sender of the first message in IMt(p1 , p2 ). We
use the ClearTK (Ogren et al., 2008) wrapper for
SVMLight (Joachims, 1999) in our experiments.
We use the related interacting participant pairs in
threads from the train set to train our models and
optimize our performance on those from the dev
set. We report results obtained on dev and test sets.

In our formulation, values of many features are
undefined for some instances (e.g., Inform% is un-
defined when MsgCount = 0). Handling of unde-
fined values for features in SVM is not straight-
forward. Most SVM implementations assume the
value of 0 by default in such cases, conflating them
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Description Accuracy
Baseline (Always Superior) 52.54
Baseline (Word Unigrams + Bigrams) 68.56
THRNew 55.90
THRPR 54.30
DIAPR 54.05
THRPR + THRNew 61.49
DIAPR + THRPR + THRNew 62.47
LEX 70.74
LEX + DIAPR + THRPR 67.44
LEX + DIAPR + THRPR + THRNew 68.56
BEST (= LEX + THRNew) 73.03
BEST (Using p1 features only) 72.08
BEST (Using IMt features only) 72.11
BEST (Using Mt only) 71.27
BEST (No Indicator Variables) 72.44

Table 3: Accuracies on feature subsets (dev set).
THRNew: new meta-data features; THRPR, DIAPR: meta-data
and dialog-act features from previous studies; LEX: ngrams;

BEST: best subset; IMt stands for IMt(p1,p2)

with cases where Inform% is truly 0. In order to
mitigate this issue, we use an indicator feature for
each structural feature to denote whether or not it
is valid. Since we use a quadratic kernel, we ex-
pect the SVM to pick up the interaction between
each feature and its indicator feature.

Lexical features have already been shown to be
valuable in predicting power relations (Bramsen
et al., 2011; Gilbert, 2012). We use another fea-
ture set LEX to capture word ngrams, POS (part
of speech) ngrams and mixed ngrams. A mixed
ngram (Prabhakaran et al., 2012) is a special case
of word ngram where words belonging to open
classes are replaced with their POS tags. We found
the best setting to be using both unigrams and bi-
grams for all three types of ngrams, by tuning in
our dev set. We then performed experiments using
all subsets of {LEX, THRNew, THRPR, DIAPR }.

Table 3 presents the results obtained using var-
ious feature subsets. We use a majority class
baseline assigning HP(p1 , p2 ) to be always su-
perior, which obtains 52.5% accuracy. We also
use a stronger baseline using word unigrams and
bigrams as features, which obtained an accuracy
of 68.6%. The performance of the system using
each structural feature class on its own is very
low. Combining all three of them improves the
accuracy to 62.5%. The highest performance ob-
tained without using any message content is for
THRPR and THRNew (61.5%). LEX features by

itself obtain a very high accuracy of 70.7%, con-
firming the importance of lexical patterns in this
task. Perplexingly, adding all structural features to
LEX reduces the accuracy by around 2.2 percent-
age points. The best performing system (BEST)
uses LEX and THRNew features and obtains an
accuracy of 73.0%, a statistically significant im-
provement over the LEX-only system (McNemar).

We also performed an ablation study to under-
stand the importance of different slices of our fea-
ture sets. If we remove all feature versions with
respect to the second person, the accuracy drops
to 72.1%. This suggests that features about the
other person’s behavior also help the prediction
task. If we remove either the thread level versions
of features or interaction level versions of features,
the accuracy again drops, suggesting that both the
pair’s behavior among themselves, and their over-
all behavior in the thread add value to the predic-
tion task. Removing the indicator feature denot-
ing the structural features’ validity also reduces
the performance of the system.

We now discuss evaluation on our blind test set.
The majority baseline (Always Superior) for ac-
curacy is 55.0%. The word unigrams and bigrams
baseline obtains an accuracy of 68.3%. The LEX
system (using other forms of ngrams as well) ob-
tains a slightly lower accuracy of 68.1%. Our
BEST system using LEX and THRNew features
obtains an accuracy of 73.0% (coincidentally the
same as on the dev set), an improvement of 6.9%
over the system using only lexical features.

7 Conclusion

We introduced the problem of predicting who has
power over whom based on a single thread of writ-
ten interactions. We introduced a new set of fea-
tures which describe the structure of the dialog.
Using this feature set, we obtain an accuracy of
73.0% on a blind test. In future work, we will
tackle the problem of three-way classification of
pairs of participants, which will cover cases in
which they are not in a power relation at all.
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Abstract 

Authorship attribution (AA) aims to identify 

the authors of a set of documents. Traditional 

studies in this area often assume that there are 

a large set of labeled documents available for 

training. However, in the real life, it is often 

difficult or expensive to collect a large set of 

labeled data. For example, in the online review 

domain, most reviewers (authors) only write a 

few reviews, which are not enough to serve as 

the training data for accurate classification. In 

this paper, we present a novel three-view tri-

training method to iteratively identify authors 

of unlabeled data to augment the training set. 

The key idea is to first represent each docu-

ment in three distinct views, and then perform 

tri-training to exploit the large amount of un-

labeled documents. Starting from 10 training 

documents per author, we systematically eval-

uate the effectiveness of the proposed tri-

training method for AA. Experimental results 

show that the proposed approach outperforms 

the state-of-the-art semi-supervised method 

CNG+SVM and other baselines.  

1 Introduction 

Existing approaches to authorship attribution 

(AA) are mainly based on supervised classifica-

tion (Stamatatos, 2009, Kim et al., 2011, Serous-

si et al., 2012). Although this is an effective ap-

proach, it has a major weakness, i.e., for each 

author a large number of his/her articles are 

needed as the training data. This is possible if the 

author has written a large number of articles, but 

will be difficult if he/she has not. For example, in 

the online review domain, most authors (review-

ers) only write a few reviews (documents). It was 

shown that on average each reviewer only has 

2.72 reviews in amazon.com, and only 8% of the 

reviewers have at least 5 reviews (Jindal and Liu, 

2008). The small number of labeled documents 

makes it extremely challenging for supervised 

learning to train an accurate classifier. 

In this paper, we consider AA with only a few 

labeled examples. By exploiting the redundancy 

in human languages, we tackle the problem using 

a new three-view tri-training algorithm (TTA). 

Specifically, we first represent each document in 

three distinct views, and then tri-train three clas-

sifiers in these views. The predictions of two 

classifiers on unlabeled examples are used to 

augment the training set for the third classifier. 

This process repeats until a termination condition 

is met. The enlarged labeled sets are finally used 

to train classifiers to classify the test data.  

To our knowledge, no existing work has ad-

dressed AA in a tri-training framework. The AA 

problem with limited training data was attempted 

in (Stamatatos, 2007; Luyckx and Daelemans, 

2008). However, neither of them used a semi-

supervised approach to augment the training set 

with additional documents. Kourtis and Stama-

tatos (2011) introduced a variant of the self-

training method in (Nigam and Ghani, 2000). 

Note that the original self-training uses one clas-

sifier on one view. However, the self-training 

method in (Kourtis and Stamatatos, 2011) uses 

two classifiers (CNG and SVM) on one view. 

Both the self-training and tri-training are semi-

supervised learning methods. However, the pro-

posed approach is not a simple extension of the 

self-training method CNG+SVM of (Kourtis and 

Stamatatos, 2011). There are key differences. 

First, in their experimental setting, about 115 

and 129 documents per author on average are 

used for two experimental corpora. This number 

of labeled documents is still very large. We con-

sider a much more realistic problem, where the 

size of the training set is very small. Only 10 

samples per author are used in training.  

Second, CNG+SVM uses two learning methods 

on a single character n-gram view. In contrast, 

besides the character n-gram view, we also make 

use of the lexical and syntactic views. That is, 
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three distinct views are used for building classi-

fiers. The redundant information in human lan-

guage is combined in the tri-training procedure.  

Third, in each round of self-training in 

CNG+SVM, each classifier is refined by the same 

newly labeled examples. However, in the pro-

posed tri-training method (TTA), the examples 

labeled by the classifiers of every two views are 

added to the third view. By doing so, each classi-

fier can borrow information from the other two 

views. And the predictions made by two classifi-

ers are more reliable than those by one classifier. 

The main contribution of this paper is thus the 

proposed three-view tri-training scheme which 

has a much better generalization ability by ex-

ploiting three different views of the same docu-

ment. Experimental results on the IMDb review 

dataset show that the proposed method dramati-

cally improves the CNG+SVM method. It also 

outperforms the co-training method (Blum and 

Mitchell, 1998) based on our proposed views.  

2 Related Work 

Existing AA methods either focused on finding 

suitable features or on developing effective 

techniques. Example features include function 

words (Argamon et al., 2007), richness features 

(Gamon 2004), punctuation frequencies (Graham 

et al., 2005), character (Grieve, 2007), word 

(Burrows, 1992) and POS n-grams (Gamon, 

2004; Hirst and Feiguina, 2007), rewrite rules 

(Halteren et al., 1996), and similarities (Qian and 

Liu, 2013). On developing effective learning 

techniques, supervised classification has been the 

dominant approach, e.g., neural networks 

(Graham et al., 2005; Zheng et al., 2006), 

decision tree (Uzuner and Katz, 2005; Zhao and 

Zobel, 2005), logistic regression (Madigan et al., 

2005), SVM (Diederich et al., 2000; Gamon 

2004; Li et al., 2006; Kim et al., 2011), etc. 

The main problem in the traditional research is 

the unrealistic size of the training set. A size of 

about 10,000 words per author is regarded as a 

reasonable training set size (Argamon et al., 

2007, Burrows, 2003). When no long documents 

are available, tens or hundreds of short texts are 

used (Halteren, 2007; Hirst and Feiguina, 2007; 

Schwartz et al., 2013).  

Apart from the existing works dealing with 

limited data discussed in the introduction, our 

preliminary study in (Qian et al., 2014) used one 

learning method on two views, but it is inferior 

to the proposed method in this paper.  
 

3 Proposed Tri-Training Algorithm  

3.1 Overall Framework 

We represent each document in three feature 

views: the character view, the lexical view and 

the syntactic view. Each view consists of a set of 

features in the respective type. A classifier can 

be learned from any of these views. We propose 

a three-view training algorithm to deal with the 

problem of limited training data. Logistic 

regression (LR) is used as the learner. The 

overall framework is shown in Figure 1. 

Given the labeled, unlabeled, and test sets L, 

U, and T, step 1 extracts the character, lexical, 

and syntactic views from L, U, and T, 

respectively. Steps 2-13 iteratively tri-train three 

classifiers by adding the data which are assigned 

the same label by two classifiers into the training 

set of the third classifier. The algorithm first 

randomly selects u unlabeled documents from U 

to create a pool U’ of examples. Note that we can 

directly select from the large unlabeled set U. 

However, it is shown in (Blum and Mitchell 

2008) that a smaller pool can force the classifiers 

to select instances that are more representative of 

the underlying distribution that generates U. 

Hence we set the parameter u to a size of about 

1% of the whole unlabeled set, which allows us 

to observe the effects of different number of 

iterations. It then iterates over the following 

steps. First, use character, lexical and syntactic 

views on the current labeled set to train three 

classifiers C1, C2, and C3. See Steps 4-9. Second, 

Input: A small set of labeled documents L = {l1,…, lr}, a large 
set of unlabeled documents U = {u1,…, us}, and a set of test 
documents T = {t1,…, tt}, 

Parameters: the number of iterations k, the size of selected un-
labeled documents u 

Output: tk’s class assignment 

1   Extract views Lc, Ll, Ls, Uc, Ul, Us, Tc, Tl, Ts from L, U, T 
2  Loop for k iterations: 
3  Randomly select u unlabeled documents U' from U; 
4       Learn the first view classifier C1 from L1 (L1=Lc, Ll, or Ls); 
5        Use C1 to label docs in U' based on U1(U1=Uc, Ul, or Us) 

6        Learn the second view classifier C2 from L2 (L2L1) 

7        Use C2 to label documents in U' based on U2 (U2U1); 

8        Learn the third view classifier C3 from L3 (L2L1, L2) 

9        Use C3 to label documents in U' based on U3 (U2U1, U2); 

10      Up1 = {u | u U', u.label by C2 = u.label by C3}; 

11      Up2 = {u | u U', u.label by C1 = u.label by C3}; 

12      Up3 = {u | u U', u.label by C1 = u.label by C2}; 

13      U = U - U', Li = Li  Upi (i=1..3);             
14 Learn three classifiers C1, C2, C3 from L1, L2, L3; 
15 Use Ci to label tk in Ti (i=1..3); 
16  Aggregate results from three views 

Figure 1: The tri-training algorithm (TTA) 

346



allow two of these three classifiers to classify the 

unlabeled set U’ and choose p documents with 

agreed labels. See Steps 10-12. The selected 

documents are then added to the third labeled set 

for the label assigned (a label is an author here), 

and the u documents are removed from the 

unlabeled pool U’ (line 13). We call this way of 

augmenting the training sets InterAdding. The 

one used in (Kourtis and Stamatatos, 2011) is 

called SelfAdding as it uses only a single view 

and adds to the same training set. Steps 14-15 

assign the test document to a category (author) 

using the classifier learned from the three views 

in the augmented labeled data, respectively. Step 

16 aggregates the results from three classifiers. 

3.2 Character View 

The features in the character view are the 

character n-grams of a document. Character n-

grams are simple and easily available for any 

natural language. For a fair comparison with the 

previous work in (Kourtis and Stamatatos, 2011), 

we extract frequencies of 3-grams at the 

character-level. The vocabulary size for character 

3-grams in our experiment is 28584.  

3.3 Lexical View 

The lexical view consists of word unigrams of a 

document. We represent each article by a vector 

of word frequencies. The vocabulary size for 

unigrams in our experiment is 195274.  

3.4 Syntactic View 

The syntactic view consists of the syntactic 

features of a document. We use four content-

independent structures including n-grams of POS 

tags (n = 1..3) and rewrite rules (Kim et al., 

2011). The vocabulary sizes for POS 1-grams, 

POS 2-grams, POS 3-grams, and rewrite rules in 

our experiment are 63, 1917, 21950, and 19240, 

respectively. These four types of syntactic 

structures are merged into a single vector. Hence 

the syntactic view of a document is represented 

as a vector of 43140 components. 

3.5 Aggregating Results from Three Views 

In testing, once we obtain the prediction values 

from three classifiers for a test document tk, an 

additional algorithm is used to decide the final 

author attribution. One simple method is voting. 

However, this method is weaker than the three 

methods below. It is also hard to compare with 

the self-training method CNG+SVM in (Kourtis 

and Stamatatos, 2011) as it only has two classifi-

ers. Hence we present three other strategies to 

further aggregate the results from the three 

views. These methods require the classifier to 

produce a numeric score to reflect the positive or 

negative certainty. Many classification algo-

rithms give such scores, e.g., SVM and logistic 

regression. The three methods are as follows:  

1)  ScoreSum: The learned model first classifies 

all test cases in T. Then for each test case tk, 

this method sums up all scores of positive 

classifications from the three views. It then 

assigns tk to the author with the highest score. 

2)  ScoreSqSum: This method works similarly to 

ScoreSum above except that it sums up the 

squared scores of positive classifications. 

3)  ScoreMax: This method works similarly to the 

ScoreSum method as well except that it finds 

the maximum classification score for each test 

document. 

4 Experimental Evaluation  

We now evaluate the proposed method. We use 

logistic regression (LR) with L2 regularization 

(Fan et al., 2008) and the SVMmulticlass (SVM) 

system (Joachims, 2007) with its default settings 

as the classifiers.  

4.1 Experiment Setup 

We conduct experiments on the IMDb dataset 

(Seroussi et al., 2010). This data set contains the 

IMDb reviews in May 2009. It has 62,000 re-

views by 62 users (1,000 reviews per user). For 

each author/reviewer, we further split his/her 

documents into the labeled, unlabeled, and test 

sets. 1% of one author’s documents, i.e., 10 doc-

uments per author, are used as the labeled data 

for training, 79% are used as unlabeled data, and 

the rest 20% are used for testing. We extract and 

compute the character and lexical features direct-

ly from the raw data, and use the Stanford PCFG 

parser (Klein and Manning, 2003) to generate the 

grammar structures of sentences in each review 

for extracting syntactic features. We normalize 

each feature’s value to the [0, 1] interval by di-

viding the maximum value of this feature in the 

training set. We use the micro-averaged classifi-

cation accuracy as the evaluation metric. 

4.2 Baseline methods 

We use six self-training baselines and three co-

training baselines. Self-training in (Kourtis and 

Stamatatos, 2011) uses two different classifiers 

on one view, and co-training uses one classifier 

on two views. All baselines except CNG+SVM 
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on the character view are our extensions. 

Self-training using CNG+SVM on character, 

lexical and syntactic views respectively: This 

gives three baselines. It self-trains two classifi-

ers from the character 3-gram, lexical, and syn-

tactic views using CNG and SVM classifiers 

(Kourtis and Stamatatos, 2011). CNG is a pro-

file-based method which represents the author 

as the N most frequent character n-grams of all 

his/her training texts. The original method ap-

plied only CNG and SVM on the character n-

gram view. Since our results show that its per-

formance is extremely poor, we are curious 

what the reason is. Can this be due to the clas-

sifier or to the view? In order to differentiate 

the effects of views and classifiers, we present 

two additional types of baselines. The first type 

is to extend CNG+SVM method to lexical and 

syntactic views as well. The second type is to 

extend CNG+SVM method by replacing CNG 

with LR to show a fair comparison with our 

framework.  

Self-training using LR+SVM on character, lexi-

cal, and syntactic views: This is the second 

type extension. It also gives us three baselines. 

It again uses the character, lexical and syntac-

tic view and SVM as one of the two classifiers. 

The other classifier uses LR rather than CNG.  

Co-training using LR on Char+Lex, Char+Syn, 

and Lex+Syn views: This also gives us three 

baselines. Each baseline co-trains two classifi-

ers from every two views of the character 3-

gram, lexical, and syntactic views. 

4.3 Results and analysis 

(1) Effects of learning algorithms  

We first evaluate the effects of learning algo-

rithms on tri-training. We use SVM and LR as 

the learners as they are among the best methods.  

Figure 2. Effects of SVM and LR on tri-training 

The effects of SVM and LR on tri-training are 

shown in Fig. 2. For the aggregation results, we 

draw the curves for ScoreSum. The results for 

other two stratigies are similar. It is clear that LR 

outperforms SVM by a large margin for tri-

training when the number of iterations (k) is 

small. One possible reason is that LR is more 

tolerant to over-fitting caused by the small 

number of training samples. Hence, we use LR 

for tri-training in all experiments. 

(2) Effects of aggregation strategies  

We show the effects of the three proposed 

aggregation strategies. Table 1 indicates that 

ScoreSum (SS) is the best.  

Table 1. Effects of three aggregation strategies: 
ScoreMax(SM), ScoreSum(SS), and ScoreSq-Sum(SQ) 

We also observe that both ScoreSum and 

ScoreSqSum (SQ) perform better than ScoreMax 

(SM) and all single view cases. This suggests 

that the decision made from a number of scores 

is much more reliable than that made from only 

one score. ScoreSum is our default strategy. 

(3) Effects of data augmenting strategies  

We now see the effects of data adding methods 

to augment the labeled set in Fig. 3.  

 

Figure 3. Effects of data augmenting methods on 

tri-training 

We use two strategies. One is our InterAdding 

approach and the other is the SelfAdding 

approach in (Kourtis and Stamatatos, 2011), as 

introduced in Section 3.1. We can see that by 

adding newly classified samples by two 

classifiers to the third view, tri-training gets 

better and better results rapidly. For example, the 

accuracy for k = 10 iterations grows from 61.24 

for SelfAdding to 78.82 for InterAdding, an 

absolute increase of 17.58%. This implies that by 

integrating more information from other views, 

learning can improve greatly.  

(4) Comparison with self-training baselines 

We show the results of CNG+SVM in Table 2. It 

is clear that CNG is almost unable to correctly 

k 
Single  View Results Aggregated Results 

Lex Char Syn SM SS SQ 

0 45.75 32.88 33.96 41.11 46.85 44.61 

10 74.63 66.05 56.99 73.41 78.82 76.41 

20 82.30 74.92 65.05 81.63 86.19 84.05 

30 86.86 79.12 68.85 85.29 89.69 87.74 

40 89.16 81.81 70.85 87.83 91.52 89.99 

50 90.56 83.14 72.06 89.11 92.58 91.17 

60 91.69 84.13 73.23 90.05 93.15 91.82 
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classify any test case. Its accuracy is only 1.26% 

at the start. This directly leads to the failure of 

the self-training. The reason is that the other 

classifier SVM can augment nearly 0 documents 

from the unlabeled set. We also tuned the param-

eter N for CNG, but it makes little difference. 

k 
Self-Training on Char  Aggregated Results 

CNG SVM SM SS SQ 

0 1.26 33.22 32.35 32.47 27.00 

10 1.26 32.35 32.35 32.47 27.00 

20 1.26 32.35 32.35 32.47 27.00 

30 1.26 32.35 32.35 32.47 27.00 

40 1.26 33.60 33.60 33.69 29.07 

50 1.26 33.60 33.60 33.69 29.07 

60 1.27 33.54 33.60 33.69 29.07 

Table 2. Results for the CNG+SVM baseline 

To distinguish the effects of views from classi-

fiers, we conduct two more types of experiments. 

First, we apply CNG+SVM to the lexical and 

syntactic views. The results are even worse. Its 

accuracy drops to 0.58% and 1.21%, respectively. 

Next, we replace CNG with LR and apply 

LR+SVM to all three views. We only show their 

best results in Table 3, either on a single view or 

aggregation. The details are omitted due to space 

limitations. We can see significant improvements 

over their corresponding results of CNG+SVM. 

This demonstrates that the learning methods are 

critical to self-training as well.  

k Tri 

Train 

SelfTrain:CNG+SVM SelfTrain:LR+SVM 

Char lex Syn Char Lex Syn 

0 46.85 33.22 45.44 34.50 33.22 45.75 34.48 

10 78.82 32.47 45.44 34.50 62.56 73.78 51.94 

20 86.19 32.47 45.44 34.09 71.21 81.44 59.88 

30 89.69 32.47 45.44 34.09 75.21 84.68 63.70 

40 91.52 33.69 45.44 34.09 77.46 88.25 65.74 

50 92.58 33.69 45.44 34.09 78.64 88.25 67.45 

60 93.15 33.69 45.44 34.09 79.54 89.31 68.37 

Table 3. Self-training variations 

From Table 3, we can also see that our tri-

training approach outperforms all self-training 

baselines by a large margin. For example, the 

accuracy for LR+SVM on the lexical view is 

89.31%.Although this is the best for self-training, 

it is worse than 93.15% of tri-training.  

The reason that self-training does not work 

well in general is the following: When the train-

ing set is small, the available data may not reflect 

the true distribution of the whole data. Then clas-

sifiers will be biased and their classifications will 

be biased too. In testing, the biased classifiers 

will not have good accuracy. However, in tri-

training, and co-training, each individual view 

may be biased but the views are independent. 

Then each view is more likely to produce ran-

dom samples for the other views and thus reduce 

the bias of each view as the iterations progress.  

(5) Comparison with co-training baselines 

We now compare tri-training with co-training 

(Blum and Mitchell, 1998) in Table 4. Again, tri-

training beats co-training consistently. The best 

performance of co-training is 92.81% achieved 

on the character and lexical views after 60 itera-

tions. However, the accuracy is worse than that 

of tri-training. The key reason is that tri-training 

considers three views, while co-training uses on-

ly two. Also, the predictions by two classifiers 

are more reliable than those by one classifier. 

k Tri 

Train 

Co-Train 

Char+Lex Char+Syn Lex+Syn 

0 46.85 45.75 42.02 45.75 

10 78.82 78.84 75.89 78.85 

20 86.19 86.02 82.59 85.63 

30 89.69 89.32 85.77 88.98 

40 91.52 91.14 87.52 91.16 

50 92.58 92.19 88.46 92.02 

60 93.15 92.81 89.21 92.50 

Table 4. Co-training vs. tri-training 

In (Qian, et al., 2014), we systematically inves-

tigated the effects of learning methods and views 

using a special co-training approach with two 

views. Learning was applied on two views but 

the data augmentation method was like that in 

self-training. The best result there was 91.23%, 

worse than 92.81% of co-training here in Table 4, 

which is worse than 93.15% of Tri-Training.   

Overall, Tri-training performs the best and co-

training is better than self-training and co-self-

training. This indicates that learning on different 

views can better exploit the redundancy in texts 

to achieve superior classification results. 

5 Conclusion  

In this paper, we investigated the problem of au-

thorship attribution with very few labeled exam-

ples. A novel three-view tri-training method was 

proposed to utilize natural views of human lan-

guages, i.e., the character, lexical and syntactic 

views, for classification. We evaluated the pro-

posed method and compared it with state-of-the-

art baselines. Results showed that the proposed 

method outperformed all baseline methods.  

Our future work will extend the work by in-

cluding more views such as the stylistic and vo-

cabulary richness views. Additional experiments 

will also be conducted to determine the general 

behavior of the tri-training approach. 
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Abstract
In this paper, we combine existing
NLP techniques with minimal supervi-
sion to build memory tips according to
the keyword method, a well established
mnemonic device for second language
learning. We present what we believe to be
the first extrinsic evaluation of a creative
sentence generator on a vocabulary learn-
ing task. The results demonstrate that NLP
techniques can effectively support the de-
velopment of resources for second lan-
guage learning.

1 Introduction
The keyword method is a mnemonic device (Co-
hen, 1987; Thompson, 1987) that is especially
suitable for vocabulary acquisition in second lan-
guage learning (Mizumoto and Kansai, 2009;
Hummel, 2010; Shen, 2010; Tavakoli and Gerami,
2013). In this method, a target word in a foreign
language L2 can be learned by a native speaker of
another language L1 in two main steps: 1) one or
more L1 words, possibly referring to a concrete
entity, are chosen based on orthographic or pho-
netic similarity with the target word; 2) an L1 sen-
tence is constructed in which an association be-
tween the translation of the target word and the
keyword(s) is established, so that the learner, when
seeing or hearing the word, immediately recalls
the keyword(s). To illustrate, for teaching the Ital-
ian word cuore which means heart in English, the
learner might be asked to imagine “a lonely heart
with a hard core”.

The keyword method has already been proven
to be a valuable teaching device. However, the
preparation of the memorization tips for each new
word is an activity that requires considerable time,
linguistic competence and creativity. To the best
of our knowledge, there is only one study which
attempts to automate the mechanism of the key-
word method. In (Özbal and Strapparava, 2011),

we proposed to automate the keyword method by
retrieving sentences from the Web. However, we
did not provide any evaluation to demonstrate the
effectiveness of our approach in a real life sce-
nario. In addition, we observed that retrieval poses
severe limitations in terms of recall and sentence
quality, and it might incur copyright violations.

In this paper, we overcome these limitations by
introducing a semi-automatic system implement-
ing the keyword method that builds upon the key-
word selection mechanism of Özbal and Strappar-
ava (2011) and combines it with a state-of-the-art
creative sentence generation framework (Özbal et
al., 2013). We set up an experiment to simulate
the situation in which a teacher needs to prepare
material for a vocabulary teaching resource. Ac-
cording to our scenario, the teacher relies on au-
tomatic techniques to generate relatively few, high
quality mnemonics in English to teach Italian vo-
cabulary. She only applies a very light supervi-
sion in the last step of the process, in which the
most suitable among the generated sentences are
selected before being presented to the learners. In
this stage, the teacher may want to consider factors
which are not yet in reach of automatic linguistic
processors, such as the evocativeness or the mem-
orability of a sentence. We show that the automat-
ically generated sentences help learners to estab-
lish memorable connections which augment their
ability to assimilate new vocabulary. To the best of
our knowledge, this work is the first documented
extrinsic evaluation of a creative sentence genera-
tor on a real-world application.

2 Related work

The effectiveness of the keyword method (KM)
is a well-established fact (Sarıçoban and Başıbek,
2012). Sommer and Gruneberg (2002) found that
using KM to teach French made learning easier
and faster than conventional methods. Sagarra
and Alba (2006) compared the effectiveness of
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three learning methods including the semantic
mapping, rote memorization (i.e., memorization
by pure repetition, with no mnemonic aid) and
keyword on beginner learners of a second lan-
guage. Their results show that using KM leads
to better learning of second language vocabulary
for beginners. Similar results have been reported
by Sarıçoban and Başıbek (2012) and Tavakoli
and Gerami (2013). Besides all the experimental
results demonstrating the effectiveness of KM, it
is worthwhile to mention about the computational
efforts to automate the mechanism. In (Özbal and
Strapparava, 2011) we proposed an automatic vo-
cabulary teaching system which combines NLP
and IR techniques to automatically generate mem-
ory tips for vocabulary acquisition. The system
exploits orthographic and phonetic similarity met-
rics to find the best L2 keywords for each target L1
word. Sentences containing the keywords and the
translation of the target word are retrieved from
the Web, but we did not carry out an evaluation
of the quality or the coverage of the retrieved sen-
tences. In Özbal et al. (2013) we proposed an ex-
tensible framework for the generation of creative
sentences in which users are able to force sev-
eral words to appear in the sentences. While we
had discussed the potentiality of creative sentence
generation as a useful teaching device, we had not
validated our claim experimentally yet. As a previ-
ous attempt at using NLP for education, Manurung
et al. (2008) employ a riddle generator to create
a language playground for children with complex
communication needs.

3 Memory tip generation

Preparing memory tips based on KM includes two
main ingredients: one or more keywords which are
orthographically or phonetically similar to the L2
word to be learned; and a sentence in which the
keywords and the translation of the target L2 word
are combined in a meaningful way. In this section,
we detail the process that we employed to generate
such memory tips semi-automatically.

3.1 Target word selection and keyword
generation

We started by compiling a collection of Ital-
ian nouns consisting of three syllables from var-
ious resources for vocabulary teaching includ-
ing http://didattica.org/italiano.
htm and http://ielanguages.com, and
produced a list of 185 target L2 words. To gen-

erate the L1 keywords for each target word, we
adopted a similar strategy to Özbal and Strappa-
rava (2011). For each L2 target word t, the key-
word selection module generates a list of possi-
ble keyword pairs, K. A keyword pair k ∈ K
can either consist of two non-empty strings, i.e.,
k = [w0, w1], or of one non-empty and one empty
string, i.e., w1 = ε. Each keyword pair has the
property that the concatenation of its elements is
either orthographically or phonetically similar to
the target word t. Orthographic and phonetic sim-
ilarity are evaluated by means of the Levenshtein
distance (Levenshtein, 1966). For orthographic
similarity, the distance is calculated over the char-
acters in the words, while for phonetic similarity
it is calculated over the phonetic representations
of t and w0 + w1. We use the CMU pronuncia-
tion dictionary1 to retrieve the phonetic represen-
tation of English words. For Italian words, instead,
their phonetic representation is obtained from an
unpublished phonetic lexicon developed at FBK-
irst.

3.2 Keyword filtering and ranking

Unlike in (Özbal and Strapparava, 2011), where
we did not enforce any constraints for selecting
the keywords, in this case we applied a more so-
phisticated filtering and ranking strategy. We re-
quire at least one keyword in each pair to be a
content word; then, we require that at least one
keyword has length ≥ 3; finally, we discard pairs
containing at least one proper noun. We allowed
the keyword generation module to consider all the
entries in the CMU dictionary, and rank the key-
word pairs based on the following criteria in de-
creasing order of precedence: 1) Keywords with
a smaller orthographic/phonetic distance are pre-
ferred; 2) Keywords consisting of a single word
are preferred over two words (e.g., for the target
word lavagna, which means blackboard, lasagna
takes precedence over love and onion); 3) Key-
words that do not contain stop words are preferred
(e.g., for the target word pettine, which means
comb, the keyword pair pet and inn is ranked
higher than pet and in, since in is a stop word); 4)
Keyword pairs obtained with orthographic similar-
ity are preferred over those obtained with phonetic
similarity, as learners might be unfamiliar with the
phonetic rules of the target language. For example,
for the target word forbice, which means scissors,

1http://www.speech.cs.cmu.edu/cgi-bin/
cmudict
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Group Target Sentence

A1 campagna a company runs the country
A1 isola an island of remote isolated communities
A1 fabbrica a fabric worker in a factory
A1 bagnino lifeguards carry no bag
A1 inverno the inferno started, winter left
A1 cielo the sky has no ceiling
A1 marrone blood and marrow in a brown water
A1 cuore the lonely heart has hard core
A1 coperta a piece of copper in the corner of a blanket
A1 locanda an inn oak door with lock and key
A2 piazza a square building serves a free pizza
A2 calzino big bloke with sock in the casino
A2 scatola a cardboard box sat in a scuttle of a house
A2 ragazzo boys also have rag dolls
A2 angolo a corner kick came at an angle
A2 cestino a teen movie uses basket to play the chess
A2 carbone the coal is the form of carbon
A2 cassetto a blank cassette tape is in a drawer
A2 farfalla the butterflies are far in the fall
A2 tovaglia a damp cloth towel
B1 duomo the old cathedral has a dome
B1 aceto a vinegar sauce contains the acid
B1 nuvola the sophisticated novel depicts the cloud
B1 chiesa the Catholic church has Swiss cheese
B1 bacino the explosion in the back broke the pelvis
B1 maiale a pork meat comes in the mail
B1 minestra Chinese ministries have soup
B1 estate this estate is for summer
B1 bozzolo a buzz comes wrapped in the cocoon
B1 arnese harness a technology to develop a tool
B2 asino an Asian elephant is riding a donkey
B2 miele do not make honey to walk a mile
B2 polmone crowded pullmans stop the lungs
B2 fagiolo a topical facial bean cream
B2 fiore a fire in a flower market
B2 compressa the clay tablet is in the compressed form
B2 cavallo horse running fast in cavalry
B2 fiume the muddy river has smoke and fumes
B2 pittore a famous painter has precious pictures
B2 manico manic people have broken necks

Table 1: Sentences used in the vocabulary acqui-
sition experiment.

the keyword pair for and bid is preferred to for and
beach.

We selected up to three of the highest ranked
keyword pairs for each target word, obtaining 407
keyword combinations for the initial 185 Italian
words, which we used as the input for the sentence
generator.

3.3 Sentence generation
In this step, our goal was to generate, for each Ital-
ian word, sentences containing its L1 translation
and the set of orthographically (or phonetically)
similar keywords that we previously selected. For
each keyword combination, starting from the top-
ranked ones, we generated up to 10 sentences by
allowing any known part-of-speech for the key-
words. The sentences were produced by the state

of the art sentence generator of Özbal et al. (2013).
The system relies on two corpora of automatic
parses as a repository of sentence templates and
lexical statistics. As for the former, we combined
two resources: a corpus of 16,000 proverbs (Mi-
halcea and Strapparava, 2006) and a collection of
5,000 image captions2 collected by Rashtchian et
al. (2010). We chose these two collections since
they offer a combination of catchy or simple sen-
tences that we expect to be especially suitable
for second language learning. As for the sec-
ond corpus, we used LDC’s English GigaWord 5th
Edition3. Of the 12 feature functions described
in (Özbal et al., 2013), we only implemented the
following scorers: Variety (to prevent duplicate
words from appearing in the sentences); Seman-
tic Cohesion (to enforce the generation of sentence
as lexically related to the target words as possi-
ble); Alliteration, Rhyme and Plosive (to intro-
duce hooks to echoic memory in the output); De-
pendency Operator andN -gram (to enforce output
grammaticality).

We observed that the sentence generation mod-
ule was not able to generate a sentence for 24%
of the input configurations. For comparison, when
we attempted to retrieve sentences from the Web
as suggested in Özbal and Strapparava (2011), we
could collect an output for less than 10% of the in-
put configurations. Besides, many of the retrieved
sentences were exceedingly long and complex to
be used in a second language learning experiment.

3.4 Sentence selection
For each L1 keyword pair obtained for each L2
target word, we allowed the system to output up to
10 sentences. We manually assessed the quality of
the generated sentences in terms of meaningful-
ness, evocativeness and grammaticality to select
the most appropriate sentences to be used for the
task. In addition, for keyword pairs not containing
the empty string, we prioritized the sentences in
which the keywords were closer to each other. For
example, let us assume that we have the keywords
call and in for the target word collina. Among
the sentences “The girl received a call in the bath-
room” and “Call the blond girl in case you need”,
the first one is preferred, since the keywords are
closer to each other. Furthermore, we gave pri-
ority to the sentences that included the keywords

2http://vision.cs.uiuc.edu/
pascal-sentences/

3http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2011T07
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in the right order. To illustrate, for the same key-
words and the target words, we would prefer the
sentence “I called him in the morning yesterday”
over “You talk a lot in a call”.

Accordingly, for each target word in random or-
der, we sequentially scanned the outputs generated
for each keyword pair. As soon as a sentence of
adequate quality was found, we added it to our
evaluation data and moved on to the next keyword.
We continued this process until we selected a sen-
tence for 40 distinct target words, which we set
as the target size of the experiment. We had to
inspect the outputs generated for 48 target words
before we were able to select 40 good examples,
meaning that for 17% of the target words the sen-
tence generator could not produce a sentence of
acceptable quality.

4 Experiment setup

For our experiment, we drew inspiration from
Sagarra and Alba (2006). We compared the re-
tention error rate of learners who tried to memo-
rize new words with or without the aid of the auto-
matically generated sentences. Through academic
channels, we recruited 20 native English speakers
with no prior knowledge of Italian.4

After obtaining the sentences as explained in
Section 3, we shuffled and then divided the whole
set including 40 target words together with their
translation, the generated keywords and sentences
into 2 batches (A, B) and further divided each
batch into 2 groups consisting of 10 elements (A1,
A2, B1 and B2). The set of sentences assigned
to each group is listed in Table 1: Column “Tar-
get” reports the Italian target word being taught;
Column “Sentence” shows the automatically gen-
erated sentence, where the translation of the tar-
get word is shown in bold and the keyword(s) in
italic. For the experiments, we randomly assigned
each subject to one of the batches (A or B). Then,
each subject was asked to memorize all the word
pairs in a batch, but they would see the memory
tips only for one of the two groups, which was
again randomly assigned. This approach resulted
in 4 different memorization exercises, namely 1)
A1 with tips and A2 without, 2) A2 with tips and
A1 without, 3) B1 with tips and B2 without, 4) B2
with tips and B1 without.

4We preferred to select the experiment subjects in person
as opposed to crowdsourcing the evaluation to be able to ver-
ify the proficiency of the subjects in the two languages and to
ensure the reliability of the outcome of the evaluation.

Error rate (%) Reduction

Group Rote KW ∆e %e

A1 4.08 3.39 0.69 16.95
A2 12.07 10.42 1.65 13.69
B1 12.77 10.00 2.77 21.67
B2 22.50 12.50 10.00 44.44

Macro-average 12.85 9.08 3.78 29.39
Micro-average 11.27 8.25 3.02 26.76

Table 2: Per-group and overall retention error rate
when using rote or keyword-aided (KW) memo-
rization.

When memorizing the translations without the
aid of memory tips, the subjects were instructed
to focus only on the Italian word and its English
translation and to repeat them over and over in
their mind. Conversely, when relying on the au-
tomatic memory tips the subjects were shown the
word, its translation and the generated sentence in-
cluding the keywords. In this case, the subjects
were instructed to read the sentence over and over
trying to visualize it.

After going through each set of slides, we dis-
tracted the subjects with a short video in order to
reset their short term memory. After that, their re-
tention was tested. For each Italian word in the ex-
ercise, they were asked to select the English trans-
lation among 5 alternatives, including the correct
translation and 4 other words randomly selected
from the same group. In this way, the subjects
would always have to choose among the words
that they encountered during the exercise.5 We
also added an extra option “I already knew this
word” that the subjects were instructed to select
in case they already knew the Italian word prior to
taking part in the experiment.

5 Experiment results

Table 2 summarizes the outcome of the experi-
ment. The contribution of the automatically gen-
erated sentences to the learning task is assessed
in terms of error rate-reduction, which we mea-
sure both within each group (rows 1-4) and on the
whole evaluation set (rows 5-6). Due to the pres-
ence of the “I already knew this word” option in
the learning-assessment questionnaire, the number
of the actual answers provided by each subject can
be slightly different, hence the difference between
macro- and micro-average.

5Otherwise, they could easily filter out the wrong answers
just because they were not exposed to them recently.
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The error rate for each memorization technique
t (where t = R for “Rote memorization” and
t = K for “keyword-aided memorization”) is cal-
culated as: et = it

ct+it
, where ct and it are the

number of correct and incorrect answers provided
by the subjects, respectively. The absolute error
rate reduction ∆e is calculated as the absolute dif-
ference in error rate between rote and keyword-
aided memorization, i.e.: ∆e = eR − eK. Finally,
the relative error rate reduction %e is calculated as
the the ratio between the absolute error rate reduc-
tion ∆e and the error rate of rote memorization eR,
i.e.,: %e = ∆e

eR
= eR−eK

eR
.

The overall results (rows 5 and 6 in Table 2)
show that vocabulary learning noticeably im-
proves when supported by the generated sen-
tences, with error rates dropping by almost 30%
in terms of macro-average (almost 27% for micro-
average). The breakdown of the error rate across
the 4 groups shows a clear pattern. The results
clearly indicate that one group (A1) by chance
contained easier words to memorize as shown by
the low error rate (between 3% and 4%) obtained
with both methods. Similarly, groups A2 and B1
are of average difficulty, whereas group B2 ap-
pears to be the most difficult, with an error rate
higher than 22% when using only rote memoriza-
tion. Interestingly, there is a strong correlation
(Pearson’s r = 0.85) between the difficulty of
the words in each group (measured as the error
rate on rote memorization) and the positive contri-
bution of the generated sentences to the learning
process. In fact, we can see how the relative er-
ror rate reduction %e increases from∼17% (group
A1) to almost 45% (group B2). Based on the re-
sults obtained by Sagarra and Alba (2006), who
showed that the keyword method results in bet-
ter long-term word retention than rote memoriza-
tion, we would expect the error rate reduction to be
even higher in a delayed post-test. All in all, these
findings clearly support the claim that a state-of-
the-art sentence generator can be successfully em-
ployed to support keyword-based second language
learning. After completing their exercise, the sub-
jects were asked to provide feedback about their
experience as learners. We set up a 4-items Lik-
ert scale (Likert, 1932) where each item consisted
of a statement and a 5-point scale of values rang-
ing from (1) [I strongly disagree] to (5) [I strongly
agree]. The distribution of the answers to the ques-
tions is shown in Table 3. 60% of the subjects ac-
knowledged that the memory tips helped them in

Rating (%)

Question 1 2 3 4 5

Sentences helped 5 20 15 35 25
Sentences are grammatical - 25 30 35 10
Sentences are catchy - 25 10 50 15
Sentences are witty - 25 25 50 -

Table 3: Evaluation of the generated sentences on
a 5-point Likert scale.

the memorization process; 45% found that the sen-
tences were overall correct; 65% confirmed that
the sentences were catchy and easy to remember;
and 50% found the sentences to be overall witty
although the sentence generator does not include a
mechanism to generate humor. Finally, it is worth
mentioning that none of the subjects noticed that
the sentences were machine generated, which we
regard as a very positive assessment of the qual-
ity of the sentence generation framework. From
their comments, it emerges that the subjects ac-
tually believed that they were just comparing two
memorization techniques.

6 Conclusion and Future Work

In this paper, we have presented a semi-automatic
system for the automation of the keyword method
and used it to teach 40 Italian words to 20 En-
glish native speakers. We let the system select
appropriate keywords and generate sentences au-
tomatically. For each Italian word, we selected the
most suitable among the 10 highest ranked sug-
gestions and used it for the evaluation. The sig-
nificant reduction in retention error rate (between
17% and 45% on different word groups) for the
words learned with the aid of the automatically
generated sentences shows that they are a viable
low-effort alternative to human-constructed exam-
ples for vocabulary teaching.

As future work, it would be interesting to in-
volve learners in an interactive evaluation to un-
derstand the extent to which learners can bene-
fit from ad-hoc personalization. Furthermore, it
should be possible to use frameworks similar to
the one that we presented to automate other teach-
ing devices based on sentences conforming to spe-
cific requirements (Dehn, 2011), such as verbal
chaining and acrostic.
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Abstract

Wouldn’t it be helpful if your text edi-
tor automatically suggested papers that are
relevant to your research? Wouldn’t it
be even better if those suggestions were
contextually relevant? In this paper we
name a system that would accomplish this
a context-based citation recommendation
(CBCR) system. We specifically present
Citation Resolution, a method for the eval-
uation of CBCR systems which exclusively
uses readily-available scientific articles.
Exploiting the human judgements that are
already implicit in available resources, we
avoid purpose-specific annotation. We ap-
ply this evaluation to three sets of methods
for representing a document, based on a)
the contents of the document, b) the sur-
rounding contexts of citations to the doc-
ument found in other documents, and c) a
mixture of the two.

1 Introduction

Imagine that you were working on a draft paper
which contained a sentence like the following:1

A variety of coherence theories have
been developed over the years ... and
their principles have found application
in many symbolic text generation sys-
tems (e.g. [CITATION HERE])

Wouldn’t it be helpful if your editor automat-
ically suggested some references that you could
cite here? This is what a citation recommenda-
tion system ought to do. If the system is able to
take into account the context in which the citation
occurs — for example, that papers relevant to our
example above are not only about text generation

1Adapted from the introduction to Barzilay and Lapata
(2008)

systems, but specifically mention applying coher-
ence theories — then this would be much more
informative. So we define a context-based citation
recommendation (CBCR) system as one that assists
the author of a draft document by suggesting other
documents with content that is relevant to a partic-
ular context in the draft.

Our longer term research goal is to provide sug-
gestions that satisfy the requirements of specific
expository or rhetorical tasks, e.g. provide support
for a particular argument, acknowledge previous
work that uses the same methodology, or exem-
plify work that would benefit from the outcomes
of the author’s work. However, our current pa-
per has more modest aims: we present initial re-
sults using existing IR-based approaches and we
introduce an evaluation method and metric. CBCR

systems are not yet widely available, but a num-
ber of experiments have been carried out that may
pave the way for their popularisation, e.g. He et al.
(2010), Schäfer and Kasterka (2010) and He et al.
(2012). It is within this early wave of experiments
that our work is framed.

A main problem we face is that evaluating the
performance of these systems ultimately requires
human judgement. This can be captured as a set of
relevance judgements for candidate citations over
a corpus of documents, which is an arduous ef-
fort that requires considerable manual input and
very careful preparation. In designing a context-
based citation recommendation system, we would
ideally like to minimise these costs.

Fortunately there is already an abundance of
data that meets our requirements: every scientific
paper contains human “judgements” in the form
of citations to other papers which are contextually
appropriate: that is, relevant to specific passages
of the document and aligned with its argumenta-
tive structure. Citation Resolution is a method for
evaluating CBCR systems that is exclusively based
on this source of human judgements.
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Let’s define some terminology. In the follow-
ing passage, the strings ‘Scott and de Souza, 1990’
and ‘Kibble and Power, 2004’ are both citation to-
kens:

A variety of coherence theories have
been developed over the years ... and
their principles have found application
in many symbolic text generation sys-
tems (e.g. Scott and de Souza, 1990;
Kibble and Power, 2004)

Note that a citation token can use any standard for-
mat. Furthermore
• a citation context is the context in which a ci-

tation token occurs, with no limit as to repre-
sentation of this context, length or processing
involved;
• a collection-internal reference is a reference

in the bibliography of the source document
that matches a document in a given corpus;
• a resolvable citation is an in-text citation to-

ken which resolves to a collection-internal
reference.

2 Related work

While the existing work in this specific area is
far from extensive, previous experiments in evalu-
ating context-based citation recommendation sys-
tems have used one of three approaches. First,
evaluation can be carried out through user studies,
which is costly because it cannot be reused (e.g.
Chandrasekaran et al. (2008)).

Second, a set of relevance judgements can be
created for repeated testing. Ritchie (2009) details
the building of a large set of relevance judgements
in order to evaluate an experimental document re-
trieval system. The judgements were mainly pro-
vided by the authors of papers submitted to a lo-
cally organised conference, for over 140 queries,
each of them being the main research question
of one paper. This is a standard approach in IR,
known as building a test collection (Sanderson,
2010), which the author herself notes was an ar-
duous and time-consuming task.

Third, as we outlined above, existing citations
between papers can be exploited as a source of
human judgements. The most relevant previous
work on this is He et al. (2010), who built an ex-
perimental CBCR system using the whole index of
CiteSeerX as a test collection (over 450,000 docu-
ments). They avoided direct human evaluation and
instead used three relevance metrics:

• Recall, the presence of the original reference
in the list of suggestions generated by the sys-
tem;
• Co-cited probability, a ratio between, on the

one hand, the number of papers citing both
the original reference and a recommended
one, and on the other hand, the number of pa-
pers citing either of them; and
• Normalized Discounted Cumulative Gain, a

measure based on the rank of the original ref-
erence in the list of suggested references, its
score decreasing logarithmically.

However, these metrics fail to adequately recog-
nise that the particular reference used by an author
e.g. in support of an argument or as exemplifica-
tion of an approach, may not be the most appro-
priate that could be found in the whole collection.
This does not just amount to a difference of opin-
ion between different authors; it is possible that
within a large enough collection there exists a pa-
per which the original author herself would con-
sider to be more appropriate by any criteria (per-
suasive power, discoverability or the publication,
etc.) than the one actually cited in the paper. Also,
given that recommending the original citation used
by the author in first position is our key criterion, a
metric with smooth discounting like NDCG is too
lenient for our purposes.

We have then chosen top-1 accuracy as our met-
ric, where every time the original citation is first on
the list of suggestions, it receives a score of 1, and
0 otherwise, and these scores are averaged over
all resolved citations in the document collection.
This metric is intuitive in measuring the efficiency
of the system at this task, as it is immediately in-
terpretable as a percentage of success.

While previous experiments in CBCR, like the
ones we have just presented, have treated the task
as an Information Retrieval problem, our ultimate
purpose is different and travels beyond IR into
Question Answering. We want to ultimately be
able to assess the reason a document was cited in
the context of the argumentation structure of the
document, following previous work on the auto-
matic classification of citation function by Teufel
et al. (2006), Liakata et al. (2012) and Schäfer and
Kasterka (2010). We expect this will allow us to
identify claims made in a draft paper and match
them with related claims made in other papers for
support or contrast, and so offer answers in the
form of relevant passages extracted from the sug-
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gested documents.
It is frequently observed that the reasons for cit-

ing a paper go beyond its contribution to the field
and its relevance to the research being reported
(Hyland, 2009). There is a large body of research
on the motivations behind citing documents (Mac-
Roberts and MacRoberts, 1996), and it is likely
that this will come to play a part in our research in
the future.

In this paper, however, we present our initial
results which compare three different sets of IR-
based approaches to generating the document rep-
resentation for a CBCR system. One is based on
the contents of the document itself, one is based
on the existing contexts of citations of this paper
in other documents, and the third is a mixture of
the two.

3 The task: Citation Resolution

In this section we present the evaluation method in
more abstract terms; for the implementation used
in this paper, please see Sections 4 and 5. The
core criterion of this task is to use only the human
judgements that we have clearest evidence for. Let
d be a document and R the collection of all doc-
uments that are referenced in d. We believe it is
reasonable to assume that the author of document
d knows enough about the contents of each doc-
ument Ri to choose the most appropriate citation
from the collection R for every citation context in
the document.

This captures a very strong relevance judge-
ment about the relation between a particular cita-
tion context in the document and a particular cited
reference document. We use these judgements for
evaluation: our task is to match every citation con-
text in the document (i.e. the surrounding context
of a citation token) with the right reference from
the list of references cited by that paper.

This task differs somewhat from standard Infor-
mation Retrieval, in that we are not trying to re-
trieve a document from a larger collection outside
the source document, but trying to resolve the cor-
rect reference for a given citation context from an
existing list of documents, that is, from the bibli-
ography that has been manually curated by the au-
thors. Our document collection used for retrieval
is further composed of only the references of that
document that we can access.

The algorithm for the task is presented in Figure
1. For any given test document (2), we first extract

all the citation tokens found in the text that cor-
respond to a collection-internal reference (a). We
then create a document representation of the refer-
enced document (currently a Vector Space Model,
but liable to change). This representation can be
based on any information found in the document
collection, excluding the document d itself: e.g.
the text of the referenced document and the text of
documents that cite it.

For each citation token we then extract its con-
text (b.i), which becomes the query in IR terms.
One way of doing this that we present here is to
select a list of word tokens around the citation. We
then attempt to resolve the citation by computing
a score for the match between each reference rep-
resentation and the citation context (b.ii). We rank
all collection-internal references by this score in
decreasing order, aiming for the original reference
to be in the first position (b.iii).

In the case where multiple citations share the
same context, that is, they are made in di-
rect succession (e.g. “...compared with previous
approaches (Author (2005), Author and Author
(2007))”), the first n elements of the list of sug-
gested documents all count as the first element.
That is, if any of the references in a multiple ci-
tation of n elements appears in the first n posi-
tions of the list of suggestions, it counts as a suc-
cessful resolution and receives a score of 1. The
final score is averaged over all citation contexts
processed.

The set of experiments we present here apply
this evaluation to test a number of IR techniques
which we detail in the next section.

1. Given document collection D
2. For every test document d

(a) For every reference r in its bibliography R
i. If r is in document collection D

ii. Add all inline citations Cr in d to list C
(b) For each citation c in C

i. Extract context ctxc of c
ii. Choose which document r in R best matches
ctxc

iii. Measure accuracy

Figure 1: Algorithm for citation resolution.

4 Experiments

Our test corpus consists of approx. 9000 papers
from the ACL Anthology 2 converted from PDF to

2http://http://aclweb.org/anthology/

360



XML format. This corpus, the rationale behind its
selection and the process used to convert the files
is described in depth in Ritchie et al. (2006). This
is an ideal corpus for these tests for a large number
of reasons, but these are key for us: all the papers
are freely available, the ratio of collection-internal
references for each paper is high (the authors mea-
sure it at 0.33) and it is a familiar domain for us.

For our tests, we selected the documents of
this corpus with at least 8 collection-internal refer-
ences. This yielded a total of 278 test documents
and a total of 5446 resolvable citations.

We substitute all citations in the text with ci-
tation token placeholders and extract the citation
context for each using a simple window of up to
w words left and w words right around the place-
holder. This produces a list of word tokens that is
equivalent to a query in IR.

This is a frequently employed technique (He et
al., 2010), although it is often observed that this
may be too simplistic a method (Ritchie, 2009).
Other methods have been tried, e.g. full sentence
extraction (He et al., 2012) and comparing these
methods is something we plan to incorporate in
future work.

We then make the document’s collection-
internal references our test collection D and use a
number of methods for generating the document
representation. We use the well-known Vector
Space Model and a standard implementation of tf-
idf and cosine similarity as implemented by the
scikit-learn Python framework 3. At present, we
are applying no cut-off and just rank all of the doc-
ument’s collection-internal references for each ci-
tation context, aiming to rank the correct one in
the first positions in the list.

We tested three different approaches to gener-
ating a document’s VSM representation: internal
representations, which are based on the contents
of the document, external representations, which
are built using a document’s incoming link cita-
tion contexts (following Ritchie (2009) and He et
al. (2010)) and mixed representations, which are
an attempt to combine the two.
• The internal representations of the documents

were generated using three different methods:
title plus abstract, full text and passage. Pas-
sage consists in splitting the document into
half-overlapping passages of a fixed length of
k words and choosing for each document the

3http://scikit-learn.org

passage with the maximum cosine similarity
score with the query. We present the results
of using 250, 300 and 350 as values for k.
• The external representations (inlink context)

are based on extracting the context around ci-
tation tokens to the document from other doc-
uments in the collection, excluding the set of
test papers. This is the same as using the an-
chor text of a hyperlink to improve results in
web-based IR (see Davison (2000) for exten-
sive analyis). This context is extracted in the
same way as the query: as a window, or list
of w tokens surrounding the citation left and
right. We present our best results, using sym-
metrical and asymmetrical windows of w =
[(5, 5), (10, 10), (10, 5), (20, 20), (30, 30)].
• We build the mixed representations by simply

concatenating the internal and external bags-
of-words that represent the documents, from
which we then build the VSM representa-
tion. For this, we combine different window
sizes for the inlink context with: full text, ti-
tle abstract and passage350.

5 Results and discussion

Table 1 presents a selection of the most relevant
results, where the best result and document rep-
resentation method of each type is highlighted.
We present results for the most relevant parameter
values, producing the highest scores of all those
tested.

From a close look at internal methods, we can
see that the passage method with k = 400 beats
both full text and title abstract, suggesting that a
more elaborate way of building a document repre-
sentation should improve results. This is consis-
tent with previous findings: Gay et al. (2005) had
already reported that using selected sections plus
captions of figures and title and abstract to build
the internal document representation improves the
results of their indexing task by 7.4% over just
using title and abstract. Similarly, Jimeno-Yepes
et al. (2013) showed that automatically generated
summaries lead to similar recall and better index-
ing precision than full-text articles for a keyword-
based indexing task.

However, it is immediately clear that purely ex-
ternal methods obtain higher scores than internal
ones. The best score of 0.413 is obtained by the
inlink context method with a window of 10 tokens
left, 5 right, combined with the similarly-sized ex-
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Method window5 5 window10 10 window10 5 window20 20 window30 30

Internal methods
full text 0.318 0.340 0.337 0.369 0.370
title abstract 0.296 0.312 0.312 0.322 0.311
passage250 0.343 0.367 0.359 0.388 0.382
passage350 0.346 0.371 0.364 0.388 0.381
passage400 0.348 0.371 0.362 0.391 0.380
External methods
inlink context10 0.391 0.406 0.405 0.395 0.387
inlink context20 0.386 0.406 0.413 0.412 0.402
inlink context30 0.380 0.403 0.400 0.411 0.404
Mixed methods
inlink context 20 full text 0.367 0.407 0.399 0.431 0.425
inlink context 20 title abstract 0.419 0.447 0.441 0.453 0.437
inlink context 20 passage250 0.420 0.458 0.451 0.469 0.451
inlink context 10 passage350 0.435 0.465 0.459 0.464 0.450
inlink context 20 passage350 0.426 0.464 0.456 0.469 0.456

Table 1: Accuracy for each document representation method (rows) and context window size (columns).

traction method for the query (window10 10). We
find it remarkable that inlink context is superior to
internal methods, beating the best (passage400) by
0.02 absolute accuracy points. Whether this is be-
cause the descriptions of these papers in the con-
texts of incoming link citations capture the essence
or key relevance of the paper, or whether this ef-
fect is due to authors reusing their work or to these
descriptions originating in a seed paper and be-
ing then propagated through the literature, remain
interesting research questions that we intend to
tackle in future work.

The key finding from our experiments is how-
ever that a mixture of internal and external
methods beats both individually. The highest
score is 0.469, achieved by a combination of in-
link context 20 and the passage method, for a win-
dow of w = 20, with a tie between using 250 and
350 as values for k (passage size). The small dif-
ference in score between parameter values is per-
haps not as relevant as the finding that, taken to-
gether, mixed methods consistently beat both ex-
ternal and internal methods.

These results also show that the task is far from
solved, with the highest accuracy achieved being
just under 47%. There is clear room for improve-
ment, which we believe could firstly come from a
more targeted extraction of text, both for generat-
ing the document representations and for extract-
ing the citation contexts.

Our ultimate goal is matching claims and com-
paring methods, which would likely benefit from
an analysis of the full contents of the document
and not just previous citations of it, so in future
work we also intend to use the context from the

successful external results as training data for a
summarisation stage.

6 Conclusion and future work

In this paper we have presented Citation Reso-
lution: an evaluation method for context-based
citation recommendation (CBCR) systems. Our
method exploits the implicit human relevance
judgements found in existing scientific articles and
so does not require purpose-specific human anno-
tation.

We have employed Citation Resolution to test
three approaches to building a document repre-
sentation for a CBCR system: internal (based on
the contents of the document), external (based on
the surrounding contexts to citations to that doc-
ument) and mixed (a mixture of the two). Our
evaluation shows that: 1) using chunks of a doc-
ument (passages) as its representation yields bet-
ter results that using its full text, 2) external meth-
ods obtain higher scores than internal ones, and 3)
mixed methods yield better results than either in
isolation.

We intend to investigate more sophisticated
ways of document representation and of extract-
ing a citation’s context. Our ultimate goal is not
just to suggest to the author documents that are
“relevant” to a specific chunk of the paper (sen-
tence, paragraph, etc.), but to do so with attention
to rhetorical structure and thus to citation function.
We also aim to apply our evaluation to other docu-
ment collections in different scientific domains in
order to test to what degree these results can be
generalized.
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Abstract

Incorrect normalization of text can be par-
ticularly damaging for applications like
text-to-speech synthesis (TTS) or typing
auto-correction, where the resulting nor-
malization is directly presented to the user,
versus feeding downstream applications.
In this paper, we focus on abbreviation
expansion for TTS, which requires a “do
no harm”, high precision approach yield-
ing few expansion errors at the cost of
leaving relatively many abbreviations un-
expanded. In the context of a large-
scale, real-world TTS scenario, we present
methods for training classifiers to establish
whether a particular expansion is apt. We
achieve a large increase in correct abbrevi-
ation expansion when combined with the
baseline text normalization component of
the TTS system, together with a substan-
tial reduction in incorrect expansions.

1 Introduction

Text normalization (Sproat et al., 2001) is an im-
portant initial phase for many natural language and
speech applications. The basic task of text normal-
ization is to convert non-standard words (NSWs)
— numbers, abbreviations, dates, etc. — into stan-
dard words, though depending on the task and the
domain a greater or lesser number of these NSWs
may need to be normalized. Perhaps the most de-
manding such application is text-to-speech synthe-
sis (TTS) since, while for parsing, machine trans-
lation and information retrieval it may be accept-
able to leave such things as numbers and abbre-
viations unexpanded, for TTS all tokens need to
be read, and for that it is necessary to know how
to pronounce them. Which normalizations are re-
quired depends very much on the application.

What is also very application-dependent is the
cost of errors in normalization. For some applica-
tions, where the normalized string is an interme-

diate stage in a larger application such as trans-
lation or information retrieval, overgeneration of
normalized alternatives is often a beneficial strat-
egy, to the extent that it may improve the accu-
racy of what is eventually being presented to the
user. In other applications, such as TTS or typing
auto-correction, the resulting normalized string it-
self is directly presented to the user; hence errors
in normalization can have a very high cost relative
to leaving tokens unnormalized.

In this paper we concentrate on abbreviations,
which we define as alphabetic NSWs that it would
be normal to pronounce as their expansion. This
class of NSWs is particularly common in personal
ads, product reviews, and so forth. For example:
home health care svcs stat home health llc
osceola aquatic ctr stars rating write
audi vw repair ser quality and customer

Each of the examples above contains an abbrevi-
ation that, unlike, e.g., conventionalized state ab-
breviations such as ca for California, is either only
slightly standard (ctr for center) or not standard at
all (ser for service).

An important principle in text normalization for
TTS is do no harm. If a system is unable to re-
liably predict the correct reading for a string, it is
better to leave the string alone and have it default
to, say, a character-by-character reading, than to
expand it to something wrong. This is particularly
true in accessibility applications for users who rely
on TTS for most or all of their information needs.
Ideally a navigation system should read turn on
30N correctly as turn on thirty north; but if it can-
not resolve the ambiguity in 30N, it is far better to
read it as thirty N than as thirty Newtons, since lis-
teners can more easily recover from the first kind
of error than the second.

We present methods for learning abbreviation
expansion models that favor high precision (incor-
rect expansions < 2%). Unannotated data is used
to collect evidence for contextual disambiguation
and to train an abbreviation model. Then a small
amount of annotated data is used to build models
to determine whether to accept a candidate expan-
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sion of an abbreviation based on these features.
The data we report on are taken from Google
MapsTM and web pages associated with its map en-
tries, but the methods can be applied to any data
source that is relatively abbreviation rich.

We note in passing that similar issues arise
in automatic spelling correction work (Wilcox-
O’Hearn et al., 2008), where it is better to leave
a word alone than to “correct” it wrongly.

2 Related work

There has been a lot of interest in recent years on
“normalization” of social media such as Twitter,
but that work defines normalization much more
broadly than we do here (Xia et al., 2006; Choud-
hury et al., 2007; Kobus et al., 2008; Beaufort et
al., 2010; Kaufmann, 2010; Liu et al., 2011; Pen-
nell and Liu, 2011; Aw and Lee, 2012; Liu et al.,
2012a; Liu et al., 2012b; Hassan and Menezes,
2013; Yang and Eisenstein, 2013). There is a good
reason for us to focus more narrowly. For Twit-
ter, much of the normalization task involves non-
standard language such as ur website suxx brah
(from Yang and Eisenstein (2013)). Expanding the
latter to your website sucks, brother certainly nor-
malizes it to standard English, but one could argue
that in so doing one is losing information that the
writer is trying to convey using an informal style.
On the other hand, someone who writes svc ctr
for service center in a product review is probably
merely trying to save time and so expanding the
abbreviations in that case is neutral with respect to
preserving the intent of the original text.

One other difference between the work we re-
port from much of the recent work cited above is
that that work focuses on getting high F scores,
whereas we are most concerned with getting high
precision. While this may seem like a trivial
trade off between precision and recall, our goal
motivates developing measures that minimize the
“risk” of expanding a term, something that is im-
portant in an application such as TTS, where one
cannot correct a misexpansion after it is spoken.

3 Methods

Since our target application is text-to-speech, we
define the task in terms of an existing TTS lexi-
con. If a word is already in the lexicon, it is left
unprocessed, since there is an existing pronuncia-
tion for it; if a word is out-of-vocabulary (OOV),
we consider expanding it to a word in the lexicon.
We consider a possible expansion for an abbrevi-
ation to be any word in the lexicon from which
the abbreviation can be derived by only deletion of

letters.1 For present purposes we use the Google
English text-to-speech lexicon, consisting of over
430 thousand words. Given an OOV item (possi-
ble abbreviation) in context, we make use of fea-
tures of the context and of the OOV item itself to
enumerate and score candidate expansions.

Our data consists of 15.1 billion words of text
data from Google MapsTM, lower-cased and tok-
enized to remove punctuation symbols. We used
this data in several ways. First, we used it to boot-
strap a model for assigning a probability of an ab-
breviation/expansion pair. Second, we used it to
extract contextual n-gram features for predicting
possible expansions. Finally, we sampled just over
14 thousand OOV items in context and had them
manually labeled with a number of categories, in-
cluding ‘abbreviation’. OOVs labeled as abbrevia-
tions were also labeled with the correct expansion.
We present each of these uses in turn.

3.1 Abbreviation modeling

We collect potential abbreviation/full-word pairs
by looking for terms that could be abbreviations
of full words that occur in the same context. Thus:

the svc/service center
heating clng/cooling system

dry clng/cleaning system

contributes evidence that svc is an abbreviation
of service. Similarly instances of clng in con-
texts that can contain cooling or cleaning are evi-
dence that clng could be an abbreviation of either
of these words. (The same contextual information
of course is used later on to disambiguate which
of the expansions is appropriate for the context.)
To compute the initial guess as to what can be a
possible abbreviation, a Thrax grammar (Roark et
al., 2012) is used that, among other things, speci-
fies that: the abbreviation must start with the same
letter as the full word; if a vowel is deleted, all ad-
jacent vowels should also be deleted; consonants
may be deleted in a cluster, but not the last one;
and a (string) suffix may be deleted.2 We count
a pair of words as ‘co-occurring’ if they are ob-
served in the same context. For a given context C,
e.g., the center, letWC be the set of words found
in that context. Then, for any pair of words u, v,
we can assign a pair count based on the count of
contexts where both occur:

c(u, v) = |{C : u ∈WC and v ∈WC}|
1We do not deal here with phonetic spellings in abbrevia-

tions such as 4get, or cases where letters have been transposed
due to typographical errors (scv).

2This Thrax grammar can be found at
http://openfst.cs.nyu.edu/twiki/bin/
view/Contrib/ThraxContrib
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blvd boulevard rd road yrs years
ca california fl florida ctr center

mins minutes def definitely ste suite

Table 1: Examples of automatically mined abbrevia-
tion/expansion pairs.

Let c(u) be defined as
∑

v c(u, v). From these
counts, we can define a 2×2 table and calculate
statistics such as the log likelihood statistic (Dun-
ning, 1993), which we use to rank possible abbre-
viation/expansion pairs. Scores derived from these
type (rather than token) counts highly rank pairs of
in-vocabulary words and OOV possible abbrevia-
tions that are substitutable in many contexts.

We further filter the potential abbreviations by
removing ones that have a lot of potential expan-
sions, where we set the cutoff at 10. This removes
mostly short abbreviations that are highly ambigu-
ous. The resulting ranked list of abbreviation ex-
pansion pairs is then thresholded before building
the abbreviation model (see below) to provide a
smaller but more confident training set. For this
paper, we used 5-gram contexts (two words on ei-
ther side) to extract abbreviations and their expan-
sions. See Table 1 for some examples.

Our abbreviation model is a pair character lan-
guage model (LM), also known as a joint multi-
gram model (Bisani and Ney, 2008), whereby
aligned symbols are treated as a single token and
a smoothed n-gram model is estimated. This de-
fines a joint distribution over input and output
sequences, and can be efficiently encoded as a
weighted finite-state transducer. The extracted
abbreviation/expansion pairs are character-aligned
and a 7-gram pair character LM is built over
the alignments using the OpenGrm n-gram library
(Roark et al., 2012). For example:

c:c ε:e ε:n t:t ε:e r:r
Note that, as we’ve defined it, the alignments from
abbreviation to expansion allow only identity and
insertion, no deletions or substitutions. The cost
from this LM, normalized by the length of the ex-
pansion, serves as a score for the quality of a pu-
tative expansion for an abbreviation.

For a small set of frequent, conventionalized
abbreviations (e.g., ca for California — 63 pairs
in total — mainly state abbreviations and similar
items), we assign an fixed pair LM score, since
these examples are in effect irregular cases, where
the regularities of the productive abbreviation pro-
cess do not capture their true cost.

3.2 Contextual features

To predict the expansion given the context, we ex-
tract n-gram observations for full words in the TTS
lexicon. We do this in two ways. First, we sim-

ply train a smoothed n-gram LM from the data.
Because of the size of the data set, this is heav-
ily pruned using relative entropy pruning (Stolcke,
1998). Second, we use log likelihood and log odds
ratios (this time using standardly defined n-gram
counts) to extract reliable bigram and trigram con-
texts for words. Space precludes a detailed treat-
ment of these two statistics, but, briefly, both can
be derived from contingency table values calcu-
lated from the frequencies of (1) the word in the
particular context; (2) the word in any context; (3)
the context with any word; and (4) all words in
the corpus. See Agresti (2002), Dunning (1993)
and Monroe et al. (2008) for useful overviews of
how to calculate these and other statistics to de-
rive reliable associations. In our case, we use them
to derive associations between contexts and words
occuring in those contexts. The contexts include
trigrams with the target word in any of the three
positions, and bigrams with the target word in ei-
ther position. We filter the set of n-grams based on
both their log likelihood and log odds ratios, and
provide those scores as features.
3.3 Manual annotations
We randomly selected 14,434 OOVs in their full
context, and had them manually annotated as
falling within one of 8 categories, along with the
expansion if the category was ‘abbreviation’. Note
that these are relatively lightweight annotations
that do not require extensive linguistics expertise.
The abbreviation class is defined as cases where
pronouncing as the expansion would be normal.
Other categories included letter sequence (expan-
sion would not be normal, e.g., TV); partial let-
ter sequence (e.g., PurePictureTV); misspelling;
leave as is (part of a URL or pronounced as a
word, e.g., NATO); foreign; don’t know; and junk.
Abbreviations accounted for nearly 23% of the
cases, and about 3/5 of these abbreviations were
instances from the set of 63 conventional abbrevi-
ation/expansion pairs mentioned in Section 3.1.
3.4 Abbreviation expansion systems
We have three base systems that we compare here.
The first is the hand-built TTS normalization sys-
tem. This system includes some manually built
patterns and an address parser to find common ab-
breviations that occur in a recognizable context.
For example, the grammar covers several hundred
city-state combinations, such as Fairbanks AK,
yielding good performance on such cases.

The other two systems were built using data ex-
tracted as described above. Both systems make
use of the pair LM outlined in Section 3.1, but
differ in how they model context. The first sys-

366



tem, which we call “N-gram”, uses a pruned Katz
(1987) smoothed trigram model. The second sys-
tem, which we call “SVM”, uses a Support Vec-
tor Machine (Cortes and Vapnik, 1995) to classify
candidate expansions as being correct or not. For
both systems, for any given input OOV, the pos-
sible expansion with the highest score is output,
along with the decision of whether to expand.

For the “N-gram” system, n-gram negative log
probabilities are extracted as follows. Let wi be
the position of the target expansion. We extract the
part of the n-gram probability of the string that is
not constant across all competing expansions, and
normalize by the number of words in that window.
Thus the score of the word is:

S(wi) = − 1
k + 1

i+k∑
j=i

log P(wj | wj−1wj−2)

In our experiments, k = 2 since we have a trigram
model, though in cases where the target word is the
last word in the string, k = 1, because there only
the end-of-string symbol must be predicted in ad-
dition to the expansion. We then take the Bayesian
fusion of this model with the pair LM, by adding
them in the log space, to get prediction from both
the context and abbreviation model.

For the “SVM” model, we extract features from
the log likelihood and log odds scores associated
with contextual n-grams, as well as from the pair
LM probability and characteristics of the abbrevi-
ation itself. We train a linear model on a subset of
the annotated data (see section 4). Multiple con-
textual n-grams may be observed, and we take the
maximum log likelihood and log odds scores for
each candidate expansion in the observed context.
We then quantize these scores down into 16 bins,
using the histogram in the training data to define
bin thresholds so as to partition the training in-
stances evenly. We also create 16 bins for the pair
LM score. A binary feature is defined for each
bin that is set to 1 if the current candidate’s score
is less than the threshold of that bin, otherwise 0.
Thus multiple bin features can be active for a given
candidate expansion of the abbreviation.

We also have features that fire for each type of
contextual feature (e.g., trigram with expansion as
middle word, etc.), including ‘no context’, where
none of the trigrams or bigrams from the current
example that include the candidate expansion are
present in our list. Further, we have features for
the length of the abbreviation (shorter abbrevia-
tions have more ambiguity, hence are more risky
to expand); membership in the list of frequent,
conventionalized abbreviations mentioned earlier;
and some combinations of these, along with bias

features. We train the model using standard op-
tions with Google internal SVM training tools.

Note that the number of n-grams in the two
models differs. The N-gram system has around
200M n-grams after pruning; while the SVM
model uses around a quarter of that. We also tried
a more heavily pruned n-gram model, and the re-
sults are only very slightly worse, certainly accept-
able for a low-resource scenario.

4 Experimental Results

We split the 3,209 labeled abbreviations into a
training set of 2,209 examples and a held aside de-
velopment set of 1,000 examples. We first evaluate
on the development set, then perform a final 10-
fold cross validation over the entire set of labeled
examples. We evaluate in terms of the percent-
age of abbreviations that were correctly expanded
(true positives, TP) and that were incorrectly ex-
panded (false positives, FP).

Results are shown in Table 2. The first two rows
show the baseline TTS system and SVM model.
On the development set, both systems have a false
positive rate near 3%, i.e., three abbreviations are
expanded incorrectly for every 100 examples; and
over 50% true positive rate, i.e., more than half of
the abbreviations are expanded correctly. To re-
port true and false positive rates for the N-gram
system we would need to select an arbitrary de-
cision threshold operating point, unlike the deter-
ministic TTS baseline and the SVM model with
its decision threshold of 0. Rather than tune such a
meta-parameter to the development set, we instead
present an ROC curve comparison of the N-gram
and SVM models, and then propose a method
for “intersecting” their output without requiring a
tuned decision threshold.

Figure 1 presents an ROC curve for the N-gram
and SVM systems, and for the simple Bayesian
fusion (sum in log space) of their scores. We can
see that the SVM model has very high precision
for its highest ranked examples, yielding nearly
20% of the correct expansions without any in-
correct expansions. However the N-gram system
achieves higher true positive rates when the false

Percent of abbreviations
dev set full set

System TP FP TP FP
TTS baseline 55.0 3.1 40.0 3.0
SVM model 52.6 3.3 53.3 2.6
SVM ∩ N-gram 50.6 1.1 50.3 0.9
SVM ∩ N-gram, then TTS 73.5 1.9 74.5 1.5

Table 2: Results on held-out labeled data, and with final
10-fold cross-validation over the entire labeled set. Percent-
age of abbreviations expanded correctly (TP) and percentage
expanded incorrectly (FP) are reported for each system.
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Figure 1: ROC curve plotting true positive (correct expan-
sion) percentages versus false positive (incorrect expansion)
percentages for several systems on the development set.

positive rate falls between 1 and 3 percent, though
both systems reach roughly the same performance
at the SVM’s decision threshold corresponding to
around 3.3% false positive rate. The simple com-
bination of their scores achieves strong improve-
ments over either model, with an operating point
associated with the SVM decision boundary that
yields a couple of points improvement in true pos-
itives and a full 1% reduction in false positive rate.

One simple way to combine these two system
outputs in a way that does not require tuning a de-
cision threshold is to expand the abbreviation if
and only if (1) both the SVM model and the N-
gram model agree on the best expansion; and (2)
the SVM model score is greater than zero. In a
slight abuse of the term ‘intersection’, we call this
combination ‘SVM intersect N-gram’ (or ‘SVM
∩ N-gram’ in Table 2). Using this approach, our
true positive rate on the development set declines
a bit to just over 50%, but our false positive rate
declines over two full percentage points to 1.1%,
yielding a very high precision system.

Taking this very high precision system combi-
nation of the N-gram and SVM models, we then
combine with the baseline TTS system as follows.
First we apply our system, and expand the item if
it scores above threshold; for those items left un-
expanded, we let the TTS system process it in its
own way. In this way, we actually reduce the false
positive rate on the development set over the base-
line TTS system by over 1% absolute to less than
2%, while also increasing the true positive rate to
73.5%, an increase of 18.5% absolute.

Of course, at test time, we will not know
whether an OOV is an abbreviation or not, so
we also looked at the performance on the rest
of the collected data, to see how often it erro-
neously suggests an expansion from that set. Of

the 11,157 examples that were hand-labeled as
non-abbreviations, our SVM ∩N-gram system ex-
panded 45 items, which is a false positive rate
of 0.4% under the assumption that none of them
should be expanded. In fact, manual inspection
found that 20% of these were correct expansions
of abbreviations that had been mis-labeled.

We also experimented with a number of alter-
native high precision approaches that space pre-
cludes our presenting in detail here, including:
pruning the number of expansion candidates based
on the pair LM score; only allowing abbreviation
expansion when at least one extracted n-gram con-
text is present for that expansion in that context;
and CART tree (Breiman et al., 1984) training
with real valued scores. Some of these yielded
very high precision systems, though at the cost
of leaving many more abbreviations unexpanded.
We found that, for use in combination with the
baseline TTS system, large overall reductions in
FP rate were achieved by using an initial system
with substantially higher TP and somewhat higher
FP rates, since far fewer abbreviations were then
passed along unexpanded to the baseline system,
with its relatively high 3% FP rate.

To ensure that we did not overtune our systems
to the development set through experimentation,
we performed 10-fold cross validation over the full
set of abbreviations. These results are presented
in Table 2. Most notably, the TTS baseline system
has a much lower true positive rate; yet we find our
systems achieve performance very close to that for
the development set, so that our final combination
with the TTS baseline was actually slighly better
than the numbers on the development set.

5 Conclusions
In this paper we have presented methods for high
precision abbreviation expansion for a TTS appli-
cation. The methods are largely self-organizing,
using in-domain unannotated data, and depend on
only a small amount of annotated data. Since the
SVM features relate to general properties of ab-
breviations, expansions and contexts, the classi-
fier parameters will likely carry over to new (En-
glish) domains. We demonstrate that in combi-
nation with a hand-built TTS baseline, the meth-
ods afford dramatic improvement in the TP rate
(to about 74% from a starting point of about 40%)
and a reduction of FP to below our goal of 2%.
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Abstract

Prior research on language identification fo-
cused primarily on text and speech. In this
paper, we focus on the visual modality and
present a method for identifying sign lan-
guages solely from short video samples. The
method is trained on unlabelled video data (un-
supervised feature learning) and using these
features, it is trained to discriminate between
six sign languages (supervised learning). We
ran experiments on short video samples in-
volving 30 signers (about 6 hours in total). Us-
ing leave-one-signer-out cross-validation, our
evaluation shows an average best accuracy of
84%. Given that sign languages are under-
resourced, unsupervised feature learning tech-
niques are the right tools and our results indi-
cate that this is realistic for sign language iden-
tification.

1 Introduction

The task of automatic language identification is
to quickly identify the identity of the language
given utterances. Performing this task is key in
applications involving multiple languages such as
machine translation and information retrieval (e.g.
metadata creation for large audiovisual archives).

Prior research on language identification is
heavily biased towards written and spoken lan-
guages (Dunning, 1994; Zissman, 1996; Li et al.,
2007; Singer et al., 2012). While language iden-
tification in signed languages is yet to be studied,
significant progress has been recorded for written
and spoken languages.

Written languages can be identified to about
99% accuracy using Markov models (Dunning,
1994). This accuracy is so high that current
research has shifted to related more challeng-
ing problems: language variety identification
(Zampieri and Gebre, 2012), native language iden-
tification (Tetreault et al., 2013) and identification
at the extremes of scales; many more languages,

smaller training data, shorter document lengths
(Baldwin and Lui, 2010).

Spoken languages can be identified to accura-
cies that range from 79-98% using different mod-
els (Zissman, 1996; Singer et al., 2003). The
methods used in spoken language identification
have also been extended to a related class of prob-
lems: native accent identification (Chen et al.,
2001; Choueiter et al., 2008; Wu et al., 2010) and
foreign accent identification (Teixeira et al., 1996).

While some work exists on sign language
recognition1 (Starner and Pentland, 1997; Starner
et al., 1998; Gavrila, 1999; Cooper et al., 2012),
very little research exists on sign language iden-
tification except for the work by (Gebre et al.,
2013), where it is shown that sign language identi-
fication can be done using linguistically motivated
features. Accuracies of 78% and 95% are reported
on signer independent and signer dependent iden-
tification of two sign languages.

This paper has two goals. First, to present a
method to identify sign languages using features
learned by unsupervised techniques (Hinton and
Salakhutdinov, 2006; Coates et al., 2011). Sec-
ond, to evaluate the method on six sign languages
under different conditions.

Our contributions: a) show that unsupervised
feature learning techniques, currently popular in
many pattern recognition problems, also work for
visual sign languages. More specifically, we show
how K-means and sparse autoencoder can be used
to learn features for sign language identification.
b) demonstrate the impact on performance of vary-
ing the number of features (aka, feature maps or
filter sizes), the patch dimensions (from 2D to 3D)
and the number of frames (video length).

1There is a difference between sign language recognition
and identification. Sign language recognition is the recogni-
tion of the meaning of the signs in a given known sign lan-
guage, whereas sign language identification is the recognition
of the sign language itself from given signs.
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2 The challenges in sign language
identification

The challenges in sign language identification
arise from three sources as described below.

2.1 Iconicity in sign languages

The relationship between forms and meanings are
not totally arbitrary (Perniss et al., 2010). Both
signed and spoken languages manifest iconicity,
that is forms of words or signs are somehow mo-
tivated by the meaning of the word or sign. While
sign languages show a lot of iconicity in the lex-
icon (Taub, 2001), this has not led to a universal
sign language. The same concept can be iconi-
cally realised by the manual articulators in a way
that conforms to the phonological regularities of
the languages, but still lead to different sign forms.

Iconicity is also used in the morphosyntax and
discourse structure of all sign languages, however,
and there we see many similarities between sign
languages. Both real-world and imaginary objects
and locations are visualised in the space in front
of the signer, and can have an impact on the artic-
ulation of signs in various ways. Also, the use of
constructed action appears to be used in many sign
languages in similar ways. The same holds for the
rich use of non-manual articulators in sentences
and the limited role of facial expressions in the
lexicon: these too make sign languages across the
world very similar in appearance, even though the
meaning of specific articulations may differ (Cras-
born, 2006).

2.2 Differences between signers

Just as speakers have different voices unique to
each individual, signers have also different sign-
ing styles that are likely unique to each individual.
Signers’ uniqueness results from how they articu-
late the shapes and movements that are specified
by the linguistic structure of the language. The
variability between signers either in terms of phys-
ical properties (hand sizes, colors, etc) or in terms
of articulation (movements) is such that it does not
affect the understanding of the sign language by
humans, but that it may be difficult for machines
to generalize over multiple individuals. At present
we do not know whether the differences between
signers using the same language are of a similar or
different nature than the differences between dif-
ferent languages. At the level of phonology, there
are few differences between sign languages, but

the differences in the phonetic realization of words
(their articulation) may be much larger.

2.3 Diverse environments

The visual ’activity’ of signing comes in a context
of a specific environment. This environment can
include the visual background and camera noises.
The background objects of the video may also in-
clude dynamic objects – increasing the ambiguity
of signing activity. The properties and configu-
rations of the camera induce variations of scale,
translation, rotation, view, occlusion, etc. These
variations coupled with lighting conditions may
introduce noise. These challenges are by no means
specific to sign interaction, and are found in many
other computer vision tasks.

3 Method

Our method performs two important tasks. First,
it learns a feature representation from patches of
unlabelled raw video data (Hinton and Salakhut-
dinov, 2006; Coates et al., 2011). Second, it looks
for activations of the learned representation (by
convolution) and uses these activations to learn a
classifier to discriminate between sign languages.

3.1 Unsupervised feature learning

Given samples of sign language videos (unknown
sign language with one signer per video), our sys-
tem performs the following steps to learn a feature
representation (note that these video samples are
separate from the video samples that are later used
for classifier learning or testing):

1. Extract patches. Extract small videos (here-
after called patches) randomly from any-
where in the video samples. We fix the
size of the patches such that they all have r
rows, c columns and f frames and we ex-
tract patches m times. This gives us X =
{x(1), x(1), . . . , x(m)}, where x(i) ∈ RN and
N = r∗c∗f (the size of a patch). For our ex-
periments, we extract 100,000 patches of size
15 ∗ 15 ∗ 1 (2D) and 15 ∗ 15 ∗ 2 (3D).

2. Normalize the patches. There is evidence
that normalization and whitening (Hyvärinen
and Oja, 2000) improve performance in un-
supervised feature learning (Coates et al.,
2011). We therefore normalize every patch
x(i) by subtracting the mean and dividing by
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Figure 1: Illustration of feature extraction: convolution and pooling.

the standard deviation of its elements. For vi-
sual data, normalization corresponds to local
brightness and contrast normalization.

3. Learn a feature-mapping. Our unsuper-
vised algorithm takes in the normalized and
whitened datasetX = {x(1), x(1), . . . , x(m)}
and maps each input vector x(i) to a new fea-
ture vector of K features (f : RN → RK).
We use two unsupervised learning algorithms
a) K-means b) sparse autoencoders.

(a) K-means clustering: we train K-means
to learns K c(k) centroids that mini-
mize the distance between data points
and their nearest centroids (Coates and
Ng, 2012). Given the learned centroids
c(k), we measure the distance of each
data point (patch) to the centroids. Natu-
rally, the data points are at different dis-
tances to each centroid, we keep the dis-
tances that are below the average of the
distances and we set the other to zero:

fk(x) = max{0, µ(z)− zk} (1)

where zk = ||x− c(k)||2 and µ(z) is the
mean of the elements of z.

(b) Sparse autoencoder: we train a sin-
gle layer autoencoder with K hid-
den nodes using backpropagation to
minimize squared reconstruction error.
At the hidden layer, the features are
mapped using a rectified linear (ReL)
function (Maas et al., 2013) as follows:

f(x) = g(Wx+ b) (2)

where g(z) = max(z, 0). Note that ReL
nodes have advantages over sigmoid or
tanh functions; they create sparse repre-
sentations and are suitable for naturally
sparse data (Glorot et al., 2011).

From K-means, we get K RN centroids and from
the sparse autoencoder, we get W ∈ RKxN and
b ∈ RK filters. We call both the centroids and
filters as the learned features.

3.2 Classifier learning

Given the learned features, the feature mapping
functions and a set of labeled training videos, we
extract features as follows:

1. Convolutional extraction: Extract features
from equally spaced sub-patches covering the
video sample.

2. Pooling: Pool features together over four
non-overlapping regions of the input video to
reduce the number of features. We perform
max pooling for K-means and mean pooling
for the sparse autoencoder over 2D regions
(per frame) and over 3D regions (per all se-
quence of frames).

3. Learning: Learn a linear classifier to predict
the labels given the feature vectors. We use
logistic regression classifier and support vec-
tor machines (Pedregosa et al., 2011).

The extraction of classifier features through
convolution and pooling is illustrated in figure 1.
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4 Experiments

4.1 Datasets

Our experimental data consist of videos of 30
signers equally divided between six sign lan-
guages: British sign language (BSL), Danish
(DSL), French Belgian (FBSL), Flemish (FSL),
Greek (GSL), and Dutch (NGT). The data for the
unsupervised feature learning comes from half of
the BSL and GSL videos in the Dicta-Sign cor-
pus2. Part of the other half, involving 5 signers, is
used along with the other sign language videos for
learning and testing classifiers.

For the unsupervised feature learning, two types
of patches are created: 2D dimensions (15 ∗ 15)
and 3D (15 ∗ 15 ∗ 2). Each type consists of ran-
domly selected 100,000 patches and involves 16
different signers. For the supervised learning, 200
videos (consisting of 1 through 4 frames taken at a
step of 2) are randomly sampled per sign language
per signer (for a total of 6,000 samples).

4.2 Data preprocessing

The data preprocessing stage has two goals.
First, to remove any non-signing signals that re-

main constant within videos of a single sign lan-
guage but that are different across sign languages.
For example, if the background of the videos is
different across sign languages, then classifying
the sign languages could be done with perfection
by using signals from the background. To avoid
this problem, we removed the background by us-
ing background subtraction techniques and manu-
ally selected thresholds.

The second reason for data preprocessing is to
make the input size smaller and uniform. The
videos are colored and their resolutions vary from
320 ∗ 180 to 720 ∗ 576. We converted the videos
to grayscale and resized their heights to 144 and
cropped out the central 144 ∗ 144 patches.

4.3 Evaluation

We evaluate our system in terms of average accu-
racies. We train and test our system in leave-one-
signer-out cross-validation, where videos from
four signers are used for training and videos of the
remaining signer are used for testing. Classifica-
tion algorithms are used with their default settings
and the classification strategy is one-vs.-rest.

2http://www.dictasign.eu/

5 Results and Discussion

Our best average accuracy (84.03%) is obtained
using 500 K-means features which are extracted
over four frames (taken at a step of 2). This ac-
curacy obtained for six languages is much higher
than the 78% accuracy obtained for two sign lan-
guages (Gebre et al., 2013). The latter uses lin-
guistically motivated features that are extracted
over video lengths of at least 10 seconds. Our sys-
tem uses learned features that are extracted over
much smaller video lengths (about half a second).

All classification accuracies are presented in ta-
ble 5 for 2D and table 5 for 3D. Classification con-
fusions are shown in table 5. Figure 2 shows fea-
tures learned by K-means and sparse autoencoder.

(a) K-means features (b) SAE features

Figure 2: All 100 features learned from 100,000
patches of size 15∗15. K-means learned relatively
more curving edges than the sparse auto encoder.

K-means Sparse Autoencoder

K LR-L1 LR-L2 SVM LR-L1 LR-L2 SVM

# of frames = 1

100 69.23 70.60 67.42 73.85 74.53 71.8
300 76.08 77.37 74.80 72.27 70.67 68.90
500 83.03 79.88 77.92 67.50 69.38 66.20

# of frames = 2

100 71.15 72.07 67.42 72.78 74.62 72.08
300 77.33 78.27 76.60 71.85 71.07 68.27
500 83.58 79.50 79.90 67.73 70.15 66.45

# of frames = 3

100 71.42 73.10 67.82 65.70 67.52 63.68
300 78.40 78.57 76.50 72.53 71.68 68.18
500 83.48 80.05 80.57 67.85 70.85 66.77

# of frames = 4

100 71.88 73.05 68.70 64.93 67.48 63.80
300 79.32 78.65 76.42 72.27 72.18 68.35
500 84.03 80.38 80.50 68.25 71.57 67.27

K = # of features, SVM = SVM with linear kernel
LR-L? = Logistic Regression with L1 and L2 penalty

Table 1: 2D filters (15∗15): Leave-one-signer-out
cross-validation average accuracies.
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Figure 3: Visualization of coefficients of Lasso (logistic regression with L1 penalty) for each sign lan-
guage with respect to each of the 100 filters of the sparse autoencoder. The 100 filters are shown in figure
2(b). Each grid cell represents a frame and each filter is activated in 4 non-overlapping pooling regions.

K-means Sparse Autoencoder

K LR-L1 LR-L2 SVM LR-L1 LR-L2 SVM

# of frames = 2

100 70.63 69.62 68.87 67.40 66.53 65.73
300 73.73 74.05 73.03 72.83 73.48 70.52
500 75.30 76.53 75.40 72.28 74.65 68.72

# of frames = 3

100 72.48 73.30 70.33 68.68 67.40 68.33
300 74.78 74.95 74.77 74.20 74.72 70.85
500 77.27 77.50 76.17 72.40 75.45 69.42

# of frames = 4

100 74.85 73.97 69.23 68.68 67.80 68.80
300 76.23 76.58 74.08 74.43 75.20 70.65
500 79.08 78.63 76.63 73.50 76.23 70.53

Table 2: 3D filters (15∗15∗2): Leave-one-signer-
out cross-validation average accuracies.

BSL DSL FBSL FSL GSL NGT
BSL 56.11 2.98 1.79 3.38 24.11 11.63
DSL 2.87 92.37 0.95 0.46 3.16 0.18

FBSL 1.48 1.96 79.04 4.69 6.62 6.21
FSL 6.96 2.96 2.06 60.81 18.15 9.07
GSL 5.50 2.55 1.67 2.57 86.05 1.65
NGT 9.08 1.33 3.98 18.76 4.41 62.44

Table 3: Confusion matrix – confusions averaged
over all settings for K-means and sparse autoen-
coder with 2D and 3D filters (i.e. for all # of
frames, all filter sizes and all classifiers).

Tables 5 and 5 indicate that K-means performs
better with 2D filters and that sparse autoencoder
performs better with 3D filters. Note that features
from 2D filters are pooled over each frame and

concatenated whereas, features from 3D filters are
pooled over all frames.

Which filters are active for which language?
Figure 3 shows visualization of the strength of fil-
ter activation for each sign language. The figure
shows what Lasso looks for when it identifies any
of the six sign languages.

6 Conclusions and Future Work

Given that sign languages are under-resourced,
unsupervised feature learning techniques are the
right tools and our results show that this is realis-
tic for sign language identification.

Future work can extend this work in two direc-
tions: 1) by increasing the number of sign lan-
guages and signers to check the stability of the
learned feature activations and to relate these to
iconicity and signer differences 2) by comparing
our method with deep learning techniques. In our
experiments, we used a single hidden layer of fea-
tures, but it is worth researching into deeper layers
to improve performance and gain more insight into
the hierarchical composition of features.

Other questions for future work. How good are
human beings at identifying sign languages? Can
a machine be used to evaluate the quality of sign
language interpreters by comparing them to a na-
tive language model? The latter question is partic-
ularly important given what happened at the Nel-
son Mandela’s memorial service3.

3http://www.youtube.com/watch?v=X-DxGoIVUWo
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. The Journal of Ma-
chine Learning Research, 12:2825–2830.

Pamela Perniss, Robin L Thompson, and Gabriella
Vigliocco. 2010. Iconicity as a general property
of language: evidence from spoken and signed lan-
guages. Frontiers in psychology, 1.

E. Singer, PA Torres-Carrasquillo, TP Gleason,
WM Campbell, and D.A. Reynolds. 2003. Acous-
tic, phonetic, and discriminative approaches to auto-
matic language identification. In Proc. Eurospeech,
volume 9.

E. Singer, P. Torres-Carrasquillo, D. Reynolds, A. Mc-
Cree, F. Richardson, N. Dehak, and D. Sturim.
2012. The mitll nist lre 2011 language recogni-
tion system. In Odyssey 2012-The Speaker and Lan-
guage Recognition Workshop.

Thad Starner and Alex Pentland. 1997. Real-time
american sign language recognition from video us-
ing hidden markov models. In Motion-Based Recog-
nition, pages 227–243. Springer.

Thad Starner, Joshua Weaver, and Alex Pentland.
1998. Real-time american sign language recogni-
tion using desk and wearable computer based video.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(12):1371–1375.

Sarah Taub. 2001. Language from the body: iconicity
and metaphor in American Sign Language. Cam-
bridge University Press, Cambridge.

C. Teixeira, I. Trancoso, and A. Serralheiro. 1996. Ac-
cent identification. In Spoken Language, 1996. IC-
SLP 96. Proceedings., Fourth International Confer-
ence on, volume 3, pages 1784–1787 vol.3.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A report on the first native language identi-
fication shared task. NAACL/HLT 2013, page 48.

Tingyao Wu, Jacques Duchateau, Jean-Pierre Martens,
and Dirk Van Compernolle. 2010. Feature subset
selection for improved native accent identification.
Speech Communication, 52(2):83–98.

Marcos Zampieri and Binyam Gebrekidan Gebre.
2012. Automatic identification of language vari-
eties: The case of portuguese. In Proceedings of
KONVENS, pages 233–237.

375



M.A. Zissman. 1996. Comparison of four approaches
to automatic language identification of telephone
speech. IEEE Transactions on Speech and Audio
Processing, 4(1):31–44.

376



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 377–382,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Experiments with crowdsourced re-annotation of a POS tagging data set

Dirk Hovy, Barbara Plank, and Anders Søgaard
Center for Language Technology

University of Copenhagen
Njalsgade 140, 2300 Copenhagen

{dirk|bplank}@cst.dk, soegaard@hum.ku.dk

Abstract

Crowdsourcing lets us collect multiple an-
notations for an item from several annota-
tors. Typically, these are annotations for
non-sequential classification tasks. While
there has been some work on crowdsourc-
ing named entity annotations, researchers
have largely assumed that syntactic tasks
such as part-of-speech (POS) tagging can-
not be crowdsourced. This paper shows
that workers can actually annotate sequen-
tial data almost as well as experts. Fur-
ther, we show that the models learned from
crowdsourced annotations fare as well as
the models learned from expert annota-
tions in downstream tasks.

1 Introduction

Training good predictive NLP models typically re-
quires annotated data, but getting professional an-
notators to build useful data sets is often time-
consuming and expensive. Snow et al. (2008)
showed, however, that crowdsourced annotations
can produce similar results to annotations made
by experts. Crowdsourcing services such as Ama-
zon’s Mechanical Turk has since been successfully
used for various annotation tasks in NLP (Jha et
al., 2010; Callison-Burch and Dredze, 2010).

However, most applications of crowdsourcing
in NLP have been concerned with classification
problems, such as document classification and
constructing lexica (Callison-Burch and Dredze,
2010). A large part of NLP problems, however, are
structured prediction tasks. Typically, sequence
labeling tasks employ a larger set of labels than
classification problems, as well as complex inter-
actions between the annotations. Disagreement
among annotators is therefore potentially higher,
and the task of annotating structured data thus
harder.

Only a few recent studies have investi-
gated crowdsourcing sequential tasks; specifically,
named entity recognition (Finin et al., 2010; Ro-
drigues et al., 2013). Results for this are good.
However, named entities typically use only few la-
bels (LOC, ORG, and PER), and the data contains
mostly non-entities, so the complexity is manage-
able. The question of whether a more linguisti-
cally involved structured task like part-of-speech
(POS) tagging can be crowdsourced has remained
largely unaddressed.1

In this paper, we investigate how well lay anno-
tators can produce POS labels for Twitter data. In
our setup, we present annotators with one word at
a time, with a minimal surrounding context (two
words to each side). Our choice of annotating
Twitter data is not coincidental: with the short-
lived nature of Twitter messages, models quickly
lose predictive power (Eisenstein, 2013), and re-
training models on new samples of more represen-
tative data becomes necessary. Expensive profes-
sional annotation may be prohibitive for keeping
NLP models up-to-date with linguistic and topical
changes on Twitter. We use a minimum of instruc-
tions and require few qualifications.

Obviously, lay annotation is generally less re-
liable than professional annotation. It is there-
fore common to aggregate over multiple annota-
tions for the same item to get more robust anno-
tations. In this paper we compare two aggrega-
tion schemes, namely majority voting (MV) and
MACE (Hovy et al., 2013). We also show how we
can use Wiktionary, a crowdsourced lexicon, to fil-
ter crowdsourced annotations. We evaluate the an-
notations in several ways: (a) by testing their ac-
curacy with respect to a gold standard, (b) by eval-
uating the performance of POS models trained on

1One of the reviewers alerted us to an unpublished mas-
ters thesis, which uses pre-annotation to reduce tagging to
fewer multiple-choice questions. See Related Work section
for details.
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the annotations across several existing data sets,
as well as (c) by applying our models in down-
stream tasks. We show that with minimal context
and annotation effort, we can produce structured
annotations of near-expert quality. We also show
that these annotations lead to better POS tagging
models than previous models learned from crowd-
sourced lexicons (Li et al., 2012). Finally, we
show that models learned from these annotations
are competitive with models learned from expert
annotations on various downstream tasks.

2 Our Approach

We crowdsource the training section of the data
from Gimpel et al. (2011)2 with POS tags. We use
Crowdflower,3 to collect five annotations for each
word, and then find the most likely label for each
word among the possible annotations. See Figure
1 for an example. If the correct label is not among
the annotations, we are unable to recover the cor-
rect answer. This was the case for 1497 instances
in our data (cf. the token “:” in the example).
We thus report on oracle score, i.e., the best label
sequence that could possibly be found, which is
correct except for the missing tokens. Note that
while we report agreement between the crowd-
sourced annotations and the crowdsourced anno-
tations, our main evaluations are based on models
learned from expert vs. crowdsourced annotations
and downstream applications thereof (chunking
and NER). We take care in evaluating our models
across different data sets to avoid biasing our
evaluations to particular annotations. All the data
sets used in our experiments are publicly available
at http://lowlands.ku.dk/results/.

x Z y
@USER NOUN,NOUN,X,NOUN,-,NOUN NOUN
: .,.,-,.,.,. X
I PRON,NOUN,PRON,NOUN,PRON,- PRON
owe VERB,VERB,-,VERB,VERB,VERB VERB
U PRON,X,-,NOUN,NOUN,PRON PRON

θ = 0.9, 0.4, 0.2, 0.8, 0.8, 0.9

Figure 1: Five annotations per token, supplied by 6
different annotators (- = missing annotation), gold
label y. θ = competence values for each annotator.

2http://www.ark.cs.cmu.edu/TweetNLP/
3http://crowdflower.com

3 Crowdsourcing Sequential Annotation

In order to use the annotations to train models that
can be applied across various data sets, i.e., mak-
ing out-of-sample evaluation possible (see Section
5), we follow Hovy et al. (2014) in using the uni-
versal tag set (Petrov et al., 2012) with 12 labels.

Figure 2: Screen shot of the annotation interface
on Crowdflower

Annotators were given a bold-faced word with
two words on either side and asked to select the
most appropriate tag from a drop down menu. For
each tag, we spell out the name of the syntactic
category, and provide a few example words.
See Figure 2 for a screenshot of the interface.
Annotators were also told that words can belong
to several classes, depending on the context. No
additional guidelines were given.

Only trusted annotators (in Crowdflower:
Bronze skills) that had answered correctly on 4
gold tokens (randomly chosen from a set of 20
gold tokens provided by the authors) were allowed
to submit annotations. In total, 177 individual
annotators supplied answers. We paid annotators
a reward of $0.05 for 10 tokens. The full data set
contains 14,619 tokens. Completion of the task
took slightly less than 10 days. Contributors were
very satisfied with the task (4.5 on a scale from 1
to 5). In particular, they felt instructions were clear
(4.4/5), and that the pay was reasonable (4.1/5).

4 Label Aggregation

After collecting the annotations, we need to aggre-
gate the annotations to derive a single answer for
each token. In the simplest scheme, we choose the
majority label, i.e., the label picked by most an-
notators. In case of ties, we select the final label
at random. Since this is a stochastic process, we
average results over 100 runs. We refer to this as
MAJORITY VOTING (MV). Note that in MV we
trust all annotators to the same degree. However,
crowdsourcing attracts people with different mo-
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tives, and not all of them are equally reliable—
even the ones with Bronze level. Ideally, we would
like to factor this into our decision process.

We use MACE4 (Hovy et al., 2013) as our sec-
ond scheme to learn both the most likely answer
and a competence estimate for each of the annota-
tors. MACE treats annotator competence and the
correct answer as hidden variables and estimates
their parameters via EM (Dempster et al., 1977).
We use MACE with default parameter settings to
give us the weighted average for each annotated
example.

Finally, we also tried applying the joint learn-
ing scheme in Rodrigues et al. (2013), but their
scheme requires that entire sequences are anno-
tated by the same annotators, which we don’t have,
and it expects BIO sequences, rather than POS
tags.

Dictionaries Decoding tasks profit from the use
of dictionaries (Merialdo, 1994; Johnson, 2007;
Ravi and Knight, 2009) by restricting the number
of tags that need to be considered for each word,
also known as type constraints (Täckström et al.,
2013). We follow Li et al. (2012) in including
Wiktionary information as type constraints into
our decoding: if a word is found in Wiktionary,
we disregard all annotations that are not licensed
by the dictionary entry. If the word is not found in
Wiktionary, or if none of its annotations is licensed
by Wiktionary, we keep the original annotations.
Since we aggregate annotations independently
(unlike Viterbi decoding), we basically use Wik-
tionary as a pre-filtering step, such that MV and
MACE only operate on the reduced annotations.

5 Experiments

Each of the two aggregation schemes above pro-
duces a final label sequence ŷ for our training cor-
pus. We evaluate the resulting annotated data in
three ways.

1. We compare ŷ to the available expert annota-
tion on the training data. This tells us how similar
lay annotation is to professional annotation.

2. Ultimately, we want to use structured anno-
tations for supervised training, where annotation
quality influences model performance on held-out
test data. To test this, we train a CRF model
(Lafferty et al., 2001) with simple orthographic
features and word clusters (Owoputi et al., 2013)

4http://www.isi.edu/publications/
licensed-sw/mace/

on the annotated Twitter data described in Gim-
pel et al. (2011). Leaving out the dedicated test
set to avoid in-sample bias, we evaluate our mod-
els across three data sets: RITTER (the 10% test
split of the data in Ritter et al. (2011) used in Der-
czynski et al. (2013)), the test set from Foster et
al. (2011), and the data set described in Hovy et
al. (2014).

We will make the preprocessed data sets avail-
able to the public to facilitate comparison. In ad-
dition to a supervised model trained on expert an-
notations, we compare our tagging accuracy with
that of a weakly supervised system (Li et al., 2012)
re-trained on 400,000 unlabeled tweets to adapt to
Twitter, but using a crowdsourced lexicon, namely
Wiktionary, to constrain inference. We use param-
eter settings from Li et al. (2012), as well as their
Wikipedia dump, available from their project web-
site.5

3. POS tagging is often the first step for further
analysis, such as chunking, parsing, etc. We
test the downstream performance of the POS
models from the previous step on chunking and
NER. We use the models to annotate the training
data portion of each task with POS tags, and
use them as features in a chunking and NER
model. For both tasks, we train a CRF model
on the respective (POS-augmented) training set,
and evaluate it on several held-out test sets. For
chunking, we use the test sets from Foster et al.
(2011) and Ritter et al. (2011) (with the splits
from Derczynski et al. (2013)). For NER, we use
data from Finin et al. (2010) and again Ritter et al.
(2011). For chunking, we follow Sha and Pereira
(2003) for the set of features, including token
and POS information. For NER, we use standard
features, including POS tags (from the previous
experiments), indicators for hyphens, digits,
single quotes, upper/lowercase, 3-character prefix
and suffix information, and Brown word cluster
features6 with 2,4,8,16 bitstring prefixes estimated
from a large Twitter corpus (Owoputi et al., 2013).
We report macro-averages over all these data sets.

6 Results

Agreement with expert annotators Table 1
shows the accuracy of each aggregation compared
to the gold labels. The crowdsourced annotations

5https://code.google.com/p/
wikily-supervised-pos-tagger/

6http://www.ark.cs.cmu.edu/TweetNLP/
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majority 79.54
MACE-EM 79.89
majority+Wiktionary 80.58
MACE-EM+Wiktionary 80.75
oracle 89.63

Table 1: Accuracy (%) of different annotations wrt
gold data

aggregated using MV agree with the expert anno-
tations in 79.54% of the cases. If we pre-filter the
data using Wiktionary, the agreement becomes
80.58%. MACE leads to higher agreement with
expert annotations under both conditions (79.89
and 80.75). The small difference indicates that
annotators are consistent and largely reliable,
thus confirming the Bronze-level qualification
we required. Both schemes cannot recover the
correct answer for the 1497 cases where none of
the crowdsourced labels matched the gold label,
i.e. y /∈ Zi. The best possible result either of them
could achieve (the oracle) would be matching all
but the missing labels, an agreement of 89.63%.

Most of the cases where the correct label was
not among the annotations belong to a small set
of confusions. The most frequent was mislabeling
“:” and “. . .”, both mapped to X. Annotators
mostly decided to label these tokens as punctu-
ation (.). They also predominantly labeled your,
my and this as PRON (for the former two), and a
variety of labels for the latter, when the gold label
is DET.

RITTER FOSTER HOVY

Li et al. (2012) 73.8 77.4 79.7
MV 80.5 81.6 83.7
MACE 80.4 81.7 82.6
MV+Wik 80.4 82.1 83.7
MACE+Wik 80.5 81.9 83.7
Upper bounds
oracle 82.4 83.7 85.1
gold 82.6 84.7 86.8

Table 2: POS tagging accuracies (%).

Effect on POS Tagging Accuracy Usually, we
don’t want to match a gold standard, but we
rather want to create new annotated training
data. Crowdsourcing matches our gold standard
to about 80%, but the question remains how useful
this data is when training models on it. After all,
inter-annotator agreement among professional an-

notators on this task is only around 90% (Gimpel
et al., 2011; Hovy et al., 2014). In order to evalu-
ate how much each aggregation scheme influences
tagging performance of the resulting model, we
train separate models on each scheme’s annota-
tions and test on the same four data sets. Table
2 shows the results. Note that the differences be-
tween the four schemes are insignificant. More
importantly, however, POS tagging accuracy us-
ing crowdsourced annotations are on average only
2.6% worse than gold using professional annota-
tions. On the other hand, performance is much
better than the weakly supervised approach by Li
et al. (2012), which only relies on a crowdsourced
POS lexicon.

POS model from CHUNKING NER
MV 74.80 75.74
MACE 75.04 75.83
MV+Wik 75.86 76.08
MACE+Wik 75.86 76.15
Upper bounds
oracle 76.22 75.85
gold 79.97 75.81

Table 3: Downstream accuracy for chunking (l)
and NER (r) of models using POS.

Downstream Performance Table 3 shows the
accuracy when using the POS models trained
in the previous evaluation step. Note that we
present the average over the two data sets used
for each task. Note also how the Wiktionary con-
straints lead to improvements in downstream per-
formance. In chunking, we see that using the
crowdsourced annotations leads to worse perfor-
mance than using the professional annotations.
For NER, however, we find that some of the POS
taggers trained on aggregated data produce bet-
ter NER performance than POS taggers trained on
expert-annotated gold data. Since the only dif-
ference between models are the respective POS
features, the results suggest that at least for some
tasks, POS taggers learned from crowdsourced an-
notations may be as good as those learned from
expert annotations.

7 Related Work

There is considerable work in the literature on
modeling answer correctness and annotator com-
petence as latent variables (Dawid and Skene,

380



1979; Smyth et al., 1995; Carpenter, 2008; White-
hill et al., 2009; Welinder et al., 2010; Yan et al.,
2010; Raykar and Yu, 2012). Rodrigues et al.
(2013) recently presented a sequential model for
this. They estimate annotator competence as la-
tent variables in a CRF model using EM. They
evaluate their approach on synthetic and NER data
annotated on Mechanical Turk, showing improve-
ments over the MV baselines and the multi-label
model by Dredze et al. (2009). The latter do not
model annotator reliability but rather model label
priors by integrating them into the CRF objective,
and re-estimating them during learning. Both re-
quire annotators to supply a full sentence, while
we use minimal context, which requires less anno-
tator commitment and makes the task more flexi-
ble. Unfortunately, we could not run those mod-
els on our data due to label incompatibility and
the fact that we typically do not have complete se-
quences annotated by the same annotators.

Mainzer (2011) actually presents an earlier pa-
per on crowdsourcing POS tagging. However, it
differs from our approach in several ways. It uses
the Penn Treebank tag set to annotate Wikipedia
data (which is much more canonical than Twitter)
via a Java applet. The applet automatically labels
certain categories, and only presents the users with
a series of multiple choice questions for the re-
mainder. This is highly effective, as it eliminates
some sources of possible disagreement. In con-
trast, we do not pre-label any tokens, but always
present the annotators with all labels.

8 Conclusion

We use crowdsourcing to collect POS annotations
with minimal context (five-word windows). While
the performance of POS models learned from
this data is still slightly below that of models
trained on expert annotations, models learned
from aggregations approach oracle performance
for POS tagging. In general, we find that the
use of a dictionary tends to make aggregations
more useful, irrespective of aggregation method.
For some downstream tasks, models using the
aggregated POS tags perform even better than
models using expert-annotated tags.

Acknowledgments

We would like to thank the anonymous review-
ers for valuable comments and feedback. This re-
search is funded by the ERC Starting Grant LOW-

LANDS No. 313695.

References
Chris Callison-Burch and Mark Dredze. 2010. Creat-

ing Speech and Language Data With Amazon’s Me-
chanical Turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk.

Bob Carpenter. 2008. Multilevel Bayesian models of
categorical data annotation. Technical report, Ling-
Pipe.

A. Philip Dawid and Allan M. Skene. 1979. Max-
imum likelihood estimation of observer error-rates
using the EM algorithm. Applied Statistics, pages
20–28.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 39(1):1–
38.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter part-of-speech tagging
for all: overcoming sparse and noisy data. In
RANLP.

Mark Dredze, Partha Pratim Talukdar, and Koby Cram-
mer. 2009. Sequence learning from data with multi-
ple labels. In ECML/PKDD Workshop on Learning
from Multi-Label Data.

Jacob Eisenstein. 2013. What to do about bad lan-
guage on the internet. In NAACL.

Tim Finin, Will Murnane, Anand Karandikar, Nicholas
Keller, Justin Martineau, and Mark Dredze. 2010.
Annotating named entities in Twitter data with
crowdsourcing. In NAACL-HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s
Mechanical Turk.

Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner,
Josef Le Roux, Joakim Nivre, Deirde Hogan, and
Josef van Genabith. 2011. From news to comments:
Resources and benchmarks for parsing the language
of Web 2.0. In IJCNLP.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
In ACL.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In NAACL.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
When pos datasets don t add up: Combatting sample
bias. In LREC.

381



Mukund Jha, Jacob Andreas, Kapil Thadani, Sara
Rosenthal, and Kathleen McKeown. 2010. Corpus
creation for new genres: A crowdsourced approach
to pp attachment. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk. Association
for Computational Linguistics.

Mark Johnson. 2007. Why doesn’t EM find good
HMM POS-taggers. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL).

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

Shen Li, João Graça, and Ben Taskar. 2012. Wiki-ly
supervised part-of-speech tagging. In EMNLP.

Jacob Emil Mainzer. 2011. Labeling parts of
speech using untrained annotators on mechanical
turk. Master’s thesis, The Ohio State University.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational linguistics,
20(2):155–171.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
NAACL.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In LREC.

Sujith Ravi and Kevin Knight. 2009. Minimized Mod-
els for Unsupervised Part-of-Speech Tagging. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP. Association for Computational Lin-
guistics.

Vikas C. Raykar and Shipeng Yu. 2012. Eliminat-
ing Spammers and Ranking Annotators for Crowd-
sourced Labeling Tasks. Journal of Machine Learn-
ing Research, 13:491–518.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011.
Named entity recognition in tweets: an experimental
study. In EMNLP.

Filipe Rodrigues, Francisco Pereira, and Bernardete
Ribeiro. 2013. Sequence labeling with multiple an-
notators. Machine Learning, pages 1–17.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. In NAACL.

Padhraic Smyth, Usama Fayyad, Mike Burl, Pietro Per-
ona, and Pierre Baldi. 1995. Inferring ground truth
from subjective labelling of Venus images. Ad-
vances in neural information processing systems,
pages 1085–1092.

Rion Snow, Brendan O’Connor, Dan Jurafsky, and An-
drew Y. Ng. 2008. Cheap and fast—but is it good?
Evaluating non-expert annotations for natural lan-
guage tasks. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.
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Abstract

Sentiment analysis in a multilingual
world remains a challenging problem, be-
cause developing language-specific senti-
ment lexicons is an extremely resource-
intensive process. Such lexicons remain a
scarce resource for most languages.

In this paper, we address this lexicon gap
by building high-quality sentiment lexi-
cons for 136 major languages. We in-
tegrate a variety of linguistic resources
to produce an immense knowledge graph.
By appropriately propagating from seed
words, we construct sentiment lexicons for
each component language of our graph.
Our lexicons have a polarity agreement
of 95.7% with published lexicons, while
achieving an overall coverage of 45.2%.

We demonstrate the performance of our
lexicons in an extrinsic analysis of 2,000
distinct historical figures’ Wikipedia ar-
ticles on 30 languages. Despite cul-
tural difference and the intended neutrality
of Wikipedia articles, our lexicons show
an average sentiment correlation of 0.28
across all language pairs.

1 Introduction

Sentiment analysis of English texts has become a
large and active research area, with many commer-
cial applications, but the barrier of language limits
the ability to assess the sentiment of most of the
world’s population.

Although several well-regarded sentiment lexi-
cons are available in English (Esuli and Sebastiani,
2006; Liu, 2010), the same is not true for most
of the world’s languages. Indeed, our literature
search identified only 12 publicly available sen-
timent lexicons for only 5 non-English languages
(Chinese mandarin, German, Arabic, Japanese and

Italian). No doubt we missed some, but it is clear
that these resources are not widely available for
most important languages.

In this paper, we strive to produce a comprehen-
sive set of sentiment lexicons for the worlds’ major
languages. We make the following contributions:

• New Sentiment Analysis Resources – We have
generated sentiment lexicons for 136 major
languages via graph propagation which are
now publicly available1. We validate our own
work through other publicly available, human
annotated sentiment lexicons. Indeed, our
lexicons have polarity agreement of 95.7%
with these published lexicons, plus an over-
all coverage of 45.2%.

• Large-Scale Language Knowledge Graph
Analysis – We have created a massive com-
prehensive knowledge graph of 7 million vo-
cabulary words from 136 languages with over
131 million semantic inter-language links,
which proves valuable when doing alignment
between definitions in different languages.

• Extrinsic Evaluation – We elucidate the sen-
timent consistency of entities reported in dif-
ferent language editions of Wikipedia using
our propagated lexicons. In particular, we
pick 30 languages and compute sentiment
scores for 2,000 distinct historical figures.
Each language pair exhibits a Spearman sen-
timent correlation of at least 0.14, with an av-
erage correlation of 0.28 over all pairs.

The rest of this paper is organized as follows.
We review related work in Section 2. In Section
3, we describe our resource processing and de-
sign decisions. Section 4 discusses graph propaga-
tion methods to identify sentiment polarity across
languages. Section 5 evaluates our results against

1https://sites.google.com/site/datascienceslab/projects/
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each available human-annotated lexicon. Finally,
in Section 6 we present our extrinsic evaluation
of sentiment consistency in Wikipedia prior to our
conclusions.

2 Related Work

Sentiment analysis is an important area of NLP
with a large and growing literature. Excellent sur-
veys of the field include (Liu, 2013; Pang and Lee,
2008), establishing that rich online resources have
greatly expanded opportunities for opinion min-
ing and sentiment analysis. Godbole et al. (2007)
build up an English lexicon-based sentiment anal-
ysis system to evaluate the general reputation of
entities. Taboada et al. (2011) present a more so-
phisticated model by considering patterns, includ-
ing negation and repetition using adjusted weights.
Liu (2010) introduces an efficient method, at the
state of the art, for doing sentiment analysis and
subjectivity in English.

Researchers have investigated topic or domain
dependent approaches to identify opinions. Jijk-
oun et al. (2010) focus on generating topic spe-
cific sentiment lexicons. Li et al. (2010) extract
sentiment with global and local topic dependency.
Gindl et al. (2010) perform sentiment analysis ac-
cording to cross-domain contextualization and Pak
and Paroubek (2010) focus on Twitter, doing re-
search on colloquial format of English.

Work has been done to generalize sentiment
analysis to other languages. Denecke (2008) per-
forms multilingual sentiment analysis using Sen-
tiWordNet. Mihalcea et al. (2007) learn multi-
lingual subjectivity via cross-lingual projections.
Abbasi et al. (2008) extract specific language fea-
tures of Arabic which requires language-specific
knowledge. Gı̂nscă et al. (2011) work on better
sentiment analysis system in Romanian.

The ready availability of machine translation to
and from English has prompted efforts to employ
translation for sentiment analysis (Bautin et al.,
2008). Banea et al. (2008) demonstrate that ma-
chine translation can perform quite well when ex-
tending the subjectivity analysis to multi-lingual
environment, which makes it inspiring to replicate
their work on lexicon-based sentiment analysis.

Machine learning approaches to sentiment anal-
ysis are attractive, because of the promise of re-
duced manual processing. Boiy and Moens (2009)
conduct machine learning sentiment analysis us-
ing multilingual web texts. Deep learning ap-

proaches draft off of distributed word embedding
which offer concise features reflecting the seman-
tics of the underlying vocabulary. Turian et al.
(2010) create powerful word embedding by train-
ing on real and corrupted phrases, optimizing for
the replaceability of words. Zou et al. (2013) com-
bine machine translation and word representation
to generate bilingual language resources. Socher
et al. (2012) demonstrates a powerful approach to
English sentiment using word embedding, which
can easily be extended to other languages by train-
ing on appropriate text corpora.

3 Knowledge Graph Construction

In this section we will describe how we leverage
off a variety of NLP resources to construct the se-
mantic connection graph we will use to propagate
sentiment lexicons.

Figure 1: Illustration of our knowledge graph,
showing links between words and edge represen-
tation to preserve source identity. For each edge
between corresponding words, a 5-bit integer will
record the existence of 5 possible semantic links.

The Polyglot project (Al-Rfou et al., 2013)
identified the 100,000 most frequently used words
in each language’s Wikipedia. Drawing a can-
didate lexicon from Wikipedia has some down-
sides (e.g. limited use of informal words), but is
representative and convenient over a large num-
ber of languages. In particular, we collect total
of 7,741,544 high-frequency words from 136 lan-
guages to serve as vertices in our graph.

We seek to identify as many semantic links
across languages as possible to connect our net-
work, and so integrated several resources:

• Wiktionary – This growing resource has en-
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tries for 171 languages, edited by people
with sufficient background knowledge. Wik-
tionary provides about 19.7% of the total
links covering 382,754 vertices in our graph.

• Machine Translation - We script the Google
translation API to get even more semantic
links. In particular we ask for translations of
each word in our English vocabulary to 57
languages with available translators as well
as going from each known vocabulary word
in other languages to English. In total, ma-
chine translation provides 53.2% of the to-
tal links and establishes connections between
3.5 million vertices.

• Transliteration Links – Natural flow brings
words across languages with little morpho-
logical change. Closely related language
pairs (i.e. Russian and Ukrainian) share many
characters/words in common. Though not al-
ways true, words with same spelling usually
have similar meanings so this can improve
the coverage of semantic links. Translitera-
tion provides 22.1% of the total links in our
experiment.

• WordNet – Finally, we gather synonyms and
antonyms of English words from WordNet,
which prove particularly useful in propagat-
ing sentiment across languages. In total we
collect over 100,000 pairs of synonyms and
antonyms and created 5.0% of the total links.

Links do not always agree in a bidirectional
manner, particularly for multi-sense words, thus
all links in our network are unidirectional. Figure
1 illustrates how we encode links from different
resources in an integer edge value.

4 Graph Propagation

Sentiment propagation starts from English senti-
ment lexicons. Through semantic links in our
knowledge graph, words are able to extend their
sentiment polarities to adjacent neighbors. We
experimented with both graph propagation algo-
rithm (Velikovich et al., 2010) and label propaga-
tion algorithm (Zhu and Ghahramani, 2002; Rao
and Ravichandran, 2009). The primary differ-
ence between is that label propagation takes multi-
ple paths between two vertices into consideration,
while graph propagation utilizes only the best path
between word pairs.

We report results from using Liu’s lexicons
(Liu, 2010) as seed words. Liu’s lexicons con-
tain 2006 positive words and 4783 negative words.
Of these, 1422 positive words and 2956 negative
words (roughly 64.5%) appear among the 100,000
English vertices in our graph.

Dataset Propagation Acc Cov

Arabic
Label 0.93 0.45
Graph 0.94 0.46

German
Label 0.97 0.31
Graph 0.97 0.32

English
Label 0.92 0.55
Graph 0.90 0.69

Italian
Label 0.73 0.29
Graph 0.72 0.32

Japanese
Label 0.57 0.12
Graph 0.56 0.15

Chinese-1
Label 0.95 0.62
Graph 0.94 0.65

Chinese-2
Label 0.97 0.70
Graph 0.97 0.72

Table 1: Graph propagation vs label propagation.
Acc represents the ratio of identical polarity be-
tween our analysis and the published lexicons.
Cov reflects what faction of our lexicons overlap
with published lexicons.

Our knowledge network is comprised of links
from a heterogeneous collection of sources, of dif-
ferent coverage and reliability. For the task of de-
ciding sentiment polarity of words, only antonym
links are negative. An edge gains zero weight
if both negative and positive links exist. Edges
having multiple positive links will be credited the
highest weight among all these links. We con-
ducted a grid search on the weight of each type of
links to maximize the best overall accuracy on our
test data of published non-English sentiment lexi-
cons. To avoid potential overfitting problems, grid
search starts from SentiWordNet English lexicons
(Esuli and Sebastiani, 2006) instead of Liu’s.

5 Lexicon Evaluation

We collected all available published sentiment lex-
icons from non-English languages to serve as stan-
dard for our evaluation, including Arabic, Italian,
German and Chinese. Coupled with English senti-
ment lexicons provides in total seven different test
cases to experiment against, specifically:
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Language ‖lexicon‖ +/- Ratio Language ‖lexicon‖ +/- Ratio Language ‖lexicon‖ +/- Ratio
Afrikaans 2299 0.40 Albanian 2076 0.41 Amharic 46 0.63
Arabic 2794 0.41 Aragonese 97 0.47 Armenian 1657 0.43
Assamese 493 0.49 Azerbaijani 1979 0.41 Bashkir 19 0.63
Basque 1979 0.40 Belarusian 1526 0.43 Bengali 2393 0.42
Bosnian 2020 0.42 Breton 184 0.42 Bulgarian 2847 0.40
Burmese 461 0.48 Catalan 3204 0.37 Cebuano 56 0.54
Chechen 26 0.65 Chinese 3828 0.34 Chuvash 17 0.76
Croatian 2208 0.40 Czech 2599 0.41 Danish 3340 0.38
Divehi 67 0.67 Dutch 3976 0.38 English 4376 0.32
Esperanto 2604 0.40 Estonian 2105 0.41 Faroese 123 0.43
Finnish 3295 0.40 French 4653 0.35 Frisian 224 0.43
Gaelic 345 0.50 Galician 2714 0.37 German 3974 0.38
Georgian 2202 0.40 Greek 2703 0.39 Gujarati 2145 0.44
Haitian 472 0.44 Hebrew 2533 0.36 Hindi 3640 0.39
Hungarian 3522 0.38 Icelandic 1770 0.40 Ido 183 0.49
Interlingua 326 0.50 Indonesian 2900 0.37 Italian 4491 0.36
Irish 1073 0.45 Japanese 1017 0.39 Javanese 168 0.51
Kazakh 81 0.65 Kannada 2173 0.42 Kirghiz 246 0.49
Khmer 956 0.49 Korean 2118 0.42 Kurdish 145 0.48
Latin 2033 0.46 Latvian 1938 0.42 Limburgish 93 0.46
Lithuanian 2190 0.41 Luxembourg 224 0.52 Macedonian 2965 0.39
Malagasy 48 0.54 Malayalam 393 0.50 Malay 2934 0.39
Maltese 863 0.50 Marathi 1825 0.48 Manx 90 0.51
Mongolian 130 0.52 Nepali 504 0.49 Norwegian 3089 0.37
Nynorsk 1894 0.39 Occitan 429 0.40 Oriya 360 0.51
Ossetic 12 0.67 Panjabi 79 0.63 Pashto 198 0.50
Persian 2477 0.39 Polish 3533 0.39 Portuguese 3953 0.35
Quechua 47 0.55 Romansh 116 0.48 Romanian 3329 0.39
Russian 2914 0.43 Sanskrit 178 0.59 Sami 24 0.71
Serbian 2034 0.41 Sinhala 1122 0.43 Slovak 2428 0.43
Slovene 2244 0.42 Spanish 4275 0.36 Sundanese 476 0.50
Swahili 1314 0.42 Swedish 3722 0.39 Tamil 2057 0.40
Tagalog 1858 0.44 Tajik 97 0.62 Tatar 76 0.50
Telugu 2523 0.41 Thai 1279 0.51 Tibetan 24 0.63
Turkmen 78 0.56 Turkish 2500 0.39 Uighur 18 0.44
Ukrainian 2827 0.41 Urdu 1347 0.39 Uzbek 111 0.57
Vietnamese 1016 0.38 Volapuk 43 0.70 Walloon 193 0.32
Welsh 1647 0.42 Yiddish 395 0.43 Yoruba 276 0.50

Table 2: Sentiment lexicon statistics. We tag 10 languages having most/least sentiment words with
blue/green color and 10 languages having highest/lowest ratio of positive words with orange/purple color.

• Arabic: (Abdul-Mageed et al., 2011).

• German: (Remus et al., 2010).

• English: (Esuli and Sebastiani, 2006).

• Italian: (Basile and Nissim, 2013).

• Japanese: (Kaji and Kitsuregawa, 2007).

• Chinese-1, Chinese-2: (He et al., 2010).

We present the accuracy and coverage achieved
by two propagation model in Table 1. Both mod-
els achieve similar accuracy while slightly more
words in graph propagation can be verified via
published lexicons. Performance is not good on
Japanese because of mismatching between our
dictionary and the test data.

Table 2 reveals that very sparse sentiment lex-
icons resulted for a small but notable fraction of

the languages we analyzed. In particular, only 20
languages yielded lexicons of less than 100 words.
Without exception, they all have very small avail-
able definitions in Wikitionary. By contrast, 48
languages had lexicons with over 2,000 words, an-
other 16 with between 1,000 and 2,000: clearly
large enough to perform a meaningful analysis.

6 Extrinsic Evaluation: Consistency of
Wikipedia Sentiment

We consider evaluating our lexicons on the con-
sistency of Wikipedia pages about a particular in-
dividual person among various languages. As
our candidate entities for analysis, we use the
Wikipedia pages of 2,000 most significant peo-
ple as measured in the recent book Who’s Bigger?
(Skiena and Ward, 2013). The sentiment polar-
ity of a page is simply computed by subtracting
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Type Person Z-score distribution

Good
Leonardo da Vinci

Steven Spielberg

Bad
Adolf Hitler

Osama bin Laden

Table 3: Z-score distribution examples. We label 10 languages with their language code and other using
tick marks on the x-axis.

the number of negative words from that of posi-
tive words, divided by the sum of both.

The differing ratio of positive and negative po-
larity terms in Table 2 means that sentiment cannot
be directly compared across languages. For more
consistent evaluation we compute the z-score of
each entity against the distribution of all its lan-
guage’s entities.

We use the Spearman correlation coefficient to
measure the consistence of sentiment distribution
across all entities with pages in a particular lan-
guage pair. Figure 2 shows the results for 30 lan-
guages with largest propagated sentiment lexicon
size. All pairs of language exhibit positive corre-
lation (and hence generally stable and consistent
sentiment), with an average correlation of 0.28.

Finally, Table 3 illustrates sentiment consis-
tency over all 136 languages (represented by blue
tick marks), with the first 10 languages in Figure 2
granted labels. Respected artists like Steven Spiel-
berg and Leonardo da Vinci show as consistently
positive sentiment as notorious figures like Osama
bin Laden and Adolf Hitler are negative.

7 Conclusions

Our knowledge graph propagation is generally ef-
fective at producing useful sentiment lexicons. In-
terestingly, the ratio of positive sentiment words
is strongly connected with number of sentiment
words – it is noteworthy that English has the
smallest ratio of positive lexicon terms. The

Figure 2: Heatmap of sentiment correlation be-
tween 30 languages.

phenomenon possibly shows that many negative
words reflecting cultural nuances do not translate
wel. We believe that this ratio can be consid-
ered as quality measurement of the propagation.
Similar approaches can be extended to other NLP
tasks using different semantic links, specific dic-
tionary and special seed words. Future work will
revolve around learning modifiers, negation terms,
and various entity/sentiment attribution.
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Abstract

This article contributes to the ongoing dis-
cussion in the computational linguistics
community regarding instances that are
difficult to annotate reliably. Is it worth-
while to identify those? What informa-
tion can be inferred from them regarding
the nature of the task? What should be
done with them when building supervised
machine learning systems? We address
these questions in the context of a sub-
jective semantic task. In this setting, we
show that the presence of such instances
in training data misleads a machine learner
into misclassifying clear-cut cases. We
also show that considering machine lear-
ning outcomes with and without the diffi-
cult cases, it is possible to identify specific
weaknesses of the problem representation.

1 Introduction

The problem of cases that are difficult for anno-
tation received recent attention from both the the-
oretical and the applied perspectives. Such items
might receive contradictory labels, without a clear
way of settling the disagreement. Beigman and
Beigman Klebanov (2009) showed theoretically
that hard cases – items with unreliable annota-
tions – can lead to unfair benchmarking results
when found in test data, and, in worst case, to a
degradation in a machi74ne learner’s performance
on easy, uncontroversial instances if found in the
training data. Schwartz et al. (2011) provided an
empirical demonstration that the presence of such
difficult cases in dependency parsing evaluations

1The work presented in this paper was done when the first
author was a post-doctoral fellow at Northwestern University,
Evanston, IL and the second author was a visiting assistant
professor at Washington University, St. Louis, MO.

leads to unstable benchmarking results, as diffe-
rent gold standards might provide conflicting an-
notations for such items. Reidsma and Carletta
(2008) demonstrated by simulation that systema-
tic disagreements between annotators negatively
impact generalization ability of classifiers built
using data from different annotators. Oosten et
al. (2011) showed that judgments of readability
of the same texts by different groups of experts
are sufficiently systematically different to hamper
cross-expert generalization of readability classi-
fiers trained on annotations from different groups.
Rehbein and Ruppenhofer (2011) discuss the ne-
gative impact of systematic simulated annotation
inconsistencies on active learning performance on
a word-sense disambiguation task.

In this paper, we address the task of classify-
ing words in a text as semantically new or old.
Using multiple annotators, we empirically identify
instances that show substantial disagreement be-
tween annotators. We then discuss those both from
the linguistic perspective, identifying some char-
acteristics of such cases, and from the perspec-
tive of machine learning, showing that the pres-
ence of difficult cases in the training data misleads
the machine learner on easy, clear-cut cases – a
phenomenon termed hard case bias in Beigman
and Beigman Klebanov (2009). The main con-
tribution of this paper is in providing additional
empricial evidence in support of the argument put
forward in the literature regarding the need to pay
attention to problematic, disagreeable instances in
annotated data – not only from the linguistic per-
spective, but also from a machine learning one.

2 Data

The task considered here is that of classifying first
occurrences of words in a text as semantically old
or new. One of goals of the project is to inves-
tigate the relationship between various kinds of
non-novelty in text, and, in particular, the rela-
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tionship between semantic non-novelty (conceptu-
alized as semantic association with some preced-
ing word in the text), the information structure in
terms of given and new information, and the cog-
nitive status of discourse entities (Postolache et al.,
2005; Birner and Ward, 1998; Gundel et al., 1993;
Prince, 1981). If an annotator identified an asso-
ciative tie from the target word back to some other
word in the text, the target word is thereby classi-
fied as semantically old (class 1, or positive); if no
ties were identified, it is classified as new (class 0,
or negative).

For the project, annotations were collected for
10 texts of various genres, where annotators were
asked, for every first appearance of a word in a
text, to point out previous words in the text that
are semantically or associatively related to it. All
data was annotated by 22 undergraduate and grad-
uate students in various disciplines who were re-
cruited for the task. During outlier analysis, data
from two annotators was excluded from considera-
tion, while 20 annotations were retained. This task
is fairly subjective, with inter-annotator agreement
κ=0.45 (Beigman Klebanov and Shamir, 2006).

Table 1 shows the number and proportion of in-
stances that received the “semantically old” (1) la-
bel from i annotators, for 0≤ i ≤ 20. The first col-
umn shows the number of annotators who gave the
label “semantically old” (1). Column 2 shows the
number and proportion of instances that received
the label 1 from the number of annotators shown in
column 1. Column 3 shows the split into item dif-
ficulty groups. We note that while about 20% of
the instances received a unanimous 0 annotation
and about 12% of the instances received just one 1
label out of 20 annotators, the remaining instances
are spread out across various values of i. Reasons
for this spread include intrinsic difficulty of some
of the items, as well as attention slips. Since anno-
tators need to consider the whole of the preceding
text when annotating a given word, maintaining
focus is a challenge, especially for words that first
appear late in the text.

Our interest being in difficult, disagreeable
cases, we group the instances into 5 bands accor-
ding to the observed level of disagreement and
the tendency in the majority of the annotations.
Thus, items with at most two label 1 annotations
are clearly semantically new, while those with at
least 17 (out of 20) are clearly semantically old.
The groups Hard 0 and Hard 1 contain instances

# 1s # instances group
(proportion)

0 476 (.20) Easy 0
1 271 (.12) (.40)
2 191 (.08)
3 131 (.06) Hard 0
4 106 (.05) (.25)
5 76 (.03)
6 95 (.04)
7 85 (.04)
8 78 (.03)
9 60 (.03) Very

10 70 (.03) Hard
11 60 (.03) (.08)
12 57 (.02) Hard 1
13 63 (.03) (.13)
14 68 (.03)
15 49 (.02)
16 65 (.03)
17 60 (.03) Easy 1
18 72 (.03) (.14)
19 94 (.04)
20 99 (.04)

Table 1: Sizes of subsets by levels of agreement.

with at least a 60% majority classification, while
the middle class – Very Hard – contains instances
for which it does not appear possible to even iden-
tify the overall tendency.

In what follows, we investigate the learnabi-
lity of the classification of semantic novelty from
various combinations of easy, hard, and very hard
data.

3 Experimental Setup

3.1 Training Partitions

The objective of the study is to determine the use-
fulness of instances of various types in the training
data for semantic novelty classification. In parti-
cular, in light of Beigman and Beigman Klebanov
(2009), we want to check whether the presence of
less reliable data (hard cases) in the training set
adversely impacts performance on the highly reli-
able data (easy cases). We therefore test separately
on easy and hard cases.

We ran 25 rounds of the following experiment.
All easy cases are randomly split 80% (train) and
20% (test), all hard cases are split into train and
test sets in the same proportions. Then various
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parts of the training data are used to train the 5 sys-
tems described in Table 2. We build models using
easy data; hard data; easy and hard data; easy,
hard, and very hard data; easy data and a weighted
sample of the hard data. The labels for very hard
data were assigned by flipping a fair coin.

System Easy Hard Very Hard
E +
H +
E+H + +
E+H+VH + + +
E+H100

w + sample1

Table 2: The 5 training regimes used in the experi-
ment, according to the parts of the data utilized for
training.

3.2 Machine Learning

We use linear Support Vector Machines classifier
as implemented in SVMLight (Joachims, 1999).
Apart from being a popular and powerful ma-
chine learning method, linear SVM is one of the
family of classifiers analyzed in Beigman and
Beigman Klebanov (2009), where they are theo-
retically shown to be vulnerable to hard case bias
in the worst case.

To represent the instances, we use two features
that capture semantic relatedness between words.
One feature uses Latent Semantic Analysis (Deer-
wester et al., 1990) trained on the Wall Street Jour-
nal articles to quantify the distributional similarity
of two words, the other uses an algorithm based
on WordNet (Miller, 1990) to calculate seman-
tic relatedness, combining information from both
the hierarchy and the glosses (Beigman Klebanov,
2006). For each word, we calculate LSA (Word-
Net) relatedness score for this word with each pre-
ceding word in the text, and report the highest pair-
wise score as the LSA (WordNet) feature value for
the given word. The values of the features can
be thought of as quantifying the strength of the
evidence for semantic non-newness that could be
obtained via a distributional or a dictionary-based
method.

1The weight corresponds to the number of people who
marked the item as 1, for hard cases. We take a weighted
sample of 100 hard cases.

4 Results

We calculate the accuracy of every system sepa-
rately on the easy and hard test data. Table 3 shows
the results.

Train Test-E Test-H
Acc Rank Acc Rank

E 0.781 1 0.643 2
E+H 0.764 2 0.654 1
E+H+VH 0.761 2 0.650 1,2
H 0.620 3 0.626 3
E+H100

w 0.779 1 0.645 2

Table 3: Accuracy and ranking for semantic no-
velty classification for systems built using various
training data and tested on easy (Test-E) and hard
(Test-H) cases. Systems with insignificant differ-
ences in performance (paired t-test, n=25, p>0.05)
are given the same rank.

We observe first the performance of the system
trained solely on hard cases (H in Table 3). This
system shows the worst performance, both on the
easy test and on the hard test. In fact, this system
failed to learn anything about the positive class in
24 out of the 25 runs, classifying all cases as nega-
tive. It is thus safe to conclude that in the feature
space used here the supervision signal in the hard
cases is too weak to guide learning.

The system trained solely on easy cases (E in
Table 3) significantly outperforms H both on the
easy and on the hard test. That is, easy cases are
more informative about the classification of hard
cases than the hard cases themselves. This shows
that at least some hard cases pattern similarly to
the easy ones in the feature space; SVM failed to
single them out when trained on hard cases alone,
but they are learnable from the easy data.

The system that trained on all cases – both easy
and hard – attains the best performance on hard
cases but yields to E on the easy test (Test-E). This
demonstrates what Beigman and Beigman Kle-
banov (2009) called hard case bias – degradation
in test performance on easy cases due to hard cases
in the training data. The negative effect of using
hard cases in training data can be mitigated if we
only use a small sample of them (system E+H100

w );
yet neither this nor other schemes we tried of
selectively incorporating hard cases into training
data produced an improvement over E when tested
on easy cases (Test-E).
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5 Discussion

5.1 Beyond worst case

Beigman and Beigman Klebanov (2009) per-
formed a theoretical analysis showing that hard
cases could lead to hard case bias where hard cases
have completely un-informative labels, with pro-
bability of p=0.5 for either label. These corre-
spond to very hard cases in our setting. According
to Table 3, it is indeed the case that adding the
very hard cases hurts performance, but not signif-
icantly so – compare results for E+H vs E+H+VH
systems.

Our results suggest that un-informative labels
are not necessary for the hard case bias to sur-
face. The instances grouped under Hard 1 have
the probability of p=0.66 for class 1 and the in-
stances grouped under Hard 0 have the probabi-
lity of p=0.71 for class 0. Thus, while the labels
are somewhat informative, it is apparently the case
that the hard instances are distributed sufficiently
differently in the feature space from the easy cases
with the same label to produce a hard case bias.

Inspecting the distribution of hard cases (Fig-
ure 1), we note that hard cases do not follow
the worst case pattern analyzed in Beigman and
Beigman Klebanov (2009), where they were con-
centrated in an area of the feature space that was
removed far from the separation plane, a malig-
nant but arguably unlikely scenario (Dligach et al.,
2010). Here, hard cases are spread both close and
far from the plane, yet their distribution is suffi-
ciently different from that of the easy cases to pro-
duce hard case bias during learning.
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Figure 1: Hard cases with separators learned from
easy and easy+hard training data.

5.2 The nature of hard cases

Figure 1 plots the hard instances in the two-
dimensional feature space: Latent Semantic Anal-
ysis score is shown on x-axis, and WordNet-based
score is shown on the y-axis. The red lines show
the linear separator induced when the system is
trained on easy cases only (system E in Table 3),
whereas the green line shows the separator in-
duced when the system is trained on both easy and
hard cases (system E+H).

It is apparent from the figure that the difference
in the distributions of the easy and the hard cases
lead to a lower threshold for LSA score when
WordNet score is zero and a higher threshold of
WordNet score when LSA score is zero in hard
vs easy cases. That is, the system exposed to hard
cases learned to trust LSA more and to trust Word-
Net less when determining that an instance is se-
mantically old than a system that saw only easy
cases at train time.

The tendency to trust WordNet less yields an
improvement in precision (92.1% for system E+H
on Test-E class 1 data vs 84% for system E on
Test-E class 1 data), which comes at a cost of a
drop in recall (42.2% vs 53.3%) on easy positive
cases. This suggests that high WordNet scores that
are not supported by distributional evidence are a
source of Hard 0 cases that made the system more
cautious when relying on WordNet scores.

The pattern of low LSA score and high Word-
Net score often obtains for rare senses of words:
Distributional evidence typically points away from
these senses, but they can be recovered through
dictionary definitions (glosses) in WordNet.

An example of hard 0 case involves a homony-
mous rare sense. Deck is used in the observation
deck sense in one of the texts. However, it was
found to be highly related to buy by WordNet-
based measure through the notion of illegal – buy
in the sense of bribe and deck in the sense of a
packet of illegal drugs. This is clearly a spuri-
ous connection that makes deck appear semanti-
cally associated with preceding material, whereas
annotators largely perceived it as new.

Exposure to such cases at training time leads the
system to forgo handling rare senses that lack dis-
tributional evidence, thus leading to misclassifica-
tion of easy positive cases that exhibit a similar
pattern. Thus, stall and market are both used in the
sales outlet sense in one of the text. They come out
highly related by WordNet measure; yet in the 68
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instances of stall in the training data for LSA the
homonymous verbal usage predominates. Simi-
larly, partner is overwhelmingly used in the busi-
ness partner sense in the WSJ data, hence wife and
partner come out distributionally unrelated, while
the WordNet based measure successfully recovers
these connections.

Our features, while rich enough to diagnose
a rare sense (low LSA score and high WordNet
score), do not provide information regarding the
appropriateness of the rare sense in context. Short
of full scale word sense disambiguation, we expe-
rimented with the idea of taking the second highest
pairwise score as the value of the WordNet fea-
ture, under the assumption that an appropriate rare
sense is likely to be related to multiple words in
the preceding text, while a spurious rare sense is
less likely to be accidentally related to more than
one preceding word. We failed to improve per-
formance, however; it is thus left for future work
to enrich the representation of the problem so that
cases with inappropriate rare senses can be differ-
entiated from the appropriate ones. In the context
of the current article, the identification of a parti-
cular weakness in the representation is an added
value of the analysis of the machine learning per-
formance with and without the difficult cases.

6 Related Work

Reliability of annotation is a concern widely
discussed in the computational linguistics litera-
ture (Bayerl and Paul, 2011; Beigman Klebanov
and Beigman, 2009; Artstein and Poesio, 2008;
Craggs and McGee Wood, 2005; Di Eugenio and
Glass, 2004; Carletta, 1996). Ensuring high re-
liability is not always feasible, however; the ad-
vent of crowdsourcing brought about interest in
algorithms for recovering from noisy annotations:
Snow et al. (2008), Passonneau and Carpenter
(2013) and Raykar et al. (2010) discuss methods
for improving over annotator majority vote when
estimating the ground truth from multiple noisy
annotations.

A situation where learning from a small num-
ber of carefully chosen examples leads to a better
performance in classifiers is discussed in the ac-
tive learning literature (Schohn and Cohn, 2000;
Cebron and Berthold, 2009; Nguyen and Smeul-
ders, 2004; Tong and Koller, 2001). Recent work
in the proactive active learning and multi-expert
active learning paradigms incorporates considera-

tions of item difficulty and annotator expertise into
an active learning scheme (Wallace et al., 2011;
Donmez and Carbonell, 2008).

In information retrieval, one line of work con-
cerns the design of evaluation schemes that reflect
different levels of document relevance to a given
query (Kanoulas and Aslam, 2009; Sakai, 2007;
Kekäläinen, 2005; Sormunen, 2002; Voorhees,
2001; Järvelin and Kekäläinen, 2000; Voorhees,
2000). Järvelin and Kekäläinen (2000) consider,
for example, a tiered evaluation scheme, where
precision and recall are reported separately for ev-
ery level of relevance, which is quite analogous
to the idea of testing separately on easy and hard
cases as employed here. The graded notion of
relevance addressed in the information retrieval
research assumes a coding scheme where people
assign documents into one of the relevance tiers
(Kekäläinen, 2005; Sormunen, 2002). In our case,
the graded notion of semantic novelty is a possible
explanation for the observed pattern of annotator
responses.

7 Conclusion

This article contributes to the ongoing discussion
in the computational linguistics community re-
garding instances that are difficult to annotate re-
liably – how to identify those, and what to do
with them once identified. We addressed this is-
sue in the context of a subjective semantic task.
In this setting, we showed that the presence of
difficult instances in training data misleads a ma-
chine learner into misclassifying clear-cut, easy
cases. We also showed that considering machine
learning outcomes with and without the difficult
cases, it is possible to identify specific weaknesses
of the problem representation. Our results align
with the literature suggesting that difficult cases
in training data can be disruptive (Beigman and
Beigman Klebanov, 2009; Schwartz et al., 2011;
Rehbein and Ruppenhofer, 2011; Reidsma and
Carletta, 2008); yet we also show that investigat-
ing their impact on the learning outcomes in some
detail can provide insight about the task at hand.

The main contribution of this paper is there-
fore in providing additional empirical evidence in
support of the argument put forward in the litera-
ture regarding the need to pay attention to prob-
lematic, disagreeable instances in annotated data
– both from the linguistic and from the machine
learning perspectives.
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Abstract

Any given verb can appear in some syntac-
tic frames (Sally broke the vase, The vase
broke) but not others (*Sally broke at the
vase, *Sally broke the vase to John). There
is now considerable evidence that the syn-
tactic behaviors of some verbs can be pre-
dicted by their meanings, and many cur-
rent theories posit that this is true for most
if not all verbs. If true, this fact would
have striking implications for theories and
models of language acquisition, as well as
numerous applications in natural language
processing. However, empirical investiga-
tions to date have focused on a small num-
ber of verbs. We report on early results
from VerbCorner, a crowd-sourced project
extending this work to a large, representa-
tive sample of English verbs.

1 Introduction

Verbs vary in terms of which syntactic frames they
can appear in (Table 1). In principle, this could be
an unpredictable fact about the verb that must be
acquired, much like the phonological form of the
verb.

However, most theorists posit that there is a sys-
tematic relationship between the semantics of a
verb and the syntactic frames in which it can ap-
pear (Levin and Hovav, 2005). For instance, it
is argued that verbs like break, which describe a

Frame hit like break
NP V NP x x x
NP V - - x
NP that S - x -
NP V at NP x - -

Table 1: Some of the syntactic frames available for
hit, like, and break.

caused change of state, can appear in both the NP
V NP form (Sally broke the vase) and the NP
V form (The vase broke). Verbs such as hit and
like do not describe a change of state and so can-
not appear in both forms.1 Similarly, only verbs
that describe propositional attitudes, such as like,
can take a that complement (John liked that Sally
broke the vase).

1.1 The Semantic Consistency Hypothesis

This account has a natural consequence, which we
dub the Semantic Consistency Hypothesis: There
is some set of semantic features such that verbs
that share the same syntactic behavior are identi-
cal along those semantic features.2 Note that on
certain accounts, this is a strong tendency rather
than a strict necessity (e.g., Goldberg, 1995).

It is widely recognized that a principled re-
lationship between syntax and semantics would
have broad implications. It is frequently invoked
in theories of language acquisition. For instance,
Pinker (1984, 1989) has described how this cor-
respondence could solve long-standing puzzles
about how children learn syntax in the first place.
Conversely, Gleitman (1990) has shown such a
syntax-semantics relationship could solve signif-
icant problems in vocabulary acquisition. In fact,
both researchers argue that a principled relation-
ship between syntax and semantics is necessary
for language to be learnable at all.

In computational linguistics and natural lan-
guage processing, some form of the Semantic
Consistency Hypothesis is often included in lin-
guistic resources and utilized in applications. We

1Note that this is a simplification in that there are non-
causal verbs that appear in both the NP V NP frame and the
NP V frame. For details, see (Levin, 1993).

2There is a long tradition of partitioning semantics into
those aspects of meaning which are “grammatically relevant”
and those which are not. We refer the interested reader to
Pinker (1989), Jackendoff (1990), and Levin & Rappaport
Hovav (2005).
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describe in detail one such resource, VerbNet,
which is highly relevant to our investigation.

1.2 VerbNet

VerbNet (Kipper et al., 2008; based on Levin,
1993) lists over 6,000 verbs, categorized into 280
classes according to the syntactic frames they can
appear in. That is, all verbs in the same class ap-
pear in the same set of syntactic frames. Impor-
tantly, in addition to characterizing the syntactic
frames associated with each class, VerbNet also
characterizes the semantics of each class.

For instance, class 9.7, which comprises a
couple dozen verbs, allows 7 different syntactic
frames. The entry for one frame is shown below:

Syntactic Frame NP V NP PP.DESTINATION

Example Jessica sprayed the wall.
Syntax AGENT V THEME {+LOC|+DEST CONF}
DESTINATION

Semantics MOTION(DURING(E), THEME)
NOT(PREP(START(E), THEME, DESTINATION))
PREP(END(E), THEME, DESTINATION)
CAUSE(AGENT, E)

Importantly, the semantics listed here is not just
for the verb spray but applies to all verbs from the
Spray Class whenever they appear in that syntac-
tic frame – that is, VerbNet assumes the Semantic
Consistency Hypothesis.

VerbNet and its semantic features have been
used in a variety of NLP applications, such as se-
mantic role labeling (Swier and Stevenson, 2004),
inferencing (Zaenen et al., 2008), verb classifica-
tion (Joanis et al., 2008), and information extrac-
tion (Maynard et al., 2009). It has also been em-
ployed in models of language acquisition (Parisien
and Stevenson, 2011; Barak et al., 2012). In gen-
eral, there has been interest in the NLP literature
in using these syntactially-relevant semantic fea-
tures for shallow semantic parsing (e.g., Giuglea
and Moschitti, 2006).

2 Empirical Status of the Semantic
Consistency Hypothesis

Given the prominence of the Semantic Consis-
tency Hypothesis in both theory and practice, one
might expect that it was on firm empirical foot-
ing. That is, ideally there would be some database
of semantic judgments for a comprehensive set
of verbs from each syntactic class. In princi-

ple, these judgments would come from naive an-
notators, since researchers’ intuitions about sub-
tle judgments may be unconsciously clouded by
theoretical commitments (Gibson and Fedorenko,
2013). The Semantic Consistency Hypothesis
would be supported if, within that database, predi-
cates with the same syntactic properties were sys-
tematically related semantically.

No such database exists, whether consisting of
the judgments of linguists or naive annotators.
Most theoretical studies report researcher judg-
ments for only a handful of examples; how many
additional examples were considered by the re-
searcher goes unreported. In any case, to our
knowledge, of the 280 syntactic verb classes listed
by VerbNet, only a handful have been studied in
any detail.

The strongest evidence comes from experimen-
tal work on several so-called alternations (the pas-
sive, causative, locative, and dative alternations).
Here, there does appear to be a systematic seman-
tic distinction between the two syntactic frames in
each alternation, at least most of the time. This
has been tested with a reasonable sample of the
relevant verbs and also in both children and adults
(Ambridge et al., 2013; Pinker, 1989). However,
the relevant verbs make up a tiny fraction of all
English verbs, and even for these verbs, the syn-
tactic frames in question represent only a fraction
of the syntactic frames available to those verbs.

This is not an accidental oversight. The limit-
ing factor is scale: with many thousands of verbs
and over a hundred commonly-discussed seman-
tic features and syntactic frames, it is not feasi-
ble for a single researcher, or even team of re-
searchers, to check which verbs appear in which
syntactic frames and carry which semantic en-
tailments. Collecting data from naive subjects is
even more laborious, particularly since the aver-
age Man on the Street is not necessarily equipped
with metalinguistic concepts like caused change of
state and propositional attitude. The VerbCorner
Project is aimed at filling that empirical gap.

3 VerbCorner

The VerbCorner Project3 is devoted to collecting
semantic judgments for a comprehensive set of
verbs along a comprehensive set of theoretically-
relevant semantic dimension. These data can be
used to test the Semantic Consistency Hypothesis.

3http://gameswithwords.org/VerbCorner/
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Independent of the validity of that hypothesis, the
semantic judgments themselves should prove use-
ful for any study of linguistic meaning or related
application.

We address the issue of scale through crowd-
sourcing: Recruiting large numbers of volunteers,
each of whom may provide only a few annota-
tions. Several previous projects have success-
fully crowd-sourced linguistic annotations, such
as Phrase Detectives, where volunteers have con-
tributed 2.5 million judgments on anaphoric rela-
tions (Poesio et al., 2012).

3.1 Integration with VerbNet
One significant challenge for any such project is
first classifying verbs according to the syntactic
frames they can appear in. Thus, at least initially,
we are focusing on the 6,000+ verbs already cata-
loged in VerbNet. As such, the VerbCorner Project
is also verifying and validating the semantics cur-
rently encoded in VerbNet. VerbNet will be edited
as necessary based on the empirical results.

Integration with VerbNet has additional bene-
fits, since VerbNet itself is integrated with a vari-
ety of linguistic resources, such as PropBank and
Penn TreeBank. This amplifies the impact of any
VerbCorner-inspired changes to VerbNet.

3.2 The Tasks
We selected semantic features of interest based on
those most commonly cited in the linguistics lit-
erature, with a particular focus on those that – ac-
cording to VerbNet – apply to many predicates.

Previous research has shown that humans find
it easier to reason about real-world scenarios than
make abstract judgments (Cosmides and Tooby,
1992). Thus, for each feature (e.g., MOVEMENT),
we converted the metalinguistic judgment (“Does
this verb entail movement on the part of some en-
tity?”) into a real-world problem.

For example, in “Simon Says Freeze,” a task
designed to elicit judgments about movement, the
Galactic Overlord (Simon) decrees “Galactic Stay
Where You Are Day,” during which nobody is al-
lowed to move from their current location. Par-
ticipants read descriptions of events and decide
whether anyone violated the rule.

In “Explode on Contact,” designed to elicit
judgments about physical contact, objects and
people explode when they touch one another. The
participant reads descriptions of events and de-
cides whether anything has exploded.

Note that each task is designed to elicit judg-
ments about entailments – things that must be true
rather than are merely likely to be true. If John
greeted Bill, they might have come into contact
(e.g., by shaking hands), but perhaps they did not.
Previous work suggests that it is the semantic en-
tailments that matter, particularly for explaining
the syntactic behavior of verbs (Levin, 1993).

3.3 The Items

The exact semantics associated with a verb may
depend on its syntactic frame. Thus Sally rolled
the ball entails that somebody applied force to the
ball (namely: Sally), whereas The ball rolled does
not. Thus, we investigate the semantics of each
verb in each syntactic frame available to it (as de-
scribed by VerbNet). Below, the term item is the
unit of annotation: a verb in a frame.

In order to minimize unwanted effects of world
knowledge, the verb’s arguments are replaced with
nonsense words or randomly chosen proper names
(Sally sprayed the dax onto the blicket). The use
of novel words is explained by the story for each
task.

3.4 The Phases

Given the sheer scale of the project, data-
collection is expected to take several years at least.
Thus, data-collection has been broken up into a se-
ries of phases. Each phase focuses on a small num-
ber of classes and/or semantic entailments. This
ensures that there are meaningful intermediate re-
sults that can be disseminated prior to the comple-
tion of the entire project. This manuscript reports
the results of Phase 1.

4 Results

The full data and annotations will be released in
the near future and may be available now by re-
quest. Below, we summarize the main findings
thus far.

4.1 Description of Phase 1

In Phase 1 of the project, we focused on 11 verb
classes (Table 3) comprising 641 verbs and seven
different semantic entailments (Table 2). While
six of these entailments were chosen from among
those features widely believed to be relevant for
syntax, one was not: A Good World, which inves-
tigated evaluation (Is the event described by the
verb positive or negative?). Although evaluation
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Task Semantic Feature Anns. Anns./Item Mode Consistency
Entropy PHYSICAL CHANGE 23,875 7 86% 95%
Equilibrium APPLICATION OF FORCE 27,128 8 79% 95%
Explode on Contact PHYSICAL CONTACT 23,590 7 93% 95%
Fickle Folk CHANGE OF MENTAL STATE 16,466 5 81% 96%
Philosophical Zombie Hunter MENTAL STATE 24,592 7 80% 89%
Simon Says Freeze LOCATION CHANGE 24,245 7 83% 88%
A Good World EVALUATION 22,668 7 72% 74%

Table 2: Respectively: Task, semantic feature tested, number of annotations, mean number of annotations
per item, mean percentage of participants choosing the modal response, consistency within class.

of events is an important component of human
psychology, to our knowledge no researcher has
suggested that it is relevant for syntax. As such,
this task provides a lower bound for how much se-
mantic consistency one might expect within a syn-
tactic verb class.

In all, we collected 162,564 judgments from
1,983 volunteers (Table 2).

4.2 Inter-annotator Agreement
Each task had been iteratively piloted and re-
designed until inter-annotator reliability was ac-
ceptable, as described in a previous publication.
However, these pilot studies involved a small num-
ber of items which were coded by all annota-
tors. How good was the reliability in the crowd-
sourcing context?

Because we recruited large numbers of an-
notators, most of whom annotated only a few
items, typical measures of inter-annotator agree-
ment such as Cohen’s kappa are not easily calcu-
lated. Instead, for each item, we calculated the
most common (modal) response. We then con-

sidered what proportion of all annotations were
accounted for by the modal response: a mean of
100% would indicate that there was no disagree-
ment among annotators for any item.

As can be seen in Table 2, for every task, the
modal response covered the bulk responses, rang-
ing from a low of 72% for EVALUATION to a high
of 93% for PHYSICAL CONTACT. Since there
were typically 4 or more possible answers per
item, inter-annotator agreement was well above
chance. This represents good performance given
that the annotators were entirely untrained.

In many cases, annotator disagreement seems
to be driven by syntactic constructions that are
only marginally grammatical. For instance, inter-
annotator agreement was typically low for class
63. VerbNet suggests two syntactic frames for
class 63, one of which (NP V THAT S) appears to
be marginal (?I control that Mary eats). In fact,
annotators frequently flagged these items as un-
grammatical, which is a valuable result in itself for
improving VerbNet.

Class Examples PChange Force Contact MChange Mental LChange
12 yank, press - x d - - d
18.1 hit, squash d x d - - d
29.5 believe, conjecture - - - - d -
31.1 amuse, frighten - - - x d -
31.2 like, fear - - - - x -
45.1 break, crack x d d - - d
51.3.1 bounce, roll - d d - - d
51.3.2 run, slink - d - - - d
51.6 chase, follow - - - - - d
61 attempt, try - - - - - -
63 control, enforce - - - - - -

Table 3: VerbNet classes investigated in Phase 1, with presence of semantic entailments as indicated by
data. x = feature present; - = feature absent; d = depends on syntactic frame.
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4.3 Testing the Semantic Consistency
Hypothesis

4.3.1 Calculating consistency

We next investigated whether our results support
the Semantic Consistency Hypothesis. As noted
above, the question is not whether all verbs in the
same syntactic class share the same semantic en-
tailments. Even a single verb may have different
semantic entailments when placed in different syn-
tactic frames. Thus, calculating consistency of a
class must take differing frames into account.

There are many sophisticated rubrics for calcu-
lating consistency. However, for expository pur-
poses here, we use one that is intuitive and easy
to interpret. First, we determined the annotation
for each item (i.e., each verb/frame combination)
by majority vote. We then considered how many
verbs in each class had the same annotation in any
given syntactic frame.

For example, suppose a class had 10 verbs and
2 frames. In the first frame, 8 verbs received the
same annotation and 2 received others. The con-
sistency for this class/frame combination is 80%.
In the second frame, 6 verbs received the same
annotation and 4 verbs received others. The con-
sistency for this class/frame combination is 60%.
The consistency for the class as a whole is the av-
erage across frames: 70%.

4.3.2 Results

Mean consistency averaged across classes is
shown for each task in Table 2. As expected,
consistency was lowest for EVALUATION, which
is not expected to necessarily correlate with syn-
tax. Interestingly, consistency for EVALUATION

was nonetheless well above floor. This is per-
haps not surprising: two sentences that have the
same values for PHYSICAL CHANGE, APPLICA-
TION OF FORCE, PHYSICAL CONTACT, CHANGE

OF MENTAL STATE, MENTAL STATE, and LO-
CATION CHANGE are, on average, also likely to
be both good or both bad.

Consistency was much higher for the other
tasks, and in fact was close to ceiling for most of
them. It remains to be seen whether the items that
deviate from the mode represent true differences in
semantics or reflect merely noise. One way of ad-
dressing this question is to collect additional anno-
tations for those items that deviate from the mode.

4.4 Verb semantics
For each syntactic frame in each class, we deter-
mined the most common annotation. This is sum-
marized in Table 3. The semantic annotation de-
pended on syntactic frame nearly 1/4 of the time.4

These frequently matched VerbNet’s seman-
tics, though not always. For instance, annota-
tors judged that class 18.1 verbs in the NP V NP
PP.INSTRUMENT entailed movement on the part
of the instrument (Sally hit the ball with the stick)
– something not reflected in VerbNet.

5 Conclusion and Future Work

Results of Phase 1 provide support for the Seman-
tic Consistency Hypothesis, at least as a strong
bias. More work will be needed to determine the
strength of that bias. The findings are largely con-
sistent with VerbNet’s semantics, but changes are
indicated in some cases.

We find that inter-annotator agreement is suf-
ficiently high that annotation can be done effec-
tively using the modal response with an average
of 6-7 responses per item. We are currently in-
vestigating whether we can achieve better reliabil-
ity with fewer responses per item by taking into
account an individual annotator’s history across
items, as recent work suggests is possible (Passon-
neau and Carpenter, 2013; Rzhetsky et al., 2009;
Whitehill et al., 2009).

Thus, crowd-sourcing VerbNet semantic entail-
ments appears to be both feasible and productive.
Data-collection continues. Phase 2, which added
over 10 new verb classes, is complete. Phase 3,
which includes both new classes and new entail-
ments, has been launched.
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Abstract

The strength with which a statement is
made can have a significant impact on the
audience. For example, international rela-
tions can be strained by how the media in
one country describes an event in another;
and papers can be rejected because they
overstate or understate their findings. It is
thus important to understand the effects of
statement strength. A first step is to be able
to distinguish between strong and weak
statements. However, even this problem
is understudied, partly due to a lack of
data. Since strength is inherently relative,
revisions of texts that make claims are a
natural source of data on strength differ-
ences. In this paper, we introduce a corpus
of sentence-level revisions from academic
writing. We also describe insights gained
from our annotation efforts for this task.

1 Introduction
It is important for authors and speakers to find the
appropriate “pitch” to convey a desired message
to the public. Indeed, sometimes heated debates
can arise around the choice of statement strength.
For instance, on March 1, 2014, an attack at Kun-
ming’s railway station left 29 people dead and
more than 140 others injured.1 In the aftermath,
Chinese media accused Western media of “soft-
pedaling the attack and failing to state clearly that
it was an act of terrorism”.2 In particular, regard-
ing the statement by the US embassy that referred
to this incident as the “terrible and senseless act
of violence in Kunming”, a Weibo user posted “If
you say that the Kunming attack is a ‘terrible and

1http://en.wikipedia.org/wiki/2014_
Kunming_attack

2http://sinosphere.blogs.nytimes.
com/2014/03/03/u-n-security-council-
condemns-terrorist-attack-in-kunming/

senseless act of violence’, then the 9/11 attack can
be called a ‘regrettable traffic incident”’.3

This example is striking but not an isolated case,
for settings in which one party is trying to con-
vince another are pervasive; scenarios range from
court trials to conference submissions. Since the
strength and scope of an argument can be a cru-
cial factor in its success, it is important to under-
stand the effects of statement strength in commu-
nication.

A first step towards addressing this question is
to be able to distinguish between strong and weak
statements. As strength is inherently relative, it is
natural to look at revisions that change statement
strength, which we refer to as “strength changes”.
Though careful and repeated revisions are presum-
ably ubiquitous in politics, legal systems, and jour-
nalism, it is not clear how to collect them; on the
other hand, revisions to research papers may be
more accessible, and many researchers spend sig-
nificant time on editing to convey the right mes-
sage regarding the strength of a project’s contribu-
tions, novelty, and limitations. Indeed, statement
strength in science communication matters to writ-
ers: understating contributions can affect whether
people recognize the true importance of the work;
at the same time, overclaiming can cause papers to
be rejected.

With the increasing popularity of e-print ser-
vices such as the arXiv4, strength changes in scien-
tific papers are becoming more readily available.
Since the arXiv started in 1991, it has become
“the standard repository for new papers in mathe-
matics, physics, statistics, computer science, biol-
ogy, and other disciplines” (Krantz, 2007). An in-
triguing observation is that many researchers sub-
mit multiple versions of the same paper on arXiv.
For instance, among the 70K papers submitted in

3http://www.huffingtonpost.co.uk/2014/
03/03/china-kunming-911_n_4888748.html

4http://arxiv.org/
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ID Pairs

1
S1: The algorithm is studied in this paper .
S2: The algorithm is proposed in this paper .

2
S1: ... circadian pattern and burstiness in human communication activity .
S2: ... circadian pattern and burstiness in mobile phone communication .

3
S1: ... using minhash techniques , at a significantly lower cost and with same privacy guarantees .
S2: ... using minhash techniques , with lower costs .

4
S1: the rows and columns of the covariate matrix then have certain physical meanings ...
S2: the rows and columns of the covariate matrix could have different meanings ...

5
S1: they maximize the expected revenue of the seller but induce efficiency loss .
S2: they maximize the expected revenue of the seller but are inefficient .

Table 1: Examples of potential strength differences.

2011, almost 40% (27.7K) have multiple versions.
Many differences between these versions consti-
tute a source of valid and motivated strength dif-
ferences, as can be seen from the sentential revi-
sions in Table 1. Pair 1 makes the contribution
seem more impressive by replacing “studied” with
“proposed”. Pair 2 downgrades “human commu-
nication activity” to “mobile phone communica-
tion”. Pair 3 removes “significantly” and the em-
phasis on “same privacy guarantees”. Pair 4 shows
an insertion of hedging, a relatively well-known
type of strength reduction. Pair 5 is an interesting
case that shows the complexity of this problem: on
the one hand, S2 claims that something is “ineffi-
cient”, which is an absolute statement, compared
to “efficiency loss” in S1, where the possibility of
efficiency still exists; on the other hand, S1 em-
ploys an active tone that emphasizes a causal rela-
tionship.

The main contribution of this work is to provide
the first large-scale corpus of sentence-level revi-
sions for studying a broad range of variations in
statement strength. We collected labels for a sub-
set of these revisions. Given the possibility of all
kinds of disagreement, the fair level of agreement
(Fleiss’ Kappa) among our annotators was decent.
But in some cases, the labels differed from our ex-
pectations, indicating that the general public can
interpret the strength of scientific statements dif-
ferently from researchers. The participants’ com-
ments may further shed light on science commu-
nication and point to better ways to define and un-
derstand strength differences.

2 Related Work and Data

Hedging, which can lead to strength differences,
has received some attention in the study of science

communication (Salager-Meyer, 2011; Lewin,
1998; Hyland, 1998; Myers, 1990). The CoNLL
2010 Shared Task was devoted to hedge detection
(Farkas et al., 2010). Hedge detection was also
used to understand scientific framing in debates
over genetically-modified organisms in food (Choi
et al., 2012).

Revisions on Wikipedia have been shown use-
ful for various applications, including spelling
correction (Zesch, 2012), sentence compression
(Yamangil and Nelken, 2008), text simplification
(Yatskar et al., 2010), paraphrasing (Max and Wis-
niewski, 2010), and textual entailment (Zanzotto
and Pennacchiotti, 2010). But none of the cat-
egories of Wikipedia revisions previously exam-
ined (Daxenberger and Gurevych, 2013; Bronner
and Monz, 2012; Mola-Velasco, 2011; Potthast et
al., 2008; Daxenberger and Gurevych, 2012) re-
late to statement strength. After all, the objective
of editing on Wikipedia is to present neutral and
objective articles.

Public datasets of science communication are
available, such as the ACL Anthology,5 collec-
tions of NIPS papers,6 and so on. These datasets
are useful for understanding the progress of disci-
plines or the evolution of topics. But the lack of
edit histories or revisions makes them not imme-
diately suitable for studying strength differences.
Recently, there have been experiments with open
peer review.7 Records from open reviewing can
provide additional insights into the revision pro-
cess once enough data is collected.

5http://aclweb.org/anthology/
6http://nips.djvuzone.org/txt.html
7http://openreview.net
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Figure 1: In all figures, different colors indicate different types of changes.

3 Dataset Description
Our main dataset was constructed from all papers
submitted in 2011 on the arXiv. We first extracted
the textual content from papers that have multiple
versions of tex source files. All mathematical en-
vironments were ignored. Section titles were not
included in the final texts but are used in align-
ment.

In order to align the first version and the fi-
nal version of the same paper, we first did macro
alignment of paper sections based on section titles.
Then, for micro alignment of sentences, we em-
ployed a dynamic programming algorithm similar
to that of Barzilay and Elhadad (2003). Instead of
cosine similarity, we used an idf-weighted longest-
common-subsequence algorithm to define the sim-
ilarity between two sentences, because changes in
word ordering can also be interesting. Formally,
the similarity score between sentence i and sen-
tence j is defined as

Simpi, jq “
Weighted-LCSpSi, Sjq

maxp
ř

wPSi
idfpwq,

ř

wPSj
idfpwqq

,

where Si and Sj refer to sentence i and sentence j.
Since it is likely that a new version adds or deletes
a large sequence of sentences, we did not impose a
skip penalty. We set the mismatch penalty to 0.1.8

In the end, there are 23K papers where the first
version was different from the last version.9 We

8We did not allow cross matching (i.e., iÑ j´1, i´1 Ñ
j), since we thought matching this case as pi ´ 1, iq Ñ j or
i Ñ pj, j ´ 1q can provide context for annotation purposes.
But in the end, we focused on labeling very similar pairs.
This decision had little effect.

9 This differs from the number in Section 1 because arti-
cles may not have the tex source available, or the differences
between versions may be in non-textual content.

categorize sentential revisions into the following
three types:

• Deletion: we cannot find a match in the final
version.

• Typo: all sequences in a pair of matched sen-
tences are typos, where a sequence-level typo
is one where the edit distance between the
matched sequences is less than three.

• Rewrite: matched sentences that are not ty-
pos. This type is the focus of this study.

What kinds of changes are being made? One
might initially think that typo fixes represent a
large proportion of revisions, but this is not cor-
rect, as shown in Figure 1a. Deletions represent a
substantial fraction, especially in the middle sec-
tion of a paper. But it is clear that the majority of
changes are rewrites; thus revisions on the arXiv
indeed provide a great source for potential strength
differences.

Who makes changes? Figure 1b shows that the
Math subarchive makes the largest number of
changes. This is consistent with the mathematics
community’s custom of using the arXiv to get find-
ings out early. In terms of changes per sentence
(Figure 1c), statistics and quantitative studies are
the top subareas.

Further, Figure 2 shows the effect of the number
of authors. It is interesting that both in terms of
sheer number and percentage, single-authored pa-
pers have the most changes. This could be because
a single author enjoys greater freedom and has
stronger motivation to make changes, or because
multiple authors tend to submit a more polished
initial version. This echoes the finding in Posner
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You should mark S2 as Stronger if
‚ (R1) S2 strengthens the degree of some aspect of S1, for example, S1 has the word ”better”,
whereas S2 uses ”best”, or S2 removes the word ”possibly”
‚ (R2) S2 adds more evidence or justification (we don’t count adding details)
‚ (R3) S2 sounds more impressive in some other way: the authors’ work is more important/novel-
/elegant/applicable/etc.
If instead S1 is stronger than S2 according to the reasons above, select Weaker. If the changes
aren’t strengthenings or weakenings according to the reason above, select No Strength Change.
If there are both strengthenings and weakenings, or you find that it is really hard to tell whether the
change is stronger or weaker, then select I can’t tell.

Table 2: Definition of labels in our labeling tasks.
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Figure 2: Error bars represent standard error. (a):
up until 5 authors, a larger number of authors in-
dicates a smaller number of changes. (b): per-
centage is measured over the number of sentences
in the first version; there is an interior minimum
where 2 or 3 authors make the smallest percentage
of sentence changes on a paper.

and Baecker (1992) that the collaborative writing
process differs considerably from individual writ-
ing. Also, more than 25% of the first versions are
changed, which again shows that substantive edits
are being made in these resubmissions.

4 Annotating Strength Differences

In order to study statement strength, reliable
strength-difference labels are needed. In this sec-
tion, we describe how we tried to define strength
differences, compiled labeling instructions, and
gathered labels using Amazon Mechanical Turk.

Label definition and collection procedure. We
focused on matched sentences from abstracts
and introductions to maximize the proportion of
strength differences (as opposed to factual/no
strength changes). We required pairs to have sim-
ilarity score larger than 0.5 in our labeling task to
make pairs more comparable. We also replaced

all math environments with “[MATH]”.10 We ob-
tained 108K pairs that satisfy the above condi-
tions, available at http://chenhaot.com/
pages/statement-strength.html. To
create the pool of pairs for labeling, we randomly
sampled 1000 pairs and then removed pairs that
we thought were processing errors.

We used Amazon Mechanical Turk. It may
initially seem surprising to have annotations of
technical statements not done by domain experts;
we did this intentionally because it is common to
communicate unfamiliar topics to the public in po-
litical and science communication (we comment
on non-expert rationales later). We use the follow-
ing set of labels: Stronger, Weaker, No Strength
Change, I can’t tell. Table 2 gives our definitions.
The instructions included 8 pairs as examples and
10 pairs to label as a training exercise. Partici-
pants were then asked to choose labels and write
mandatory comments for 50 pairs. According to
the comments written by participants, we believe
that they did the labeling in good faith.

Quantitative overview. We collected 9 labels
each for 500 pairs. Among the 500 pairs, Fleiss’
Kappa was 0.242, which indicates fair agreement
(Landis and Koch, 1977). We took a conserva-
tive approach and only considered pairs with an
absolute majority label, i.e., at least 5 of 9 label-
ers chose the same label. There are 386 pairs that
satisfy this requirement (93 weaker, 194 stronger,
99 no change). On this subset of pairs, Fleiss’
Kappa is 0.322, and 74.4% of pairs were strength
changes. Considering all the possible disagree-
ment, this result was acceptable.

Qualitative observations. We were excited
about the labels from these participants: despite

10These decisions were made based on the results and feed-
back that we got from graduate students in an initial labeling.
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ID Matched sentences and comments

1

S1: ... using data from numerics and experiments .
S2: ... using data sets from numerics in the point particle limit and one experimental data set .
(stronger) S2 is more specific in its description which seems stronger.
(weaker) ”one experimental data set” weakens the sentence

2

S1: we also proved that if [MATH] is sufficiently homogeneous then ...
S2: we also proved that if [MATH] is not totally disconnected and sufficiently homogeneous then ...
(stronger) We have more detail/proof in S2
(stronger) the words ”not totally disconnected” made the sentence sound more impressive.

3

S1: we also show in general that vectors of products of jack vertex operators form a basis of symmetric functions .
S2: we also show in general that the images of products of jack vertex operators form a basis of symmetric functions .
(weaker) Vectors sounds more impressive than images
(weaker) sentence one is more specific

4

S1: in the current paper we discover several variants of qd algorithms for quasiseparable matrices .
S2: in the current paper we adapt several variants of qd algorithms to quasiseparable matrices .
(stronger) in S2 Adapt is stronger than just the word discover. adapt implies more of a proactive measure.
(stronger) s2 sounds as if they’re doing something with specifics already, rather than hunting for a way to do it

Table 3: Representative examples of surprising labels, together with selected labeler comments.

the apparent difficulty of the task, we found that
many labels for the 386 pairs were reasonable.
However, in some cases, the labels were counter-
intuitive. Table 3 shows some representative ex-
amples.

First, participants tend to take details as evi-
dence even when these details are not germane to
the statement. For pair 1, while one turker pointed
out the decline in number of experiments, most
turkers simply labeled it as stronger because it was
more specific. “Specific” turned out to be a com-
mon reason used in the comments, even though we
said in the instructions that only additional justifi-
cation and evidence matter. This echoes the find-
ing in Bell and Loftus (1989) that even unrelated
details influenced judgments of guilt.

Second, participants interpret constraints/condi-
tions not in strictly logical ways, seeming to care
little about scope at times. For instance, the ma-
jority labeled pair 2 as “stronger”. But in S2 for
that pair, the result holds for strictly fewer pos-
sible worlds. But it should be said that there
are cases that labelers interpreted logically, e.g.,
“compelling evidence” subsumes “compelling ex-
perimental evidence”.

Both of the above cases share the property that
they seem to be correlated with a tendency to
judge lengthier statements as stronger. Another
interesting case that does not share this character-
istic is that participants can have a different un-
derstanding of domain-specific terms. For pair 3,
the majority thought that “vectors” sounds more
impressive than “images”; for pair 4, the major-
ity considered “adapt” stronger than “discover”.
This issue is common when communicating new
topics to the public not only in science commu-

nication but also in politics and other scenarios. It
may partly explain miscommunications and misin-
terpretations of scientific studies in journalism.11

5 Looking ahead
Our observations regarding the annotation results
raise questions regarding what is a generalizable
way to define strength differences, how to use the
labels that we collected, and how to collect la-
bels in the future. We believe that this corpus of
sentence-level revisions, together with the labels
and comments from participants, can provide in-
sights into better ways to approach this problem
and help further understand strength of statements.

One interesting direction that this enables is a
potentially new kind of learning problem. The
comments indicate features that humans think
salient. Is it possible to automatically learn new
features from the comments?

The ultimate goal of our study is to understand
the effects of statement strength on the public,
which can lead to various applications in public
communication.
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Abstract 

Pedagogical materials frequently contain 
deixis to communicative artifacts such as 
textual structures (e.g., sections and lists), 
discourse entities, and illustrations. By 
relating such artifacts to the prose, deixis plays 
an essential role in structuring the flow of 
information in informative writing. However, 
existing language technologies have largely 
overlooked this mechanism. We examine 
properties of deixis to communicative artifacts 
using a corpus rich in determiner-established 
instances of the phenomenon (e.g., “this 
section”, “these equations”, “those reasons”) 
from Wikibooks, a collection of learning texts. 
We use this corpus in combination with 
WordNet to determine a set of word senses 
that are characteristic of the phenomenon, 
showing its diversity and validating intuitions 
about its qualities. The results motivate further 
research to extract the connections encoded by 
such deixis, with the goals of enhancing tools 
to present pedagogical e-texts to readers and, 
more broadly, improving language 
technologies that rely on deictic phenomena. 

1 Introduction 

Deixis often appears in written language as an 
anaphoric mechanism to refer to communicative 
entities in a document. Such deixis can have a 
variety of referent types. For example, consider 
that idea in Sentence (1), those names in (2), this 
section in (3), and these figures in (4): 

(1) That idea has been challenged by many.  
(2) Those names are Welsh in origin. 
(3) In this section, we cover some early work. 
(4) Quantities in these figures are approximate. 

The kinds of deixis represented in (1) and (2) are 
similar to discourse deixis (Webber, 1991) and 
textual deixis (Lyons, 1977), respectively. 
Sentence (3) contains deixis to a structural 
element of a document (Paraboni and Deemter, 

2006), and (4) contains an example of deixis to 
illustrative items such as figures or examples. 
We collectively term such deictic acts as 
communicative deixis (CD for brevity), 
recognizing their shared characteristics, and we 
name their referents communicative artifacts 
(CAs). Prior studies have focused on narrow 
varieties of CD (such as those identified above), 
leaving unknown their properties when viewed 
together as a whole. Moreover, efforts to 
automatically identify or resolve CD have been 
piecemeal at best. Given the complexity of the 
referents, conventional tools for coreference or 
anaphora resolution are poorly applicable. 

This paper describes analysis of the first 
collection of instances of deixis in English 
targeted to refer to a broad variety of CAs. Texts 
from the website Wikibooks are used, for the 
intuitive density of CD in pedagogical material 
and the potential value of augmenting them with 
interpretive metadata. The diversity of referents 
in this corpus enables new inferences on the 
composition and relative frequencies of CD 
varieties in text. We focus on determiner-
established instances, i.e., anaphoric noun 
phrases that begin with determiners this, that, 
these, or those (e.g., (1)-(4)). This focus has the 
advantage of collecting instances that explicitly 
identify the relevant capacities of their referents 
(e.g., (1) reifies its referent as an “idea”). 

The remainder of this paper is structured as 
follows. Section 2 surveys related work on deixis 
to specific types of CAs. Section 3 describes the 
text source for this study and the procedure used 
to collect and label instances. Section 4 describes 
our use of WordNet to characterize CAs, 
resulting in an ontology of such referents and 
inter-annotator agreement results for labeling of 
artifact types. Finally, Section 5 provides some 
conclusions and directions for future work. 

409



2 Related Work  

The value of CD in pedagogical contexts has 
been established by studies such as those by 
Mayer (2009) and Buisine and Martin (2007). 
Those motivate our work to fill the present lack 
of corpus-based linguistic knowledge of the 
phenomenon. Also, although spatial deixis falls 
beyond the scope of this paper, we acknowledge 
the efforts of others such as Gergle et al. (2013) 
to study its value in collaborative communication. 

Prior works have examined discourse deixis in 
text, though little attention has been given to CD 
as a phenomenon or deixis to other CAs. Seminal 
papers by Webber (1988, 1991) established the 
importance of discourse deixis, although they 
focused upon demonstrative pronouns such as 
“this” or “that”. Many efforts have addressed 
discourse deixis in the context of anaphora; these 
include Poesio and Artstein’s (2008), who 
created a corpus of anaphoric relations inclusive 
of (but not limited to) discourse. Their collection 
included 455 instances of discourse deixis, 
although they noted ambiguity in the set of 
markables. Dipper and Zinsmeister (2012) also 
addressed discourse deixis through anaphora 
resolution and produced a collection of 225 
abstract anaphors out of 643 candidate instances. 

Prior studies of shell nouns revealed capacities 
of referents similar to a subset of those found in 
our work. Such nouns are used anaphorically to 
refer to complex, proposition-like pieces of 
information such as points, assumptions, or acts 
(Schmid, 2000). Kolhatkar et al. (2013) noted the 
pervasiveness of shell nouns in text and their 
tendency to “characterize and label” their 
antecedents. However, such antecedents only 
partly intersect with CAs. The set of shell nouns 
studied by Schmid did not include typical 
document entities such as section, figure, or list. 
Simultaneously, the set included many nouns 
with little or no relevance as CAs, such as fury, 
miracle, and pride.  

The task of identifying CD in text and referent 
CAs bears some similarity to coreference 
resolution. However, coreference resolvers tried 
by the authors (namely CoreNLP (Recasens et al., 
2013), ArkRef (O’Connor and Heilman, 2013) 
and the work of Roth and Bengston (2008)) were 
ineffective at this task. We posit that many CAs 
are not noun phrases, which makes them difficult 
or inappropriate to characterize as referring 
expressions. This limits the effectiveness of 
traditional approaches to coreference resolution 
toward the present problem. 

 
Our results are further distinct from prior work 

by focusing on the communicative capacities of a 
variety of referents represented in documents. 
However, the present focus upon determiner-
established phrases is more exclusive, and our 
results do not include demarcation of referents. 
We posit that the tradeoff is worthwhile, given 
limited prior work on identifying CD and the 
lack of prior efforts to study CAs other than 
discourse entities. 

3 Corpus Creation  

Textbooks from Wikibooks were chosen to 
supply pedagogical text. Among the alternatives, 
this source provided the largest volume of 
material with a license amenable to corpus 
redistribution. Moreover, the collection of 
English language textbooks on the site covers a 
diverse set of topics and contains samples from a 
variety of writers. Below we describe our text 
pre-processing and then explain how candidate 
instances of CD were identified.  

3.1 Source Material 

To simplify collection and processing, 122 
Wikibooks textbooks with printable versions 
were selected for use. Contained in this set are 
textbooks in eleven different subject areas, such 
as computing, humanities, and the sciences. In 
preparation for analysis, the documents were 
POS tagged and parsed by the Stanford CoreNLP 
suite (Socher et al., 2013; Toutanova et al., 
2003). Table 1 presents some statistics on the 
texts in aggregate. They illustrate the substantial 
size of most texts, though a few were freshly 
started or incomplete. Overall, the corpus is 
comparable in size with corpora from efforts 
cited in Section 2, though text genera and sought 
markables vary. 

Next, potential instances of CD were 
identified. Such instances were noun phrases 
beginning with determiners this, that, these, or 
those. We include these and those to collect CD 
to sets of entities, a nuance absent from any 
previous work. 9252 sentences, or 8% of the 
corpus, contained at least one potential instance. 

Statistic Total Min. Median Mean Max. 
Words 2883178 1721 20337 23633 57465 

Sentences 114474 71 832 938 2121 
Candidates  10495 4 85 86 285 

Table 1. Statistics for the 122 selected printable 
Wikibooks and the candidate instances of CD. 
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This collection contained substantial boilerplate 
text, and sentences that appeared verbatim in at 
least ten different books were discarded. This 
filtering produced a set of 7613 candidate 
instances. Table 2 shows the most frequent head 
nouns in candidate instances. Some resemble the 
shell nouns of prior work, but the presence of 
others illustrates the diversity of CD. Diversity 
was expected from pedagogical texts and 
validates Wikibooks as a rich source of CD.   

We conducted a preliminary survey of the 
corpus contents by reading a random selection of 
10% of candidates and judging their statuses as 
instances of CA. Table 3 shows examples of 
candidate instances, categorized by the foci of 
prior studies (cited in the Introduction) of CD 
phenomena. The researchers estimated that 48% 
of candidates were instances of CD, although 
directly labeling large numbers of candidates was 
deemed impractical. Instead, we noted that the 
word sense of the noun in a candidate instance is 
an important (albeit not definitive) indication of 
its CD status. Accordingly, we shift our focus 
from individual candidate instances to words that 
appear in them (i.e., lemmas) and word senses.  

 

3.2 Word Senses 

The noun in an instance of CD has a doubly 
salient role in CA, by providing a cue to the 
intended referent and also by reifying the 
referent. For example, an illustrating referent 
might be referred to as “this example” or “this 
ideal”, with divergent consequences. The noun 
choice semantically identifies the relevant 
capacity of the referent, affecting its message. 

To identify the varieties and characteristics of 
CD in pedagogical text, we examine in aggregate 
the senses of those words that appear in 
candidate phrases in the corpus. WordNet 3.0 
(Fellbaum, 1998) was chosen to provide an 
ontological structure for relevant word senses 
and thus for CAs. First, synsets for the 27 most 
frequent nouns in candidate phrases were 
collected, irrespective of viability for CD. This 
covered 34% of candidate instances and resulted 
in a set of 200 synsets. Their glosses were 
labeled as viable or non-viable for CD by two 
expert annotators, who first worked separately 
and then collaborated to resolve differences in 
their annotations. 

Lemma Freq.  Lemma Freq. 
page 314  function 83 
book 287  chapter 73 
case 249  information 70 

example 126  problem 69 
point 121  value 62 

section 116  type 59 
way 112  process 56 

option 102  feature 56 
time 101  number 54 

message 93  text 54 

Table 2. The 20 most frequent head nouns in 
candidate instances. 

 

For each synset gloss, perform the 
following: 

Imagine instantiating the type 
represented by the gloss. Judge its 
suitability for the following statements. 

(1) [an instantiation of the type] is 
about a topic. 

(2) [an instantiation of the type] is 
intended to communicate an idea. 

(3) [an instantiation of the type] can 
be produced in a document or as a 
document to convey information. 

If at least two of the three statements 
above are coherent, mark 'y' for the 
gloss. Otherwise, mark 'n'. 

Figure 1. Instructions given to annotators. 
 

 
Category Examples 

Structural Many of the resources listed elsewhere in this section have… 
In this chapter, we will show you how to draw… 

Illustrative 
Consider these sentences: [followed by example sentences] 
[following a source code fragment] …the first time the computer sees this 
statement, ‘a’ is zero, so it is less than 10. 

Discourse Utilizing this idea, subunit analogies were invented… 
In this case, you’ve narrowed the topic down to “Badges.” 

Non-CD Devices similar to resistors turn this energy into light, motion… 
What type of things does a person in that career field know? 

 
Table 3. Examples of candidate instances. Bold text denotes the determiner and head noun in each 

instance. Sentences are truncated in the table for brevity. 
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Figure 1 shows the annotation instructions, 
which were designed to address the combined 
range of CAs from prior work. To illustrate its 
application, consider the noun chapter. One gloss 
of chapter is “a subdivision of a written work; 
usually numbered and titled”. This sense clearly 
satisfies the third numbered statement in Figure 
1. Coherency arguments for the first and second 
statements are less definitional, but both 
annotators decided at least one was satisfactory, 
leading to a y mark. Another gloss of chapter is 
“any distinct period in history or in a person’s 
life”. This sense fails to satisfy the second or 
third statement, leading to an n mark. 

4 Results and Discussion 

Resolving differences between the annotators’ 
labels produced a set of 62 synsets whose glosses 
characterized CAs. We refer to the sets of 200 
synsets and 62 synsets as the CCS (candidates 
for communicative senses) and VCS (verified  
communicative senses) sets, respectively. We 
offer the complete results of our annotations 
online 1  to encourage further research on this 
topic. In this section we present inter-annotator 
agreement statistics and describe the composition 
of the VCS set using the structure of WordNet. 

4.1 Inter-Annotator Agreement 

The kappa statistic for category agreement 
between the two annotators was 0.70, with 
matching annotations on 174 of 200 senses. 
Although this metric is an imperfect indicator, 
this value is generally regarded as substantial 
(Viera and Garrett, 2005) albeit with some 
tentativeness (Carletta, 1996). The annotators 
respectively placed 33% and 30% of instances in 
the VCS set, suggesting general agreement on 
the distribution of labels irrespective of specific 
instances. The annotators agreed that some cases 
were difficult to label without context, and a 
combination of sense labeling and in-text 
instance labeling may be fruitful for future work. 

4.2 Representation in WordNet 

We use the structure of WordNet to illustrate the 
properties of CAs that VCS senses represent. To 
do this, the hypernym closure (i.e., the 
sequence(s) of hypernyms from a given synset to 
the root synset) was computed for each VCS 
sense. These “traces” were aggregated into a 

                                                             

1 http://www.cs.cmu.edu/~shomir/wb_cd_study/ 

reproduction of a subset of WordNet’s synsets 
and relations, resulting in a de facto ontology of 
CAs. The same procedure was performed for the 
CCS set to create an illustrative baseline. 

Table 4 shows the structure of the most 
general synsets in the ontologies constructed 
from VCS and CCS traces. Fractions illustrate 
the relative constituent weight of each synset, by 
virtue of the traces that include it. For example, 
65 of the 72 traces for VCS synsets pass through 
abstraction.n.06, and 37 of those 65 traces pass 
through communication.n.02. The total quantities 
of traces for CCS and VCS are greater than their 
respective set sizes because of a small number of 
synsets in those sets with multiple hyponym 
paths to the root. The rightmost column of Table 
4 shows the decimal result of subtracting the 
CCS constituent weight fraction from the VCS 
fraction. Positive numbers indicate that the 
manual labeling of senses magnified the weight 
of a synset over the CCS baseline. 

The constituent weights confirm some 
intuitions but also hold a few surprises. The vast 
majority of CAs are abstractions rather than 
physical entities, and most of the abstractions are 
“something that is communicated by or to or 
between people or groups” (the gloss of 
communication.n.02). Psychological features are 
also a substantial constituency, with traces to 
VCS synsets that represent words such as 
method, plan, and question. Most of the few 
VCS physical entities are communicative 
artifacts in their complete form (e.g., a book or a 
periodical issue). Matter as a physical entity may 
seem out of place in Table 4. The VCS synset 
responsible for its inclusion is page.n.01, which 

Synset CCS VCS Chg. 
0 entity.n.01 
  1 abstraction.n.06 
    2 psych._feature.n.01 
    2 communication.n.02 
    2 attribute.n.02 
    2 group.n.01 
    2 measure.n.02 
    2 relation.n.01 
  1 physical_entity.n.01 
    2 object.n.01 
    2 causal_agent.n.01 
    2 thing.n.12 
    2 process.n.06 
    2 matter.n.03 

217 / 217 
166 / 217 
51 / 166 
47 / 166 
24 / 166 
18 / 166 
15 / 166 
11 / 166 
51 / 217 
38 / 51 
7 / 51 
4 / 51 
1 / 51 
1 / 51 

72 / 72 
65 / 72 
15 / 65 
37 / 65 
2 / 65 
4 / 65 
3 / 65 
4 / 65 
7 / 72 
6 / 7 
0 / 7 
0 / 7 
0 / 7 
1 / 7 

0 
.14 
-.08 
.29 
-.11 
-.05 
-.04 
.00 
-.14 
.11 
-.14 
-.08 
-.02 
.12 

Table 4. Distributions of traces through the first 
two hyponym relations emanating from the root 
synset entity.n.01, for CCS and VCS. Fractions 
indicate the constituent weight of each synset. 

 
 

412



has the gloss “one side of one leaf (of a book or 
magazine or newspaper or letter etc.) or the 
written or pictorial matter it contains.” Both 
annotators believed it merited inclusion in VCS. 

Finally, we observed that many VCS senses 
(58%) were not the first sense for their words, 
indicating different senses appear more often2. 
This likely hinders word sense disambiguation of 
nouns in CD instances: the common baseline of 
first sense tagging is futile in these cases, and 
their extra-topical nature means that appropriate 
CA senses are not implied by the surrounding 
words (Wilson, 2011). This suggests that 
identification of CD instances may require a 
dedicated approach to word sense tagging. 

5 Conclusion 

The results of this study illustrate the 
significance of CD, both for the processing of 
pedagogical texts and for the broader project of 
understanding anaphora. Its pervasiveness and its 
diversity show its potential as a conduit for 
language technologies to enrich documents with 
pragmatic metadata. Our next effort will be to 
identify the referents of CD instances using 
knowledge from the present study of the 
character and distribution of those referents. CAs 
are represented by spans of content in a 
document (e.g., text or figures), and accordingly 
the identification of a CD referent will involve 
the selection of the correct span of content. We 
expect that the word sense of the noun in a CD 
phrase will limit the set of potentially relevant 
CAs, and that both localized features (such as 
paragraph position of a CD instance and the 
expected CA count) and document-level features 
(e.g., proximity of potential referents) will be 
valuable.  
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Abstract
How do journalists mark quoted content
as certain or uncertain, and how do read-
ers interpret these signals? Predicates such
as thinks, claims, and admits offer a range
of options for framing quoted content ac-
cording to the author’s own perceptions of
its credibility. We gather a new dataset
of direct and indirect quotes from Twit-
ter, and obtain annotations of the perceived
certainty of the quoted statements. We
then compare the ability of linguistic and
extra-linguistic features to predict readers’
assessment of the certainty of quoted con-
tent. We see that readers are indeed influ-
enced by such framing devices — and we
find no evidence that they consider other
factors, such as the source, journalist, or
the content itself. In addition, we examine
the impact of specific framing devices on
perceptions of credibility.

1 Introduction

Contemporary journalism is increasingly con-
ducted through social media services like Twit-
ter (Lotan et al., 2011; Hermida et al., 2012). As
events unfold, journalists and political commen-
tators use quotes — often indirect — to convey
potentially uncertain information and claims from
their sources and informants, e.g.,

Figure 1: Indirect quotations in Twitter

A key pragmatic goal of such messages is to
convey the provenance and uncertainty of the

quoted content. In some cases, the author may also
introduce their own perspective (Lin et al., 2006)
through the use of framing (Greene and Resnik,
2009). For instance, consider the use of the word
claims in Figure 1, which conveys the author’s
doubt about the indirectly quoted content.

Detecting and reasoning about the certainty of
propositional content has been identified as a key
task for information extraction, and is now sup-
ported by the FactBank corpus of annotations for
newstext (Saurı́ and Pustejovsky, 2009). However,
less is known about this phenomenon in social
media — a domain whose endemic uncertainty
makes proper treatment of factuality even more
crucial (Morris et al., 2012). Successful automa-
tion of factuality judgments could help to detect
online rumors (Qazvinian et al., 2011), and might
enable new applications, such as the computation
of reliability ratings for ongoing stories.

This paper investigates how linguistic resources
and extra-linguistic factors affect perceptions of
the certainty of quoted information in Twitter. We
present a new dataset of Twitter messages that use
FactBank predicates (e.g., claim, say, insist) to
scope the claims of named entity sources. This
dataset was annotated by Mechanical Turk work-
ers who gave ratings for the factuality of the
scoped claims in each Twitter message. This en-
ables us to build a predictive model of the fac-
tuality annotations, with the goal of determining
the full set of relevant factors, including the pred-
icate, the source, the journalist, and the content
of the claim itself. However, we find that these
extra-linguistic factors do not predict readers’ fac-
tuality judgments, suggesting that the journalist’s
own framing plays a decisive role in the cred-
ibility of the information being conveyed. We
explore the specific linguistic feature that affect
factuality judgments, and compare our findings
with previously-proposed groupings of factuality-
related predicates.
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Figure 2: Count of cue words in our dataset. Each
word is patterned according to its group, as shown
in Figure 3.
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Figure 3: Count of cue groups in our dataset

2 Text data

We gathered a dataset of Twitter messages from
103 professional journalists and bloggers who
work in the field of American Politics.1 Tweets
were gathered using Twitter’s streaming API, ex-
tracting the complete permissible timeline up to
February 23, 2014. A total of 959,754 tweets were
gathered, and most were written in early 2014.

Our interest in this text is specifically in quoted
content — including “indirect” quotes, which may
include paraphrased quotations, as in the examples
in Figure 1. While labeled datasets for such quotes
have been created (O’Keefe et al., 2012; Pareti,
2012), these are not freely available at present. In
any case, the relevance of these datasets to Twitter
text is currently unproven. Therefore, rather than
train a supervised model to detect quotations, we
apply a simple dependency-based heuristic.

• We focus on tweets that contain any member of
a list of source-introducing predicates (we bor-
row the terminology of Pareti (2012) and call
this the CUE). Our complete list — shown in
Table 1 — was selected mainly from the exam-
ples presented by Saurı́ and Pustejovsky (2012),
1We used the website http://muckrack.com.

Report say, report, tell, told, observe, state,
accord, insist, assert, claim, main-
tain, explain, deny

Knowledge learn, admit, discover, forget, forgot
Belief think, thought, predict, suggest,

guess, believe
Doubt doubt, wonder, ask, hope
Perception sense, hear, feel

Table 1: Lemmas of source-introducing predicates
(cues) and groups (Saurı́, 2008).

but with reference also to Saurı́’s (2008) dis-
sertation for cues that are common in Twitter.
The Porter Stemmer is applied to match inflec-
tions, e.g. denies/denied; for irregular cases
not handled by the Porter Stemmer (e.g., for-
get/forgot), we include both forms. We use the
CMU Twitter Part-of-Speech Tagger (Owoputi
et al., 2013) to select only instances in the verb
sense. Figure 2 shows the distribution of the
cues and Figure 3 shows the distribution of the
cue groups. For cues that appear in multiple
groups, we chose the most common group.
• We run the Stanford Dependency parser to

obtain labeled dependencies (De Marneffe et
al., 2006), requiring that the cue has outgoing
edges of the type NSUBJ (noun subject) and
CCOMP (clausal complement). The subtree
headed by the modifier of the CCOMP relation
is considered the claim; the subtree headed by
the modifier of the NSUBJ relation is consid-
ered the source. See Figure 4 for an example.
• We use a combination of regular expressions

and dependency rules to capture expressions
of the type “CLAIM, according to SOURCE.”
Specifically, the PCOMP path from according
is searched for the pattern according to *.
The text that matches the * is the source and the
remaining text other than the source is taken as
the claim.
• Finally, we restrict consideration to tweets in

which the source contains a named entity or
twitter username. This eliminates expressions
of personal belief such as I doubt Obama will
win, as well as anonymous sources such as
Team sources report that Lebron has demanded
a trade to New York. Investigating the factual-
ity judgments formed in response to such tweets
is clearly an important problem for future re-
search, but is outside the scope of this paper.

This heuristic pipeline may miss many relevant
tweets, but since the overall volume is high, we
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Source Cue Claim

I guess, since FBI claims it couldn’t match Tsarnaev, we can assume ...

nsubj

mark

ccomp

nsubj

aux+neg dobj

Figure 4: Dependency parse of an example message, with claim, source, and cue.

Total journalists 443
Total U.S. political journalists 103
Total tweets 959754
Tweets with cues 172706
Tweets with source and claims 40615
Total tweets annotated 1265
Unique sources in annotated dataset 766
Unigrams in annotated dataset 1345

Table 2: Count Statistics of the entire data col-
lected and the annotated dataset

Figure 5: Turk annotation interface

prioritize precision. The resulting dataset is sum-
marized in Table 2.

3 Annotation

We used Amazon Mechanical Turk (AMT) to col-
lect ratings of claims. AMT has been widely used
by the NLP community to collect data (Snow et
al., 2008), with “best practices” defined to help
requesters best design Turk jobs (Callison-Burch
and Dredze, 2010). We followed these guidelines
to perform pilot experiments to test the instruction
set and the quality of responses. Based on the pi-
lot study we designed Human Intelligence Tasks
(HITs) to annotate 1265 claims.

Each HIT contained a batch of ten tweets and
rewarded $0.10 per hit. To ensure quality con-
trol we required the Turkers to have at least 85%
hit approval rating and to reside in the United
States, because the Twitter messages in our dataset
were related to American politics. For each tweet,

we obtained five independent ratings from Turk-
ers satisfying the above qualifications. The rat-
ings were based on a 5-point Likert scale rang-
ing from “[-2] Certainly False” to “[2] Certainly
True” and allowing for “[0] Uncertain”. We also
allowed for “Not Applicable” option to capture
ratings where the Turkers did not have sufficient
knowledge about the statement or if the statement
was not really a claim. Figure 6 shows the set of
instructions provided to the Turkers, and Figure 5
illustrates the annotation interface.2

We excluded tweets for which three or more
Turkers gave a rating of “Not Applicable,” leaving
us with a dataset of 1170 tweets. Within this set,
the average variance per tweet (excluding “Not
Applicable” ratings) was 0.585.

4 Modeling factuality judgments

Having obtained a corpus of factuality ratings, we
now model the factors that drive these ratings.

4.1 Predictive accuracy

First, we attempt to determine the impact of vari-
ous predictive features on rater judgments of fac-
tuality. We consider the following features:
• Cue word: after stemming
• Cue word group: as given in Table 1
• Source: represented by the named entity or

username in the source field (see Figure 4)
• Journalist: represented by their Twitter ID
• Claim: represented by a bag-of-words vector

from the claim field (Figure 4)
These features are used as predictors in a series

of linear ridge regressions, where the dependent
variable is the mean certainty rating. We throw
out tweets that were rated as “not applicable” by a
majority of raters, but otherwise ignore “not appli-
cable” ratings of the remaining tweets. The goal
of these regressions is to determine which fea-
tures are predictive of raters’ factuality judgments.
The ridge regression regularization parameter was
tuned via cross-validation in the training set. We
used the bootstrap to obtain multiple training/test

2The data is available at https://www.github.
com/jacobeisenstein/twitter-certainty.
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Figure 6: User instructions for the annotation task

Features Error

Baseline .442

Cue word .404*
Cue word group .42
Source .447
Journalist .444
Claim .476

Cue word + cue word group .404*
All features .420

Table 3: Linear regression error rates for each fea-
ture group. * indicates improvement over the base-
line at p < .05.

splits (70% training), which were used for signifi-
cance testing.

Table 3 reports mean average error for each fea-
ture group, as well as a baseline that simply re-
ports the mean rating across the training set. Each
accuracy was compared with the baseline using a
paired z-test. Only the cue word features pass this
test at p < .05. The other features do not help,
even in combination with the cue word.

While these findings must be interpreted with
caution, they suggest that readers — at least, Me-
chanical Turk workers — use relatively little inde-
pendent judgment to assess the validity of quoted
text that they encounter on Twitter. Of course,
richer linguistic models, more advanced machine
learning, or experiments with more carefully-
selected readers might offer a different view. But
the results at hand are most compatible with the
conclusion that readers base their assessments of
factuality only on the framing provided by the
journalist who reports the quote.

4.2 Cue words and cue groups

Given the importance of cue words as a sig-
nal for factuality, we want to assess the factual-
ity judgments induced by each cue. A second
question is whether proposed groupings of cue
words into groups cohere with such perceptions.
Saurı́ (2008) describes several classes of source-

introducing predicates, which indicate how the
source relates to the quoted claim. These classes
are summarized in Table 1, along with frequently-
occuring cues from our corpus. We rely on Fact-
Bank to assign the cue words to classes; the only
word not covered by FactBank was sense, which
we placed in predicates of perception.

We performed another set of linear regressions,
again using the mean certainty rating as the de-
pendent variable. In this case, there was no train-
ing/test split, so confidence intervals on the result-
ing parameters are computed using the analytic
closed form. We performed two such regressions:
first using only the individual cues as predictors,
and then using only the cue groups. Results are
shown in Figures 7 and 8; Figure 7 includes only
cues which appear at least ten times, although all
cues were included in the regression.

The cues that give the highest factuality coef-
ficients are learn and admit, which are labeled as
predicates of knowledge. These cues carry a sub-
stantial amount of framing, as they purport to de-
scribe the private mental state of the source. The
word admit often applies to statements that are
perceived as damaging to the source, such as Bill
Gates admits Control-Alt-Delete was a mistake;
since there can be no self-interest behind such
statements, they may be perceived as more likely
to be true.

Several of the cues with the lowest factuality co-
efficients are predicates of belief: suggest, predict
and think. The words suggest, think, and believe
also purport to describe the private mental state of
the source, but their framing function is the op-
posite of the predicates of knowledge: they im-
ply that it is important to mark the claim as the
source’s belief, and not a widely-accepted fact.
For example, Mubarak clearly believes he has the
military leadership’s support.

A third group of interest are the predicates of
report, which have widely-varying certainty coef-
ficients. The cues according, report, say, and tell
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Figure 7: Linear regression coefficients for
frequently-occurring cue words. Each word is pat-
terned according to its group, shown in Figure 8.
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Figure 8: Linear regression coefficients for cue
word group.

are strongly predictive of certainty, but the cues
claim and deny convey uncertainty. Both accord-
ing and report are often used in conjunction with
impersonal and institutional sources, e.g., Cuc-
cinelli trails McAuliffe by 24 points , according to
a new poll. In contrast, insist, claim, and deny im-
ply that there is uncertainty about the quoted state-
ment, e.g., Christie insists that Fort Lee Mayor
was never on my radar. In this case, the fact that
the predicate indicates a report is not enough to
determine the framing: different sorts of reports
carry radically different perceptions of factuality.

5 Related work

Factuality and Veridicality The creation of
FactBank (Saurı́ and Pustejovsky, 2009) has en-
abled recent work on the factuality (or “veridical-
ity”) of event mentions in text. Saurı́ and Puste-
jovsky (2012) propose a two-dimensional factual-
ity annotation scheme, including polarity and cer-
tainty; they then build a classifier to predict an-
notations of factuality from statements in Fact-
Bank. Their work on source-introducing predi-
cates provides part of the foundation for this re-

search, which focuses on quoted statements in so-
cial media text. de Marneffe et al. (2012) conduct
an empirical evaluation of FactBank ratings from
Mechanical Turk workers, finding a high degree of
disagreement between raters. They also construct
a statistical model to predict these ratings. We are
unaware of prior work comparing the contribution
of linguistic and extra-linguistic predictors (e.g.,
source and journalist features) for factuality rat-
ings. This prior work also does not measure the
impact of individual cues and cue classes on as-
sessment of factuality.

Credibility in social media Recent work in the
area of computational social science focuses on
understanding credibility cues on Twitter. Such
studies have found that users express concern over
the credibility of tweets belonging to certain topics
(politics, news, emergency). By manipulating sev-
eral features of a tweet, Morris et al. (2012) found
that in addition to content, users often use addi-
tional markers while assessing the tweet credibil-
ity, such as the user name of the source. The search
for reliable signals of information credibility in so-
cial media has led to the construction of automatic
classifiers to identify credible tweets (Castillo et
al., 2011). However, this prior work has not ex-
plored the linguistic basis of factuality judgments,
which we show to depend on framing devices such
as cue words.

6 Conclusion

Perceptions of the factuality of quoted content are
influenced by the cue words used to introduce
them, while extra-linguistic factors, such as the
source and the author, did not appear to be rele-
vant in our experiments. This result is obtained
from real tweets written by journalists; a natural
counterpart study would be to experimentally ma-
nipulate this framing to see if the same perceptions
apply. Another future direction would be to test
whether the deployment of cue words as framing
devices reflects the ideology of the journalist. We
are also interested to group multiple instances of
the same quote (Leskovec et al., 2009), and exam-
ine how its framing varies across different news
outlets and over time.
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Abstract

Emotion lexicons play a crucial role in sen-
timent analysis and opinion mining. In this
paper, we propose a novel Emotion-aware
LDA (EaLDA) model to build a domain-
specific lexicon for predefined emotions
that include anger, disgust, fear, joy, sad-
ness, surprise. The model uses a mini-
mal set of domain-independent seed words
as prior knowledge to discover a domain-
specific lexicon, learning a fine-grained
emotion lexicon much richer and adap-
tive to a specific domain. By comprehen-
sive experiments, we show that our model
can generate a high-quality fine-grained
domain-specific emotion lexicon.

1 Introduction

Due to the popularity of opinion-rich resources
(e.g., online review sites, forums, blogs and the
microblogging websites), automatic extraction of
opinions, emotions and sentiments in text is of
great significance to obtain useful information for
social and security studies. Various opinion min-
ing applications have been proposed by different
researchers, such as question answering, opinion
mining, sentiment summarization, etc. As the fine-
grained annotated data are expensive to get, the un-
supervised approaches are preferred andmore used
in reality. Usually, a high quality emotion lexi-
con play a significant role when apply the unsuper-
vised approaches for fine-grained emotion classi-
fication.

*Dingju Zhu is the corresponding author

Thus far, most lexicon construction approaches
focus on constructing general-purpose emotion
lexicons (Stone et al., 1966; Hu and Liu, 2004;
Wilson et al., 2005; Dong and Dong, 2006). How-
ever, since a specific word can carry various emo-
tions in different domains, a general-purpose emo-
tion lexicon is less accurate and less informative
than a domain-specific lexicon (Baccianella et al.,
2010). In addition, in previous work, most of the
lexicons label the words on coarse-grained dimen-
sions (positive, negative and neutrality). Such lex-
icons cannot accurately reflect the complexity of
human emotions and sentiments. Lastly, previous
emotion lexicons are mostly annotated based on
many manually constructed resources (e.g., emo-
tion lexicon, parsers, etc.). This limits the applica-
bility of these methods to a broader range of tasks
and languages.

To meet the challenges mentioned above, we
propose a novel EaLDA model to construct a
domain-specific emotion lexicon consisting of six
primary emotions (i.e., anger, disgust, fear, joy,
sadness and surprise). The proposed EaLDA
model extends the standard Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) model by employ-
ing a small set of seeds to guide the model gener-
ating topics. Hence, the topics consequently group
semantically related words into a same emotion
category. The lexicon is thus able to best meet the
user’s specific needs. Our approach is a weakly su-
pervised approach since only some seeds emotion
sentiment words are needed to lanch the process
of lexicon construction. In practical applications,
asking users to provide some seeds is easy as they
usually have a good knowledge what are important
in their domains.
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Extensive experiments are carried out to evalu-
ate our model both qualitatively and quantitatively
using benchmark dataset. The results demonstrate
that our EaLDA model improves the quality and
the coverage of state-of-the-art fine-grained lexi-
con.

2 Related Work

Emotion lexicon plays an important role in opin-
ion mining and sentiment analysis. In order to
build such a lexicon, many researchers have in-
vestigated various kinds of approaches. However,
these methods could roughly be classified into two
categories in terms of the used information. The
first kind of approaches is based on thesaurus that
utilizes synonyms or glosses to determine the sen-
timent orientation of a word. The availability of
the WordNet (Miller, 1995) database is an impor-
tant starting point for many thesaurus-based ap-
proaches (Kamps et al., 2004; Hu and Liu, 2004;
Esuli and Sebastiani, 2006). The second kind of
approaches is based on an idea that emotion words
co-occurring with each others are likely to convey
the same polarity. There are numerous studies in
this field (Turney and Littman, 2003; Wiebe and
Riloff, 2005; Esuli and Sebastiani, 2006; Barbosa
and Feng, 2010).
Most of the previous studies for emotion lexi-

con construction are limited to positive and nega-
tive emotions. Recently, to enhance the increas-
ingly emotional data, a few researches have been
done to identity the fine-grained emotion of words
(Strapparava andMihalcea, 2007; Gill et al., 2008;
Rao et al., 2012). For example, Gill et al. (2008)
utilize computational linguistic tools to identity the
emotions of the words (such as, joy, sadness, ac-
ceptance, disgust, fear, anger, surprise and antici-
pation). While, this approach is mainly for pub-
lic use in general domains. Rao et al. (2012)
propose an method of automatically building the
word-emotion mapping dictionary for social emo-
tion detection. However, the emtion lexicon is not
outputed explicitly in this paper, and the approach
is fully unsupervised which may be difficult to be
adjusted to fit the personalized data set.
Our approach relates most closely to the method

proposed by Xie and Li (2012) for the construction
of lexicon annotated for polarity based on LDA
model. Our approach differs from (Xie and Li,
2012) in two important ways: first, we do not ad-
dress the task of polarity lexicon construction, but

instead we focus on building fine-grained emotion
lexicon. Second, we don’t assume that every word
in documents is subjective, which is impractical in
real world corpus.

3 Algorithm

In this section, we rigorously define the emotion-
aware LDA model and its learning algorithm. We
descrige with the model description, a Gibbs sam-
pling algorithm to infer the model parameters, and
finally how to generate a emotion lexicon based on
the model output.

3.1 Model Description
Like the standard LDA model, EaLDA is a gen-
erative model. To prevent conceptual confusion,
we use a superscript “(e)” to indicate variables re-
lated to emotion topics, and use a superscript “(n)”
to indicate variables of non-emotion topics. We as-
sume that each document has two classes of topics:
M emotion topics (corresponding to M different
emotions) andK non-emotion topics (correspond-
ing to topics that are not associated with any emo-
tion). Each topic is represented by a multinomial
distribution over words. In addition, we assume
that the corpus vocabulary consists of V distinct
words indexed by {1, . . . , V }.
For emotion topics, the EaLDA model draws

the word distribution from a biased Dirichlet prior
Dir(β(e)

k ). The vector β
(e)
k ∈ RV is constructed

with β
(e)
k := γ

(e)
0 (1V − Ωk) + γ

(e)
1 Ωk, for k ∈

{1, . . . ,M}. Ωk,w = 1 if and only if word w is a
seed word for emotion k, otherwiseΩk,w = 0. The
scalars γ

(e)
0 and γ

(e)
1 are hyperparameters of the

model. Intuitively, when γ
(e)
1 > γ

(e)
0 , the biased

prior ensures that the seed words are more proba-
bly drawn from the associated emotion topic.
The generative process of word distributions for

non-emotion topics follows the standard LDA def-
inition with a scalar hyperparameter β(n).
For each word in the document, we decide

whether its topic is an emotion topic or a non-
emotion topic by flipping a coin with head-
tail probability (p(e), p(n)), where (p(e), p(n)) ∼
Dir(α). The emotion (or non-emotion) topic is
sampled according to a multinomial distribution
Mult(θ(e)) (or Mult(θ(n))). Here, both θ(e) and
θ(n) are document-level latent variables. They
are generated from Dirichlet priors Dir(α(e)) and
Dir(α(n)) with α(s) and α(n) being hyperparame-
ters.
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We summarize the generative process of the
EaLDA model as below:

1. for each emotion topic k ∈ {1, . . . , M}, draw
ϕ

(e)
k ∼ Dir(β(e)

k )

2. for each non-emotion topic k ∈ {1, . . . , K},
draw ϕ

(n)
k ∼ Dir(β(n))

3. for each document

(a) draw θ(e) ∼ Dir(α(e))
(b) draw θ(n) ∼ Dir(α(n))
(c) draw (p(e), p(n)) ∼ Dir(α)
(d) for each word in document

i. draw topic class indicator s ∼
Bernoulli(ps)

ii. if s = “emotion topic”
A. draw z(e) ∼ Mult(θ(e))
B. draw w ∼ Mult(ϕ(e)

z(e)) , emit word
w

iii. otherwise
A. draw z(n) ∼ Mult(θ(n))
B. draw w ∼ Mult(ϕ(n)

z(n)) , emit word
w

As an alternative representation, the graphical
model of the the generative process is shown by
Figure 1.
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Figure 1: The Emotion-aware LDA model.

3.2 Inference Algorithm
Assuming hyperparametersα, α(e), α(n), and β(e),
β(n), we develop a collapsed Gibbs sampling algo-
rithm to estimate the latent variables in the EaLDA
model. The algorithm iteratively takes a word w

from a document and sample the topic that this
word belongs to.
Let the whole corpus excluding the current word

be denoted by D. Let n
(e)
i,w (or n

(n)
j,w) indicate

the number of occurrences of topic i(e) (or topic
j(n)) with word w in the whole corpus. Let m

(e)
i

(or m
(n)
j ) indicate the number of occurrence of

topic i(e) (or topic j(n)) in the current document.
All these counts are defined excluding the current
word. Using the definition of the EaLDA model
and the Bayes Rule, we find that the joint density
of these random variables are equal to

Pr
(
p(e), p(n), θ(e), ϕ(e), θ(n), ϕ(n)|D

)
∝ Pr

(
p(e), p(n), θ(e), ϕ(e), θ(n), ϕ(n)

)
× Pr

(
D|p(e), p(n), θ(e), ϕ(e), θ(n), ϕ(n)

)
∝

(
p(e)

)α+(
∑M

i=1 m
(e)
i ) ·

(
p(n)

)α+(
∑K

j=1 m
(n)
j )

·
M∏
i=1

(
θ
(e)
i

)α(e)+m
(e)
i −1 ·

K∏
j=1

(
θ
(n)
j

)α(n)+m
(n)
j −1

·
1∏

i=0

V∏
w=1

(
ϕ

(e)
i,w

)β
(e)
i,w+n

(e)
i,w−1

·
K∏

j=1

V∏
w=1

(
ϕ

(n)
j,w

)β(n)+n
(n)
j,w−1

(1)

According to equation (1), we see that
{p(e), p(n)}, {θ(e)

i , θ
(n)
j }, {ϕ(e)

i,w} and {ϕ(n)
j,w}

are mutually independent sets of random vari-
ables. Each of these random variables satisfies
Dirichlet distribution with a specific set of param-
eters. By the mutual independence, we decompose
the probability of the topic z for the current word
as

Pr
(
z = i(e)|D

)
∝ E[p(e)] · E[θ(e)

i ] · E[ϕ(e)
i,w] (2)

Pr
(
z = j(n)|D

)
∝ E[p(n)] ·E[θ(n)

i ] ·E[ϕ(n)
j,w] (3)

Then, by examining the property of Dirichlet
distribution, we can compute expectations on the
right hand side of equation (2) and equation (3) by

E[p(e)] =
α +

∑1
i=0 m

(e)
i

2α +
∑M

i=1 m
(e)
i +

∑K
j=1 m

(n)
j

(4)

E[p(n)] =
α +

∑K
j=1 m

(n)
j

2α +
∑M

i=1 m
(e)
i +

∑K
j=1 m

(n)
j

(5)
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E[θ(e)
i ] =

α(e) + m
(e)
i

Mα(e) +
∑M

i′=1 m
(e)
i′

(6)

E[θ(n)
j ] =

α(e) + m
(n)
j

Kα(n) +
∑K

j′=1 m
(n)
j′

(7)

E[ϕ(e)
i,w] =

β
(e)
i,w + n

(e)
i,w∑V

w′=1

(
β

(e)
i,w′ + n

(e)
i,w′

) (8)

E[ϕ(n)
j,w] =

β
(n)
j,w + n

(n)
j,w

V β(n) +
∑V

w′=1 n
(n)
j,w′

(9)

Using the above equations, we can sample the
topic z for each word iteratively and estimate all
latent random variables.

3.3 Constructing Emotion Lexicon

Our final step is to construct the domain-specific
emotion lexicon from the estimates ϕ(e) and ϕ(n)

that we obtained from the EaLDA model.
For each word w in the vocabulary, we com-

pare the M + 1 values {ϕ(e)
1,w, . . . , ϕ

(e)
M,w} and

1
K

∑K
i=1 ϕ

(n)
i,w . If ϕ

(e)
i,w is the largest, then the word

w is added to the emotion dictionary for the ith
emotion. Otherwise, 1

K

∑K
i=1 ϕ

(n)
i,w is the largest

among the M + 1 values, which suggests that
the word w is more probably drawn from a non-
emotion topic. Thus, the word is considered neu-
tral and not included in the emotion dictionary.

4 Experiments

In this section, we report empirical evaluations of
our proposed model. Since there is no metric ex-
plicitly measuring the quality of an emotion lexi-
con, we demonstrate the performance of our algo-
rithm in two ways: (1) we perform a case study for
the lexicon generated by our algorithm, and (2) we
compare the results of solving emotion classifica-
tion task using our lexicon against different meth-
ods, and demonstrate the advantage of our lexicon
over other lexicons and other emotion classifica-
tion systems.

4.1 Datasets

We conduct experiments to evaluate the effective-
ness of our model on SemEval-2007 dataset. This
is an gold-standard English dataset used in the 14th
task of the SemEval-2007workshopwhich focuses
on classification of emotions in the text. The at-
tributes include the news headlines, the score of

emotions of anger, disgust, fear, joy, sad and sur-
prise normalizing from 0 to 100. Two data sets
are available: a training data set consisting of 250
records, and a test data set with 1000 records. Fol-
lowing the strategy used in (Strapparava and Mi-
halcea, 2007), the task was carried out in an unsu-
pervised setting for experiments.
In experiments, data preprocessing is performed

on the data set. First, the texts are tokenized with
a natural language toolkit NLTK1. Then, we re-
move non-alphabet characters, numbers, pronoun,
punctuation and stop words from the texts. Finally,
Snowball stemmer2 is applied so as to reduce the
vocabulary size and settle the issue of data spare-
ness.

4.2 Emotion Lexicon Construction

We first settle down the implementation details for
the EaLDAmodel, specifying the hyperparameters
that we choose for the experiment. We set topic
numberM = 6,K = 4, and hyperparametersα =
0.75, α(e) = α(n) = 0.45, β(n) = 0.5. The vector
β(e) is constructed from the seed dictionary using
γ = (0.25, 0.95).
As mentioned, we use a few domain-

independent seed words as prior information
for our model. To be specific, the seed words list
contains 8 to 12 emotional words for each of the
six emotion categories.3 However, it is important
to note that the proposed models are flexible and
do not need to have seeds for every topic.
Example words for each emotion generated

from the SemEval-2007 dataset are reported in Ta-
ble 1. The judgment is to some extent subjective.
What we reported here are based on our judgments
what are appropriate and what are not for each
emotion topic. From Table 1, we observe that the
generated words are informative and coherent. For
example, the words “flu” and “cancer” are seem-
ingly neutral by its surface meaning, actually ex-
pressing fear emotion for SemEval dataset. These
domain-specific words are mostly not included in
any other existing general-purpose emotion lexi-
cons. The experimental results show that our al-
gorithm can successfully construct a fine-grained
domain-specific emotion lexicon for this corpus
that is able to understand the connotation of the
words that may not be obvious without the context.

1http://www.nltk.org
2http://snowball.tartarus.org/
3http://minyang.me/acl2014/seed-words.html
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Anger Disgust Fear Joy Sadness Surprise

attack mar terror good kill surprise
warn sex troop win die first

gunman lebanon flu prize kidnap jump
baghdad game dead victory lose marijuana

immigration gaze die adopt confuse arrest
hit cancer cancer madonna crach sweat

kidnap amish kidnap celebrity leave find
kill imigration force boost cancer attack

alzheim sink iraq ship flu hiv
iraqi force fear star kidnap discover

Table 1: Part of Emotion example words

Algorithm Anger Disgust Fear Joy Sadness Surprise

WordNet-Affect 6.06% - - 22.81% 17.31% 9.92%
SWAT 7.06% - 18.27% 14.91% 17.44% 11.78%
UA 16.03% - 20.06% 4.21% 1.76% 15.00%

UPAR7 3.02% - 4.72% 11.87% 17.44% 15.00%
EaLDA 16.65% 10.52% 26.21% 25.57% 36.85% 20.17%

Table 2: Experiment results for emotion classification in term of F1 score

4.3 Document-level Emotion Classification

We compare the performance between a popular
emotion lexiconWordNet-Affect (Strapparava and
Valitutti, 2004) and our approach for emotion clas-
sification task. We also compare our results with
those obtained by three systems participating in the
SemEval-2007 emotion annotation task: SWAT,
UPAR7 andUA. The emotion classification results
is evaluated for each emotion category separately.
For each emotion category, we evaluates it as a bi-
nary classification problem. In the evaluation of
emotion lexicons, the binary classification is per-
formed in a very simple way. For each emotion
category and each text, we compare the number of
words within this emotion category, and the aver-
age number of words within other emotion cate-
gories, to output a binary prediction of 1 or 0. This
simple approach is chosen to evaluate the robust-
ness of our emotion lexicon.
In the experiments, performance is evaluated in

terms of F1-score. We summarize the results in
Table 2. As an easy observation, the emotion lex-
icon generated by the EaLDA model consistently
and significantly outperforms the WordNet-Affect
emotion lexicon and other three emotion classifi-
cation systems. In particular, we are able to obtain
an overall F1-score of 10.52% for disgust classifi-
cation task which is difficult to work out using pre-

viously proposed methods. The advantage of our
model may come from its capability of exploring
domain-specific emotions which include not only
explicit emotion words, but also implicit ones.

5 Conclusions and Future Work

In this paper, we have presented a novel emotion-
aware LDA model that is able to quickly build a
fine-grained domain-specific emotion lexicon for
languages without many manually constructed re-
sources. The proposed EaLDA model extends the
standard LDAmodel by accepting a set of domain-
independent emotion words as prior knowledge,
and guiding to group semantically related words
into the same emotion category. Thus, it makes
the emotion lexicon containing much richer and
adaptive domain-specific emotion words. Exper-
imental results showed that the emotional lexicons
generated by our algorithm is of high quality, and
can assist emotion classification task.
For future works, we hope to extend the pro-

posed EaLDA model by exploiting discourse
structure knowledge, which has been shown sig-
nificant in identifying the polarity of content-
aware words.
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Abstract

While many lexica annotated with words
polarity are available for sentiment anal-
ysis, very few tackle the harder task of
emotion analysis and are usually quite
limited in coverage. In this paper, we
present a novel approach for extracting
– in a totally automated way – a high-
coverage and high-precision lexicon of
roughly 37 thousand terms annotated with
emotion scores, called DepecheMood.
Our approach exploits in an original way
‘crowd-sourced’ affective annotation im-
plicitly provided by readers of news ar-
ticles from rappler.com. By provid-
ing new state-of-the-art performances in
unsupervised settings for regression and
classification tasks, even using a naı̈ve ap-
proach, our experiments show the benefi-
cial impact of harvesting social media data
for affective lexicon building.

1 Introduction

Sentiment analysis has proved useful in several ap-
plication scenarios, for instance in buzz monitor-
ing – the marketing technique for keeping track
of consumer responses to services and products –
where identifying positive and negative customer
experiences helps to assess product and service de-
mand, tackle crisis management, etc.

On the other hand, the use of finer-grained mod-
els, accounting for the role of individual emotions,
is still in its infancy. The simple division in ‘pos-
itive’ vs. ‘negative’ comments may not suffice, as
in these examples: ‘I’m so miserable, I dropped
my IPhone in the water and now it’s not working
anymore’ (SADNESS) vs. ‘I am very upset, my new
IPhone keeps not working!’ (ANGER). While both
texts express a negative sentiment, the latter, con-
nected to anger, is more relevant for buzz monitor-

ing. Thus, emotion analysis represents a natural
evolution of sentiment analysis.

Many approaches to sentiment analysis make
use of lexical resources – i.e. lists of positive and
negative words – often deployed as baselines or as
features for other methods, usually machine learn-
ing based (Liu and Zhang, 2012). In these lexica,
words are associated with their prior polarity, i.e.
whether such word out of context evokes some-
thing positive or something negative. For exam-
ple, wonderful has a positive connotation – prior
polarity – while horrible has a negative one.

The quest for a high precision and high cov-
erage lexicon, where words are associated with
either sentiment or emotion scores, has several
reasons. First, it is fundamental for tasks such
as affective modification of existing texts, where
words’ polarity together with their score are nec-
essary for creating multiple graded variations of
the original text (Inkpen et al., 2006; Guerini et
al., 2008; Whitehead and Cavedon, 2010).

Second, considering word order makes a differ-
ence in sentiment analysis. This calls for a role of
compositionality, where the score of a sentence is
computed by composing the scores of the words
up in the syntactic tree. Works worth mention-
ing in this connection are: Socher et al. (2013),
which uses recursive neural networks to learn
compositional rules for sentiment analysis, and
(Neviarouskaya et al., 2009; Neviarouskaya et al.,
2011) which exploit hand-coded rules to compose
the emotions expressed by words in a sentence. In
this respect, compositional approaches represent a
new promising trend, since all other approaches,
either using semantic similarity or Bag-of-Words
(BOW) based machine-learning, cannot handle,
for example, cases of texts with same wording
but different words order: “The dangerous killer
escaped one month ago, but recently he was ar-
rested” (RELIEF, HAPPYNESS) vs. “The danger-
ous killer was arrested one month ago, but re-
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cently he escaped” (FEAR). The work in (Wang
and Manning, 2012) partially accounts for this
problem and argues that using word bigram fea-
tures allows improving over BOW based meth-
ods, where words are taken as features in isola-
tion. This way it is possible to capture simple
compositional phenomena like polarity reversing
in “killing cancer”.

Finally, tasks such as copywriting, where evoca-
tive names are a key element to a successful prod-
uct (Ozbal and Strapparava, 2012; Ozbal et al.,
2012) require exhaustive lists of emotion related
words. In such cases no context is given and the
brand name alone, with its perceived prior polar-
ity, is responsible for stating the area of compe-
tition and evoking semantic associations. For ex-
ample Mitsubishi changed the name of one of its
SUVs for the Spanish market, since the original
name Pajero had a very negative prior polarity, as
it means ‘wanker’ in Spanish (Piller, 2003). Evok-
ing emotions is also fundamental for a successful
name: consider names of a perfume like Obses-
sion, or technological products like MacBook air.

In this work, we aim at automatically producing
a high coverage and high precision emotion lex-
icon using distributional semantics, with numer-
ical scores associated with each emotion, like it
has already been done for sentiment analysis. To
this end, we take advantage in an original way of
massive crowd-sourced affective annotations as-
sociated with news articles, obtained by crawl-
ing the rappler.com social news network. We
also evaluate our lexicon by integrating it in unsu-
pervised classification and regression settings for
emotion recognition. Results indicate that the use
of our resource, even if automatically acquired, is
highly beneficial in affective text recognition.

2 Related Work

Within the broad field of sentiment analysis, we
hereby provide a short review of research efforts
put towards building sentiment and emotion lex-
ica, regardless of the approach in which such lists
are then used (machine learning, rule based or
deep learning). A general overview can be found
in (Pang and Lee, 2008; Liu and Zhang, 2012;
Wilson et al., 2004; Paltoglou et al., 2010).

Sentiment Lexica. In recent years there has
been an increasing focus on producing lists of
words (lexica) with prior polarities, to be used in
sentiment analysis. When building such lists, a

trade-off between coverage of the resource and its
precision is to be found.

One of the most well-known resources is Senti-
WordNet (SWN) (Esuli and Sebastiani, 2006; Bac-
cianella et al., 2010), in which each entry is as-
sociated with the numerical scores Pos(s) and
Neg(s), ranging from 0 to 1. These scores –
automatically assigned starting from a bunch of
seed terms – represent the positive and negative
valence (or posterior polarity) of each entry, that
takes the form lemma#pos#sense-number.
Starting from SWN, several prior polarities for
words (SWN-prior), in the form lemma#PoS,
can be computed (e.g. considering only the first-
sense, averaging on all the senses, etc.). These ap-
proaches, detailed in (Guerini et al., 2013), pro-
duce a list of 155k words, where the lower pre-
cision given by the automatic scoring of SWN is
compensated by the high coverage.

Another widely used resource is ANEW
(Bradley and Lang, 1999), providing valence
scores for 1k words, which were manually as-
signed by several annotators. This resource has
a low coverage, but the precision is maximized.
Similarly, the SO-CAL entries (Taboada et al.,
2011) were manually tagged by a small num-
ber of annotators with a multi-class label (from
very negative to very positive). These
ratings were further validated through crowd-
sourcing, ending up with a list of roughly 4k
words. More recently, a resource that repli-
cated ANEW annotation approach using crowd-
sourcing, was released (Warriner et al., 2013), pro-
viding sentiment scores for 14k words. Interest-
ingly, this resource annotates the most frequent
words in English, so, even if lexicon coverage is
still far lower than SWN-prior, it grants a high cov-
erage, with human precision, of language use.

Finally, the General Inquirer lexicon (Stone
et al., 1966) provides a binary classifica-
tion (positive/negative) of 4k sentiment-
bearing words, while the resource in (Wilson et al.,
2005) expands the General Inquirer to 6k words.

Emotion Lexica. Compared to sentiment
lexica, far less emotion lexica have been pro-
duced, and all have lower coverage. One of the
most used resources is WordNetAffect (Strappa-
rava and Valitutti, 2004) which contains manu-
ally assigned affective labels to WordNet synsets
(ANGER, JOY, FEAR, etc.). It currently provides
900 annotated synsets and 1.6k words in the form
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AFRAID AMUSED ANGRY ANNOYED DONT CARE HAPPY INSPIRED SAD
doc 10002 0.75 0.00 0.00 0.00 0.00 0.00 0.25 0.00
doc 10003 0.00 0.50 0.00 0.16 0.17 0.17 0.00 0.00
doc 10004 0.52 0.02 0.03 0.02 0.02 0.06 0.02 0.31
doc 10011 0.40 0.00 0.00 0.20 0.00 0.20 0.20 0.00
doc 10028 0.00 0.30 0.08 0.00 0.00 0.23 0.31 0.08

Table 1: An excerpt of the Document-by-Emotion Matrix - MDE

lemma#PoS#sense, corresponding to roughly
1 thousand lemma#PoS.

AffectNet, part of the SenticNet project (Cam-
bria and Hussain, 2012), contains 10k words (out
of 23k entries) taken from ConceptNet and aligned
with WordNetAffect. This resource extends Word-
NetAffect labels to concepts like ‘have breakfast’.
Fuzzy Affect Lexicon (Subasic and Huettner, 2001)
contains roughly 4k lemma#PoS manually an-
notated by one linguist using 80 emotion labels.
EmoLex (Mohammad and Turney, 2013) contains
almost 10k lemmas annotated with an intensity la-
bel for each emotion using Mechanical Turk. Fi-
nally Affect database is an extension of SentiFul
(Neviarouskaya et al., 2007) and contains 2.5K
words in the form lemma#PoS. The latter is the
only lexicon providing words annotated also with
emotion scores rather than only with labels.

3 Dataset Collection

To build our emotion lexicon we harvested all the
news articles from rappler.com, as of June
3rd 2013: the final dataset consists of 13.5 M
words over 25.3 K documents, with an average
of 530 words per document. For each document,
along with the text we also harvested the informa-
tion displayed by Rappler’s Mood Meter, a small
interface offering the readers the opportunity to
click on the emotion that a given Rappler story
made them feel. The idea behind the Mood Me-
ter is actually “getting people to crowdsource the
mood for the day”1, and returning the percentage
of votes for each emotion label for a given story.
This way, hundreds of thousands votes have been
collected since the launch of the service. In our
novel approach to ‘crowdsourcing’, as compared
to other NLP tasks that rely on tools like Ama-
zon’s Mechanical Turk (Snow et al., 2008), the
subjects are aware of the ‘implicit annotation task’
but they are not paid. From this data, we built a
document-by-emotion matrix MDE , providing the
voting percentages for each document in the eight

1http://nie.mn/QuD17Z

affective dimensions available in Rappler. An ex-
cerpt is provided in Table 1.

The idea of using documents annotated with
emotions is not new (Strapparava and Mihalcea,
2008; Mishne, 2005; Bellegarda, 2010), but these
works had the limitation of providing a single
emotion label per document, rather than a score for
each emotion, and, moreover, the annotation was
performed by the author of the document alone.

Table 2 reports the average percentage of votes
for each emotion on the whole corpus: HAPPI-
NESS has a far higher percentage of votes (at least
three times). There are several possible explana-
tions, out of the scope of the present paper, for this
bias: (i) it is due to cultural characteristics of the
audience (ii) the bias is in the dataset itself, being
formed mainly by ‘positive’ news; (iii) it is a psy-
chological phenomenon due to the fact that peo-
ple tend to express more positive moods on social
networks (Quercia et al., 2011; Vittengl and Holt,
1998; De Choudhury et al., 2012). In any case, the
predominance of happy mood has been found in
other datasets, for instance LiveJournal.com
posts (Strapparava and Mihalcea, 2008). In the
following section we will discuss how we handled
this problem.

EMOTION Votesµ EMOTION Votesµ

AFRAID 0.04 DONT CARE 0.05
AMUSED 0.10 HAPPY 0.32
ANGRY 0.10 INSPIRED 0.10
ANNOYED 0.06 SAD 0.11

Table 2: Average percentages of votes.

4 Emotion Lexicon Creation

As a next step we built a word-by-emotion matrix
starting from MDE using an approach based on
compositional semantics. To do so, we first lem-
matized and PoS tagged all the documents (where
PoS can be adj., nouns, verbs, adv.) and kept
only those lemma#PoS present also in Word-
Net, similar to SWN-prior and WordNetAffect re-
sources, to which we want to align. We then com-
puted the term-by-document matrices using raw
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Word AFRAID AMUSED ANGRY ANNOYED DONT CARE HAPPY INSPIRED SAD
awe#n 0.08 0.12 0.04 0.11 0.07 0.15 0.38 0.05
comical#a 0.02 0.51 0.04 0.05 0.12 0.17 0.03 0.06
crime#n 0.11 0.10 0.23 0.15 0.07 0.09 0.09 0.15
criminal#a 0.12 0.10 0.25 0.14 0.10 0.11 0.07 0.11
dead#a 0.17 0.07 0.17 0.07 0.07 0.05 0.05 0.35
funny#a 0.04 0.29 0.04 0.11 0.16 0.13 0.15 0.08
future#n 0.09 0.12 0.09 0.12 0.13 0.13 0.21 0.10
game#n 0.06 0.15 0.06 0.08 0.15 0.23 0.15 0.12
kill#v 0.23 0.06 0.21 0.07 0.05 0.06 0.05 0.27
rapist#n 0.02 0.07 0.46 0.07 0.08 0.16 0.03 0.12
sad#a 0.06 0.12 0.09 0.14 0.13 0.07 0.15 0.24
warning#n 0.44 0.06 0.09 0.09 0.06 0.06 0.04 0.16

Table 3: An excerpt of the Word-by-Emotion Matrix (MWE) using normalized frequencies (nf ). Emo-
tions weighting more than 20% in a word are highlighted for readability purposes.

frequencies, normalized frequencies, and tf-idf
(MWD,f , MWD,nf and MWD,tfidf respectively),
so to test which of the three weights is better. Af-
ter that, we applied matrix multiplication between
the document-by-emotion and word-by-document
matrices (MDE · MWD) to obtain a (raw) word-
by-emotion matrix MWE . This method allows us
to ‘merge’ words with emotions by summing the
products of the weight of a word with the weight
of the emotions in each document.

Finally, we transformed MWE by first apply-
ing normalization column-wise (so to eliminate
the over representation for happiness as discussed
in Section 3) and then scaling the data row-wise so
to sum up to one. An excerpt of the final Matrix
MWE is presented in Table 3, and it can be in-
terpreted as a list of words with scores that repre-
sent how much weight a given word has in the af-
fective dimensions we consider. So, for example,
awe#n has a predominant weight in INSPIRED

(0.38), comical#a has a predominant weight in
AMUSED (0.51), while kill#v has a predomi-
nant weight in AFRAID, ANGRY and SAD (0.23,
0.21 and 0.27 respectively). This matrix, that we
call DepecheMood2, represents our emotion lex-
icon, it contains 37k entries and is freely available
for research purposes at http://git.io/MqyoIg.

5 Experiments

To evaluate the performance we can obtain with
our lexicon, we use the public dataset provided for
the SemEval 2007 task on ‘Affective Text’ (Strap-
parava and Mihalcea, 2007). The task was focused
on emotion recognition in one thousand news
headlines, both in regression and classification
settings. Headlines typically consist of a few

2In French, ‘depeche’ means dispatch/news.

words and are often written with the intention to
‘provoke’ emotions so to attract the readers’ atten-
tion. An example of headline from the dataset is
the following: “Iraq car bombings kill 22 People,
wound more than 60”. For the regression task
the values provided are: <anger (0.32),
disgust (0.27), fear (0.84), joy
(0.0), sadness (0.95), surprise
(0.20)> while for the classification task the
labels provided are {FEAR, SADNESS}.

This dataset is of interest to us since the ‘com-
positional’ problem is less prominent given the
simplified syntax of news headlines, containing,
for example, fewer adverbs (like negations or in-
tensifiers) than normal sentences (Turchi et al.,
2012). Furthermore, this is to our knowledge the
only dataset available providing numerical scores
for emotions. Finally, this dataset was meant for
unsupervised approaches (just a small trial sample
was provided), so to avoid simple text categoriza-
tion approaches.

As the affective dimensions present in the test
set – based on the six basic emotions model (Ek-
man and Friesen, 1971) – do not exactly match
with the ones provided by Rappler’s Mood Meter,
we first define a mapping between the two when
possible, see Table 4. Then, we proceed to trans-
form the test headlines to the lemma#PoS format.

SemEval Rappler SemEval Rappler
FEAR AFRAID SURPRISE INSPIRED
ANGER ANGRY - ANNOYED
JOY HAPPY - AMUSED
SADNESS SAD - DON’T CARE

Table 4: Mapping of Rappler labels on Se-
meval2007. In bold, cases of suboptimal mapping.

Only one test headline contained exclusively
words not present in DepecheMood, further indi-
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cating the high-coverage nature of our resource. In
Table 5 we report the coverage of some Sentiment
and Emotion Lexica of different sizes on the same
dataset. Similar to Warriner et al. (2013), we ob-
serve that even if the number of entries of our lex-
icon is far lower than SWN-prior approaches, the
fact that we extracted and annotated words from
documents grants a high coverage of language use.

Sentiment
Lexica

ANEW 1k entries 0.10
Warriner et. al 13k entries 0.51
SWN-prior 155k entries 0.67

Emotion
Lexica

WNAffect 1k entries 0.12
DepecheMood 37k entries 0.64

Table 5: Statistics on words coverage per headline.

Since our primary goal is to assess the quality of
DepecheMood we first focus on the regression
task. We do so by using a very naı̈ve approach,
similar to “WordNetAffect presence” discussed in
(Strapparava and Mihalcea, 2008): for each head-
line, we simply compute a value, for any affective
dimension, by averaging the corresponding affec-
tive scores –obtained from DepecheMood- of all
lemma#PoS present in the headline.

In Table 6 we report the results obtained using
the three versions of our resource (Pearson corre-
lation), along with the best performance on each
emotion of other systems3 (bestse); the last col-
umn contains the upper bound of inter-annotator
agreement. For all the 5 emotions we improve
over the best performing systems (DISGUST has
no alignment with our labels and was discarded).

Interestingly, even using a sub-optimal align-
ment for SURPRISE we still manage to outper-
form other systems. Considering the naı̈ve ap-
proach we used, we can reasonably conclude that
the quality and coverage of our resource are the
reason of such results, and that adopting more
complex approaches (i.e. compositionality) can
possibly further improve performances in text-
based emotion recognition.

As a final test, we evaluate our resource in the
classification task. The naı̈ve approach used in
this case consists in mapping the average of the
scores of all words in the headline to a binary de-
cision with fixed threshold at 0.5 for each emotion
(after min-max normalization on all test headlines

3Systems participating in the ‘Affective Text’ task plus the
approaches in (Strapparava and Mihalcea, 2008). Other su-
pervised approaches in the classification task (Mohammad,
2012; Bellegarda, 2010; Chaffar and Inkpen, 2011), report-
ing only overall performances, are not considered.

DepecheMood bestse upper
f nf tfidf

FEAR 0.56 0.54 0.53 0.45 0.64
ANGER 0.36 0.38 0.36 0.32 0.50
SURPRISE* 0.25 0.21 0.24 0.16 0.36
JOY 0.39 0.40 0.39 0.26 0.60
SADNESS 0.48 0.47 0.46 0.41 0.68

Table 6: Regression results – Pearson’s correlation

scores). In Table 7 we report the results (F1 mea-
sure) of our approach along with the best perfor-
mance of other systems on each emotion (bestse),
as in the previous case. For 3 emotions out of
5 we improve over the best performing systems,
for one emotion we obtain the same results, and
for one emotion we do not outperform other sys-
tems. In this case the difference in performances
among the various ways of representing the word-
by-document matrix is more prominent: normal-
ized frequencies (nf ) provide the best results.

DepecheMood bestse

f nf tfidf
FEAR 0.25 0.32 0.31 0.23
ANGER 0.00 0.00 0.00 0.17
SURPRISE* 0.13 0.16 0.09 0.15
JOY 0.22 0.30 0.32 0.32
SADNESS 0.36 0.40 0.38 0.30

Table 7: Classification results – F1 measures

6 Conclusions

We presented DepecheMood, an emotion lexi-
con built in a novel and totally automated way
by harvesting crowd-sourced affective annota-
tion from a social news network. Our experi-
mental results indicate high-coverage and high-
precision of the lexicon, showing significant im-
provements over state-of-the-art unsupervised ap-
proaches even when using the resource with very
naı̈ve classification and regression strategies. We
believe that the wealth of information provided by
social media can be harnessed to build models and
resources for emotion recognition from text, going
a step beyond sentiment analysis. Our future work
will include testing Singular Value Decomposi-
tion on the word-by-document matrices, allowing
to propagate emotions values for a document to
similar words non present in the document itself,
and the study of perceived mood effects on viral-
ity indices and readers engagement by exploiting
tweets, likes, reshares and comments.

This work has been partially supported by the Trento
RISE PerTe project.
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Abstract

In this paper, we present multiple ap-
proaches to improve sentiment analysis
on Twitter data. We first establish a
state-of-the-art baseline with a rich fea-
ture set. Then we build a topic-based sen-
timent mixture model with topic-specific
data in a semi-supervised training frame-
work. The topic information is generated
through topic modeling based on an ef-
ficient implementation of Latent Dirich-
let Allocation (LDA). The proposed sen-
timent model outperforms the top system
in the task of Sentiment Analysis in Twit-
ter in SemEval-2013 in terms of averaged
F scores.

1 Introduction

Social media, such as Twitter and Facebook, has
attracted significant attention in recent years. The
vast amount of data available online provides a
unique opportunity to the people working on nat-
ural language processing (NLP) and related fields.
Sentiment analysis is one of the areas that has
large potential in real-world applications. For ex-
ample, monitoring the trend of sentiment for a spe-
cific company or product mentioned in social me-
dia can be useful in stock prediction and product
marketing.

In this paper, we focus on sentiment analysis of
Twitter data (tweets). It is one of the challenging
tasks in NLP given the length limit on each tweet
(up to 140 characters) and also the informal con-
versation. Many approaches have been proposed
previously to improve sentiment analysis on Twit-
ter data. For example, Nakov et al. (2013) provide
an overview on the systems submitted to one of the
SemEval-2013 tasks, Sentiment Analysis in Twit-
ter. A variety of features have been utilized for

* This work was done when the author was with Thom-
son Reuters.

sentiment classification on tweets. They include
lexical features (e.g. word lexicon), syntactic fea-
tures (e.g. Part-of-Speech), Twitter-specific fea-
tures (e.g. emoticons), etc. However, all of these
features only capture local information in the data
and do not take into account of the global higher-
level information, such as topic information.

Two example tweets are given below, with the
word “offensive” appearing in both of them.

• Im gonna post something that might be offen-
sive to people in Singapore.

• #FSU offensive coordinator Randy Sanders
coached for Tennessee in 1st #BCS title
game.

Generally “offensive” is used as a negative word
(as in the first tweet), but it bears no sentiment in
the second tweet when people are talking about a
football game. Even though some local contextual
features could be helpful to distinguish the two
cases above, they still may not be enough to get the
sentiment on the whole message correct. Also, the
local features often suffer from the sparsity prob-
lem. This motivates us to explore topic informa-
tion explicitly in the task of sentiment analysis on
Twitter data.

There exists some work on applying topic in-
formation in sentiment analysis, such as (Mei et
al., 2007), (Branavan et al., 2008), (Jo and Oh,
2011) and (He et al., 2012). All these work are
significantly different from what we propose in
this work. Also they are conducted in a domain
other than Twitter. Most recently, Si et al. (2013)
propose a continuous Dirichlet Process Mixture
model for Twitter sentiment, for the purpose of
stock prediction. Unfortunately there is no eval-
uation on the accuracy of sentiment classification
alone in that work. Furthermore, no standard train-
ing or test corpus is used, which makes compari-
son with other approaches difficult.

Our work is organized in the following way:
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• We first propose a universal sentiment model
that utilizes various features and resources.
The universal model outperforms the top
system submitted to the SemEval-2013 task
(Mohammad et al., 2013), which was trained
and tested on the same data. The universal
model serves as a strong baseline and also
provides an option for smoothing later.

• We introduce a topic-based mixture model
for Twitter sentiment. The model is inte-
grated in the framework of semi-supervised
training that takes advantage of large amount
of un-annotated Twitter data. Such a mixture
model results in further improvement on the
sentiment classification accuracy.

• We propose a smoothing technique through
interpolation between universal model and
topic-based mixture model.

• We also compare different approaches for
topic modeling, such as cross-domain topic
identification by utilizing data from newswire
domain.

2 Universal Sentiment Classifier

In this section we present a universal topic-
independent sentiment classifier to establish a
state-of-the-art baseline. The sentiment labels are
either positive, neutral or negative.

2.1 SVM Classifier

Support Vector Machine (SVM) is an effec-
tive classifier that can achieve good performance
in high-dimensional feature space. An SVM
model represents the examples as points in space,
mapped so that the examples of the different cate-
gories are separated by a clear margin as wide as
possible. In this work an SVM classifier is trained
with LibSVM (Chang and Lin, 2011), a widely
used toolkit. The linear kernel is found to achieve
higher accuracy than other kernels in our initial ex-
periments. The option of probability estimation in
LibSVM is turned on so that it can produce the
probability of sentiment class c given tweet x at
the classification time, i.e. P (c|x).
2.2 Features

The training and testing data are run through
tweet-specific tokenization, similar to that used in
the CMU Twitter NLP tool (Gimpel et al., 2011).

It is shown in Section 5 that such customized tok-
enization is helpful. Here are the features that we
use for classification:

• Word N-grams: if certain N-gram (unigram,
bigram, trigram or 4-gram) appears in the
tweet, the corresponding feature is set to 1,
otherwise 0. These features are collected
from training data, with a count cutoff to
avoid overtraining.

• Manual lexicons: it has been shown in other
work (Nakov et al., 2013) that lexicons with
positive and negative words are important to
sentiment classification. In this work, we
adopt the lexicon from Bing Liu (Hu and
Liu, 2004) which includes about 2000 posi-
tive words and 4700 negative words. We also
experimented with the popular MPQA (Wil-
son et al., 2005) lexicon but found no extra
improvement on accuracies. A short list of
Twitter-specific positive/negative words are
also added to enhance the lexicons. We gen-
erate two features based on the lexicons: total
number of positive words or negative words
found in each tweet.

• Emoticons: it is known that people use emoti-
cons in social media data to express their
emotions. A set of popular emoticons are col-
lected from the Twitter data we have. Two
features are created to represent the presence
or absence of any positive/negative emoti-
cons.

• Last sentiment word: a “sentiment word” is
any word in the positive/negative lexicons
mentioned above. If the last sentiment word
found in the tweet is positive (or negative),
this feature is set to 1 (or -1). If none of the
words in the tweet is sentiment word, it is set
to 0 by default.

• PMI unigram lexicons: in (Mohammad et
al., 2013) two lexicons were automatically
generated based on pointwise mutual infor-
mation (PMI). One is NRC Hashtag Senti-
ment Lexicon with 54K unigrams, and the
other is Sentiment140 Lexicon with 62K un-
igrams. Each word in the lexicon has an as-
sociated sentiment score. We compute 7 fea-
tures based on each of the two lexicons: (1)
sum of sentiment score; (2) total number of
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positive words (with score s > 1); (3) to-
tal number of negative words (s < −1); (4)
maximal positive score; (5) minimal negative
score; (6) score of the last positive words; (7)
score of the last negative words. Note that for
the second and third features, we ignore those
with sentiment scores between -1 and 1, since
we found that inclusion of those weak subjec-
tive words results in unstable performance.

• PMI bigram lexicon: there are also 316K bi-
grams in the NRC Hashtag Sentiment Lexi-
con. For bigrams, we did not find the sen-
timent scores useful. Instead, we only com-
pute two features based on counts only: total
number of positive bigrams; total number of
negative bigrams.

• Punctuations: if there exists exclamation
mark or question mark in the tweet, the fea-
ture is set to 1, otherwise set to 0.

• Hashtag count: the number of hashtags in
each tweet.

• Negation: we collect a list of negation words,
including some informal words frequently
observed in online conversations, such as
“dunno” (“don’t know”), “nvr” (“never”),
etc. For any sentiment words within a win-
dow following a negation word and not af-
ter punctuations ‘.’, ‘,’, ‘;’, ‘?’, or ‘!’, we re-
verse its sentiment from positive to negative,
or vice versa, before computing the lexicon-
based features mentioned earlier. The win-
dow size was set to 4 in this work.

• Elongated words: the number of words in the
tweet that have letters repeated by at least 3
times in a row, e.g. the word “gooood”.

3 Topic-Based Sentiment Mixture

3.1 Topic Modeling

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is one of the widely adopted generative
models for topic modeling. The fundamental idea
is that a document is a mixture of topics. For each
document there is a multinomial distribution over
topics, and a Dirichlet prior Dir(α) is introduced
on such distribution. For each topic, there is an-
other multinomial distribution over words. One of
the popular algorithms for LDA model parameter

estimation and inference is Gibbs sampling (Grif-
fiths and Steyvers, 2004), a form of Markov Chain
Monte Carlo. We adopt the efficient implementa-
tion of Gibbs sampling as proposed in (Yao et al.,
2009) in this work.

Each tweet is regarded as one document. We
conduct pre-processing by removing stop words
and some of the frequent words found in Twitter
data. Suppose that there are T topics in total in the
training data, i.e. t1, t2, ..., tT . The posterior prob-
ability of each topic given tweet xi is computed as
in Eq. 1:

Pt(tj |xi) =
Cij + αj∑T

k=1Cik + Tαj

(1)

where Cij is the number of times that topic tj is
assigned to some word in tweet xi, usually aver-
aged over multiple iterations of Gibbs sampling.
αj is the j-th dimension of the hyperparameter of
Dirichlet distribution that can be optimized during
model estimation.

3.2 Sentiment Mixture Model

Once we identify the topics for tweets in the train-
ing data, we can split the data into multiple sub-
sets based on topic distributions. For each subset,
a separate sentiment model can be trained. There
are many ways of splitting the data. For example,
K-means clustering can be conducted based on
the similarity between the topic distribution vec-
tors or their transformed versions. In this work,
we assign tweet xi to cluster j if Pt(tj |xi) > τ
or Pt(tj |xi) = maxk Pt(tk|xi). Note that this is
a soft clustering, with some tweets possibily as-
signed to multiple topic-specific clusters. Similar
to the universal model, we train T topic-specific
sentiment models with LibSVM.

During classification on test tweets, we run
topic inference and sentiment classification with
multiple sentiment models. They jointly deter-
mine the final probability of sentiment class c
given tweet xi as the following in a sentiment mix-
ture model:

P (c|xi) =
T∑

j=1

Pm(c|tj , xi)Pt(tj |xi) (2)

where Pm(c|tj , xi) is the probability of sentiment
c from topic-specific sentiment model trained on
topic tj .
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3.3 Smoothing
Additionally, we also experiment with a smooth-
ing technique through linear interpolation between
the universal sentiment model and topic-based
sentiment mixture model.

P (c|xi) = θ × PU (c|xi) + (1− θ)

×
T∑

j=1

Pm(c|tj , xi)Pt(tj |xi) (3)

where θ is the interpolation parameter and
PU (c|xi) is the probability of sentiment c given
tweet xi from the universal sentiment model.

4 Semi-supervised Training

In this section we propose an integrated frame-
work of semi-supervised training that contains
both topic modeling and sentiment classification.
The idea of semi-supervised training is to take
advantage of large amount low-cost un-annotated
data (tweets in this case) to further improve the ac-
curacy of sentiment classification. The algorithm
is as follows:

1. Set training corpus D for sentiment classifi-
cation to be the annotated training data Da;

2. Train a sentiment model with current training
corpus D;

3. Run sentiment classification on the un-
annotated data Du with the current sentiment
model and generate probabilities of sentiment
classes for each tweet, P (c|xi);

4. Perform data selection. For those tweets with
P (c|xi) > p, add them to current training
corpus D. The rest is used to replace the un-
annotated corpus Du;

5. Train a topic model on D, and store the topic
inference model and topic distributions of
each tweet;

6. Cluster data in D based on the topic distribu-
tions from Step 5 and train a separate senti-
ment model for each cluster. Replace current
sentiment model with the new sentiment mix-
ture model;

7. Repeat from Step 3 until finishing a pre-
determined number of iterations or no more
data is added to D in Step 4.

5 Experimental Results

5.1 Data and Evaluation

We conduct experiments on the data from the task
B of Sentiment Analysis in Twitter in SemEval-
2013. The distribution of positive, neutral and
negative data is shown in Table 1. The develop-
ment set is used to tune parameters and features.
The test set is for the blind evaluation.

Set Pos Neu Neg Total
Training 3640 4586 1458 9684
Dev 575 739 340 1654
Test 1572 1640 601 3813

Table 1: Data from SemEval-2013. Pos: positive;
Neu: neutral; Neg: negative.

For semi-supervised training experiments, we
explored two sets of additional data. The first
one contains 2M tweets randomly sampled from
the collection in January and February 2014. The
other contains 74K news documents with 50M
words collected during the first half year of 2013
from online newswire.

For evaluation, we use macro averaged F score
as in (Nakov et al., 2013), i.e. average of the F
scores computed on positive and negative classes
only. Note that this does not make the task a binary
classification problem. Any errors related to neu-
tral class (false positives or false negatives) will
negatively impact the F scores.

5.2 Universal Model

In Table 2, we show the incremental improvement
in adding various features described in Section 2,
measured on the test set. In addition to the fea-
tures, we also find SVM weighting on the training
samples is helpful. Due to the skewness in class
distribution in the training set, it is observed dur-
ing error analysis on the development set that sub-
jective (positive/negative) tweets are more likely
to be classified as neutral tweets. The weights for
positive, neutral and negative samples are set to
be (1, 0.4, 1) based on the results on the develop-
ment set. As shown in Table 2, weighting adds a
2% improvement. With all features combined, the
universal sentiment model achieves 69.7 on aver-
age F score. The F score from the best system in
SemEval-2013 (Mohammad et al., 2013) is also
listed in the last row of Table 2 for a comparison.
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Model Avg. F score
Baseline with word N-grams 55.0
+ tweet tokenization 56.1
+ manual lexicon features 62.4
+ emoticons 62.8
+ last sentiment word 63.7
+ PMI unigram lexicons 64.5
+ hashtag counts 65.0
+ SVM weighting 67.0
+ PMI bigram lexicons 68.2
+ negations 69.0
+ elongated words 69.7
Mohammad et al., 2013 69.0

Table 2: Results on the test set with universal sen-
timent model.

5.3 Topic-Based Mixture Model

For the topic-based mixture model and semi-
supervised training, based on the experiments on
the development set, we set the parameter τ used
in soft clustering to 0.4, the data selection pa-
rameter p to 0.96, and the interpolation parame-
ter for smoothing θ to 0.3. We found no more
noticeable benefits after two iterations of semi-
supervised training. The number of topics is set
to 100.

The results on the test set are shown Table 3,
with the topic information inferred from either
Twitter data (second column) or newswire data
(third column). The first row shows the per-
formance of the universal sentiment model as
a baseline. The second row shows the results
from re-training the universal model by simply
adding tweets selected from two iterations of
semi-supervised training (about 100K). It serves
as another baseline with more training data, for
a fair comparison with the topic-based mixture
modeling that uses the same amount of training
data.

We also conduct an experiment by only consid-
ering the most likely topic for each tweet when
computing the sentiment probabilities. The results
show that the topic-based mixture model outper-
forms both the baseline and the one that considers
the top topics only. Smoothing with the universal
model adds further improvement in addition to the
un-smoothed mixture model. With the topic in-
formation inferred from Twitter data, the F score
is 2 points higher than the baseline without semi-

Model Tweet-topic News-topic
Baseline 69.7 69.7
+ semi-supervised 70.3 70.2
top topic only 70.6 70.4
mixture 71.2 70.8
+ smoothing 71.7 71.1

Table 3: Results of topic-based sentiment mixture
model on SemEval test set.

supervised training and 1.4 higher than the base-
line with semi-supervised data.

As shown in the third column in Table 3, sur-
prisingly, the model with topic information in-
ferred from the newswire data works well on the
Twitter domain. A 1.4 points of improvement can
be obtained compared to the baseline. This pro-
vides an opportunity for cross-domain topic iden-
tification when data from certain domain is more
difficult to obtain than others.

In Table 4, we provide some examples from the
topics identified in tweets as well as the newswire
data. The most frequent words in each topic are
listed in the table. We can clearly see that the top-
ics are about phones, sports, sales and politics, re-
spectively.

Tweet-1 Tweet-2 News-1 News-2
phone game sales party
call great stores government

answer play online election
question team retail minister
service win store political

text tonight retailer prime
texting super business state

Table 4: The most frequent words in example top-
ics from tweets and newswire data.

6 Conclusions

In this paper, we presented multiple approaches
for advanced Twitter sentiment analysis. We es-
tablished a state-of-the-art baseline that utilizes a
variety of features, and built a topic-based sen-
timent mixture model with topic-specific Twitter
data, all integrated in a semi-supervised training
framework. The proposed model outperforms the
top system in SemEval-2013. Further research is
needed to continue to improve the accuracy in this
difficult domain.
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Abstract

In this paper, we address the task of
cross-cultural deception detection. Using
crowdsourcing, we collect three deception
datasets, two in English (one originating
from United States and one from India),
and one in Spanish obtained from speakers
from Mexico. We run comparative experi-
ments to evaluate the accuracies of decep-
tion classifiers built for each culture, and
also to analyze classification differences
within and across cultures. Our results
show that we can leverage cross-cultural
information, either through translation or
equivalent semantic categories, and build
deception classifiers with a performance
ranging between 60-70%.

1 Introduction

The identification of deceptive behavior is a task
that has gained increasing interest from researchers
in computational linguistics. This is mainly moti-
vated by the rapid growth of deception in written
sources, and in particular in Web content, including
product reviews, online dating profiles, and social
networks posts (Ott et al., 2011).

To date, most of the work presented on deception
detection has focused on the identification of deceit
clues within a specific language, where English is
the most commonly studied language. However, a
large portion of the written communication (e.g.,
e-mail, chats, forums, blogs, social networks) oc-
curs not only between speakers of English, but also
between speakers from other cultural backgrounds,
which poses important questions regarding the ap-
plicability of existing deception tools. Issues such
as language, beliefs, and moral values may influ-
ence the way people deceive, and therefore may
have implications on the construction of tools for
deception detection.

In this paper, we explore within- and across-
culture deception detection for three different cul-
tures, namely United States, India, and Mexico.
Through several experiments, we compare the per-
formance of classifiers that are built separately for
each culture, and classifiers that are applied across
cultures, by using unigrams and word categories
that can act as a cross-lingual bridge. Our results
show that we can achieve accuracies in the range of
60-70%, and that we can leverage resources avail-
able in one language to build deception tools for
another language.

2 Related Work

Research to date on automatic deceit detection has
explored a wide range of applications such as the
identification of spam in e-mail communication,
the detection of deceitful opinions in review web-
sites, and the identification of deceptive behavior
in computer-mediated communication including
chats, blogs, forums and online dating sites (Peng
et al., 2011; Toma et al., 2008; Ott et al., 2011;
Toma and Hancock, 2010; Zhou and Shi, 2008).

Techniques used for deception detection fre-
quently include word-based stylometric analysis.
Linguistic clues such as n-grams, count of used
words and sentences, word diversity, and self-
references are also commonly used to identify de-
ception markers. An important resource that has
been used to represent semantic information for the
deception task is the Linguistic Inquiry and Word
Count (LIWC) dictionary (Pennebaker and Francis,
1999). LIWC provides words grouped into seman-
tic categories relevant to psychological processes,
which have been used successfully to perform lin-
guistic profiling of true tellers and liars (Zhou et al.,
2003; Newman et al., 2003; Rubin, 2010). In addi-
tion to this, features derived from syntactic Context
Free Grammar parse trees, and part of speech have
also been found to aid the deceit detection (Feng et
al., 2012; Xu and Zhao, 2012).
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While most of the studies have focused on En-
glish, there is a growing interest in studying decep-
tion for other languages. For instance, (Fornaciari
and Poesio, 2013) identified deception in Italian by
analyzing court cases. The authors explored several
strategies for identifying deceptive clues, such as
utterance length, LIWC features, lemmas and part
of speech patterns. (Almela et al., 2012) studied the
deception detection in Spanish text by using SVM
classifiers and linguistic categories, obtained from
the Spanish version of the LIWC dictionary. A
study on Chinese deception is presented in (Zhang
et al., 2009), where the authors built a deceptive
dataset using Internet news and performed machine
learning experiments using a bag-of-words repre-
sentation to train a classifier able to discriminate
between deceptive and truthful cases.

It is also worth mentioning the work conducted
to analyze cross-cultural differences. (Lewis and
George, 2008) presented a study of deception in
social networks sites and face-to-face communi-
cation, where authors compare deceptive behavior
of Korean and American participants, with a sub-
sequent study also considering the differences be-
tween Spanish and American participants (Lewis
and George, 2009). In general, research findings
suggest a strong relation between deception and
cultural aspects, which are worth exploring with
automatic methods.

3 Datasets

We collect three datasets for three different cul-
tures: United States (English-US), India (English-
India), and Mexico (Spanish-Mexico). Following
(Mihalcea and Strapparava, 2009), we collect short
deceptive and truthful essays for three topics: opin-
ions on Abortion, opinions on Death Penalty, and
feelings about a Best Friend.

For English-US and English-India, we use Ama-
zon Mechanical Turk with a location restriction, so
that all the contributors are from the country of in-
terest (US and India). We collect 100 deceptive and
100 truthful statements for each of the three topics.
To avoid spam, each contribution is manually veri-
fied by one of the authors of this paper.For Spanish-
Mexico, while we initially attempted to collect data
also using Mechanical Turk, we were not able to
receive enough contributions. We therefore cre-
ated a separate web interface to collect data, and
recruited participants through contacts of the pa-
per’s authors. The overall process was significantly
more time consuming than for the other two cul-

tures, and resulted in fewer contributions, namely
39+39 statements for Abortion, 42+42 statements
for Death Penalty, and 94+94 statements for Best
Friend. For all three cultures, the participants first
provided their truthful responses, followed by the
deceptive ones.

Interestingly, for all three cultures, the average
number of words for the deceptive statements (62
words) is significantly smaller than for the truthful
statements (81 words), which may be explained by
the added difficulty of the deceptive process, and
is in line with previous observations about the cues
of deception (DePaulo et al., 2003).

4 Experiments

Through our experiments, we seek answers to the
following questions. First, what is the perfor-
mance for deception classifiers built for different
cultures? Second, can we use information drawn
from one culture to build a deception classifier for
another culture? Finally, what are the psycholin-
guistic classes most strongly associated with de-
ception/truth, and are there commonalities or dif-
ferences among languages?

In all our experiments, we formulate the decep-
tion detection task in a machine learning frame-
work, where we use an SVM classifier to discrimi-
nate between deceptive and truthful statements.1

4.1 What is the performance for deception
classifiers built for different cultures?

We represent the deceptive and truthful statements
using two different sets of features. First we use
unigrams obtained from the statements correspond-
ing to each topic and each culture. To select the
unigrams, we use a threshold of 10, where all the
unigrams with a frequency less than 10 are dropped.
Since previous research suggested that stopwords
can contain linguistic clues for deception, no stop-
word removal is performed.

Experiments are performed using a ten-fold
cross validation evaluation on each dataset.Using
the same unigram features, we also perform cross-
topic classification, so that we can better under-
stand the topic dependence. For this, we train
the SVM classifier on training data consisting of a
merge of two topics (e.g., Abortion + Best Friend)
and test on the third topic (e.g., Death Penalty). The
results for both within- and cross-topic are shown
in the last two columns of Table 1.

1We use the SVM classifier implemented in the Weka
toolkit, with its default settings.
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LIWC Unigrams
Topic Linguistic Psychological Relativity Personal All Within-topic Cross-topic

English-US
Abortion 72.50% 68.75% 44.37% 67.50% 73.03% 63.75% 80.36%
Best Friend 75.98% 68.62% 58.33% 54.41% 73.03% 74.50% 60.78%
Death Penalty 60.36% 54.50% 49.54% 50.45% 58.10% 58.10% 77.23%
Average 69.61% 63.96% 50.75% 57.45% 69.05% 65.45% 72.79%

English-India
Abortion 56.00% 48.50% 46.50% 48.50% 56.00% 46.00% 50.00%
Best Friend 68.18% 68.62% 54.55% 53.18% 71.36% 60.45% 57.23%
Death Penalty 56.00% 52.84% 57.50% 53.50% 63.50% 57.50% 54.00%
Average 60.06% 59.19% 52.84% 51.72% 63.62% 54.65% 53.74%

Spanish-Mexico
Abortion 73.17% 67.07% 48.78% 51.22% 62.20% 52.46% 57.69%
Best Friend 72.04% 74.19% 67.20% 54.30% 75.27% 66.66% 50.53%
Death Penalty 73.17% 67.07% 48.78% 51.22% 62.20% 54.87% 63.41%
Average 72.79% 69.45% 54.92% 52.25% 67.89% 57.99% 57.21%

Table 1: Within-culture classification, using LIWC word classes and unigrams. For LIWC, results are
shown for within-topic experiments, with ten-fold cross validation. For unigrams, both within-topic
(ten-fold cross validation on the same topic) and cross-topic (training on two topics and testing on the
third topic) results are reported.

Second, we use the LIWC lexicon to extract fea-
tures corresponding to several word classes. LIWC
was developed as a resource for psycholinguistic
analysis (Pennebaker and Francis, 1999). The 2001
version of LIWC includes about 2,200 words and
word stems grouped into about 70 classes relevant
to psychological processes (e.g., emotion, cogni-
tion), which in turn are grouped into four broad cat-
egories2 namely: linguistic processes, psychologi-
cal processes, relativity, and personal concerns. A
feature is generated for each of the 70 word classes
by counting the total frequency of the words belong-
ing to that class. We perform separate evaluations
using each of the four broad LIWC categories, as
well as using all the categories together. The re-
sults obtained with the SVM classifier are shown
in Table 1.

Overall, the results show that it is possible to
discriminate between deceptive and truthful cases
using machine learning classifiers, with a perfor-
mance superior to a random baseline which for all
datasets is 50% given an even class distribution.
Considering the unigram results, among the three
cultures considered, the deception discrimination
works best for the English-US dataset, and this is
also the dataset that benefits most from the larger
amount of training data brought by the cross-topic
experiments. In general, the cross-topic evaluations
suggest that there is no high topic dependence in
this task, and that using deception data from differ-

2http://www.liwc.net/descriptiontable1.php

ent topics can lead to results that are comparable
to the within-topic data. Interestingly, among the
three topics considered, the Best Friend topic has
consistently the highest within-topic performance,
which may be explained by the more personal na-
ture of the topic, which can lead to clues that are
useful for the detection of deception (e.g., refer-
ences to the self or personal relationships).

Regarding the LIWC classifiers, the results show
that the use of the LIWC classes can lead to per-
formance that is generally better than the one ob-
tained with the unigram classifiers. The explicit cat-
egorization of words into psycholinguistic classes
seems to be particularly useful for the languages
where the words by themselves did not lead to very
good classification accuracies. Among the four
broad LIWC categories, the linguistic category ap-
pears to lead to the best performance as compared
to the other categories. It is notable that in Spanish,
the linguistic category by itself provides results that
are better than when all the LIWC classes are used,
which may be due to the fact that Spanish has more
explicit lexicalization for clues that may be relevant
to deception (e.g., verb tenses, formality).

4.2 Can we use information drawn from one
culture to build a deception classifier in
another culture?

In the next set of experiments, we explore the de-
tection of deception using training data originating
from a different culture. As with the within-culture
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Topic Linguistic Psychological Relativity Personal All LIWC Unigrams
Training: English-US Test: English-India

Abortion 58.00% 51.00% 48.50% 51.50% 52.25% 57.89%
Best Friend 66.36% 47.27% 48.64% 50.45% 59.54% 51.00%
Death Penalty 54.50% 50.50% 50.00% 48.50% 53.5% 59.00%
Average 59.62% 49.59% 49.05% 50.15% 55.10% 55.96%

Training: English-India Test: English-US
Abortion 71.32% 47.49% 43.38% 45.82% 62.50% 55.51%
Best Friend 59.74% 49.35% 51.94% 49.36% 55.84% 53.20%
Death Penalty 51.47% 44.11% 54.88% 50.98% 39.21% 50.71%
Average 60.87% 46.65% 50.06% 48.72% 52.51% 54.14%

Training: English-US Test: Spanish-Mexico
Abortion 70.51% 46.15% 50.00% 52.56% 53.85% 61.53%
Best Friend 69.35% 52.69% 51.08% 46.77% 67.74% 65.03%
Death Penalty 54.88% 54.88% 53.66% 50.00% 62.19% 59.75%
Average 64.92% 51.24% 51.58% 49.78% 61.26% 62.10%

Training: English-India Test: Spanish-Mexico
Abortion 48.72% 50.00% 47.44% 42.31% 43.58% 55.12 %
Best Friend 68.28% 63.44% 56.45% 54.84% 60.75% 67.20%
Death Penalty 60.98% 53.66% 54.88% 60.98% 59.75% 51.21%
Average 59.32% 55.70% 52.92% 52.71% 54.69% 57.84%

Table 2: Cross-cultural experiments using LIWC categories and unigrams

experiments, we use unigrams and LIWC features.
For consistency across the experiments, given that
the size of the Spanish dataset is different com-
pared to the other two datasets, we always train on
one of the English datasets.

To enable the unigram based experiments, we
translate the two English datasets into Spanish by
using the Bing API for automatic translation.3 As
before, we extract and keep only the unigrams
with frequency greater or equal to 10. The results
obtained in these cross-cultural experiments are
shown in the last column of Table 2.

In a second set of experiments, we use the LIWC
word classes as a bridge between languages. First,
each deceptive or truthful statement is represented
using features based on the LIWC word classes.
Next, since the same word classes are used in both
the English and the Spanish LIWC lexicons, this
LIWC-based representation is independent of lan-
guage, and therefore can be used to perform cross-
cultural experiments. Table 2 shows the results
obtained with each of the four broad LIWC cate-
gories, as well as with all the LIWC word classes.

We also attempted to combine unigrams and
LIWC features. However, in most cases, no im-
provements were noticed with respect to the use
of unigrams or LIWC features alone. We are not
reporting these results due to space limitation.

These cross-cultural evaluations lead to several

3http://http://http://www.bing.com/dev/en-us/dev-center

findings. First, we can use data from a culture
to build deception classifiers for another culture,
with performance figures better than the random
baseline, but weaker than the results obtained with
within-culture data. An important finding is that
LIWC can be effectively used as a bridge for cross-
cultural classification, with results that are com-
parable to the use of unigrams, which suggests
that such specialized lexicons can be used for
cross-cultural or cross-lingual classification. More-
over, using only the linguistic category from LIWC
brings additional improvements, with absolute im-
provements of 2-4% over the use of unigrams. This
is an encouraging result, as it implies that a seman-
tic bridge such as LIWC can be effectively used
to classify deception data in other languages, in-
stead of using the more costly and time consuming
unigram method based on translations.

4.3 What are the psycholinguistic classes
most strongly associated with
deception/truth?

The final question we address is concerned with
the LIWC classes that are dominant in deceptive
and truthful text for different cultures. We use the
method presented in (Mihalcea and Strapparava,
2009), which consists of a metric that measures the
saliency of LIWC classes in deceptive versus truth-
ful data. Following their strategy, we first create a
corpus of deceptive and truthful text using a mix
of all the topics in each culture. We then calculate
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Class Score Sample words Class Score Sample words
English-US

Deceptive Truthful
Metaph 1.77 Die,died,hell,sin,lord Insight 0.68 Accept,believe,understand
Other 1.46 He,her,herself,him I 0.66 I,me,my,myself,
You 1.41 Thou,you Optimism 0.65 accept, hope, top, best
Othref 1.18 He,her,herself,him We 0.55 Our,ourselves,us,we,
Negemo 1.18 Afraid,agony,awful,bad Friends 0.46 Buddies,friend

English-India
Deceptive Truthful

Negate 1.49 Cannot,neither,no,none Past 0.78 Happened,helped,liked,listened
Physical 1.46 Heart,ill,love,loved, I 0.66 I,me,mine,my
Future 1.42 Be,may,might,will Optimism 0.65 Accept,accepts,best,bold,
Other 1.17 He,she, himself,herself We 0.55 Our,ourselves,us,we
Humans 1.08 Adult,baby,children,human Friends 0.46 Buddies,companion,friend,pal

Spanish-Mexico
Deceptive Truthful

Certain 1.47 Jamás(never),siempre(always) Optimism 0.66 Aceptar(accept),animar(cheer)
Humans 1.28 Bebé(baby),persona(person) Self 0.65 Conmigo(me),tengo(have),soy(am)
You 1.26 Eres(are),estas(be),su(his/her) We 0.58 Estamos(are),somos(be),tenemos(have)
Negate 1.25 Jamás(never),tampoco(neither) Friends 0.37 Amigo/amiga(friend),amistad(friendship)
Other 1.22 Es(is),esta(are),otro(other) Past 0.32 Compartimos(share),vivimos(lived)

Table 3: Top ranked LIWC classes for each culture, along with sample words

the dominance for each LIWC class, and rank the
classes in reversed order of their dominance score.
Table 3 shows the most salient classes for each
culture, along with sample words.

This analysis shows some interesting patterns.
There are several classes that are shared among the
cultures. For instance, the deceivers in all cultures
make use of negation, negative emotions, and refer-
ences to others. Second, true tellers use more opti-
mism and friendship words, as well as references to
themselves. These results are in line with previous
research, which showed that LIWC word classes
exhibit similar trends when distinguishing between
deceptive and non-deceptive text (Newman et al.,
2003). Moreover, there are also word classes that
only appear in some of the cultures; for example,
time classes (Past, Future) appear in English-India
and Spanish-Mexico, but not in English-US, which
in turn contains other classes such as Insight and
Metaph.

5 Conclusions

In this paper, we addressed the task of deception
detection within- and across-cultures. Using three
datasets from three different cultures, each cover-
ing three different topics, we conducted several
experiments to evaluate the accuracy of deception
detection when learning from data from the same
culture or from a different culture. In our evalua-
tions, we compared the use of unigrams versus the

use of psycholinguistic word classes.
The main findings from these experiments are:

1) We can build deception classifiers for different
cultures with accuracies ranging between 60-70%,
with better performance obtained when using psy-
cholinguistic word classes as compared to simple
unigrams; 2) The deception classifiers are not sen-
sitive to different topics, with cross-topic classifi-
cation experiments leading to results comparable
to the within-topic experiments; 3) We can use
data originating from one culture to train decep-
tion detection classifiers for another culture; the
use of psycholinguistic classes as a bridge across
languages can be as effective or even more effec-
tive than the use of translated unigrams, with the
added benefit of making the classification process
less costly and less time consuming.

The datasets introduced in this paper are publicly
available from http://nlp.eecs.umich.edu.
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Abstract
Previous research has established sev-
eral methods of online learning for la-
tent Dirichlet allocation (LDA). How-
ever, streaming learning for LDA—
allowing only one pass over the data and
constant storage complexity—is not as
well explored. We use reservoir sam-
pling to reduce the storage complexity
of a previously-studied online algorithm,
namely the particle filter, to constant. We
then show that a simpler particle filter im-
plementation performs just as well, and
that the quality of the initialization dom-
inates other factors of performance.

1 Introduction

We extend a popular model, latent Dirichlet al-
location (LDA), to unbounded streams of docu-
ments. In order for inference to be practical in
this setting it must use constant space asymptoti-
cally and run in pseudo-linear time, perhaps O(n)
or O(n log n).

Canini et al. (2009) presented a method for LDA
inference based on particle filters, where a sam-
ple set of models is updated online with each new
token observed from a stream. In general, these
models should be regularly resampled and rejuve-
nated using Markov Chain Monte Carlo (MCMC)
steps over the history in order to improve the ef-
ficiency of the particle filter (Gilks and Berzuini,
2001). The particle filter of Canini et al. (2009) re-
juvenates over independent draws from the history
by storing all past observations and states. This al-
gorithm thus has linear storage complexity and is
not an online learning algorithm in a strict sense
(Börschinger and Johnson, 2012).

In the current work we propose using reservoir
sampling in the rejuvenation step to reduce the
storage complexity of the particle filter to O(1).
This improvement is practically useful in the
large-data setting and is also scientifically interest-
ing in that it recovers some of the cognitive plau-
sibility which originally motivated Börschinger
and Johnson (2012). However, in experiments on
the dataset studied by Canini et al. (2009), we
show that rejuvenation does not benefit the par-
ticle filter’s performance. Rather, performance
is dominated by the effects of random initializa-
tion (a problem for which we provide a correction
while abiding by the same constraints as Canini et
al. (2009)). This result re-opens the question of
whether rejuvenation is of practical importance in
online learning for static Bayesian models.

2 Latent Dirichlet Allocation

For a sequence of N words collected into doc-
uments of varying length, we denote the j-th
word as wj , and the document it occurs in as di.
LDA (Blei et al., 2003) “explains” the occurrence
of each word by postulating that a document was
generated by repeatedly: (1) sampling a topic z
from θ(d), the document-specific mixture of T top-
ics, and (2) sampling a word w from φ(z), the
probability distribution the z-th topic defines over
the vocabulary.

The goal is to infer θ and φ, under the model:

wi | zi, φ(zi) ∼ Categorical(φ(zi))

φ(z) ∼ Dirichlet(β)

zi | θ(di) ∼ Categorical(θ(di))

θ(d) ∼ Dirichlet(α)
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initialize weights ω(p)
0 = 1/P for p = 1, . . . , P

for i = 1, . . . , N do
for p = 1, . . . , P do

set ω(p)
i = ω

(p)
i−1P(wi | z(p)

i−1,wi−1)

sample z(p)
i w.p. P(z

(p)
i | z(p)

i−1,wi).
if ‖ω‖−2

2 ≤ ESS then
for j ∈ R(i) do

for p = 1, . . . , P do
sample z(p)

j w.p.

P(z
(p)
j | z(p)

i\j ,wi)

set ω(p)
i = 1/P for each particle

Algorithm 1: Particle filtering for LDA.

Computing φ and θ exactly is generally in-
tractable, motivating methods for approximate in-
ference such as variational Bayesian inference
(Blei et al., 2003), expectation propagation (Minka
and Lafferty, 2002), and collapsed Gibbs sampling
(Griffiths and Steyvers, 2004).

A limitation of these techniques is they require
multiple passes over the data to obtain good sam-
ples of φ and θ. This requirement makes them im-
practical when the corpus is too large to fit directly
into memory and in particular when the corpus
grows without bound. This motivates online learn-
ing techniques, including sampling-based meth-
ods (Banerjee and Basu, 2007; Canini et al., 2009)
and stochastic variational inference (Hoffman et
al., 2010; Mimno et al., 2012; Hoffman et al.,
2013). However, where these approaches gener-
ally assume the ability to draw independent sam-
ples from the full dataset, we consider the case
when it is infeasible to access arbitrary elements
from the history. The one existing algorithm that
can be directly applied under this constraint, to
our knowledge, is the streaming variational Bayes
framework (Broderick et al., 2013) in which the
posterior is recursively updated as new data arrives
using a variational approximation.

3 Online LDA Using Particle Filters

Particle filters are a family of sequential Monte
Carlo (SMC) sampling algorithms designed to es-
timate the posterior distribution of a system with
dynamic state (Doucet et al., 2001). A particle fil-
ter approximates the posterior by a weighted sam-
ple of points, or particles, from the state space.
The particle cloud is updated recursively for each
new observation using importance sampling (an
approach called sequential importance sampling).

Canini et al. (2009) apply this approach to LDA
after analytically integrating out φ and θ, obtain-
ing a Rao-Blackwellized particle filter (Doucet et
al., 2000) that estimates the collapsed posterior
P(z | w). In this setting, the P particles are sam-
ples of the topic assignment vector z(p), and they
are propagated forward in state space one token at
a time. In general, the larger P is, the more ac-
curately we approximate the posterior; for small
P , the approximation of the tails of the poste-
rior will be particularly poor (Pitt and Shephard,
1999). However, a larger value of P increases the
runtime and storage requirements of the algorithm.

We now describe the Rao-Blackwellized parti-
cle filter for LDA in detail (pseudocode is given in
Algorithm 1). At the moment token i is observed,
the particles form a discrete approximation of the
posterior up to the (i− 1)-th word:

P(zi−1 | wi−1) ≈
∑

p

ω
(p)
i−1Izi−1(z

(p)
i−1)

where Iz(z′) is the indicator function, evaluating
to 1 if z = z′ and 0 otherwise. Now each par-
ticle p is propagated forward by drawing a topic
z
(p)
i from the conditional posterior distribution

P(z(p)
i | z(p)

i−1,wi) and scaling the particle weight

by P(wi | z(p)
i−1,wi−1). The particle cloud now

approximates the posterior up to the i-th word:

P(zi | wi) ≈
∑

p

ω
(p)
i Izi(z

(p)
i ).

Dropping the superscript (p) for notational conve-
nience, the conditional posterior used in the prop-
agation step is given by

P(zi|zi−1,wi) ∝ P(zi, wi | zi−1,wi−1)

=
n

(wi)
zi,i\i + β

n
(·)
zi,i\i +Wβ

n
(di)
zi,i\i + α

n
(di)
·,i\i + Tα

where n(wi)
zi,i\i is the number of times word wi has

been assigned topic zi so far, n(·)
zi,i\i is the num-

ber of times any word has been assigned topic zi,
n

(di)
zi,i\i is the number of times topic zi has been as-

signed to any word in document di, and n(di)
·,i\i is the

number of words observed in document di. The
particle weights are scaled as

ω
(p)
i

ω
(p)
i−1

∝ P(wi | z(p)
i ,wi)P(z(p)

i | z(p)
i−1)

Q(z(p)
i | z(p)

i−1,wi)

= P(wi | z(p)
i−1,wi−1)
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where Q is the proposal distribution for the parti-
cle state transition; in our case,

Q(z(p)
i | z(p)

i−1,wi) = P(z(p)
i | z(p)

i−1,wi),

minimizing the variance of the importance weights
conditioned on wi and zi−1 (Doucet et al., 2000).

Over time the particle weights tend to diverge.
To combat this inefficiency, after every state tran-
sition we estimate the effective sample size (ESS)
of the particle weights as ‖ωi‖−2

2 (Liu and Chen,
1998) and resample the particles when that esti-
mate drops below a prespecified threshold. Sev-
eral resampling strategies have been proposed
(Doucet et al., 2000); we perform multinomial
resampling as in Pitt and Shephard (1999) and
Ahmed et al. (2011), treating the weights as un-
normalized probability masses on the particles.

After resampling we are likely to have several
copies of the same particle, yielding a degenerate
approximation to the posterior. To reintroduce di-
versity to the particle cloud we take MCMC steps
over a sequence of states from the history (Doucet
et al., 2000; Gilks and Berzuini, 2001). We call the
indices of these states the rejuvenation sequence,
denoted R(i) (Canini et al., 2009). The transition
probability for a state j ∈ R(i) is given by

P(zj | zN\j ,wN ) ∝
n

(wj)

zj ,N\j + β

n
(·)
zj ,N\j +Wβ

n
(dj)

zj ,N\j + α

n
(dj)

·,N\j + Tα

where subscript N\j denotes counts up to token
N , excluding those for token j.

The rejuvenation sequence can be chosen by
the practitioner. Choosing a long sequence (large
|R(i)|) may result in a more accurate posterior ap-
proximation but also increases runtime and stor-
age requirements. The tokens inR(i) may be cho-
sen uniformly at random from the history or under
a biased scheme that favors recent observations.
The particle filter studied empirically by Canini et
al. (2009) stored the entire history, incurring lin-
ear storage complexity in the size of the stream.
Ahmed et al. (2011) instead sampled ten docu-
ments from the most recent 1000, achieving con-
stant storage complexity at the cost of a recency
bias. If we want to fit a model to a long non-
i.i.d. stream, we require an unbiased rejuvenation
sequence as well as sub-linear storage complexity.

4 Reservoir Sampling

Reservoir sampling is a widely-used family of al-
gorithms for choosing an array (“reservoir”) of k

items. The most common example, presented in
Vitter (1985) as Algorithm R, chooses k elements
of a stream such that each possible subset of k el-
ements is equiprobable. This effects sampling k
items uniformly without replacement, using run-
timeO(n) (constant per update) and storageO(k).

Initialize k-element array R ;
Stream S ;
for i = 1, . . . , k do

R[i]← S[i] ;
for i = k + 1, . . . , length(S) do

j ← random(1, i);
if j ≤ k then

R[j]← S[i] ;

Algorithm 2: Algorithm R for reservoir sampling

To ensure constant space over an unbounded
stream, we draw the rejuvenation sequence R(i)
uniformly from a reservoir. As each token of the
training data is ingested by the particle filter, we
decide to insert that token into the reservoir, or not,
independent of the other tokens in the current doc-
ument. Thus, at the end of step i of the particle fil-
ter, each of the i tokens seen so far in the training
sequence has an equal probability of being in the
reservoir, hence being selected for rejuvenation.

5 Experiments

We evaluate our particle filter on three datasets
studied in Canini et al. (2009): diff3, rel3,
and sim3. Each of these datasets is a collection
of posts under three categories from the 20 News-
groups dataset.1 We use a 60% training/40% test-
ing split of this data that is available online.2

We preprocess the data by splitting each line
on non-alphabet characters, converting the result-
ing tokens to lower-case, and filtering out any to-
kens that appear in a list of common English stop
words. In addition, we remove the header of ev-
ery file and filter every line that does not contain
a non-trailing space (which removes embedded
ASCII-encoded attachments). Finally, we shuffle
the order of the documents. After these steps, we
compute the vocabulary for each dataset as the set
of all non-singleton types in the training data aug-
mented with a special out-of-vocabulary symbol.

1diff3: {rec.sport.baseball, sci.space,
alt.atheism}; rel3: talk.politics.{misc,
guns, mideast}; and sim3: comp.{graphics,
os.ms-windows.misc, windows.x}.

2http://qwone.com/˜jason/20Newsgroups/
20news-bydate.tar.gz
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Figure 1: Fixed initialization with different reservoir sizes.

During training we report the out-of-sample
NMI, calculated by holding the word proportions
φ fixed, running five sweeps of collapsed Gibbs
sampling on the test set, and computing the topic
for each document as the topic assigned to the
most tokens in that document. Two Gibbs sweeps
have been shown to yield good performance in
practice (Yao et al., 2009); we increase the num-
ber of sweeps to five after inspecting the stability
on our dataset. The variance of the particle filter is
often large, so for each experiment we perform 30
runs and plot the mean NMI inside bands spanning
one sample standard deviation in either direction.

Fixed Initialization. Our first set of experi-
ments has a similar parameterization3 to the exper-
iments of Canini et al. (2009) except we draw the
rejuvenation sequence from a reservoir. We initial-
ize the particle filter with 200 Gibbs sweeps on the
first 10% of each dataset. Then, for each dataset,
for rejuvenation disabled, rejuvenation based on
a reservoir of size 1000, and rejuvenation based
on the entire history (in turn), we perform 30 runs
of the particle filter from that fixed initial model.
Our results (Figure 1) resemble those of Canini et
al. (2009); we believe the discrepancies are mostly
attributable to differences in preprocessing.

In these experiments, the initial model was not
chosen arbitrarily. Rather, an initial model that
yielded out-of-sample NMI close to the initial out-
of-sample NMI scores reported in the previous

3T = 3, α = β = 0.1, P = 100, ess = 20, |R(i)| = 30

Figure 2: Variable initialization with different initialization
sample sizes.

study was chosen from a set of 100 candidates.

Variable Initialization. We now investigate the
significance of the initial model selection step used
in the previous experiments. We run a new set
of experiments in which the reservoir size is held
fixed at 1000 and the size of the initialization sam-
ple is varied. Specifically, we vary the size of
the initialization sample, in documents, between
zero (corresponding to no Gibbs initialization), 30,
100, and 300, and also perform a run of batch
Gibbs sampling (with no particle filter). In each
case, 2000 Gibbs sweeps are performed. In these
experiments, the initial models are not held fixed;
for each of the 30 runs for each dataset, the initial
model was generated by a different Gibbs chain.
The results for these experiments, depicted in Fig-
ure 2, indicate that the size of the initialization
sample improves mean NMI and reduces variance,
and that the variance of the particle filter itself is
dominated by the variance of the initial model.

Tuned Initialization. We observed previously
that variance in the Gibbs initialization of the
model contributes significantly to variance of the
overall algorithm, as measured by NMI. With
this in mind, we consider whether we can reduce
variance in the initialization by tuning the initial
model. Thus we perform a set of experiments in
which we perform Gibbs initialization 20 times
on the initialization set, setting the particle filter’s
initial model to the model out of these 20 with
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Figure 3: Variable initialization with tuning.

the highest in-sample NMI. This procedure is per-
formed independently for each run of the particle
filter. We may not always have labeled data for
initialization, so we also consider a variation in
which Gibbs initialization is performed 20 times
on the first 80% of the initialization sample, held-
out perplexity (per word) is estimated on the re-
maining 20%, using a first-moment particle learn-
ing approximation (Scott and Baldridge, 2013),
and the particle filter is started from the model
out of these 20 with the lowest held-out perplex-
ity. The results, shown in Figure 3, show that we
can ameliorate the variance due to initialization by
tuning the initial model to NMI or perplexity.

6 Discussion
Motivated by a desire for cognitive plausibility,
Börschinger and Johnson (2011) used a particle
filter to learn Bayesian word segmentation mod-
els, following the work of Canini et al. (2009).
They later showed that rejuvenation improved per-
formance (Börschinger and Johnson, 2012), but
this impaired cognitive plausibility by necessitat-
ing storage of all previous states and observations.
We attempted to correct this by drawing the re-
juvenation sequence from a reservoir, but our re-
sults indicate that the particle filter for LDA on our
dataset is highly sensitive to initialization and not
influenced by rejuvenation.

In the experiments of Börschinger and Johnson
(2012), the particle cloud appears to be resampled
once per utterance with a large rejuvenation se-

quence;4 each particle takes many more rejuvena-
tion MCMC steps than new state transitions and
thus resembles a batch MCMC sampler. In our ex-
periments resampling is done on the order of once
per document, leading to less than one rejuvena-
tion step per transition. Future work should care-
fully note this ratio: sampling history much more
often than new states improves performance but
contradicts the intuition behind particle filters.

We have also shown that tuning the initial model
using in-sample NMI or held-out perplexity can
improve mean NMI and reduce variance. Perplex-
ity (or likelihood) is often used to estimate model
performance in LDA (Blei et al., 2003; Griffiths
and Steyvers, 2004; Wallach et al., 2009; Hoff-
man et al., 2010), and does not compare the in-
ferred model against gold-standard labels, yet it
appears to be a good proxy for NMI in our experi-
ment. Thus, if initialization continues to be crucial
to performance, at least we may have the flexibil-
ity of initializing without gold-standard labels.

We have focused on NMI as our evaluation met-
ric for comparison with Canini et al. (2009). How-
ever, evaluation of topic models is a subject of con-
siderable debate (Wallach et al., 2009; Yao et al.,
2009; Newman et al., 2010; Mimno et al., 2011)
and it may be informative to investigate the effects
of initialization and rejuvenation using other met-
rics such as perplexity or semantic coherence.

7 Conclusion
We have proposed reservoir sampling for reduc-
ing the storage complexity of a particle filter from
linear to constant. This work was motivated as
an expected improvement on the model of Canini
et al. (2009). However, in the process of estab-
lishing an empirical baseline we discovered that
rejuvenation does not play a significant role in
the experiments of Canini et al. (2009). More-
over, we found that performance of the particle
filter was strongly affected by the random initial-
ization of the model, and suggested a simple ap-
proach to reduce the variability therein without
using additional data. In conclusion, it is now
an open question whether—and if so, under what
assumptions—rejuvenation benefits particle filters
for LDA and similar static Bayesian models.

Acknowledgments We thank Frank Ferraro,
Keith Levin, and Mark Dredze for discussions.

4The ESS threshold isP ; the rejuvenation sequence is 100
or 1600 utterances, almost one sixth of the training data.
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Abstract

Image description is a new natural lan-
guage generation task, where the aim is to
generate a human-like description of an im-
age. The evaluation of computer-generated
text is a notoriously difficult problem, how-
ever, the quality of image descriptions has
typically been measured using unigram
BLEU and human judgements. The focus
of this paper is to determine the correlation
of automatic measures with human judge-
ments for this task. We estimate the correla-
tion of unigram and Smoothed BLEU, TER,
ROUGE-SU4, and Meteor against human
judgements on two data sets. The main
finding is that unigram BLEU has a weak
correlation, and Meteor has the strongest
correlation with human judgements.

1 Introduction

Recent advances in computer vision and natural
language processing have led to an upsurge of re-
search on tasks involving both vision and language.
State of the art visual detectors have made it possi-
ble to hypothesise what is in an image (Guillaumin
et al., 2009; Felzenszwalb et al., 2010), paving
the way for automatic image description systems.
The aim of such systems is to extract and reason
about visual aspects of images to generate a human-
like description. An example of the type of image
and gold-standard descriptions available can be
seen in Figure 1. Recent approaches to this task
have been based on slot-filling (Yang et al., 2011;
Elliott and Keller, 2013), combining web-scale n-
grams (Li et al., 2011), syntactic tree substitution
(Mitchell et al., 2012), and description-by-retrieval
(Farhadi et al., 2010; Ordonez et al., 2011; Hodosh
et al., 2013). Image description has been compared
to translating an image into text (Li et al., 2011;
Kulkarni et al., 2011) or summarising an image

1. An older woman with a small dog in the snow.

2. A woman and a cat are outside in the snow.

3. A woman in a brown vest is walking on the
snow with an animal.

4. A woman with a red scarf covering her head
walks with her cat on snow-covered ground.

5. Heavy set woman in snow with a cat.

Figure 1: An image from the Flickr8K data set and
five human-written descriptions. These descrip-
tions vary in the adjectives or prepositional phrases
that describe the woman (1, 3, 4, 5), incorrect or un-
certain identification of the cat (1, 3), and include
a sentence without a verb (5).

(Yang et al., 2011), resulting in the adoption of the
evaluation measures from those communities.

In this paper we estimate the correlation of hu-
man judgements with five automatic evaluation
measures on two image description data sets. Our
work extends previous studies of evaluation mea-
sures for image description (Hodosh et al., 2013),
which focused on unigram-based measures and re-
ported agreement scores such as Cohen’s κ rather
than correlations. The main finding of our analysis
is that TER and unigram BLEU are weakly corre-
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lated against human judgements, ROUGE-SU4 and
Smoothed BLEU are moderately correlated, and the
strongest correlation is found with Meteor.

2 Methodology

We estimate Spearman’s ρ for five different auto-
matic evaluation measures against human judge-
ments for the automatic image description task.
Spearman’s ρ is a non-parametric correlation co-
efficient that restricts the ability of outlier data
points to skew the co-efficient value. The automatic
measures are calculated on the sentence level and
correlated against human judgements of semantic
correctness.

2.1 Data

We perform the correlation analysis on the Flickr8K
data set of Hodosh et al. (2013), and the data set of
Elliott and Keller (2013).

The test data of the Flickr8K data set contains
1,000 images paired with five reference descrip-
tions. The images were retrieved from Flickr, the
reference descriptions were collected from Me-
chanical Turk, and the human judgements were
collected from expert annotators as follows: each
image in the test data was paired with the highest
scoring sentence(s) retrieved from all possible test
sentences by the TRI5SEM model in Hodosh et al.
(2013). Each image–description pairing in the test
data was judged for semantic correctness by three
expert human judges on a scale of 1–4. We calcu-
late automatic measures for each image–retrieved
sentence pair against the five reference descriptions
for the original image.

The test data of Elliott and Keller (2013) con-
tains 101 images paired with three reference de-
scriptions. The images were taken from the PAS-
CAL VOC Action Recognition Task, the reference
descriptions were collected from Mechanical Turk,
and the judgements were also collected from Me-
chanical Turk. Elliott and Keller (2013) gener-
ated two-sentence descriptions for each of the test
images using four variants of a slot-filling model,
and collected five human judgements of the se-
mantic correctness and grammatical correctness of
the description on a scale of 1–5 for each image–
description pair, resulting in a total of 2,042 human
judgement–description pairings. In this analysis,
we use only the first sentence of the description,
which describes the event depicted in the image.

2.2 Automatic Evaluation Measures

BLEU measures the effective overlap between a
reference sentence X and a candidate sentence Y .
It is defined as the geometric mean of the effective
n-gram precision scores, multiplied by the brevity
penalty factor BP to penalise short translations. pn

measures the effective overlap by calculating the
proportion of the maximum number of n-grams
co-occurring between a candidate and a reference
and the total number of n-grams in the candidate
text. More formally,

BLEU = BP · exp

(
N

∑
n=1

wn log pn

)

pn =
∑

c∈cand
∑

ngram∈c
countclip(ngram)

∑
c∈cand

∑
ngram∈c

count(ngram)

BP =
{

1 if c> r
e(1−r/c) if c≤ r

Unigram BLEU without a brevity penalty has been
reported by Kulkarni et al. (2011), Li et al. (2011),
Ordonez et al. (2011), and Kuznetsova et al. (2012);
to the best of our knowledge, the only image de-
scription work to use higher-order n-grams with
BLEU is Elliott and Keller (2013). In this paper we
use the smoothed BLEU implementation of Clark et
al. (2011) to perform a sentence-level analysis, set-
ting n = 1 and no brevity penalty to get the unigram
BLEU measure, or n = 4 with the brevity penalty
to get the Smoothed BLEU measure. We note that a
higher BLEU score is better.

ROUGE measures the longest common subse-
quence of tokens between a candidate Y and refer-
ence X . There is also a variant that measures the co-
occurrence of pairs of tokens in both the candidate
and reference (a skip-bigram): ROUGE-SU*. The
skip-bigram calculation is parameterised with dskip,
the maximum number of tokens between the words
in the skip-bigram. Setting dskip to 0 is equivalent to
bigram overlap and setting dskip to ∞ means tokens
can be any distance apart. If α = |SKIP2(X ,Y )|
is the number of matching skip-bigrams between
the reference and the candidate, then skip-bigram
ROUGE is formally defined as:

RSKIP2 = α /
(

α
2

)
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ROUGE has been used by only Yang et al. (2011)
to measure the quality of generated descriptions,
using a variant they describe as ROUGE-1. We set
dskip = 4 and award partial credit for unigram only
matches, otherwise known as ROUGE-SU4. We use
ROUGE v.1.5.5 for the analysis, and configure the
evaluation script to return the result for the average
score for matching between the candidate and the
references. A higher ROUGE score is better.

TER measures the number of modifications a hu-
man would need to make to transform a candidate
Y into a reference X . The modifications available
are insertion, deletion, substitute a single word, and
shift a word an arbitrary distance. TER is expressed
as the percentage of the sentence that needs to be
changed, and can be greater than 100 if the candi-
date is longer than the reference. More formally,

TER =
|edits|

|reference tokens|
TER has not yet been used to evaluate image de-
scription models. We use v.0.8.0 of the TER evalu-
ation tool, and a lower TER is better.

Meteor is the harmonic mean of unigram preci-
sion and recall that allows for exact, synonym, and
paraphrase matchings between candidates and ref-
erences. It is calculated by generating an alignment
between the tokens in the candidate and reference
sentences, with the aim of a 1:1 alignment between
tokens and minimising the number of chunks ch
of contiguous and identically ordered tokens in the
sentence pair. The alignment is based on exact to-
ken matching, followed by Wordnet synonyms, and
then stemmed tokens. We can calculate precision,
recall, and F-measure, where m is the number of
aligned unigrams between candidate and reference.
Meteor is defined as:

M = (1−Pen) ·Fmean

Pen = γ
(

ch
m

)θ

Fmean =
PR

αP+(1−α)R

P =
|m|

|unigrams in candidate|
R =

|m|
|unigrams in reference|

We calculated the Meteor scores using release 1.4.0
with the package-provided free parameter settings
of 0.85, 0.2, 0.6, and 0.75 for the matching compo-
nents. Meteor has not yet been reported to evaluate

Flickr 8K
co-efficient
n = 17,466

E&K (2013)
co-efficient
n = 2,040

METEOR 0.524 0.233

ROUGE SU-4 0.435 0.188

Smoothed BLEU 0.429 0.177

Unigram BLEU 0.345 0.097

TER -0.279 -0.044

Table 1: Spearman’s correlation co-efficient of au-
tomatic evaluation measures against human judge-
ments. All correlations are significant at p < 0.001.

the performance of different models on the image
description task; a higher Meteor score is better.

2.3 Protocol
We performed the correlation analysis as follows.
The sentence-level evaluation measures were cal-
culated for each image–description–reference tu-
ple. We collected the BLEU, TER, and Meteor
scores using MultEval (Clark et al., 2011), and the
ROUGE-SU4 scores using the RELEASE-1.5.5.pl
script. The evaluation measure scores were then
compared with the human judgements using Spear-
man’s correlation estimated at the sentence-level.

3 Results

Table 1 shows the correlation co-efficients between
automatic measures and human judgements and
Figures 2(a) and (b) show the distribution of scores
for each measure against human judgements. To
classify the strength of the correlations, we fol-
lowed the guidance of Dancey and Reidy (2011),
who posit that a co-efficient of 0.0–0.1 is uncor-
related, 0.11–0.4 is weak, 0.41–0.7 is moderate,
0.71–0.90 is strong, and 0.91–1.0 is perfect.

On the Flickr8k data set, all evaluation measures
can be classified as either weakly correlated or mod-
erately correlated with human judgements and all
results are significant. TER is only weakly cor-
related with human judgements but could prove
useful in comparing the types of differences be-
tween models. An analysis of the distribution of
TER scores in Figure 2(a) shows that differences in
candidate and reference length are prevalent in the
image description task. Unigram BLEU is also only
weakly correlated against human judgements, even
though it has been reported extensively for this task.
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(b) E&K (2013) data set, n=2,042.

Figure 2: Distribution of automatic evaluation measures against human judgements. ρ is the correlation
between human judgements and the automatic measure. The intensity of each point indicates the number
of occurrences that fall into that range.

Figure 2(a) shows an almost uniform distribution
of unigram BLEU scores, regardless of the human
judgement. Smoothed BLEU and ROUGE-SU4 are
moderately correlated with human judgements, and
the correlation is stronger than with unigram BLEU.
Finally, Meteor is most strongly correlated mea-
sure against human judgements. A similar pattern
is observed in the Elliott and Keller (2013) data set,
though the correlations are lower across all mea-
sures. This could be caused by the smaller sample
size or because the descriptions were generated
by a computer, and not retrieved from a collection
of human-written descriptions containing the gold-
standard text, as in the Flickr8K data set.

Qualitative Analysis

Figure 3 shows two images from the test collec-
tion of the Flickr8K data set with a low Meteor
score and a maximum human judgement of seman-
tic correctness. The main difference between the
candidates and references are in deciding what to
describe (content selection), and how to describe it
(realisation). We can hypothesise that in both trans-
lation and summarisation, the source text acts as a
lexical and semantic framework within which the
translation or summarisation process takes place.
In Figure 3(a), the authors of the descriptions made
different decisions on what to describe. A decision

has been made to describe the role of the officials in
the candidate text, and not in the reference text. The
underlying cause of this is an active area of research
in the human vision literature and can be attributed
to bottom-up effects, such as saliency (Itti et al.,
1998), top-down contextual effects (Torralba et al.,
2006), or rapidly-obtained scene properties (Oliva
and Torralba, 2001). In (b), we can see the problem
of deciding how to describe the selected content.
The reference uses a more specific noun to describe
the person on the bicycle than the candidate.

4 Discussion

There are several differences between our analysis
and that of Hodosh et al. (2013). First, we report
Spearman’s ρ correlation coefficient of automatic
measures against human judgements, whereas they
report agreement between judgements and auto-
matic measures in terms of Cohen’s κ. The use of
κ requires the transformation of real-valued scores
into categorical values, and thus loses informa-
tion; we use the judgement and evaluation measure
scores in their original forms. Second, our use of
Spearman’s ρ means we can readily use all of the
available data for the correlation analysis, whereas
Hodosh et al. (2013) report agreement on thresh-
olded subsets of the data. Third, we report the corre-
lation coefficients against five evaluation measures,
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Candidate: Football players gathering to con-
test something to collaborating officials.
Reference: A football player in red and white
is holding both hands up.

(a)

Candidate: A man is attempting a stunt with a
bicycle.
Reference: Bmx biker Jumps off of ramp.

(b)

Figure 3: Examples in the test data with low Meteor scores and the maximum expert human judgement.
(a) the candidate and reference are from the same image, and show differences in what to describe, in
(b) the descriptions are retrieved from different images and show differences in how to describe an image.

some of which go beyond unigram matchings be-
tween references and candidates, whereas they only
report unigram BLEU and unigram ROUGE. It is
therefore difficult to directly compare the results
of our correlation analysis against Hodosh et al.’s
agreement analysis, but they also reach the conclu-
sion that unigram BLEU is not an appropriate mea-
sure of image description performance. However,
we do find stronger correlations with Smoothed
BLEU, skip-bigram ROUGE, and Meteor.

In contrast to the results presented here, Reiter
and Belz (2009) found no significant correlations
of automatic evaluation measures against human
judgements of the accuracy of machine-generated
weather forecasts. They did, however, find signif-
icant correlations of automatic measures against
fluency judgements. There are no fluency judge-
ments available for Flickr8K, but Elliott and Keller
(2013) report grammaticality judgements for their
data, which are comparable to fluency ratings. We
failed to find significant correlations between gram-
matlicality judgements and any of the automatic
measures on the Elliott and Keller (2013) data. This
discrepancy could be explained in terms of the dif-
ferences between the weather forecast generation
and image description tasks, or because the image
description data sets contain thousands of texts and
a few human judgements per text, whereas the data
sets of Reiter and Belz (2009) included hundreds
of texts with 30 human judges.

5 Conclusions

In this paper we performed a sentence-level corre-
lation analysis of automatic evaluation measures
against expert human judgements for the automatic
image description task. We found that sentence-
level unigram BLEU is only weakly correlated with
human judgements, even though it has extensively
reported in the literature for this task. Meteor was
found to have the highest correlation with human
judgements, but it requires Wordnet and paraphrase
resources that are not available for all languages.
Our findings held when judgements were made on
human-written or computer-generated descriptions.

The variability in what and how people describe
images will cause problems for all of the measures
compared in this paper. Nevertheless, we propose
that unigram BLEU should no longer be used as
an objective function for automatic image descrip-
tion because it has a weak correlation with human
accuracy judgements. We recommend adopting
either Meteor, Smoothed BLEU, or ROUGE-SU4 be-
cause they show stronger correlations with human
judgements. We believe these suggestions are also
applicable to the ranking tasks proposed in Hodosh
et al. (2013), where automatic evaluation scores
could act as features to a ranking function.
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nis Aloimonos. 2011. Corpus-Guided Sentence
Generation of Natural Images. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 444–454, Edinburgh,
Scotland, UK.

457



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 458–463,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Learning a Lexical Simplifier Using Wikipedia

Colby Horn, Cathryn Manduca and David Kauchak
Computer Science Department

Middlebury College
{chorn,cmanduca,dkauchak}@middlebury.edu

Abstract

In this paper we introduce a new lexical
simplification approach. We extract over
30K candidate lexical simplifications by
identifying aligned words in a sentence-
aligned corpus of English Wikipedia with
Simple English Wikipedia. To apply these
rules, we learn a feature-based ranker us-
ing SVMrank trained on a set of labeled
simplifications collected using Amazon’s
Mechanical Turk. Using human simplifi-
cations for evaluation, we achieve a preci-
sion of 76% with changes in 86% of the
examples.

1 Introduction

Text simplification is aimed at reducing the read-
ing and grammatical complexity of text while re-
taining the meaning (Chandrasekar and Srinivas,
1997). Text simplification techniques have a broad
range of applications centered around increasing
data availability to both targeted audiences, such
as children, language learners, and people with
cognitive disabilities, as well as to general readers
in technical domains such as health and medicine
(Feng, 2008).

Simplifying a text can require a wide range
of transformation operations including lexical
changes, syntactic changes, sentence splitting,
deletion and elaboration (Coster and Kauchak,
2011; Zhu et al., 2010). In this paper, we ex-
amine a restricted version of the text simplifica-
tion problem, lexical simplification, where text is
simplified by substituting words or phrases with
simpler variants. Even with this restriction, lexi-
cal simplification techniques have been shown to
positively impact the simplicity of text and to im-
prove reader understanding and information reten-
tion (Leroy et al., 2013). Additionally, restrict-
ing the set of transformation operations allows for

more straightforward evaluation than the general
simplification problem (Specia et al., 2012).

Most lexical simplification techniques rely on
transformation rules that change a word or phrase
into a simpler variant with similar meaning (Bi-
ran et al., 2011; Specia et al., 2012; Yatskar et
al., 2010). Two main challenges exist for this type
of approach. First, the lexical focus of the trans-
formation rules makes generalization difficult; a
large number of transformation rules is required to
achieve reasonable coverage and impact. Second,
rules do not apply in all contexts and care must be
taken when performing lexical transformations to
ensure local cohesion, grammaticality and, most
importantly, the preservation of the original mean-
ing.

In this paper, we address both of these issues.
We leverage a data set of 137K aligned sentence
pairs between English Wikipedia and Simple En-
glish Wikipedia to learn simplification rules. Pre-
vious approaches have used unaligned versions of
Simple English Wikipedia to learn rules (Biran et
al., 2011; Yatskar et al., 2010), however, by using
the aligned version we are able to learn a much
larger rule set.

To apply lexical simplification rules to a new
sentence, a decision must be made about which, if
any, transformations should be applied. Previous
approaches have used similarity measures (Biran
et al., 2011) and feature-based approaches (Specia
et al., 2012) to make this decision. We take the lat-
ter approach and train a supervised model to rank
candidate transformations.

2 Problem Setup

We learn lexical simplification rules that consist
of a word to be simplified and a list of candidate
simplifications:

w → c1, c2, ..., cm

Consider the two aligned sentence pairs in Table
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The first school was established in 1857.
The first school was started in 1857.
The district was established in 1993 by merging
the former districts of Bernau and Eberswalde.
The district was made in 1993 by joining the
old districts of Bernau and Eberswalde.

Table 1: Two aligned sentence pairs. The bottom
sentence is a human simplified version of the top
sentence. Bold words are candidate lexical simpli-
fications.

1. The bottom sentence of each pair is a simpli-
fied variant of the top sentence. By identifying
aligned words within the aligned sentences, can-
didate lexical simplifications can be learned. The
bold words show two such examples, though other
candidates exist in the bottom pair. By examining
aligned sentence pairs we can learn a simplifica-
tion rule. For example, we might learn:

established→ began,made, settled, started

Given a sentence s1, s2, ..., sn, a simplification
rule applies if the left hand side of the rule can be
found in the sentence (si = w, for some i). If a
rule applies, then a decision must be made about
which, if any, of the candidate simplifications
should be substituted for the word w to simplify
the sentence. For example, if we were attempting
to simplify the sentence

The ACL was established in 1962.

using the simplification rule above, some of the
simplification options would not apply because
of grammatical constraints, e.g. began, while
others would not apply for semantic reasons, e.g.
settled. This does not mean that these are not
good simplifications for established since in other
contexts, they might be appropriate. For example,
in the sentence

The researcher established a new paper

writing routine.

began is a reasonable option.

3 Learning a Lexical Simplifier

We break the learning problem into two steps: 1)
learn a set of simplification rules and 2) learn a
ranking function for determining the best simpli-
fication candidate when a rule applies. Each of
these steps are outlined below.

3.1 Rule Extraction

To extract the set of simplification rules, we use
a sentence-aligned data set of English Wikipedia
sentences (referred to as normal) aligned to Sim-
ple English Wikipedia sentences (referred to as
simple) (Coster and Kauchak, 2011). The data set
contains 137K such aligned sentence pairs.

Given a normal sentence and the corresponding
aligned simple sentence, candidate simplifications
are extracted by identifying a word in the simple
sentence that corresponds to a different word in the
normal sentence. To identify such pairs, we au-
tomatically induce a word alignment between the
normal and simple sentence pairs using GIZA++
(Och and Ney, 2000). Words that are aligned are
considered as possible candidates for extraction.
Due to errors in the sentence and word alignment
processes, not all words that are aligned are actu-
ally equivalent lexical variants. We apply the fol-
lowing filters to reduce such spurious alignments:

• We remove any pairs where the normal word
occurs in a stoplist. Stoplist words tend to be
simple already and stoplist words that are be-
ing changed are likely either bad alignments
or are not simplifications.

• We require that the part of speeches (POS)
of the two words be the same. The parts of
speech were calculated based on a full parse
of the sentences using the Berkeley parser
(Petrov and Klein, 2007).

• We remove any candidates where the POS
is labeled as a proper noun. In most cases,
proper nouns should not be simplified.

All other aligned word pairs are extracted. To
generate the simplification rules, we collect all
candidate simplifications (simple words) that are
aligned to the same normal word.

As mentioned before, one of the biggest chal-
lenges for lexical simplification systems is gen-
eralizability. To improve the generalizability of
the extracted rules, we add morphological variants
of the words in the rules. For nouns, we include
both singular and plural variants. For verbs, we
expand to all inflection variants. The morpholog-
ical changes are generated using MorphAdorner
(Burns, 2013) and are applied symmetrically: any
change to the normal word is also applied to the
corresponding simplification candidates.
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3.2 Lexical Simplification as a Ranking
Problem

A lexical simplification example consists of three
parts: 1) a sentence, s1, s2, ..., sn, 2), a word in
that sentence, si, and 3) a list of candidate sim-
plifications for si, c1, c2, ..., cm. A labeled exam-
ple is an example where the rank of the candidate
simplifications has been specified. Given a set of
labeled examples, the goal is to learn a ranking
function that, given an unlabeled example (exam-
ple without the candidate simplifications ranked),
specifies a ranking of the candidates.

To learn this function, features are extracted
from a set of labeled lexical simplification exam-
ples. These labeled examples are then used to train
a ranking function. We use SVMrank (Joachims,
2006), which uses a linear support vector machine.

Besides deciding which of the candidates is
most applicable in the context of the sentence,
even if a rule applies, we must also decide if
any simplification should occur. For example,
there may be an instance where none of the can-
didate simplifications are appropriate in this con-
text. Rather than viewing this as a separate prob-
lem, we incorporate this decision into the ranking
problem by adding w as a candidate simplifica-
tion. For each rule, w → c1, c2, ..., cm we add one
additional candidate simplification which does not
change the sentence, w → c1, c2, ..., cm, w. If w is
ranked as the most likely candidate by the ranking
algorithm, then the word is not simplified.

3.2.1 Features
The role of the features is to capture information
about the applicability of the word in the context
of the sentence as well as the simplicity of the
word. Many features have been suggested previ-
ously for use in determining the simplicity of a
word (Specia et al., 2012) and for determining if
a word is contextually relevant (Biran et al., 2011;
McCarthy and Navigli, 2007). Our goal for this
paper is not feature exploration, but to examine
the usefulness of a general framework for feature-
based ranking for lexical simplification. The fea-
tures below represent a first pass at candidate fea-
tures, but many others could be explored.

Candidate Probability
p(ci|w): in the sentence-aligned Wikipedia data,
when w is aligned to some candidate simplifica-
tion, what proportion of the time is that candidate
ci.

Frequency
The frequency of a word has been shown to cor-
relate with the word’s simplicity and with peo-
ple’s knowledge of that word (Leroy and Kauchak,
2013). We measured a candidate simplification’s
frequency in two corpora: 1) Simple English
Wikipedia and 2) the web, as measured by the un-
igram frequency from the Google n-gram corpus
(Brants and Franz, 2006).

Language Models
n-gram language models capture how likely a par-
ticular sequence is and can help identify candidate
simplifications that are not appropriate in the con-
text of the sentence. We included features from
four different language models trained on four dif-
ferent corpora: 1) Simple English Wikipedia, 2)
English Wikipedia, 3) Google n-gram corpus and
4) a linearly interpolated model between 1) and
2) with λ = 0.5, i.e. an even blending. We
used the SRI language modeling toolkit (Stolcke,
2002) with Kneser-Kney smoothing. All models
were trigram language models except the Google
n-gram model, which was a 5-gram model.

Context Frequency
As another measure of the applicability of a can-
didate in the context of the sentence, we also cal-
culate the frequency in the Google n-grams of the
candidate simplification in the context of the sen-
tence with context windows of one and two words.
If the word to be substituted is at position i in the
sentence (w = si), then the one word window
frequency for simplification cj is the trigram fre-
quency of si−1 cj si+1 and the two word window
the 5-gram frequency of si−2 si−1 cj si+1 si+2.

4 Data

For training and evaluation of the models, we col-
lected human labelings of 500 lexical simplifica-
tion examples using Amazon’s Mechanical Turk
(MTurk)1. MTurk has been used extensively for
annotating and evaluating NLP tasks and has been
shown to provide data that is as reliable as other
forms of human annotation (Callison-Burch and
Dredze, 2010; Zaidan and Callison-Burch, 2011).

Figure 1 shows an example of the task we asked
annotators to do. Given a sentence and a word
to be simplified, the task is to suggest a simpler
variant of that word that is appropriate in the con-
text of the sentence. Candidate sentences were se-

1https://www.mturk.com/
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Enter a simpler word that could be substituted for the red, bold word in the sentence. A simpler
word is one that would be understood by more people or people with a lower reading level (e.g.
children).

Food is procured with its suckers and then crushed using its tough “beak” of chitin.

Figure 1: Example task setup on MTurk soliciting lexical simplifications from annotators.

lected from the sentence-aligned Wikipedia cor-
pus where a word in the normal sentence is be-
ing simplified to a different word in the simple
sentence, as identified by the automatically in-
duced word alignment. The normal sentence and
the aligned word were then selected for annota-
tion. These examples represent words that other
people (those that wrote/edited the Simple En-
glish Wikipedia page) decided were difficult and
required simplification.

We randomly selected 500 such sentences and
collected candidate simplifications from 50 people
per sentence, for a total of 25,000 annotations. To
participate in the annotation process, we required
that the MTurk workers live in the U.S. (for En-
glish proficiency) and had at least a 95% accep-
tance rate on previous tasks.

The simplifications suggested by the annotators
were then tallied and the resulting list of simpli-
fications with frequencies provides a ranking for
training the candidate ranker. Table 2 shows the
ranked list of annotations collected for the exam-
ple in Figure 1. This data set is available online.2

Since these examples were selected from En-
glish Wikipedia they, and the corresponding
aligned Simple English Wikipedia sentences, were
removed from all resources used during both the
rule extraction and the training of the ranker.

5 Experiments

5.1 Other Approaches
We compared our lexical simplification approach
(rank-simplify) to two other approaches. To un-
derstand the benefit of the feature-based ranking
algorithm, we compared against a simplifier that
uses the same rule set, but ranks the candidates
only based on their frequency in Simple English
Wikipedia (frequency). This is similar to base-
lines used in previous work (Biran et al., 2011).

To understand how our extracted rules com-
pared to the rules extracted by Biran et al., we

2http://www.cs.middlebury.edu/˜dkauchak/simplification/

used their rules with our ranking approach (rank-
Biran). Their approach also extracts rules from
a corpus of English Wikipedia and Simple En-
glish Wikipedia, however, they do not utilize a
sentence-aligned version and instead rely on con-
text similarity measures to extract their rules.

5.2 Evaluation
We used the 500 ranked simplification examples to
train and evaluate our approach. We employed 10-
fold cross validation for all experiments, training
on 450 examples and testing on 50.

We evaluated the models with four different
metrics:

precision: Of the words that the system changed,
what percentage were found in any of the human
annotations.

precision@k: Of the words that the system
changed, what percentage were found in the top
k human annotations, where the annotations were
ranked by response frequency. For example, if we
were calculating the precision@1 for the example
in Table 2, only “obtained” would be considered
correct.

accuracy: The percentage of the test examples
where the system made a change to one of the
annotations suggested by the human annotators.
Note that unlike precision, if the system does not
suggest a change to a word that was simplified it
still gets penalized.

changed: The percentage of the test examples
where the system suggested some change (even if
it wasn’t a “correct” change).

5.3 Results
Table 3 shows the precision, accuracy and percent
changed for the three systems. Based on all three
metrics, our system achieves the best results. Al-
though the rules generated by Biran et al. have rea-
sonable precision, they suffer from a lack of cov-
erage, only making changes on about 5% of the

461



word frequency word frequency word frequency
obtained 17 made 2 secured 1
gathered 9 created 1 found 1
gotten 8 processed 1 attained 1

grabbed 4 received 1 procured 1
acquired 2 collected 1 aquired 1

Table 2: Candidate simplifications generated using MTurk for the examples in Figure 1. The frequency
is the number of annotators that suggested that simplification.

precision accuracy changed
frequency 53.9% 46.1% 84.9%
rank-Biran 71.4% 3.4% 5.2%
rank-simplify 76.1% 66.3% 86.3%

Table 3: Precision, accuracy and percent changed
for the three systems, averaged over the 10 folds.

examples. For our approach, the extracted rules
had very good coverage, applying in over 85% of
the examples.

This difference in coverage can be partially at-
tributed to the number of rules learned. We learned
simplifications for 14,478 words with an average
of 2.25 candidate simplifications per word. In con-
trast, the rules from Biran et al. only had simpli-
fications for 3,598 words with an average of 1.18
simplifications per word.

The precision of both of the approaches that
utilized the SVM candidate ranking were sig-
nificantly better than the frequency-based ap-
proach. To better understand the types of sug-
gestions made by the systems, Figure 2 shows the
precision@k for increasing k. On average, over
the 500 examples we collected, people suggested
12 different simplifications, though this varied de-
pending on the word in question and the sentence.
As such, at around k=12, the precision@k of most
of the systems has almost reached the final preci-
sion. However, even at k = 5, which only counts
correct an answer in the top 5 human suggested
results, our system still achieved a precision of
around 67%.

6 Future Work

In this paper we have introduced a new rule ex-
traction algorithm and a new feature-based rank-
ing approach for applying these rules in the con-
text of different sentences. The number of rules
learned is an order of magnitude larger than any
previous lexical simplification approach and the
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Figure 2: Precision@k for varying k for the three
different approaches averaged over the 10 folds.

quality of the resulting simplifications after apply-
ing these rules is better than previous approaches.

Many avenues exist for improvement and for
better understanding how well the current ap-
proach works. First, we have only explored a
small set of possible features in the ranking algo-
rithm. Additional improvements could be seen by
incorporating a broader feature set. Second, more
analysis needs to be done to understand the quality
of the produced simplifications and their impact on
the simplicity of the resulting sentences. Third, the
experiments above assume that the word to be sim-
plified has already been identified in the sentence.
This identification step also needs to be explored
to implement a sentence-level simplifier using our
approach. Fourth, the ranking algorithm can be
applied to most simplification rules (e.g. we ap-
plied the ranking approach to the rules obtained
by Biran et al. (2011)). We hope to explore other
approaches for increasing the rule set by incorpo-
rating other rule sources and other rule extraction
techniques.
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Putting it simply: A context-aware approach to lexi-
cal simplification. In Proceedings of ACL.

Thorsten Brants and Alex Franz. 2006. Web 1T
5-gram version 1. Linguistic Data Consortium,
Philadelphia.

Philip R. Burns. 2013. Morphadorner v2: A Java li-
brary for the morphological adornment of english
language texts.

Chris Callison-Burch and Mark Dredze. 2010. Cre-
ating speech and language data with Amazon’s Me-
chanical Turk. In Proceedings of NAACL-HLT 2010
Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk.

Raman Chandrasekar and Bangalore Srinivas. 1997.
Automatic induction of rules for text simplification.
In Knowledge Based Systems.

William Coster and David Kauchak. 2011. Simple En-
glish Wikipedia: A new text simplification task. In
Proceedings of ACL.

Lijun Feng. 2008. Text simplification: A survey.
CUNY Technical Report.

Thorsten Joachims. 2006. Training linear svms in lin-
ear time. In Proceedings of KDD.

Gondy Leroy and David Kauchak. 2013. The effect
of word familiarity on actual and perceived text dif-
ficulty. Journal of American Medical Informatics
Association.

Gondy Leroy, James E. Endicott, David Kauchak,
Obay Mouradi, and Melissa Just. 2013. User evalu-
ation of the effects of a text simplification algorithm
using term familiarity on perception, understanding,
learning, and information retention. Journal of Med-
ical Internet Research (JMIR).

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In
Proceedings of SEMEVAL.

F. J. Och and H. Ney. 2000. Improved statistical align-
ment models. In ACL.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of HTL-
NAACL.

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihal-
cea. 2012. Semeval-2012 task 1: English lexical
simplification. In Joint Conference on Lexical and
Computerational Semantics (*SEM).

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Proceedings of the In-
ternational Conference on Statistical Language Pro-
cessing.

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-
Mizil, and Lillian Lee. 2010. For the sake of sim-
plicity: Unsupervised extraction of lexical simplifi-
cations from Wikipedia. In NAACL/HLT.

Omar F. Zaidan and Chris Callison-Burch. 2011.
Crowdsourcing translation: Professional quality
from non-professionals. In Proceedings of ACL.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of ICCL.

463



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 464–469,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Cheap and easy entity evaluation

Ben Hachey Joel Nothman Will Radford
School of Information Technologies

University of Sydney
NSW 2006, Australia

ben.hachey@sydney.edu.au
{joel,wradford}@it.usyd.edu.au

Abstract

The AIDA-YAGO dataset is a popular tar-
get for whole-document entity recogni-
tion and disambiguation, despite lacking a
shared evaluation tool. We review eval-
uation regimens in the literature while
comparing the output of three approaches,
and identify research opportunities. This
utilises our open, accessible evaluation
tool. We exemplify a new paradigm of
distributed, shared evaluation, in which
evaluation software and standardised, ver-
sioned system outputs are provided online.

1 Introduction

Modern entity annotation systems detect mentions
in text and disambiguate them to a knowledge base
(KB). Disambiguation typically returns the corre-
sponding Wikipedia page or NIL if none exists.

Named entity linking (NEL) work is driven by
the TAC shared tasks on query-driven knowledge
base population (Ji and Grishman, 2011). Eval-
uation focuses on disambiguating queried names
and clustering NIL mentions, but most systems
internally perform whole-document named en-
tity recognition, coreference, and disambiguation
(Cucerzan and Sil, 2013; Pink et al., 2013; Cheng
et al., 2013; Fahrni et al., 2013). Wikification
work generally evaluates end-to-end entity anno-
tation including KB-driven mention spotting and
disambiguation (Milne and Witten, 2008b; Kulka-
rni et al., 2009; Ratinov et al., 2011; Ferragina and
Scaiella, 2010). Despite important differences in
mention handling, NEL and wikification work have
followed a similar trajectory. Yet to our knowl-
edge, there are no comparative whole-document
evaluations of NEL and wikification systems.

Public data sets have also driven research
in whole-document entity disambiguation
(Cucerzan, 2007; Milne and Witten, 2008b;

Kulkarni et al., 2009; Bentivogli et al., 2010; Hof-
fart et al., 2011; Meij et al., 2012). However, with
many task variants and evaluation methodologies
proposed, it is very difficult to synthesise a clear
picture of the state of the art.

We present an evaluation suite for named entity
linking, leveraging and advocating for the AIDA

disambiguation annotations (Hoffart et al., 2011)
over the large and widely used CoNLL NER data
(Tjong Kim Sang and Meulder, 2003). This builds
on recent rationalisation and benchmarking work
(Cornolti et al., 2013), adding an isolated evalua-
tion of disambiguation. Contributions include:
• a simple, open-source evaluation suite for

end-to-end, whole-document NEL;
• disambiguation evaluation facilitated by

gold-standard mentions;
• reference outputs from state-of-the-art NEL

and wikification systems published with the
suite for easy comparison;
• implementation of statistical significance and

error sub-type analysis, which are often lack-
ing in entity linking evaluation;
• a venue for publishing benchmark results

continuously, complementing the annual cy-
cle of shared tasks;
• a repository for versioned corrections to

ground truth annotation.
We see this repository, at https://github.
com/wikilinks/conll03_nel_eval, as a
model for the future of informal shared evaluation.

We survey entity annotation tasks and evalua-
tion, proposing a core suite of metrics for end-to-
end linking and tagging, and settings that isolate
mention detection and disambiguation. A compar-
ison of state-of-the-art NEL and wikification sys-
tems illustrates how key differences in mention
handling affect performance. Analysis suggests
that focusing evaluation too tightly on subtasks
like candidate ranking can lead to results that do
not reflect end-to-end performance.
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2 Tasks and metrics

The literature includes many variants of the en-
tity annotation task and even more evaluation ap-
proaches. Systems can be invoked under two set-
tings: given text with expressions to be linked
(gold mentions); or given plain text only (system
mentions). The former enables a diagnostic evalu-
ation of disambiguation, while the latter simulates
a realistic end-to-end application setting.

Within each setting, metrics may consider
different subsets of the gold (G) and system (S)
annotations. Given sets of (doc, token span, kbid)
tuples, we define precision, recall and F1 score
with respect to some annotation filter f :

Pf =
|f(G) ∩ f(S)|
|f(S)| , Rf =

|f(G) ∩ f(S)|
|f(G)|

We advocate two core metrics, corresponding to
the major whole-document entity annotation tasks.
Link annotation measures performance over every
linked mention. Its filter fL matches spans and
link targets, disregarding NILs. This is particularly
apt when entity annotation is a step in an informa-
tion extraction pipeline. Tag annotation measures
performance over document-level entity sets: fT

disregards span information and NILs. This is ap-
propriate when entity annotation is used, e.g., for
document indexing or social media mining (Mi-
halcea and Csomai, 2007; Meij et al., 2012). We
proceed to ground these metrics and diagnostic
variants in the literature.

2.1 End-to-end evaluation

We follow Cornolti et al. (2013) in evaluating end-
to-end entity annotation, including both mention
detection and disambiguation. In this context,
fL equates to Cornolti et al.’s strong annotation
match; fT measures what they call entity match.

2.2 Mention evaluation

Mention detection performance may be evaluated
regardless of linking decisions. A filter fM dis-
cards the link target (kbid). Of the present metrics,
only this considers NIL-linked system mentions as
different from non-mentions. For comparability
with wikification, we consider an additional filter
fMKB

to NEL output that retains only linked men-
tions. fM and fMKB

are equivalent to Cucerzan’s
(2007) mention evaluation and Cornolti et al.’s
strong mention match respectively. fM is com-
parable to the NER evaluation from the CoNLL

2003 shared task (Tjong Kim Sang and Meulder,
2003): span equivalence is handled the same way,
but metrics here ignore mention types.

2.3 Disambiguation evaluation
Most NEL and wikification literature focuses on
disambiguation, evaluating the quality of link tar-
get annotations in isolation from NER error. Pro-
viding systems with ground truth mentions makes
fL equivalent to Mihalcea and Csomai’s (2007)
sense disambiguation evaluation and Milne and
Witten’s (2008b) disambiguation evaluation. It
differs from Kulkarni et al.’s (2009) metric in be-
ing micro-averaged (equal weight to each men-
tion), rather than macro-averaged across docu-
ments. fL recall is comparable to TAC’s KB recall
(Ji and Grishman, 2011). It differs in that all men-
tions are evaluated rather than specific queries.

Related evaluations have also isolated disam-
biguation performance by: considering the links
of only correctly identified mentions (Cucerzan,
2007); or only true mentions where the correct
entity appears among top candidates before dis-
ambiguation (Ratinov et al., 2011; Hoffart et al.,
2011; Pilz and Paass, 2012). We do not prefer this
approach as it makes system comparison difficult.
For comparability, we implement a filter fLHOF

that retains only Hoffart-linkable mentions having
a YAGO means relation to the correct entity.

Tag annotation (fT ) with ground truth men-
tions is equivalent to Milne and Witten’s (2008b)
link evaluation, Mihalcea and Csomai’s (2007)
keyword extraction evaluation and Ratinov et
al.’s (2011) bag-of-titles evaluation. It is compara-
ble to Pilz and Paass’s (2012) bag-of-titles evalua-
tion, but does not account for sequential order and
keeps all gold-standard links regardless of whether
they are found by candidate generation.

2.4 Further diagnostics and rank evaluation
Several evaluations in the literature are beyond the
scope of this paper but planned for future versions
of the code. This includes further diagnostic sub-
task evaluation, particularly candidate set recall
(Hachey et al., 2013), NIL accuracy (Ji and Grish-
man, 2011) and weak mention matching (Cornolti
et al., 2013). With a score for each prediction, fur-
ther metrics are possible: rank evaluation of tag
annotation with r-precision, mean reciprocal rank
and mean average precision (Meij et al., 2012);
and rank evaluation of mentions for comparison to
Hoffart et al. (2011) and Pilz and Paass (2012).
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3 Data

The CoNLL-YAGO dataset (Hoffart et al., 2011)
is an excellent target for end-to-end, whole-
document entity annotation. It is public, free and
much larger than most entity annotation data sets.
It is based on the widely used NER data from
the CoNLL 2003 shared task (Tjong Kim Sang
and Meulder, 2003), building disambiguation on
ground truth mentions. It has standard training
and development splits that are representative of
the held-out test data, all being sourced from the
Reuters text categorisation corpus (Lewis et al.,
2004), which is provided free for research pur-
poses. Training and development comprise 1,162
stories from 22-31 August 1996 and held-out test
comprises 231 stories from 6-7 December 1996.
The layered annotation provides useful informa-
tion for analysis including categorisation topics
(e.g., general news, markets, sport) and NE type
markup (PER, ORG, LOC, MISC).

The primary drawback is that KB annotations
are currently present only if there is a YAGO
means relation between the mention string and
the correct entity. This means that there are a
number of CoNLL entity mentions referring to
entities that exist in Wikipedia that are nonethe-
less marked NIL in the ground truth (e.g. ‘DSE’
for ‘Dhaka Stock Exchange’). This may be ad-
dressed by using a shared repository to adopt ver-
sioned improvements to the ground truth. Anno-
tation over CoNLL tokenisation sometimes results
in strange mentions (e.g., ‘Washington-based’ in-
stead of ‘Washington’). However, prescribed to-
kenisation simplifies comparison and analysis.

Another concern is that link annotation goes
stale, since Wikipedia titles are only canonical
with respect to a particular point in time. This is
because pages may be renamed or reorganised:
• to improve editorial structure, such as down-

grading an entity from having a page of its
own, to a mere section in another page;
• to account for newly notable entities, such as

creating a disambiguation page for a title that
formerly had a single known referent; or
• because of changes in fact, such as corporate

mergers and name changes.
All systems compared provide Wikipedia titles as
labels, which are mapped to current titles for com-
parison: for each entity title t linked in the gold
data, we query the Wikipedia API to find t’s canon-
ical form tc and retrieve titles of all redirects to tc.

4 Reference systems

Even on public data sets, comparison to published
results can be very difficult and extremely costly
(Fokkens et al., 2013). We include reference sys-
tem output in our repository for simple compar-
ison. Other researchers are welcome to add ref-
erence output, providing a continuous benchmark
that complements the annual cycle of large shared
tasks like TAC KBP.

4.1 TagMe

TagMe (Ferragina and Scaiella, 2010) is an end-
to-end wikification system specialising in short
texts. TagMe performs best among publicly avail-
able wikification systems (Cornolti et al., 2013).
Mention detection uses a dictionary of anchor
text from links between Wikipedia pages. Candi-
date ranking is based on entity relatedness (Milne
and Witten, 2008a), followed by mention prun-
ing. We use thresholds on annotation scores sup-
plied by Marco Cornolti (personal communica-
tion) of 0.289 and 0.336 respectively for men-
tion/link and tag evaluation. TagMe annota-
tions may not align with CoNLL token bound-
aries, e.g., <annot title=“Oakland, New Jer-
sey”>OAKLAND, N.J</annot>. Before evalua-
tion, we extend annotations to overlapping tokens.

4.2 AIDA

AIDA (Hoffart et al., 2011) is the system pre-
sented with the CoNLL-YAGO dataset and places
emphasis on state-of-the-art ranking of candi-
date entity sets. Mentions are ground truth from
the CoNLL data to isolate ranking performance,
equivalent to applying the fLHOF

filter. Ranking is
informed by a graph model of entity compatibility.

4.3 Schwa

Schwa (Radford et al., 2012) is a heuristic NEL

system based on a TAC 2012 shared task en-
trant. Mention detection uses a NER model trained
on news text followed by rule-based corefer-
ence. Disambiguation uses an unweighted com-
bination of KB statistics, document compatibil-
ity (Cucerzan, 2007), graph similarity and targeted
textual similarity. Candidates that score below
a threshold learned from TAC data are linked to
NIL. The system is very competitive, performing
at 93% and 97% respectively of the best accuracy
numbers we know of on 2011 and 2012 TAC eval-
uation data (Cucerzan and Sil, 2013).
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System Mentions Filter P R F1

Cucerzan System fM 82.2 84.8 83.5
Schwa System fM 86.9 76.7 81.5
TagMe System fMKB 75.2 60.4 67.0
Schwa System fMKB 82.5 74.5 78.3

Table 1: Mention detection results. Cucerzan re-
sults as reported (Cucerzan, 2007).

5 Results

We briefly report results over the reference sys-
tems to highlight characteristics of the evaluation
metrics and task settings. Results hinge upon
Schwa since we have obtained only its output in all
settings. Except where noted, all differences are
significant (p < 0.05) according to approximate
randomisation (Noreen, 1989), permuting annota-
tions over whole documents.

5.1 Mention evaluation

Table 1 evaluates mentions with and without NILs.
None of the systems reported use a CoNLL-
trained NER tagger, for which top shared task par-
ticipants approached 90% F1 in a stricter evalu-
ation than fM . We note the impressive numbers
reported by Cucerzan (2007) using a novel ap-
proach to mention detection based on capitalisa-
tion and corpus co-occurrence statistics, and the
similar performance1 to Schwa, whose NER com-
ponent is trained on another news corpus.

In wikification, NIL-linked mentions may not
be relevant, and it may suffice to identify only
the most canonical forms of names, rather than
all mentions in a coreference chain. With fMKB

,
Schwa has much higher recall than TagMe, though
TagMe’s precision is understated because it gener-
ates non-NE annotations that are not present in the
CoNLL-YAGO ground truth (e.g., linking ‘striker’
to Forward (association football)).

5.2 Disambiguation evaluation

Table 2 contains results isolating disambiguation
performance. AIDA ranking outperforms Schwa
according to both the link (fLHOF

) and tag metrics
(fTHOF

). If we remove the Hoffart et al. (2011)
linkable constraint, we observe that Schwa disam-
biguation performance loses about 8 points in pre-
cision on the link metric (fL) and 2 points on the
tag metric (fT ). This suggests that disambiguation

1Significance cannot be tested since we do not have the
Cucerzan (2007) output.

System Mentions Filter P R F1

Schwa Gold fL 67.5 78.3 72.5
Schwa Gold fLHOF 79.7 78.3 79.0
AIDA Gold fLHOF 83.2 83.2 83.2
Schwa Gold fT 77.8 77.7 77.7
Schwa Gold fTHOF 80.1 77.6 78.8
AIDA Gold fTHOF 87.7 84.2 85.9

Table 2: Disambiguation results for mention-level
linking and document-level tagging.

System Mentions Filter P R F1

TagMe System fL 63.2 50.7 56.3
Schwa System fL 67.6 61.0 64.2
TagMe System fT 65.0 65.4 65.2
Schwa System fT 71.2 62.6 66.6

Table 3: End-to-end results for mention-level link-
ing and document-level tagging.

evaluation without the linkable constraint is im-
portant, especially if the application requires de-
tecting and disambiguating all mentions.

The comparison here highlights a notable eval-
uation intricacy. The Schwa system disambiguates
all gold mentions rather than those with KB links,
and the document compatibility approach means
that evidence from a NIL mention may offer con-
founding evidence when linking linkable men-
tions. Further, although using the same mentions,
systems use search resources with different recall
characteristics, so the Schwa system may not re-
trieve the correct candidate to disambiguate.

5.3 End-to-end evaluation
Finally, Table 3 contains end-to-end entity anno-
tation results. Again, these results highlight key
differences in mention handling between NEL and
wikification. Coreference modelling helps NEL

detect and link ambiguous names (e.g., ‘Presi-
dent Bush’) that refer to the same entity as unam-
biguous names in the same text (e.g., ‘George W.
Bush’). And restricting the the universe to named
entities is appropriate for the CoNLL-YAGO data.
The advantage is marked in the mention-level link
evaluation (fL). However, the systems are statis-
tically indistinguishable in the document-level tag
evaluation (fT ). Thus the extra NER and corefer-
ence machinery may not be justified if the applica-
tion is document indexing or social media mining
(Meij et al., 2012), wherein a KB-driven mention
detector may be favourable for other reasons.
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Error fLHOF fL

AIDA Schwa TagMe Schwa
wrong link 752 896 429 605
link as nil - 79 - 111
nil as link - - 183 337
missing - - 1,780 1,031
extra - - 1,663 927

Table 4: fLHOF
and fL error profiles.

0 20 40 60 80 100

LOC
ORG
PER

MISC

Figure 1: Schwa fL and fLHOF
F1 for NE types

6 Analysis

We analyse the types of error that a system makes.
We also harness the multi-layered annotation to
quantify the effect of NE type and document topic.

By error type Table 4 shows error counts based
on the disambiguation link evaluation with the
linkable constraint (fLHOF

) and the end-to-end
link evaluation (fL). Errors are divided as follows:

wrong link: mention linked to wrong KB entry
link as nil: KB-entity mention linked to NIL

nil as link: NIL mention linked to the KB

missing: true mention not detected
extra: mention detected spuriously

AIDA outperforms Schwa under the linkable eval-
uation, making fewer wrong link errors. Schwa
also overgenerates NIL, which may reflect candi-
date recall errors or a conservative disambiguation
threshold. On the end-to-end evaluation, Schwa
makes more linking errors (wrong link, link as nil,
nil as link) than TagMe, but fewer in mention de-
tection, leading to higher overall performance.

By entity type Figure 1 evaluates only men-
tions where the CoNLL 2003 corpus (Tjong Kim
Sang and Meulder, 2003) marks a NE mention of
each type. This is based on the link evaluation
of Schwa. The left and right bars correspond to
end-to-end (fL) and disambiguation (fLHOF

) F1

respectively. In accord with TAC results (Ji and
Grishman, 2011), high accuracy can be achieved
on PER when a full name is given, while ORG is
substantially more challenging. MISC entities are
somewhat difficult to disambiguate, with identifi-
cation errors hampering end-to-end performance.

0 20 40 60 80 100

Sports
Domestic Politics

Corporate / Industrial
Internat’l Relations

Markets
War / Civil War

Crime / Law Enforc’t

Figure 2: Schwa fL and fLHOF
F1 for top topics

By topical category The underlying Reuters
Corpus documents are labelled with topic, country
and industry codes (Lewis et al., 2004). Figure 2
reports F1 on test documents from each frequent
topic. It highlights that much ambiguity remains
unresolved in Sports, while very high performance
linking is attainable in categories such as Markets
and Domestic Politics, only when given ground
truth linkable mentions.

7 Conclusion

We surveyed entity annotation tasks and advocated
a core set of metrics for mention, disambiguation
and end-to-end evaluation. This enabled a direct
comparison of state-of-the-art NEL and wikifica-
tion systems, highlighting the effect of key differ-
ences. In particular, NER and coreference mod-
ules make NEL approaches suitable for applica-
tions that require all mentions, including ambigu-
ous names and entities that are not in the KB. For
applications where document-level entity tags are
appropriate, the NEL and wikification approaches
we evaluate have similar performance.

The big picture we wish to convey is a new
approach to community evaluation that makes
benchmarking and qualitative comparison cheap
and easy. In addition to the code being open
source, we use the repository to store reference
system output, and – we hope – emendations to
the ground truth. We encourage other researchers
to contribute reference output and hope that this
will provide a continuous benchmark to comple-
ment the current cycle of shared tasks.
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Abstract 

Recently, users who search on the web are 

targeting to more complex tasks due to the 

explosive growth of web usage. To accom-

plish a complex task, users may need to ob-

tain information of various entities. For ex-

ample, a user who wants to travel to Beijing, 

should book a flight, reserve a hotel room, 

and survey a Beijing map. A complex task 

thus needs to submit several queries in order 

to seeking each of entities. Understanding 

complex tasks can allow a search engine to 

suggest related entities and help users explic-

itly assign their ongoing tasks. 

1 Introduction 

The requirement of searching for complex tasks 

dramatically increases in current web search. 

Users not always search for single information 

need (Liao et al., 2012). To accomplish a real-

life complex task, users usually need to obtain 

various information of distinct entities on the 

web. In this paper, we define the necessary enti-

ties for a complex task as task-intrinsic entities. 

For example, a complex task “travel to Beijing” 

has at least three task-intrinsic entities, including 

a flight ticket, hotel room, and maps. Therefore, 

users need submit several queries in order to seek 

all of the necessary entities. However, conven-

tional search engines are careless of latent com-

plex tasks behind a search query. Users are guid-

ed to search for each task-intrinsic entity one by 

one to accomplish their complex task inefficient-

ly. 

   Figure 1 shows a complex task consisting of a 

task name “travel to Beijing” and several task-

intrinsic entities. A task name is composed of a 

task event and a task topic. The task event trig-

gers users to perform exploratory or comparative 

search behaviors such as “prepare   

 

Figure 1. The structure of a complex task with 

task-intrinsic entities and related queries. 
 

something”, “buy something” or “travel to 

somewhere”. The task topic is the subject of in-

terest in the complex task. Task-intrinsic entities 

are intrinsically demanded by the complex task. 

The three queries “Beijing flight ticket”, “Beijing 

hotel”, and “Beijing map” are driven by the in-

formation need of each of task-intrinsic entities 

with topic “Beijing” and event “travel” for the 

hidden complex task “travel to Beijing”. 

   According to our observation, users may de-

scribe details of a complex task to be done or 

already completed via microblogs, e.g., Twitter 

or Weibo
1
. Microblogs are a miniature version of 

traditional weblogs. In recent years, many users 

post and share their life details with others on 

microblogs every day. Due to the post length 

limitation (only 140 characters in case of Weibo), 

users tend to only describe key points. Table 1 

shows an example of a microblog. We can find 

that the user, who has an ongoing complex task 

“北京旅遊(travel to Beijing)”, mentioned two 

task-intrinsic entities “機票 (flight ticket)” and 

“飯店(hotel)”. 

  In this work, we address the problem of how to 

help users efficiently accomplish a complex task 

when submitting a single query or multiple que-

ries. 

                                                 
1 Weibo: http://weibo.com 
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Chinese 

今天已經訂好機票，只剩下找間飯店，就等著

下禮拜去北京旅遊了~好期待! 

English Translation 

I have already booked a flight today, and I only 

have to find a hotel. I’m about to travel to 

Beijing next week - good anticipation! 

Table 1. A microblog post from Weibo 

mentioning an ongoing complex task 

 “北京旅遊 (travel to Beijing)” 
 

We divide the problem into the following three 

major sub-problems. 

1. Find task-intrinsic entities for the complex 

task. 

2. Generate a task name for the complex task. 

3. Suggest proper search results covering all 

desired entities for the complex task. 

   The above three problems are very important 

but non-trivial to solve. In this preliminary work, 

we only focus on first two sub-problems. We 

proposed an entity-driven complex task model 

(ECTM) to automatically generate complex task 

names and related task-intrinsic entities. To 

evaluate our proposed ECTM, we conducted ex-

periments on a large dataset of real-world query 

logs. The experimental results show that our 

ECTM is able to identify a comprehensive com-

plex task name with the task-intrinsic entities and 

help users accomplish the complex task with less 

effort. 

2 Related Work 

Recent studies show that about 75% of search 

sessions searching for complex tasks (Feild and 

Allan, 2013). To help users deal with their com-

plex search tasks, researchers devoted their ef-

forts to understand and identify complex tasks 

from search sessions. Boldi et al. (2002) pro-

posed a graph-based approach to dividing a long-

term search session into search tasks. Guo and 

Agichtein (2010) made the attempt to investigate 

the hierarchical structure of a complex task with 

a series of search actions based on search ses-

sions. Cui et al. (2011) proposed random walk 

based methods to discover search tasks from 

search sessions. Kotov et al. (2011) noticed that a 

multi-goal task may require a user to issue a se-

ries of queries, spanning a long period of time 

and multiple search sessions. Thus, they ad-

dressed the problem of modeling and analyzing 

complex cross-session search tasks. Lucchese et 

al. (2011) tried to identify task-based sessions in 

query logs by semantic-based features extracted 

from Wiktionary and Wikipedia to overcome 

lack of semantic information. Ji et al. (2011) 

proposed a graph-based regularization algorithm 

to predict popular search tasks and simultaneous-

ly classify queries and web pages by building 

two content-based classifiers. White et al. (2013) 

improved the traditional personalization methods 

for search-result re-ranking by exploiting similar 

tasks from other users to re-rank search results. 

Wang et al. (2013) addressed the problem of ex-

tracting cross session tasks and proposed a task 

partition algorithm based on several pairwise 

similarity features.  Raman et al. (2013) investi-

gated intrinsic diversity (ID) for a search task 

and proposed a re-ranking algorithm according to 

the ID tasks.  

   A complex task consists of several sub-tasks, 

and each sub-task goal may be composed of a 

sequence of search queries. Therefore, modeling 

the sub-tasks is necessary for identifying a com-

plex task. Klinkner (2008) proposed a classifica-

tion-based method to divide a single search ses-

sion into tasks and sub-tasks based on the four 

types of features, including time, word, query log 

sequence, and web search. Lin et al. (2012) de-

fined a search goal as an action-entity pair and 

utilized web trigram to generate fine-grained 

search goals. Agichetin et al. (2012) conducted a 

comprehensive analysis of search tasks and clas-

sified them based on several aspects, such as in-

tent, motivation, complexity, work-or-fun, time-

sensitive, and continued-or-not. Jones and 

Yamamoto et al. (2012) proposed an approach to 

mining sub-tasks for a task using query cluster-

ing based on bid phrases provided by advertisers. 

The most important difference between our work 

and previous works is that we further try to gen-

erate task names with related task-intrinsic enti-

ties. To the best of our knowledge, there is no 

existing approach to utilizing microblogs in deal-

ing with task identification and generating hu-

man-interpretable names. 

3 Entity-driven Complex Task Model 

3.1 Problem Formulation 

Given a query  , we aim to identify the complex 

task for the query. Since the single query is not 

able to describe a complex task. Our proposed 

ECTM model introduces an expanded query set 

   for helping identify the task  . Thus,  ( | ) 
can be formulated as follows: 
 

            ( | )  ∑  (  | ) ( |    )              (1) 
 

Since the expanded query set    always contain 
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the input query  , the Equation (1) can thus be 

approximated as: 
 

                ( | )  ∑  (  | ) ( |  )  ,            (2) 
 

where  (  | )  is the query expansion model. 

For  ( |  ) we utilize a set of microblog posts 

  for identifying the complex task   and obtain 

the following equation: 
 

            ( |  )  ∑  ( |  ) ( |    ) .       (3) 
 

For  ( |    ) in Equation (3), the query set    
can be omitted since the microblog post set   

contains   . The Equation (3) can thus be modi-

fied as follows: 
 

                 ( |  )  ∑  ( |  ) ( | ) .        (4) 
 

Finally, the ECTM can be obtained as follows: 
 

   ( | )  ∑  (  | ) ∑  ( |  ) ( | )   ,  (5) 
 

where  (  | )  is the query expansion model, 

 ( |  )  is microblog retrieval model, and 

 ( | ) is task identification model. In the fol-

lowing section, we will describe the three models 

in detail respectively. 

3.2 Query Expansion Model 

In fact, only using a single query is insufficient 

to identify the latent complex task. We thus try to 

extract task-coherent queries from search ses-

sions. According to our observation, users may 

persistently search for the same complex task in 

a period of time. However, users may also simul-

taneously interleave search for multiple different 

tasks (MacKay and Watters, 2008; Liu and Bel-

kin, 2010). Therefore, identifying task-coherent 

queries from search sessions is an important is-

sue. We perform the following processes in order 

to extract task-coherent queries. 

Given a query log and an input query  , we 

first separate queries in the log into search ses-

sions with the time gap of 30 minutes. We ex-

tract search sessions containing the input query   

and thus obtain a set of sessions   . To extract 

task-coherent queries    from the session set   , 

we employ log-linear model (LLM) with the fol-

lowing three useful features: 

Average Query Frequency: In most cases, the 

frequency of queries can reflect their importance. 

To avoid a long session resulting in high query 

frequency, we calculate the normalized query 

frequency as: 
 

            (  )  
 

|   |
 ∑

    (    )

| |     
,     (6) 

 

where     (    ) is the frequency of the query 

   in session  ,     is the sessions containing   , 

| |  is the number of queries in session  , and 

|   | is the number of sessions containing query 

   in the set    . 

Session Coverage: The queries occurring in sev-

eral sessions are possible candidates in terms of 

task-coherence. In order to favor queries occur-

ring in many sessions, we use average session 

frequency, which can be calculated as follows: 
 

            (  )     (
|   |

|  |
),         (7) 

 

where |  | is the number of sessions containing 

the input query   in the set   , |   | is the num-

ber of sessions containing query    in the set    , 

and    ( ) is the exponential function. 

Average Query Distance: Since queries which 

close to the input query in a search session may 

have high task-coherence for the latent complex 

task. We thus use normal distribution to estimate 

the task-coherence for each query: 
 

           (  )  
 

 √  
 
 
  

   ,           (8) 
 

where   is standard deviation (is empirically set 

0.2 in this work),   is the average number of 

queries between    and input query   in sessions. 

We employ log-linear model to calculate the 

probability of each candidate task-coherent query 

based on the features described above: 
 

 (    )  
    (∑     (  )

| |
   )

 (  )
,              (9) 

 

where    is the set of all candidate queries in the 

session set   , | | is the number of used feature 

functions   (  ),   is the set of weighting pa-

rameters    of feature functions, and  (  ) is a 

normalizing factor set to the value  (  )  

∑     (∑     (  )
| |
   )     . 

3.3 Microblog Retrieval Model 

Since the task names are not always observable 

in the expanded query set   , we thus need fur-

ther expanding    by retrieving microblog posts. 

The basic idea is that a microblog post contain-

ing all queries in    may also contain the task 

name (see the example in Table 1). In fact, the 

queries in the query set    usually consist of a 

topic name and a task-intrinsic entity. For exam-

ple a query “北京機票 (Beijing flight ticket)” 

contains a topic “北京(Beijing)” and an entity 

“機票(flight ticket)”. Therefore, we first try to 

extract task-intrinsic entities from the query set 

   by extracting all common nouns in each of 

queries. We can thus obtain a list of task-intrinsic 
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entities    ordered by the occurrence frequency 

of each entity. Since a microblog post may only 

contain a part of entities for a complex task, we 

generate pseudo queries based on all subsets con-

taining two or three entities from top-n entities of 

  . Finally, we use all generated pseudo queries 

to retrieve microblog posts. 

3.4 Task Identification Model 

To identify a suitable task name from retrieved 

microblog posts, there are two steps in this mod-

el, including candidate task name extraction and 

correct task name determination. 

Candidate Task Name Extraction 

For each retrieved microblog post, we first ex-

tract all bigrams and trigrams which match the 

POS (part of speech) patterns listed in Table 2. 

According to our observation, the POS of a task 

topic is usually a proper noun (  ) and the POS 

of a task event is usually a transitive verb (  ) + 

common noun (  ) or an intransitive verb (  ). 
On the other hand, a task topic may be the most 

important term in related search sessions  . More 

specifically, the term with the POS of proper 

noun and the highest occurrence count in the   . 
We thus consider the term as a candidate topic 

(notated as <T>) and adopt two related task POS 

patterns, i.e.,    + <T> +    and <T> +   . 
 

Topic POS Event POS Task POS Pattern 

   
   +       +    +    

     +    

<T> 
   +       + <T> +    
   <T>+    

Table 2. Adopted POS patterns for extracting 

candidate task names from microblog posts. 

Correct Task Name Determination 

Different from long-text documents (e.g., 

webpages), microblog posts are relatively short 

and hard to find features based on special sec-

tions in content (e.g., anchor text, title, or blocks). 

Therefore, we use five efficient features pro-

posed by Zeng et al. (2004) to extract complex 

task names from short-text snippets, such as mi-

croblog post or search-result snippets. The fea-

tures proposed by Zeng et al. including TFIDF, 

phrase length, intra-cluster similarity, cluster en-

tropy, and phrase independence. Furthermore, in 

this work, we plus two practical features task 

name coverage (the percentage of microblog 

posts containing the candidate task name) and 

chi-square score (Manning, 1999). 

Based on the set of extracted candidate task 

names    for the input query  , we also utilized 

LLM to select the potential task names with the 

highest likelihood. The LLM for identifying 

complex task names is given as follows: 
 

                    (   )  
    (∑     ( )

| |
   )

 (  )
,              (10) 

 

where   is the set of weighting parameters    of 

feature functions   ( ), | | is the number of fea-

ture functions   ( ),  (  ) is a normalizing fac-

tor set to ∑     (∑     ( )
| |
   )    . 

4 Experiments 

4.1 Data 

We use a one-month query logs from the Sogou 

search engine, which contains 21,422,773 rec-

ords and 3,163,170 distinct queries. Each record 

contains user ID, query, clicked URL, user 

clicked order for the query, and the search-result 

rank of the clicked URL. We group query rec-

ords into sessions according to user ID. Since a 

complex search task may take a long time to ac-

complish, we used one week as the time gap to 

split sessions, and finally obtained 264,360 ses-

sions. For microblogs, we collected the top 50 

posts for each pseudo query from Weibo. 

   To evaluate the performance of our proposed 

ECTM model, we manually selected 30 testing 

queries from sessions which are searching for 

complex tasks. For each query, we employ three 

annotators to label complex task names. Three 

annotators independently annotated 30 queries. 

We further examined the labeled results, and uni-

fied the similar task names. For instances, “北京

旅遊 (travel to Beijing)” and “北京旅行 (trip to 

Beijing)” were be unified to “北京旅遊 (travel to 

Beijing)”. Table 3 shows an example of testing 

query with labeled task name and task-intrinsic 

entities. 
 

Query 
Labeled 

Task Name 

Labeled Task- 

Intrinsic Entities 

Chinese 

北京旅行社 北京旅遊 
地圖, 天氣, 飯店 

機票, 行程表 

English Translation 

Beijing 

travel 

agency 

travel to 

 Beijing 

map, weather, 

hotel ,flight tick-

ets, schedule 

Table 3. An example query “北京旅行社

(Beijing travel agency)” with labeled task 

name and task-intrinsic entities. 
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4.2 Compared Methods 

We compare our approach with the state-of-the 

art phrase extraction approach from short-text 

snippet (e.g., microblog posts or search result 

snippets): 

 Cluster_Q_RS (baseline): The method is 

proposed by Zeng et al. (2004), which try to 

identify important phrases from search result 

snippets. They proposed five features includ-

ing TFIDF, phrase length, intra-cluster simi-

larity, cluster entropy, and phrase independ-

ence. 
 

 Cluster_EQ_RS: Since the above method 

only aim to identify important phrases from a 

single query, the result should be not fair for 

the problem addressed in this work. We try to 

enhance Cluster_Q_RS using expanded 

search-result snippets proposed in this work. 
 

 ECTM_RS: This method further use our sug-

gested POS patterns for extracting candidate 

task names and use all features proposed in 

Section 3.4.2. 
 

 ECTM_MB: The only difference between 

this method and the above method is that the 

method try to identify task names from mi-

croblog posts. 

4.3 Parameter Selection 

The weights of feature functions are learned by 

five-fold cross-validation based on our labeled 

data. We use the same weights for the all of fol-

lowing experiments. Furthermore, determining 

the number of task-intrinsic entities used in gen-

erating pseudo queries is most critical in this 

work. We show the top n average coverage rate 

and average precision of extracted entities for 

our 30 testing queries in Figure 2.  
 

 

 
 

Figure 2. The precision and coverage rate of top 

n entities used in our microblog retrieval model 
 

  We found that using top 5 task-intrinsic entities 

can achieve the best results. Therefore, for each 

query, we will generate 20 (i.e.,   
    

 ) pseudo 

queries and we retrieved top 10 microblog posts 

for each pseudo queries (totally 200 posts for 

each testing query). 

4.4 Results of Task Name Identification 

We use average top   inclusion rate as the met-

rics. For a set of queries, its top   inclusion rate 

is defined as the percentage of the query set 

whose correct task names occur in the first   

identified task names. The overall results are 

shown in Table 4. We can see that our 

ECTM_MB outperform other methods. The 

ECTM_MB can identify correct task names 

within the first three recommendations. Unsur-

prisingly, Cluster_Q_RS achieved worst inclu-

sion rate. The reason is that Cluster _Q_RS try to 

find comprehensive complex task name based on 

search results from only a single query. Most of 

task names suggested by Cluster_Q_RS are sim-

ple task names i.e., the sub-tasks for the latent 

complex task, such as “預訂機票(book flight 

tickets)”. For ECTM_RS, which is a variation of 

Cluster_EQ_RS, it achieved slightly better per-

formance by adding the restrictions of POS pat-

terns for extracting candidate task names. Since 

some identified task names in Cluster_EQ_RS 

may not semantically suitable, ECTM_RS’s ap-

proach can efficiently deal with this problem. 

Furthermore, we also found that using search-

result snippets may generate worse task names 

than using microblog posts. According to our 

investigating on the two types of the short-text-

snippet resources, the search-result snippets are 

very diverse and task-extrinsic while microblog 

posts are task-coherent in describing real-life 

tasks. 
 

Top k  

inclusion rate 
Top1 Top3 Top5 Top10 

Cluster_Q_RS 0.28 0.33 0.37 0.47 

Cluster_EQ_RS 0.40 0.43 0.50 0.73 

ECTM_RS 0.43 0.43 0.57 0.83 

ECTM_MB 0.87 1 1 1 

Table 4. The results of compared methods 

5 Conclusion 

In this work, we proposed an entity-driven com-

plex task model (ECTM), which addressed the 

problem of improving user experience when 

searching for a complex task. Experimental re-

sults show that ECTM efficiently identifies com-

plex tasks with various task-intrinsic entities. 

Nevertheless, there are still some problems that 

need to be solved. In the future, we will try to 

investigate ranking algorithms for developing a 

novel complex-task-based search engine, which 

can deal with queries based on complex tasks in 

real life. 
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Abstract

The disambiguation algorithm presented in
this paper is implemented in SemLinker, an
entity linking system. First, named entities
are linked to candidate Wikipedia pages by
a generic annotation engine. Then, the al-
gorithm re-ranks candidate links according to
mutual relations between all the named enti-
ties found in the document. The evaluation
is based on experiments conducted on the test
corpus of the TAC-KBP 2012 entity linking
task.

1 Introduction

The Entity Linking (EL) task consists in linking
name mentions of named entities (NEs) found in a
document to their corresponding entities in a ref-
erence Knowledge Base (KB). These NEs can be
of type person (PER), organization (ORG), etc.,
and they are usually represented in the KB by a
Uniform Resource Identifier (URI). Dealing with
ambiguity is one of the key difficulties in this task,
since mentions are often highly polysemous, and
potentially related to many different KB entries.
Various approaches have been proposed to solve
the named entity disambiguation (NED) problem.
Most of them involve the use of surface forms ex-
tracted from Wikipedia. Surface forms consist of
a word or a group of words that match lexical units
like Paris or New York City. They are used as
matching sequences to locate corresponding can-
didate entries in the KB, and then to disambiguate
those candidates using similarity measures.

The NED problem is related to the Word Sense
Disambiguation (WSD) problem (Navigli, 2009),
and is often more challenging since mentions of
NEs can be highly ambiguous. For instance,
names of places can be very common as is Paris,
which refers to 26 different places in Wikipedia.
Hence, systems that attempt to address the NED

problem must include disambiguation resources.
In the context of the Named Entity Recognition
(NER) task, such resources can be generic and
generative. This generative approach does not ap-
ply to the EL task where each entity to be linked to
a semantic description has a specific word context,
marker of its exact identity.

One of the classical approach to conduct the
disambiguation process in NED applications is to
consider the context of the mention to be mapped,
and compare this context with contextual informa-
tion about the potential target entities (see for in-
stance the KIM system (Popov et al., 2003)). This
is usually done using similarity measures (such as
cosine similarity, weighted Jaccard distance, KL
divergence...) that evaluate the distance between
a bag of words related to a candidate annotation,
and the words surrounding the entity to annotate
in the text.

In more recent approaches, it is suggested that
annotation processes based on similarity distance
measures can be improved by making use of other
annotations present in the same document. Such
techniques are referred to as semantic related-
ness (Strube and Ponzetto, 2006), collective dis-
ambiguation (Hoffart et al., 2011b), or joint dis-
ambiguation (Fahrni et al., 2012). The idea is to
evaluate in a set of candidate links which one is
the most likely to be correct by taking the other
links contained in the document into account. For
example, if a NE describes a city name like Paris,
it is more probable that the correct link for this
city name designates Paris (France) rather than
Paris (Texas) if a neighbor entity offers candidate
links semantically related to Paris (France) like
the Seine river or the Champs-Elysées. Such tech-
niques mostly involve exploration of graphs result-
ing of all the candidate annotations proposed for a
given document, and try to rank the best candi-
dates for each annotation using an ontology. The
ontology (like YAGO or DBPedia) provides a pre-
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existing set of potential relations between the enti-
ties to link (like for instance, in our previous exam-
ple, Paris (France) has river Seine) that will
be used to rank the best candidates according to
their mutual presence in the document.

In this paper we explore the capabilities of a dis-
ambiguation algorithm using all the available an-
notation layers of NEs to improve their links. The
paper makes the following novel propositions: 1)
the ontology used to evaluate the relatedness of
candidates is replaced by internal links and cate-
gories from the Wikipedia corpus; 2) the coher-
ence of entities is improved prior to the calcula-
tion of semantic relatedness using a co-reference
resolution algorithm, and a NE label correction
method; 3) the proposed method is robust enough
to improve the performance of existing entity link-
ing annotation engines, which are capable of pro-
viding a set of ranked candidates for each annota-
tion in a document.

This paper is organized as follows. Section 2
describes related works. The proposed method is
presented in Section 3 where we explain how our
SemLinker system prepares documents that con-
tain mentions to disambiguate, then we detail the
disambiguation algorithm. The evaluation of the
complete system is provided in Section 4. Finally,
we discuss the obtained results, and conclude.

2 Related Work

Entity annotation and linking in natural language
text has been extensively studied in NLP research.
A strong effort has been conducted recently by the
TAC-KBP evaluation task (Ji et al., 2010) to cre-
ate standardized corpus, and annotation standards
based on Wikipedia for evaluation and comparison
of EL systems. In this paper, we consider the TAC-
KBP framework. We describe below some recent
approaches proposed for solving the EL task.

2.1 Wikipedia-based Disambiguation Methods

The use of Wikipedia for explicit disambiguation
dates back to (Bunescu and Pasca, 2006) who built
a system that compared the context of a mention
to the Wikipedia categories of an entity candidate.
Lately, (Cucerzan, 2007; Milne and Witten, 2008;
Nguyen and Cao, 2008) extended this framework
by using richer features for similarity comparison.
Some authors like Milne and Witten (2008) uti-
lized machine learning methods rather than a sim-
ilarity function to map mentions to entities. They

also introduced the notion of semantic relatedness.
Alternative propositions were suggested in other
works like (Han and Zhao, 2009) that considered
the relatedness of common noun phrases in a men-
tion context with Wikipedia article names. While
all these approaches focus on semantic relation be-
tween entities, their potential is limited by the sep-
arate mapping of candidate links for each mention.

2.2 Semantic Web Compliant Methods

More recently, several systems have been
launched as web services dedicated to EL tasks.
Most of them are compliant with new emergent
semantic web standards like LinkedData network.
DBPedia Spotlight (Mendes et al., 2011) is a
system that finds mentions of DBpedia (Auer
et al., 2007) resources in a textual document.
Wikimeta (Charton and Gagnon, 2012) is another
system relying on DBpedia. It uses bags of words
to disambiguate semantic entities according to
a cosine similarity algorithm. Those systems
have been compared with commercial ones
like AlchemyAPI, Zemanta, or Open Calais
in (Gangemi, 2013). The study showed that
they perform differently on various essential
aspects of EL tasks (mention detection, linking,
disambiguation). This suggests a wide range of
potential improvements on many aspects of the
EL task. Only some of these systems introduce
the semantic relatedness in their methods like
the AIDA (Hoffart et al., 2011b) system. It
proposes a disambiguation method that combines
popularity-based priors, similarity measures, and
coherence. It relies on the Wikipedia-derived
YAGO2 (Hoffart et al., 2011a) knowledge base.

3 Proposed Algorithm

We propose a mutual disambiguation algorithm
that improves the accuracy of entity links in a doc-
ument by using successive corrections applied to
an annotation object representing this document.
The annotation object is composed of information
extracted from the document along with linguistic
and semantic annotations as described hereafter.

3.1 Annotation Object

Documents are processed by an annotator capable
of producing POS tags for each word, as well as
spans, NE surface forms, NE labels and ranked
candidate Wikipedia URIs for each candidate NE.
For each document D, this knowledge is gathered
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in an array called annotation object, which has ini-
tially one row per document lexical unit. Since the
system focuses on NEs, rows with lexical units
that do not belong to a NE SF are dropped from
the annotation object, and NE SF are refined as de-
scribed in (Charton et al., 2014). When NE SF are
spanned over several rows, these rows are merged
into a single one. Thus, we consider an annotation
object AD, which is an array with a row for each
NE, and columns storing related knowledge.

If n NEs were annotated in D, then AD has n
rows. If l candidate URIs are provided for each
NE, then AD has (l + 4) columns cu,u∈{1,l+4}.
Columns c1 to cl store Wikipedia URIs associated
with NEs, ordered by decreasing values of likeli-
hood. Column cl+1 stores the offset of the NEs,
cl+2 stores their surface forms, cl+3 stores the NE
labels (PER, ORG, ...), and cl+4 stores the (vec-
tors of) POS tags associated with the NE surface
forms. AD contains all the available knowledge
about the NEs found inD. Before being processed
by the disambiguation module,AD is dynamically
updated by correction processes.

3.2 Named Entity Label Correction
To support the correction process based on co-
reference chains, the system tries to correct NE
labels for all the NEs listed in the annotation ob-
ject. The NE label correction process assigns the
same NE label to all the NEs associated with the
same first rank URI. For all the rows inAD, sets of
rows with identical first rank URIs are considered.
Then, for each set, NE labels are counted per type,
and all the rows in a same set are updated with the
most frequent NE label found in the set, i.e. all the
NEs in this set are tagged with this label.

3.3 Correction Based on Co-reference Chains
First rank candidate URIs are corrected by a pro-
cess that relies on co-reference chains found in
the document. The co-reference detection is con-
ducted using the information recorded in the anno-
tation object. Among the NEs present in the docu-
ment, the ones that co-refer are identified and clus-
tered by logical rules applied to the content of the
annotation object. When a co-reference chain of
NEs is detected, the system assigns the same URI
to all the members of the chain. This URI is se-
lected through a decision process that gives more
weight to longer surface forms and frequent URIs.
The following example illustrates an application
of this correction process:

Three sentences are extracted from a document
about Paris, the French capital. NEs are indicated
in brackets, first rank URIs and surface forms are
added below the content of each sentence.
- [Paris] is famous around the world.
URI1: http://en.wikipedia.org/wiki/Paris Hilton

NE surface form: Paris
- The [city of Paris] attracts millions of tourists.
URI1: http://en.wikipedia.org/wiki/Paris

NE surface form: city of Paris

- The [capital of France] is easy to reach by train.
URI1: http://en.wikipedia.org/wiki/Paris

NE surface form: capital of France

The three NEs found in these sentences com-
pose a co-reference chain. The second NE has
a longer surface form than the first one, and
its associated first rank URI is the most fre-
quent. Hence, the co-reference correction pro-
cess will assign the right URI to the first NE
(URI1: http://en.wikipedia.org/wiki/Paris), which
was wrongly linked to the actress Paris Hilton.

3.4 Mutual Disambiguation Process

The extraction of an accurate link is a process oc-
curring after the URI annotation of NEs in the
whole document. The system makes use of all
the semantic content stored in AD to locally im-
prove the precision of each URI annotation in the
document. The Mutual Disambiguation Process
(MDP) relies on the graph of all the relations (in-
ternal links, categories) between Wikipedia con-
tent related to the document annotations.

A basic example of semantic relatedness that
should be captured is explained hereafter. Let us
consider the mention IBM in a given document.
Candidate NE annotations for this mention can be
International Business Machine or International
Brotherhood of Magicians. But if the IBM men-
tion co-occurs with a Thomas Watson, Jr mention
in the document, there will probably be more links
between the International Business Machine and
Thomas Watson, Jr related Wikipedia pages than
between the International Brotherhood of Magi-
cians and Thomas Watson, Jr related Wikipedia
pages. The purpose of the MDP is to capture this
semantic relatedness information contained in the
graph of links extracted from Wikipedia pages re-
lated to each candidate annotation.

In MDP, for each Wikipedia URI candidate an-
notation, all the internal links and categories con-
tained in the source Wikipedia document related
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to this URI are collected. This information will be
used to calculate a weight for each of the l can-
didate URI annotations of each mention. For a
given NE, this weight is expected to measure the
mutual relations of a candidate annotation with all
the other candidate annotations of NEs in the doc-
ument. The input of the MDP is an annotation
object AD with n rows, obtained as explained in
Section 3.1. For all i ∈ [[1, n]], k ∈ [[1, l]], we build
the set Sk

i , composed of the Wikipedia URIs and
categories contained in the source Wikipedia doc-
ument related to the URI stored in AD[i][k] that
we will refer to as URIki to ease the reading.
Scoring:
For all i, j ∈ [[1, n]], k ∈ [[1, l]], we want to cal-
culate the weight of mutual relations between the
candidate URIki and all the first rank candidates
URI1j for j 6= i. The calculation combines two
scores that we called direct semantic relation score
(dsr score) and common semantic relation score
(csr score):

- the dsr score for URIki sums up the number of
occurrences of URIki in S1

j for all j ∈ [[1, n]]−{i}.
- the csr score for URIki sums up the number of
common URIs and categories between Sk

i and S1
j

for all j ∈ [[1, n]]− {i}.
We assumed the dsr score was much more

semantically significant than the csr score, and
translated this assumption in the weight calcula-
tion by introducing two correction parameters α
and β used in the final scoring calculation.
Re-ranking:
For all i ∈ [[1, n]], for each set of URIs {URIki , k ∈
[[1, l]]}, the re-ranking process is conducted ac-
cording to the following steps:
For all i ∈ I ,

1. ∀k ∈ [[1, l]], calculate dsr score(URIki )

2. ∀k ∈ [[1, l]], calculate csr score(URIki )

3. ∀k ∈ [[1, l]], calculate
mutual relation score(URIki ) =
α.dsr score(URIki )+β.csr score(URIki )

4. re-order {URIki , k ∈ [[1, l]]}, by
decreasing order of mutual relation score.

In the following, we detail the MDP in the con-
text of a toy example to illustrate how it works.
The document contains two sentences, NE men-
tions are in bold:

IBM has 12 research laboratories

worldwide. Thomas J. Watson, Jr.

became president of the company.

For the first NE mention [IBM], AD contains
two candidate URIs identifying two different re-
sources:

[IBM] URI11 ≡ International Brotherhood of Magicians

URI21 ≡ International Business Machines Corporation

For the second NE mention [Thomas J.
Watson, Jr.], AD contains the following can-
didate URI, which is ranked first:

[Thomas J. Watson, Jr.] URI12 ≡ Thomas Watson, Jr.

S1
1 gathers URIs and categories contained in the

International Brotherhood of Magicians Wikipedia
page. S2

1 is associated to the International Business

Machines Corporation, and S1
2 to the Thomas Watson,

Jr. page. dsr score(URI11) sums up the number of
occurrences of URI11 in S1

j for all j ∈ [[1, n]]−{1}.
Hence, in the current example, dsr score(URI11) is
the number of occurrences of URI11 in S1

2 , namely
the number of times the International Brotherhood

of Magicians are cited in the Thomas Watson, Jr.

page. Similarly, dsr score(URI21) is equal to the
number of times the International Business Machines

Corporation is cited in the Thomas Watson, Jr. page.
csr score(URI11) sums up the number of common
URIs and categories between S1

1 and S1
2 , i.e. the

number of URIs and categories appearing in both
International Brotherhood of Magicians and Thomas

Watson, Jr. pages. csr score(URI21) counts the
number of URIs and categories appearing in both
International Business Machines Corporation and
Thomas Watson, Jr. pages.
After calculation, we have:
mutual relation score(URI11) < mutual relation score(URI21)

The candidate URIs for [IBM] are re-ranked
accordingly, and International Business Machines

Corporation becomes its first rank candidate.

4 Experiments and Results

SemLinker has been evaluated on the TAC-KBP
2012 EL task (Charton et al., 2013). In this task,
mentions of entities found in a document collec-
tion must be linked to entities in a reference KB, or
to new named entities discovered in the collection.
The document collection built for KBP 2012 con-
tains a combination of newswire articles (News),
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SemLinker TAC-KBP2012 systems
modules no disambiguation MDP only all modules 1st 2nd 3rd median
Category B3+P B3+R B3+F1 B3+P B3+R B3+F1 B3+P B3+R B3+F1 B3+F1 B3+F1 B3+F1 B3+F1

Overall 0.620 0.633 0.626 0.675 0.681 0.678 0.694 0.695 0.695 0.730 0.699 0.689 0.536
PER 0.771 0.791 0.781 0.785 0.795 0.790 0.828 0.838 0.833 0.809 0.840 0.714 0.645
ORG 0.600 0.571 0.585 0.622 0.578 0.599 0.621 0.569 0.594 0.715 0.615 0.717 0.485
GPE 0.412 0.465 0.437 0.570 0.628 0.598 0.574 0.626 0.599 0.627 0.579 0.614 0.428
News 0.663 0.691 0.677 0.728 0.748 0.738 0.750 0.767 0.758 0.782 0.759 0.710 0.574
Web 0.536 0.520 0.528 0.572 0.550 0.561 0.585 0.556 0.570 0.630 0.580 0.508 0.491

Table 1: SemLinker results on the TAC-KBP 2012 test corpus with/out disambiguation modules, and
three best results and median from TAC-KBP 2012 systems.

posts to blogs and newsgroups (Web). Given a
query that consists of a document with a specified
name mention of an entity, the task is to determine
the correct node in the reference KB for the entity,
adding a new node for the entity if it is not already
in the reference KB. Entities can be of type person
(PER), organization (ORG), or geopolitical entity
(GPE). The reference knowledge base is derived
from an October 2008 dump of English Wikipedia,
which includes 818,741 nodes. Table 2 provides a
breakdown of the queries per categories of entities,
and per type of documents.

Category All PER ORG GPE News Web
# queries 2226 918 706 602 1471 755

Table 2: Breakdown of the TAC-KBP 2012 test
corpus queries according to entity types, and doc-
ument categories.

A complete description of these linguistic re-
sources can be found in (Ellis et al., 2011). For
the sake of reproducibility, we applied the KBP
scoring metric (B3 + F ) described in (TAC-KBP,
2012), and we used the KBP scorer1.

The evaluated system makes use of the
Wikimeta annotation engine. The maximum num-
ber of candidate URIs is l = 15. The MDP correc-
tion parameters α and β described in Section 3.4
have been experimentally set to α = 10, β = 2.
Table 1 presents the results obtained by the sys-
tem in three configurations. In the first column,
the system is evaluated without the disambigua-
tion module. In the second column, we applied
the MDP without correction processes. The sys-
tem with the complete disambiguation module ob-
tained the results provided in the third column.
The three best results and the median from TAC-
KBP 2012 systems are shown in the remaining
columns for the sake of comparison.

1http://www.nist.gov/tac/2013/KBP/
EntityLinking/tools.html

We observe that the complete algorithm (co-
references, named entity labels and MDP) pro-
vides the best results on PER NE links. On GPE
and ORG entities, the simple application of MDP
without prior corrections obtains the best results.
A slight loss of accuracy is observed on ORG NEs
when the MDP is applied with corrections. For
those three categories of entities, we show that the
complete system improves the performance of a
simple algorithm using distance measures. Results
on categories News and Web show that the best
performance on the whole KBP corpus (without
distinction of NE categories) is obtained with the
complete algorithm.

5 Conclusion

The presented system provides a robust seman-
tic disambiguation method, based on mutual re-
lation of entities inside a document, using a stan-
dard annotation engine. It uses co-reference, NE
normalization methods, and Wikipedia internal
links as mutual disambiguation resource to im-
prove the annotations. We show that our propo-
sition improves the performance of a standard an-
notation engine applied to the TAC-KBP evalua-
tion framework. SemLinker is fully implemented,
and publicly released as an open source toolkit
(http://code.google.com/p/semlinker). It
has been deployed in the TAC-KBP 2013 evalu-
ation campaign. Our future work will integrate
other annotation engines in the system architecture
in a collaborative approach.
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Abstract

Many NLP applications rely on type sys-
tems to represent higher-level classes.
Domain-specific ones are more informa-
tive, but have to be manually tailored to
each task and domain, making them in-
flexible and expensive. We investigate a
largely unsupervised approach to learning
interpretable, domain-specific entity types
from unlabeled text. It assumes that any
common noun in a domain can function as
potential entity type, and uses those nouns
as hidden variables in a HMM. To con-
strain training, it extracts co-occurrence
dictionaries of entities and common nouns
from the data. We evaluate the learned
types by measuring their prediction ac-
curacy for verb arguments in several do-
mains. The results suggest that it is pos-
sible to learn domain-specific entity types
from unlabeled data. We show significant
improvements over an informed baseline,
reducing the error rate by 56%.

1 Introduction

Many NLP applications, such as question answer-
ing (QA) or information extraction (IE), use type
systems to represent relevant semantic classes.
Types allow us to find similarities at a higher level
to group lexically different entities together. This
helps to filter out candidates that violate certain
constraints (e.g., in QA, if the intended answer
type is PERSON, we can ignore all candidate an-
swers with a different type), but is also used for
feature generation and fact-checking.

A central question is: where do the types
come from? Typically, they come from a hand-
constructed set. This has some disadvantages.
Domain-general types, such as named entities or
WordNet supersenses (Fellbaum, 1998), often fail

to capture critical domain-specific information (in
the medical domain, we might want ANTIBI-
OTIC, SEDATIVE, etc., rather than just ARTI-
FACT). Domain-specific types perform much bet-
ter (Ferrucci et al., 2010), but must be manually
adapted to each new domain, which is expensive.
Alternatively, unsupervised approaches (Ritter et
al., 2010) can be used to learn clusters of similar
words, but the resulting types (=cluster numbers)
are not human-interpretable, which makes analy-
sis difficult. Furthermore, it requires us to define
the number of clusters beforehand.

Ideally, we would like to learn domain-specific
types directly from data. To this end, pattern-
based approaches have long been used to induce
type systems (Hearst, 1992; Kozareva et al., 2008).
Recently, Hovy et al. (2011) proposed an ap-
proach that uses co-occurrence patterns to find en-
tity type candidates, and then learns their appli-
cability to relation arguments by using them as la-
tent variables in a first-order HMM. However, they
only evaluate their method using human sensibil-
ity judgements for one domain. While this shows
that the types are coherent, it does not tell us much
about their applicability.

We extend their approach with three important
changes:

1. we evaluate the types by measuring accuracy
when using them in an extrinsic task,

2. we evaluate on more than one domain, and

3. we explore a variety of different models.

We measure prediction accuracy when us-
ing the learned types in a selectional restriction
task for frequent verbs. E.g., given the rela-
tion throw(X, pass) in the football domain, we
compare the model prediction to the gold data
X=QUARTERBACK. The results indicate that the
learned types can be used to in relation extraction
tasks.
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Our contributions in this paper are:

• we empirically evaluate an approach to learn-
ing types from unlabeled data

• we investigate several domains and models

• the learned entity types can be used to predict
selectional restrictions with high accuracy

2 Related Work

In relation extraction, we have to identify the re-
lation elements, and then map the arguments to
types. We follow an open IE approach (Banko and
Etzioni, 2008) and use dependencies to identify
the elements. In contrast to most previous work
(Pardo et al., 2006; Yao et al., 2011; Yao et al.,
2012), we have no pre-defined set of types, but
try to learn it along with the relations. Some ap-
proaches use types from general data bases such
as Wikipedia, Freebase, etc. (Yan et al., 2009;
Eichler et al., 2008; Syed and Viegas, 2010), side-
stepping the question how to construct those DBs
in the first place. We are less concerned with ex-
traction performance, but focus on the accuracy of
the learned type system by measuring how well it
performs in a prediction task.

Talukdar et al. (2008) and Talukdar and Pereira
(2010) present graph-based approaches to the sim-
ilar problem of class-instance learning. While
this provides a way to discover types, it requires
a large graph that does not easily generalize to
new instances (transductive), since it produces no
predictive model. The models we use are trans-
ductive and can be applied to unseen data. Our
approach follows Hovy et al. (2011). However,
they only evaluate one model on football by col-
lecting sensibility ratings from Mechanical Turk.
Our method provides extrinsic measures of perfor-
mance on several domains.

3 Model

Our goal is to find semantic type candidates in the
data, and apply them in relation extraction to see
which ones are best suited. We restrict ourselves
to verbal relations. We build on the approach by
Hovy et al. (2011), which we describe briefly be-
low. It consists of two parts: extracting the type
candidates and fitting the model.

The basic idea is that semantic types are usu-
ally common nouns, often frequent ones from the

y3y1 y2

x3x1

Montana throw ball

y3y1 y2

x3x2

throw Montana ball

quarterback
player throw ball

throw
quarterback
player ball

a)

b)Figure 1: Example of input sentence x and out-
put types for the HMM. Note that the verb type is
treated as observed variable.

domain at hand. Thus all common nouns are pos-
sible types, and can be used as latent variables in
an HMM. By estimating emission and transition
parameters with EM, we can learn the subset of
nouns to apply.

However, assuming the set of all common
nouns as types is intractable, and would not al-
low for efficient learning. To restrict the search
space and improve learning, we first have to learn
which types modify entities and record their co-
occurrence, and use this as dictionary.

Kleiman: professor:25, expert:13, (specialist:1)

Tilton: executive:37, economist:17, (chairman:4, presi-

dent:2)

Figure 2: Examples of dictionary entries with
counts. Types in brackets are not considered.

Dictionary Construction The number of com-
mon nouns in a domain is generally too high to
consider all of them for every entity. A com-
mon way to restrict the number of types is to pro-
vide a dictionary that lists all legal types for each
entity (Merialdo, 1994; Ravi and Knight, 2009;
Täckström et al., 2013). To construct this dictio-
nary, we collect for each entity (i.e., a sequence
of words labeled with NNP or NNPS tags) in our
data all common nouns (NN, NNS) that modify it.
These are

1. nominal modifiers (“judge Scalosi ...”),

2. appositions (“Tilton, a professor at ...”), and

3. copula constructions (“Finton, who is the in-
vestor ...”).

These modifications can be collected from the de-
pendency parse trees. For each entity, we store the
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type candidates and their associated counts. See
Figure 2 for examples. We only consider types
observed more than 10 times. Any entity with-
out type information, as well as dictionary entities
with only singleton types are treated as unknown
tokens (“UNK”). We map UNK to the 50 most
common types in the dictionary. Verbs are con-
sidered to each have their own type, i.e., token and
label for verbs are the same.
We do not modify this step.

Original Model Hovy et al. (2011) construct
a HMM using subject-verb-object (SVO) parse
triples as observations, and the type candidates as
hidden variables. Similar models have been used
in (Abney and Light, 1999; Pardo et al., 2006).
We estimate the free model parameters with EM
(Dempster et al., 1977), run for a fixed number of
iterations (30) or until convergence.

Note that Forward-backward EM has time com-
plexity of O(N2T ), where N is the number of
states, and T the number of time steps. T = 3 in
the model formulations used here, but N is much
larger than typically found in NLP tasks (see also
Table 3). The only way to make this tractable is
to restrict the free parameters the model needs to
estimate to the transitions.

The model is initialized by jointly normalizing
1 the dictionary counts to obtain the emission pa-
rameters, which are then fixed (except for the un-
known entities (P (word = UNK|type = ·)). Tran-
sition parameters are initialized uniformly (re-
stricted to potentially observable type sequences),
and kept as free parameters for the model to opti-
mize.

Common nouns can be both hidden variables
and observations in the model, so they act like an-
notated items: their legal types are restricted to the
identity. All entities are thus constrained by the
dictionary, as in (Merialdo, 1994). To further con-
strain the model, only the top three types of each
entity are considered. Since the type distribution
typically follows a Zipf curve, this still captures
most of the information.

1This preserves the observed entity-specific distributions.
Under conditional normalization, the type candidates from
frequent entities tend to dominate those of infrequent entities.
I.e., the model favors an unlikely candidate for entity a if it is
frequent for entity b.

The model can be fully specified as

P (x,y) = P (y1)·P (x1|y1)
3∏

i=2

P (yi|yi−1)·P (xi|yi)

(1)
where x is an input triple of a verb and its argu-
ments, and y a sequence of types.

4 Extending the Model

The model used by Hovy et al. (2011) was a sim-
ple first order HMM, with the elements in SVO or-
der (see Figure 3a). We observe two points: we al-
ways deal with the same number of elements, and
we have observed variables. We can thus move
from a sequential model to a general graphical
model by adding transitions and re-arranging the
structure.

Since we do not model verbs (they each have
their identity as type), they act like observed vari-
ables. We can thus move them in first position and
condition the subject on it (3b).

y3y1 y2

OVS

y2y1

O

V

S

V

y2y1

OS

V

y2y1

OS

a) b)

c) d)

Figure 3: Original SVO. model (a), modified VSO
order (b), extension to general models (c and d)

By adding additional transitions, we can con-
strain the latent variables further. This is similar
to moving from a first to a second order HMM. In
contrast to the original model, we also distinguish
between unknown entities in the first and second
argument position.

The goal of these modifications is to restrict the
number of potential values for the argument po-
sitions. This allows us to use the models to type
individual instances. In contrast, the objective in
Hovy et al. (2011) was to collect frequent relation
templates from a domain to populate a knowledge
base.

The modifications presented here extend to
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Football Finances Law
system arg1 arg2 avg ∆BL arg1 arg2 avg ∆BL arg1 arg2 avg ∆BL
baseline 0.28 0.26 0.27 — 0.39 0.42 0.41 — 0.37 0.32 0.35 —
orig. 0.05 0.23 0.14 –0.13 0.08 0.39 0.23 –0.18 0.06 0.31 0.18 –0.17
VSO, seq. 0.37 0.28 0.32 +0.05 0.38 0.45 0.41 0.0 0.45 0.37 0.41 +0.06
SVO, net 0.63 0.60 0.62 +0.35 0.55 0.63 0.59 +0.18 0.69 0.68 0.68 +0.33
VSO, net 0.66 0.58 0.62 +0.35 0.61 0.54 0.57 +0.16 0.71 0.62 0.66 +0.31

Table 1: Accuracy for most frequent sense baseline and different models on three domains. Italic num-
bers denote significant improvement over baseline (two-tailed t-test at p < 0.01). ∆BL = difference to
baseline.

Football Finances Law
system arg1 arg2 avg arg1 arg2 avg arg1 arg2 avg
orig. 0.17 0.38 0.27 0.18 0.52 0.35 0.17 0.48 0.32
VSO, seq. 0.56 0.42 0.49 0.55 0.58 0.57 0.61 0.51 0.56
SVO, net 0.75 0.69 0.72 0.68 0.73 0.71 0.78 0.77 0.78
VSO, net 0.78 0.67 0.72 0.74 0.66 0.70 0.81 0.72 0.76

Table 2: Mean reciprocal rank for models on three domains.

verbs with more than two arguments, but in the
present paper, we focus on binary relations.

5 Experiments

Since the labels are induced dynamically from the
data, traditional precision/recall measures, which
require a known ground truth, are difficult to ob-
tain. Hovy et al. (2011) measured sensibility by
obtaining human ratings and measuring weighted
accuracies over all relations. While this gives an
intuition of the general methodology, it is harder
to put in context. Here, we want to evaluate the
model’s performance in a downstream task. We
measure its ability to predict the correct types for
verbal arguments. We evaluate on three different
domains.

As test case, we use a cloze test, or fill-in-the-
blank. We select instances that contain a type-
candidate word in subject or object position and
replace that word with the unknown token. We can
then compare the model’s prediction to the origi-
nal word to measure accuracy.

5.1 Data

Like Yao et al. (2012) and Hovy et al. (2011), we
derive our data from the New York Times (NYT)
corpus (Sandhaus, 2008). It contains several years
worth of articles, manually annotated with meta-
data such as author, content, etc. Similar to Yao
et al. (2012), we use articles whose content meta-

data field contains certain labels to distinguish data
from different domains. We use the labels Foot-
ball2, Law and Legislation, and Finances.

We remove meta-data and lists, tokenize, parse,
and lemmatize all articles. We then automatically
extract subject-verb-object (SVO) triples from the
parses, provided the verb is a full verb. Similarly
to (Pardo et al., 2006), we focus on the top 100
full verbs for efficiency reasons, though nothing
in our approach prevents us from extending it to
all verbs. For each domain, we select all instances
which have a potential type (common noun) in at
least one argument position. These serve as cor-
pus.

Football Finances Law
unique types 7,139 18,186 10,618
unique entities 38,282 27,528 12,782

Table 3: Statistics for the three domains.

As test data, we randomly select a subset of
1000 instances for each argument, provided they
contain one of the 50 most frequent types in sub-
ject or object position, such as player in “player
throw pass”. This serves as gold data. We then
replace those types by UNK (i.e., we get “UNK
throw pass”) and use this as test set for our model.3

Table 3 shows that the domains vary with re-
2The data likely differs from Hovy et al. (2011).
3We omit cases with two unknown arguments, since this
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spect to the ratio of unique types to unique enti-
ties. Football uses many different entities (e.g.,
team and player names), but has few types (e.g.,
player positions), while the other domains use
more types, but fewer entities (e.g., company
names, law firms, etc.).

5.2 Evaluation

We run Viterbi decoding on each test set with our
trained model to predict the most likely type for
the unknown entities. We then compare these pre-
dictions to the type in the respective gold data and
compute the accuracy for each argument position.
As baseline, we predict the argument types most
frequently observed for the particular verb in train-
ing, e.g., predict PLAYER as subject of tackle in
football. We evaluate the influence of the different
model structures on performance.

6 Results

Table 1 shows the accuracy of the different mod-
els in the prediction task for the three different do-
mains. The low results of the informed baseline
indicate the task complexity.

We note that the original model, a bigram HMM
with SVO order (Figure 3a), fails to improve accu-
racy over the baseline (although its overall results
were judged sensible). Changing the input order
to VSO (Figure 3b) improves accuracy for both
arguments over SVO order and the baseline, albeit
not significantly. The first argument gains more,
since conditioning the subject type on the (unam-
biguous) verb is more constrained than starting out
with the subject. Conditioning the object directly
upon the subject creates sparser bigrams, which
capture “who does what to whom”.

Moving from the HMMs to a general graphi-
cal model structure (Figures 3c and d) creates a
sparser distribution and significantly improves ac-
curacy across the board. Again, the position of the
verb makes a difference: in SVO order, accuracy
for the second argument is better, while in VSO
order, accuracy for the subject increases. This in-
dicates that direct conditioning on the verb is the
strongest predictor. Intuitively, knowing the verb
restricts the possible arguments much more than
knowing the arguments restrict the possible verbs
(the types of entities who can throw something are

becomes almost impossible to predict without further context,
even for humans (compare “UNK make UNK”).

limited, but knowing that the subject is a quarter-
back still allows all kinds of actions).

We also compute the mean reciprocal rank
(MRR) for each condition (see Table 2). MRR de-
notes the inverse rank in the model’s k-best output
at which the correct answer occurs, i.e., 1

k . The
result gives us an intuition of “how far off” the
model predictions are. Across domains, the cor-
rect answer is found on average among the top
two (rank 1.36). Note that since MRR require k-
best outputs, we cannot compute a measure for the
baseline.

7 Conclusion

We evaluated an approach to learning domain-
specific interpretable entity types from unlabeled
data. Type candidates are collected from patterns
and modeled as hidden variables in graphical mod-
els. Rather than using human sensibility judge-
ments, we evaluate prediction accuracy for selec-
tional restrictions when using the learned types in
three domains. The best model improves 35 per-
centage points over an informed baseline. On av-
erage, we reduce the error rate by 56%. We con-
clude that it is possible to learn interpretable type
systems directly from data.
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Abstract

We present an approach to cross-language
retrieval that combines dense knowledge-
based features and sparse word transla-
tions. Both feature types are learned di-
rectly from relevance rankings of bilin-
gual documents in a pairwise ranking
framework. In large-scale experiments for
patent prior art search and cross-lingual re-
trieval in Wikipedia, our approach yields
considerable improvements over learning-
to-rank with either only dense or only
sparse features, and over very competitive
baselines that combine state-of-the-art ma-
chine translation and retrieval.

1 Introduction

Cross-Language Information Retrieval (CLIR) for
the domain of web search successfully lever-
ages state-of-the-art Statistical Machine Transla-
tion (SMT) to either produce a single most prob-
able translation, or a weighted list of alternatives,
that is used as search query to a standard search
engine (Chin et al., 2008; Ture et al., 2012). This
approach is advantageous if large amounts of in-
domain sentence-parallel data are available to train
SMT systems, but relevance rankings to train re-
trieval models are not.

The situation is different for CLIR in special
domains such as patents or Wikipedia. Paral-
lel data for translation have to be extracted with
some effort from comparable or noisy parallel data
(Utiyama and Isahara, 2007; Smith et al., 2010),
however, relevance judgments are often straight-
forwardly encoded in special domains. For ex-
ample, in patent prior art search, patents granted
at any patent office worldwide are considered rel-
evant if they constitute prior art with respect to
the invention claimed in the query patent. Since
patent applicants and lawyers are required to list

relevant prior work explicitly in the patent appli-
cation, patent citations can be used to automati-
cally extract large amounts of relevance judgments
across languages (Graf and Azzopardi, 2008). In
Wikipedia search, one can imagine a Wikipedia
author trying to investigate whether a Wikipedia
article covering the subject the author intends to
write about already exists in another language.
Since authors are encouraged to avoid orphan arti-
cles and to cite their sources, Wikipedia has a rich
linking structure between related articles, which
can be exploited to create relevance links between
articles across languages (Bai et al., 2010).

Besides a rich citation structure, patent docu-
ments and Wikipedia articles contain a number
of further cues on relatedness that can be ex-
ploited as features in learning-to-rank approaches.
For monolingual patent retrieval, Guo and Gomes
(2009) and Oh et al. (2013) advocate the use of
dense features encoding domain knowledge on
inventors, assignees, location and date, together
with dense similarity scores based on bag-of-word
representations of patents. Bai et al. (2010) show
that for the domain of Wikipedia, learning a sparse
matrix of word associations between the query and
document vocabularies from relevance rankings is
useful in monolingual and cross-lingual retrieval.
Sokolov et al. (2013) apply the idea of learning
a sparse matrix of bilingual phrase associations
from relevance rankings to cross-lingual retrieval
in the patent domain. Both show improvements
of learning-to-rank on relevance data over SMT-
based approaches on their respective domains.

The main contribution of this paper is a thor-
ough evaluation of dense and sparse features
for learning-to-rank that have so far been used
only monolingually or only on either patents or
Wikipedia. We show that for both domains,
patents and Wikipedia, jointly learning bilingual
sparse word associations and dense knowledge-
based similarities directly on relevance ranked
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data improves significantly over approaches that
use either only sparse or only dense features, and
over approaches that combine query translation
by SMT with standard retrieval in the target lan-
guage. Furthermore, we show that our approach
can be seen as supervised model combination
that allows to combine SMT-based and ranking-
based approaches for further substantial improve-
ments. We conjecture that the gains are due to
orthogonal information contributed by domain-
knowledge, ranking-based word associations, and
translation-based information.

2 Related Work

CLIR addresses the problem of translating or pro-
jecting a query into the language of the document
repository across which retrieval is performed. In
a direct translation approach (DT), a state-of-the-
art SMT system is used to produce a single best
translation that is used as search query in the target
language. For example, Google’s CLIR approach
combines their state-of-the-art SMT system with
their proprietary search engine (Chin et al., 2008).

Alternative approaches avoid to solve the hard
problem of word reordering, and instead rely on
token-to-token translations that are used to project
the query terms into the target language with a
probabilistic weighting of the standard term tf-
idf scheme. Darwish and Oard (2003) termed
this method the probabilistic structured query ap-
proach (PSQ). The advantage of this technique
is an implicit query expansion effect due to the
use of probability distributions over term trans-
lations (Xu et al., 2001). Ture et al. (2012)
brought SMT back into this paradigm by pro-
jecting terms from n-best translations from syn-
chronous context-free grammars.

Ranking approaches have been presented by
Guo and Gomes (2009) and Oh et al. (2013).
Their method is a classical learning-to-rank setup
where pairwise ranking is applied to a few hun-
dred dense features. Methods to learn sparse
word-based translation correspondences from su-
pervised ranking signals have been presented by
Bai et al. (2010) and Sokolov et al. (2013). Both
approaches work in a cross-lingual setting, the for-
mer on Wikipedia data, the latter on patents.

Our approach extends the work of Sokolov et
al. (2013) by presenting an alternative learning-
to-rank approach that can be used for supervised
model combination to integrate dense and sparse

features, and by evaluating both approaches on
cross-lingual retrieval for patents and Wikipedia.
This relates our work to supervised model merg-
ing approaches (Sheldon et al., 2011).

3 Translation and Ranking for CLIR

SMT-based Models. We will refer to DT and
PSQ as SMT-based models that translate a query,
and then perform monolingual retrieval using
BM25. Translation is agnostic of the retrieval task.

Linear Ranking for Word-Based Models. Let
q ∈ {0, 1}Q be a query and d ∈ {0, 1}D be a doc-
ument where the jth vector dimension indicates the
occurrence of the jth word for dictionaries of size
Q and D. A linear ranking model is defined as

f(q,d) = q>Wd =
Q∑

i=1

D∑
j=1

qiWijdj ,

where W ∈ IRQ×D encodes a matrix of ranking-
specific word associations (Bai et al., 2010) . We
optimize this model by pairwise ranking, which
assumes labeled data in the form of a set R of tu-
ples (q,d+,d−), where d+ is a relevant (or higher
ranked) document and d− an irrelevant (or lower
ranked) document for query q. The goal is to
find a weight matrix W such that an inequality
f(q,d+) > f(q,d−) is violated for the fewest
number of tuples from R. We present two meth-
ods for optimizing W in the following.

Pairwise Ranking using Boosting (BM). The
Boosting-based Ranking baseline (Freund et al.,
2003) optimizes an exponential loss:

Lexp =
∑

(q,d+,d−)∈R
D(q,d+,d−)ef(q,d−)−f(q,d+),

whereD(q,d+,d−) is a non-negative importance
function on tuples. The algorithm of Sokolov et
al. (2013) combines batch boosting with bagging
over a number of independently drawn bootstrap
data samples fromR. In each step, the single word
pair feature is selected that provides the largest de-
crease of Lexp. The found corresponding models
are averaged. To reduce memory requirements we
used random feature hashing with the size of the
hash of 30 bits (Shi et al., 2009). For regulariza-
tion we rely on early stopping.

Pairwise Ranking with SGD (VW). The sec-
ond objective is an `1-regularized hinge loss:

Lhng =
∑

(q,d+,d−)∈R

(
f(q,d+)− f(q,d−)

)
+

+ λ||W ||1,
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where (x)+ = max(0, 1 − x) and λ is the regu-
larization parameter. This newly added model uti-
lizes the standard implementation of online SGD
from the Vowpal Wabbit (VW) toolkit (Goel et al.,
2008) and was run on a data sample of 5M to 10M
tuples from R. On each step, W is updated with
a scaled gradient vector ∇WLhng and clipped to
account for `1-regularization. Memory usage was
reduced using the same hashing technique as for
boosting.

Domain Knowledge Models. Domain knowl-
edge features for patents were inspired by Guo
and Gomes (2009): a feature fires if two patents
share similar aspects, e.g. a common inventor. As
we do not have access to address data, we omit
geolocation features and instead add features that
evaluate similarity w.r.t. patent classes extracted
from IPC codes. Documents within a patent sec-
tion, i.e. the topmost hierarchy, are too diverse
to provide useful information but more detailed
classes and the count of matching classes do.

For Wikipedia, we implemented features that
compare the relative length of documents, num-
ber of links and images, the number of common
links and common images, and Wikipedia cat-
egories: Given the categories associated with a
foreign query, we use the language links on the
Wikipedia category pages to generate a set of
“translated” English categories S. The English-
side category graph is used to construct sets of
super- and subcategories related to the candidate
document’s categories. This expansion is done in
both directions for two levels resulting in 5 cat-
egory sets. The intersection between target set
Tn and the source category set S reflects the cat-
egory level similarity between query and docu-
ment, which we calculate as a mutual containment
score sn = 1

2(|S ∩ Tn|/|S| + |S ∩ Tn|/|Tn|) for
n ∈ {−2,−1, 0,+1,+2} (Broder, 1997).

Optimization for these additional models in-
cluding domain knowledge features was done by
overloading the vector representation of queries q
and documents d in the VW linear learner: Instead
of sparse word-based features, q and d are rep-
resented by real-valued vectors of dense domain-
knowledge features. Optimization for the over-
loaded vectors is done as described above for VW.

4 Model Combination

Combination by Borda Counts. The baseline
consensus-based voting Borda Count procedure

endows each voter with a fixed amount of voting
points which he is free to distribute among the
scored documents (Aslam and Montague, 2001;
Sokolov et al., 2013). The aggregate score for
two rankings f1(q,d) and f2(q,d) for all (q,d)
in the test set is then a simple linear interpolation:
fagg(q,d) = κ f1(q,d)∑

d f1(q,d) +(1−κ) f2(q,d)∑
d f2(q,d) . Pa-

rameter κ was adjusted on the dev set.

Combination by Linear Learning. In order to
acquire the best combination of more than two
models, we created vectors of model scores along
with domain knowledge features and reused the
VW pairwise ranking approach. This means
that the vector representation of queries q and
documents d in the VW linear learner is over-
loaded once more: In addition to dense domain-
knowledge features, we incorporate arbitrary
ranking models as dense features whose value is
the score of the ranking model. Training data was
sampled from the dev set and processed with VW.

5 Data

Patent Prior Art Search (JP-EN). We use
BoostCLIR1, a Japanese-English (JP-EN) corpus
of patent abstracts from the MAREC and NTCIR
data (Sokolov et al., 2013). It contains automati-
cally induced relevance judgments for patent ab-
stracts (Graf and Azzopardi, 2008): EN patents
are regarded as relevant with level (3) to a JP query
patent, if they are in a family relationship (e.g.,
same invention), cited by the patent examiner (2),
or cited by the applicant (1). Statistics on the rank-
ing data are given in Table 1. On average, queries
and documents contain about 5 sentences.

Wikipedia Article Retrieval (DE-EN). The in-
tuition behind our Wikipedia retrieval setup is as
follows: Consider the situation where the German
(DE) Wikipedia article on geological sea stacks
does not yet exist. A native speaker of Ger-
man with profound knowledge in geology intends
to write it, naming it “Brandungspfeiler”, while
seeking to align its structure with the EN counter-
part. The task of a CLIR engine is to return rele-
vant EN Wikipedia articles that may describe the
very same concept (Stack (geology)), or relevant
instances of it (Bako National Park, Lange Anna).
The information need may be paraphrased as a
high-level definition of the topic. Since typically
the first sentence of any Wikipedia article is such

1www.cl.uni-heidelberg.de/boostclir
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#q #d #d+/q #words/q

Patents (JP-EN)
train 107,061 888,127 13.28 178.74
dev 2,000 100,000 13.24 181.70
test 2,000 100,000 12.59 182.39

Wikipedia (DE-EN)
train 225,294 1,226,741 13.04 25.80
dev 10,000 113,553 12.97 25.75
test 10,000 115,131 13.22 25.73

Table 1: Ranking data statistics: number of queries and doc-
uments, avg. number of relevant documents per query, avg.
number of words per query.

a well-formed definition, this allows us to extract
a large set of one sentence queries from Wikipedia
articles. For example: “Brandungspfeiler sind vor
einer Kliffküste aufragende Felsentürme und ver-
gleichbare Formationen, die durch Brandungsero-
sion gebildet werden.”2 Similar to Bai et al. (2010)
we induce relevance judgments by aligning DE
queries with their EN counterparts (“mates”) via
the graph of inter-language links available in arti-
cles and Wikidata3. We assign relevance level (3)
to the EN mate and level (2) to all other EN ar-
ticles that link to the mate, and are linked by the
mate. Instead of using all outgoing links from the
mate, we only use articles with bidirectional links.

To create this data4 we downloaded XML and
SQL dumps of the DE and EN Wikipedia from,
resp., 22nd and 4th of November 2013. Wikipedia
markup removal and link extraction was carried
out using the Cloud9 toolkit5. Sentence extrac-
tion was done with NLTK6. Since Wikipedia arti-
cles vary greatly in length, we restricted EN doc-
uments to the first 200 words after extracting the
link graph to reduce the number of features for BM
and VW models. To avoid rendering the task too
easy for literal keyword matching of queries about
named entities, we removed title words from the
German queries. Statistics are given in Table 1.

Preprocessing Ranking Data. In addition to
lowercasing and punctuation removal, we applied
Correlated Feature Hashing (CFH), that makes
collisions more likely for words with close mean-
ing (Bai et al., 2010). For patents, vocabularies
contained 60k and 365k words for JP and EN.
Filtering special symbols and stopwords reduced
the JP vocabulary size to 50k (small enough not
to resort to CFH). To reduce the EN vocabulary

2de.wikipedia.org/wiki/Brandungspfeiler
3www.wikidata.org/
4www.cl.uni-heidelberg.de/wikiclir
5lintool.github.io/Cloud9/index.html
6www.nltk.org/

to a comparable size, we applied similar prepro-
cessing and CFH with F=30k and k=5. Since for
Wikipedia data, the DE and EN vocabularies were
both large (6.7M and 6M), we used the same filter-
ing and preprocessing as for the patent data before
applying CFH with F=40k and k=5 on both sides.

Parallel Data for SMT-based CLIR. For both
tasks, DT and PSQ require an SMT baseline
system trained on parallel corpora that are dis-
junct from the ranking data. A JP-EN sys-
tem was trained on data described and prepro-
cessed by Sokolov et al. (2013), consisting of
1.8M parallel sentences from the NTCIR-7 JP-EN
PatentMT subtask (Fujii et al., 2008) and 2k par-
allel sentences for parameter development from
the NTCIR-8 test collection. For Wikipedia, we
trained a DE-EN system on 4.1M parallel sen-
tences from Europarl, Common Crawl, and News-
Commentary. Parameter tuning was done on 3k
parallel sentences from the WMT’11 test set.

6 Experiments

Experiment Settings. The SMT-based models
use cdec (Dyer et al., 2010). Word align-
ments were created with mgiza (JP-EN) and
fast align (Dyer et al., 2013) (DE-EN). Lan-
guage models were trained with the KenLM
toolkit (Heafield, 2011). The JP-EN system uses
a 5-gram language model from the EN side of the
training data. For the DE-EN system, a 4-gram
model was built on the EN side of the training
data and the EN Wikipedia documents. Weights
for the standard feature set were optimized using
cdec’s MERT (JP-EN) and MIRA (DE-EN) im-
plementations (Och, 2003; Chiang et al., 2008).
PSQ on patents reuses settings found by Sokolov
et al. (2013); settings for Wikipedia were adjusted
on its dev set (n=1000, λ=0.4, L=0, C=1).

Patent retrieval for DT was done by sentence-
wise translation and subsequent re-joining to form
one query per patent, which was ranked against the
documents using BM25. For PSQ, BM25 is com-
puted on expected term and document frequencies.

For ranking-based retrieval, we compare several
combinations of learners and features (Table 2).
VW denotes a sparse model using word-based fea-
tures trained with SGD. BM denotes a similar
model trained using Boosting. DK denotes VW
training of a model that represents queries q and
documents d by dense domain-knowledge fea-
tures instead of by sparse word-based vectors. In
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order to simulate pass-through behavior of out-of-
vocabulary terms in SMT systems, additional fea-
tures accounting for source and target term iden-
tity were added to DK and BM models. The pa-
rameter λ for VW was found on dev set. Statis-
tical significance testing was performed using the
paired randomization test (Smucker et al., 2007).

Borda denotes model combination by Borda
Count voting where the linear interpolation pa-
rameter is adjusted for MAP on the respective de-
velopment sets with grid search. This type of
model combination only allows to combine pairs
of rankings. We present a combination of SMT-
based CLIR, DT+PSQ, a combination of dense
and sparse features, DK+VW, and a combination
of both combinations, (DT+PSQ)+(DK+VW).

LinLearn denotes model combination by over-
loading the vector representation of queries q and
documents d in the VW linear learner by incor-
porating arbitrary ranking models as dense fea-
tures. In difference to grid search for Borda, opti-
mal weights for the linear combination of incorpo-
rated ranking models can be learned automatically.
We investigate the same combinations of rank-
ing models as described for Borda above. We do
not report combination results including the sparse
BM model since they were consistently lower than
the ones with the sparse VW model.

Test Results. Experimental results on test data
are given in Table 2. Results are reported
with respect to MAP (Manning et al., 2008),
NDCG (Järvelin and Kekäläinen, 2002), and
PRES (Magdy and Jones, 2010). Scores were
computed on the top 1,000 retrieved documents.

As can be seen from inspecting the two blocks
of results, one for patents, one for Wikipedia, we
find the same system rankings on both datasets. In
both cases, as standalone systems, DT and PSQ
are very close and far better than any ranking ap-
proach, irrespective of the objective function or the
choice of sparse or dense features. Model combi-
nation of similar models, e.g., DT and PSQ, gives
minimal gains, compared to combining orthogo-
nal models, e.g. DK and VW. The best result is
achieved by combining DT and PSQ with DK and
VW. This is due to the already high scores of the
combined models, but also to the combination of
yet other types of orthogonal information. Borda
voting gives the best result under MAP which is
probably due to the adjustment of the interpola-
tion parameter for MAP on the development set.

combination models MAP NDCG PRES

Pa
te

nt
s(

JP
-E

N
)

st
an

da
lo

ne

DT 0.2554 0.5397 0.5680
PSQ 0.2659 0.5508 0.5851
DK 0.2203 0.4874 0.5171
VW 0.2205 0.4989 0.4911
BM 0.1669 0.4167 0.4665

B
or

da DT+PSQ ∗0.2747 ∗0.5618 ∗0.5988
DK+VW ∗0.3023 ∗0.5980 ∗0.6137

(DT+PSQ)+(DK+VW) ∗0.3465 ∗0.6420 ∗0.6858

Li
nL

ea
rn DT+PSQ †∗0.2707 †∗0.5578 †∗0.5941

DK+VW †∗0.3283 †∗0.6366 †∗0.7104
DT+PSQ+DK+VW †∗0.3739 †∗0.6755 †∗0.7599

W
ik

ip
ed

ia
(D

E
-E

N
)

st
an

da
lo

ne

DT 0.3678 0.5691 0.7219
PSQ 0.3642 0.5671 0.7165
DK 0.2661 0.4584 0.6717
VW 0.1249 0.3389 0.6466
BM 0.1386 0.3418 0.6145

B
or

da DT+PSQ ∗0.3742 ∗0.5777 ∗0.7306
DK+VW ∗0.3238 ∗0.5484 ∗0.7736

(DT+PSQ)+(DK+VW) ∗0.4173 ∗0.6333 ∗0.8031

Li
nL

ea
rn DT+PSQ †∗0.3718 †∗0.5751 †∗0.7251

DK+VW †∗0.3436 †∗0.5686 †∗0.7914
DT+PSQ+DK+VW ∗0.4137 †∗0.6435 †∗0.8233

Table 2: Test results for standalone CLIR models using di-
rect translation (DT), probabilistic structured queries (PSQ),
sparse model with CFH (VW), sparse boosting model (BM),
dense domain knowledge features (DK), and model combi-
nations using Borda Count voting (Borda) or linear super-
vised model combination (LinLearn). Significant differences
(at p=0.01) between aggregated systems and all its compo-
nents are indicated by ∗, between LinLearn and the respective
Borda system by †.

Under NDCG and PRES, LinLearn achieves the
best results, showing the advantage of automati-
cally learning combination weights that leads to
stable results across various metrics.

7 Conclusion

Special domains such as patents or Wikipedia of-
fer the possibility to extract cross-lingual rele-
vance data from citation and link graphs. These
data can be used to directly optimizing cross-
lingual ranking models. We showed on two differ-
ent large-scale ranking scenarios that a supervised
combination of orthogonal information sources
such as domain-knowledge, translation knowl-
edge, and ranking-specific word associations by
far outperforms a pipeline of query translation and
retrieval. We conjecture that if these types of in-
formation sources are available, a supervised rank-
ing approach will yield superior results in other re-
trieval scenarios as well.
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Abstract

This work fulfills sublinear time Near-
est Neighbor Search (NNS) in massive-
scale document collections. The primary
contribution is to propose a two-stage
unsupervised hashing framework which
harmoniously integrates two state-of-the-
art hashing algorithms Locality Sensitive
Hashing (LSH) and Iterative Quantization
(ITQ). LSH accounts for neighbor candi-
date pruning, while ITQ provides an ef-
ficient and effective reranking over the
neighbor pool captured by LSH. Further-
more, the proposed hashing framework
capitalizes on both term and topic similar-
ity among documents, leading to precise
document retrieval. The experimental re-
sults convincingly show that our hashing
based document retrieval approach well
approximates the conventional Informa-
tion Retrieval (IR) method in terms of re-
trieving semantically similar documents,
and meanwhile achieves a speedup of over
one order of magnitude in query time.

1 Introduction

A Nearest Neighbor Search (NNS) task aims at
searching for top K objects (e.g., documents)
which are most similar, based on pre-defined sim-
ilarity metrics, to a given query object in an ex-
isting dataset. NNS is essential in dealing with
many search related tasks, and also fundamen-
tal to a broad range of Natural Language Pro-
cessing (NLP) down-stream problems including
person name spelling correction (Udupa and Ku-
mar, 2010), document translation pair acquisition
(Krstovski and Smith, 2011), large-scale similar
noun list generation (Ravichandran et al., 2005),
lexical variants mining (Gouws et al., 2011), and
large-scale first story detection (Petrovic et al.,
2010).

Hashing has recently emerged to be a popular
solution to tackling fast NNS, and been success-
fully applied to a variety of non-NLP problems
such as visual object detection (Dean et al., 2013)
and recognition (Torralba et al., 2008a; Torralba
et al., 2008b), large-scale image retrieval (Kulis
and Grauman, 2012; Liu et al., 2012; Gong et al.,
2013), and large-scale machine learning (Weiss et
al., 2008; Liu et al., 2011; Liu, 2012). However,
hashing has received limited attention in the NLP
field to the date. The basic idea of hashing is to
represent each data object as a binary code (each
bit of a code is one digit of “0” or “1”). When
applying hashing to handle NLP problems, the ad-
vantages are two-fold: 1) the capability to store
a large quantity of documents in the main mem-
ory. for example, one can store 250 million doc-
uments with 1.9G memory using only 64 bits for
each document while a large news corpus such as
the English Gigaword fifth edition1 stores 10 mil-
lion documents in a 26G hard drive; 2) the time
efficiency of manipulating binary codes, for ex-
ample, computing the hamming distance between
a pair of binary codes is several orders of magni-
tude faster than computing the real-valued cosine
similarity over a pair of document vectors.

The early explorations of hashing focused on
using random permutations or projections to con-
struct randomized hash functions, e.g., the well-
known Min-wise Hashing (MinHash) (Broder et
al., 1998) and Locality Sensitive Hashing (LSH)
(Andoni and Indyk, 2008). In contrast to such
data-independent hashing schemes, recent re-
search has been geared to studying data-dependent
hashing through learning compact hash codes
from a training dataset. The state-of-the-art unsu-
pervised learning-based hashing methods include
Spectral Hashing (SH) (Weiss et al., 2008), An-
chor Graph Hashing (AGH) (Liu et al., 2011),
and Iterative Quantization (ITQ) (Gong et al.,

1http://catalog.ldc.upenn.edu/LDC2011T07
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2013), all of which endeavor to make the learned
hash codes preserve or reveal some intrinsic struc-
ture, such as local neighborhood structure, low-
dimensional manifolds, or the closest hypercube,
underlying the training data. Despite achieving
data-dependent hash codes, most of these “learn-
ing to hash” methods cannot guarantee a high suc-
cess rate of looking a query code up in a hash ta-
ble (referred to as hash table lookup in literature),
which is critical to the high efficacy of exploit-
ing hashing in practical uses. It is worth noting
that we choose to use ITQ in the proposed two-
stage hashing framework for its simplicity and ef-
ficiency. ITQ has been found to work better than
SH by Gong et al. (2013), and be more efficient
than AGH in terms of training time by Liu (2012).

To this end, in this paper we propose a novel
two-stage unsupervised hashing framework to si-
multaneously enhance the hash lookup success
rate and increase the search accuracy by integrat-
ing the advantages of both LSH and ITQ. Further-
more, we make the hashing framework applicable
to combine different similarity measures in NNS.

2 Background and Terminology

• Binary Codes: A bit (a single bit is “0” or
“1”) sequence assigned to represent a data
object. For example, represent a document
as a 8-bit code “11101010”.
• Hash Table: A linear table in which all bi-

nary codes of a data set are arranged to be
table indexes, and each table bucket contains
the IDs of the data items sharing the same
code.
• Hamming Distance: The number of bit po-

sitions in which bits of the two codes differ.
• Hash Table Lookup: Given a query q with

its binary code hq, find the candidate neigh-
bors in a hash table such that the Hamming
distances from their codes to hq are no more
than a small distance threshold ε. In practice
ε is usually set to 2 to maintain the efficiency
of table lookups.
• Hash Table Lookup Success Rate: Given a

query q with its binary code hq, the probabil-
ity to find at least one neighbor in the table
buckets whose corresponding codes (i.e., in-
dexes) are within a Hamming ball of radius ε
centered at hq.
• Hamming Ranking: Given a query q with

its binary code hq, rank all data items accord-
ing to the Hamming distances between their

codes and hq; the smaller the Hamming dis-
tance, the higher the data item is ranked.

3 Document Retrieval with Hashing

In this section, we first provide an overview of ap-
plying hashing techniques to a document retrieval
task, and then introduce two unsupervised hash-
ing algorithms: LSH acts as a neighbor-candidate
filter, while ITQ works towards precise reranking
over the candidate pool returned by LSH.

3.1 Document Retrieval
The most traditional way of retrieving nearest
neighbors for documents is to represent each docu-
ment as a term vector of which each element is the
tf-idf weight of a term. Given a query document
vector q, we use the Cosine similarity measure to
evaluate the similarity between q and a document
x in a dataset:

sim(q,x) =
q>x
‖q‖‖x‖ . (1)

Then the traditional document retrieval method
exhaustively scans all documents in the dataset
and returns the most similar ones. However, such
a brute-force search does not scale to massive
datasets since the search time complexity for each
query is O(n); additionally, the computational
cost spent on Cosine similarity calculation is also
nontrivial.

3.2 Locality Sensitive Hashing
The core idea of LSH is that if two data points are
close, then after a “projection” operation they will
remain close. In other words, similar data points
are more likely to be mapped into the same bucket
with a high collision probability. In a typical LSH
setting of k bits and L hash tables, a query point
q ∈ Rd and a dataset point x ∈ Rd collide if and
only if

hij(q) ≡ hij(x), i ∈ [1 : L], j ∈ [1 : k], (2)

where the hash function hij(·) is defined as

hij(x) = sgn
(
w>ijx

)
, (3)

in which wij ∈ Rd is a random projection di-
rection with components being independently and
identically drawn from a normal distribution, and
the sign function sgn(x) returns 1 if x > 0 and -1
otherwise. Note that we use “1/-1” bits for deriva-
tions and training, and “1/0” bits for the hashing
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implementation including converting data to bi-
nary codes, arranging binary codes into hash ta-
bles, and hash table lookups.

3.3 Iterative Quantization

The central idea of ITQ is to learn the binary codes
achieving the lowest quantization error that en-
coding raw data to binary codes incurs. This is
pursued by seeking a rotation of the zero-centered
projected data. Suppose that a set of n data points
X = {xi ∈ Rd}ni=1 are provided. The data matrix
is defined as X = [x1,x2, · · · ,xn]> ∈ Rn×d.
In order to reduce the data dimension from d to
the desired code length c < d, Principal Compo-
nent Analysis (PCA) or Latent Semantic Analy-
sis (LSA) is first applied to X. We thus obtain
the zero-centered projected data matrix as V =
(I − 1

n11>)XU where U ∈ Rd×c is the projec-
tion matrix.

After the projection operation, ITQ minimizes
the quantization error as follows

Q(B,R) = ‖B−VR‖2F, (4)

where B ∈ {1,−1}n×c is the code matrix each
row of which contains a binary code, R ∈ Rc×c

is the target orthogonal rotation matrix, and ‖ · ‖F
denotes the Frobenius norm. Finding a local min-
imum of the quantization error in Eq. (4) begins
with a random initialization of R, and then em-
ploys a K-means clustering like iterative proce-
dure. In each iteration, each (projected) data point
is assigned to the nearest vertex of the binary hy-
percube, and R always satisfying RR> = I is
subsequently updated to minimize the quantiza-
tion loss given the current assignment; the two
steps run alternatingly until a convergence is en-
countered. Concretely, the two updating steps are:

1. Fix R and update B: minimize the follow-
ing quantization loss

Q(B,R) = ‖B‖2F + ‖VR‖2F − 2tr
(
R>V>B

)
= nc+ ‖V‖2F − 2tr

(
R>V>B

)
= constant− 2tr

(
R>V>B

)
,

(5)

achieving B = sgn(VR);

2. Fix B and update R: perform the SVD of
the matrix V>B ∈ Rc×c to obtain V>B =
SΩŜ>, and then set R = SŜ>.

Figure 1: The two-stage hashing framework.

3.4 Two-Stage Hashing

There are three main merits of LSH. (1) It tries to
preserve the Cosine similarity of the original data
with a probabilistic guarantee (Charikar, 2002).
(2) It is training free, and thus very efficient in
hashing massive databases to binary codes. (3) It
has a very high hash table lookup success rate. For
example, in our experiments LSH with more than
one hash table is able to achieve a perfect 100%
hash lookup success rate. Unfortunately, its draw-
back is the low search precision that is observed
even with long hash bits and multiple hash tables.

ITQ tries to minimize the quantization error of
encoding data to binary codes, so its advantage
is the high quality (potentially high precision of
Hamming ranking) of the produced binary codes.
Nevertheless, ITQ frequently suffers from a poor
hash lookup success rate when longer bits (e.g.,
≥ 48) are used (Liu, 2012). For example, in
our experiments ITQ using 384 bits has a 18.47%
hash lookup success rate within Hamming radius
2. Hence, Hamming ranking (costing O(n) time)
must be invoked for the queries for which ITQ
fails to return any neighbors via hash table lookup,
which makes the searches inefficient especially on
very large datasets.

Taking into account the above advantages and
disadvantages of LSH and ITQ, we propose a two-
stage hashing framework to harmoniously inte-
grate them. Fig. 1 illustrates our two-stage frame-
work with a toy example where identical shapes
denote ground-truth nearest neighbors.

In this framework, LSH accounts for neigh-
bor candidate pruning, while ITQ provides an ef-
ficient and effective reranking over the neighbor
pool captured by LSH. To be specific, the pro-
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posed framework enjoys two advantages:
1. Provide a simple solution to accomplish both

a high hash lookup success rate and high precision,
which does not require scanning the whole list of
the ITQ binary codes but scanning the short list
returned by LSH hash table lookup. Therefore, a
high hash lookup success rate is attained by the
LSH stage, while maintaining high search preci-
sion due to the ITQ reranking stage.

2. Enable a hybrid hashing scheme combining
two similarity measures. The term similarity is
used during the LSH stage that directly works
on document tf-idf vectors; during the ITQ stage,
the topic similarity is used since ITQ works on
the topic vectors obtained by applying Latent se-
mantic analysis (LSA) (Deerwester et al., 1990)
to those document vectors. LSA (or PCA), the
first step in running ITQ, can be easily acceler-
ated via a simple sub-selective sampling strategy
which has been proven theoretically and empiri-
cally sound by Li et al. (2014). As a result, the
nearest neighbors returned by the two-stage hash-
ing framework turns out to be both lexically and
topically similar to the query document. To sum-
marize, the proposed two-stage hashing frame-
work works in an unsupervised manner, achieves a
sublinear search time complexity due to LSH, and
attains high search precision thanks to ITQ. After
hashing all data (documents) to LSH and ITQ bi-
nary codes, we do not need to save the raw data in
memory. Thus, our approach can scale to gigan-
tic datasets with compact storage and fast search
speed.

4 Experiments

Data and Evaluations
For the experiments, we use the English portion
of the standard TDT-5 dataset, which consists of
278, 109 documents from a time spanning April
2003 to September 2003. 126 topics are anno-
tated with an average of 51 documents per topic,
and other unlabeled documents are irrelevant to
them. We select six largest topics for the top-K
NNS evaluation, with each including more than
250 documents. We randomly select 60 docu-
ments from each of the six topics for testing. The
six topics are (1). Bombing in Riyadh, Saudi Ara-
bia (2). Mad cow disease in North America (3).
Casablanca bombs (4). Swedish Foreign Minister
killed (5). Liberian former president arrives in ex-
ile and (6). UN official killed in attack. For each

document, we apply the Stanford Tokenizer 2 for
tokenization; remove stopwords based on the stop
list from InQuery (Callan et al., 1992), and apply
Porter Stemmer (Porter, 1980) for stemming.

If one retrieved document shares the same topic
label with the query document, they are true neigh-
bors. We evaluate the precision of the top-K candi-
date documents returned by each method and cal-
culate the average precision across all queries.

Results
We first evaluate the quality of term vectors and
ITQ binary codes by conducting the whole list
Cosine similarity ranking and hamming distance
ranking, respectively. For each query document,
the top-K candidate documents with highest Co-
sine similarity scores and shortest hamming dis-
tances are returned, then we calculate the average
precision for each K. Fig. 2(a) demonstrates that
ITQ binary codes could preserve document simi-
larities as traditional term vectors. It is interesting
to notice that ITQ binary codes are able to outper-
form traditional term vectors. It is mainly because
some documents are topically related but share
few terms thus their relatedness can be captured by
LSA. Fig. 2(a) also shows that the NNS precision
keep increasing as longer ITQ code length is used
and is converged when ITQ code length equals to
384 bits. Therefore we set ITQ code length as 384
bits in the rest of the experiments.

Fig. 2(b) - Fig. 2(e) show that our two-stage
hashing framework surpasses LSH with a large
margin for both small K (e.g., K ≤ 10) and
large K (e.g., K ≥ 100) in top-K NNS. It also
demonstrates that our hashing based document re-
trieval approach with only binary codes from LSH
and ITQ well approximates the conventional IR
method. Another crucial observation is that with
ITQ reranking, a small number of LSH hash ta-
bles is needed in the pruning step. For example,
LSH(40bits) + ITQ(384bits) and LSH(48bits) +
ITQ(384bits) are able to reach convergence with
only four LSH hash tables. In that case, we can
alleviate one main drawback of LSH as it usually
requires a large number of hash tables to maintain
the hashing quality.

Since the LSH pruning time can be ignored,
the search time of the two-stage hashing scheme
equals to the time of hamming distance rerank-
ing in ITQ codes for all candidates produced from
LSH pruning step, e.g., LSH(48bits, 4 tables) +

2http://nlp.stanford.edu/software/corenlp.shtml
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Figure 2: (a) ITQ code quality for different code length, (b) LSH Top-10 Precision, (c) LSH +
ITQ(384bits) Top-10 Precision, (d) LSH Top-100 Precision, (e) LSH + ITQ(384bits) Top-100 Precision,
(f) The percentage of visited data samples by LSH hash lookup.

ITQ(384bits) takes only one thirtieth of the search
time as the traditional IR method. Fig. 2 (f)
shows the ITQ data reranking percentage for dif-
ferent LSH bit lengths and table numbers. As the
LSH bit length increases or the hash table num-
ber decreases, a lower percentage of the candidates
will be selected for reranking, and thus costs less
search time.

The percentage of visited data samples by LSH
hash lookup is a key factor that influence the
NNS precision in the two-stage hashing frame-
work. Generally, higher rerank percentage results
in better top-K NNS Precision. Further more, by
comparing Fig. 2 (c) and (e), it shows that our
framework works better for small K than for large
K. For example, scanning 5.52% of the data is
enough for achieving similar top-10 NNS result
as the traditional IR method while 36.86% of the
data is needed for top-100 NNS. The reason of the
lower performance with large K is that some true
neighbors with the same topic label do not share
high term similarities and may be filtered out in
the LSH step when the rerank percentage is low.

5 Conclusion

In this paper, we proposed a novel two-stage un-
supervised hashing framework for efficient and ef-
fective nearest neighbor search in massive docu-

ment collections. The experimental results have
shown that this framework achieves not only com-
parable search accuracy with the traditional IR
method in retrieving semantically similar docu-
ments, but also an order of magnitude speedup in
search time. Moreover, our approach can com-
bine two similarity measures in a hybrid hashing
scheme, which is beneficial to comprehensively
modeling the document similarity. In our future
work, we plan to design better data representa-
tion which can well fit into the two-stage hash-
ing theme; we also intend to apply the proposed
hashing approach to more informal genres (e.g.,
tweets) and other down-stream NLP applications
(e.g., first story detection).
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Abstract

Today’s event ordering research is heav-
ily dependent on annotated corpora. Cur-
rent corpora influence shared evaluations
and drive algorithm development. Partly
due to this dependence, most research fo-
cuses on partial orderings of a document’s
events. For instance, the TempEval com-
petitions and the TimeBank only annotate
small portions of the event graph, focusing
on the most salient events or on specific
types of event pairs (e.g., only events in the
same sentence). Deeper temporal reason-
ers struggle with this sparsity because the
entire temporal picture is not represented.
This paper proposes a new annotation pro-
cess with a mechanism to force annotators
to label connected graphs. It generates 10
times more relations per document than the
TimeBank, and our TimeBank-Dense cor-
pus is larger than all current corpora. We
hope this process and its dense corpus en-
courages research on new global models
with deeper reasoning.

1 Introduction

The TimeBank Corpus (Pustejovsky et al., 2003)
ushered in a wave of data-driven event ordering
research. It provided for a common dataset of re-
lations between events and time expressions that
allowed the community to compare approaches.
Later corpora and competitions have based their
tasks on the TimeBank setup. This paper ad-
dresses one of its shortcomings: sparse annotation.
We describe a new annotation framework (and a
TimeBank-Dense corpus) that we believe is needed
to fulfill the data needs of deeper reasoners.

The TimeBank includes a small subset of all
possible relations in its documents. The annota-
tors were instructed to label relations critical to the
document’s understanding. The result is a sparse la-
beling that leaves much of the document unlabeled.
The TempEval contests have largely followed suit
and focused on specific types of event pairs. For
instance, TempEval (Verhagen et al., 2007) only
labeled relations between events that syntactically
dominated each other. This paper is the first attempt
to annotate a document’s entire temporal graph.

A consequence of focusing on all relations is a
shift from the traditional classification task, where
the system is given a pair of events and asked only
to label the type of relation, to an identification task,
where the system must determine for itself which
events in the document to pair up. For example, in
TempEval-1 and 2 (Verhagen et al., 2007; Verha-
gen et al., 2010), systems were given event pairs
in specific syntactic positions: events and times in
the same noun phrase, main events in consecutive
sentences, etc. We now aim for a shift in the com-
munity wherein all pairs are considered candidates
for temporal ordering, allowing researchers to ask
questions such as: how must algorithms adapt to
label the complete graph of pairs, and if the more
difficult and ambiguous event pairs are included,
how must feature-based learners change?

We are not the first to propose these questions,
but this paper is the first to directly propose the
means by which they can be addressed. The stated
goal of TempEval-3 (UzZaman et al., 2013) was to
focus on relation identification instead of classifica-
tion, but the training and evaluation data followed
the TimeBank approach where only a subset of
event pairs were labeled. As a result, many systems
focused on classification, with the top system clas-
sifying pairs in only three syntactic constructions
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There were four or five people inside, 
and they just started firing 
 
Ms. Sanders was hit several times and 
was  pronounced dead at the scene. 
 
The other customers fled, and the 
police said it did not appear that anyone 
else was injured. 

There were four or five people inside, 
and they just started firing 
 
Ms. Sanders was hit several times and 
was pronounced dead at the scene. 
 
The other customers fled, and the 
police said it did not appear that anyone 
else was injured. 

Current Systems & Evaluations This Proposal 

Figure 1: A TimeBank annotated document is on the left, and this paper’s TimeBank-Dense annotation is
on the right. Solid arrows indicate BEFORE relations and dotted arrows indicate INCLUDED IN relations.

(Bethard, 2013). We describe the first annotation
framework that forces annotators to annotate all
pairs1. With this new process, we created a dense
ordering of document events that can properly eval-
uate both relation identification and relation anno-
tation. Figure 1 illustrates one document before
and after our new annotations.

2 Previous Annotation Work

The majority of corpora and competitions for event
ordering contain sparse annotations. Annotators for
the original TimeBank (Pustejovsky et al., 2003)
only annotated relations judged to be salient by
the annotator. Subsequent TempEval competitions
(Verhagen et al., 2007; Verhagen et al., 2010; Uz-
Zaman et al., 2013) mostly relied on the TimeBank,
but also aimed to improve coverage by annotating
relations between all events and times in the same
sentence. However, event tokens that were men-
tioned fewer than 20 times were excluded and only
one TempEval task considered relations between
events in different sentences. In practical terms, the
resulting evaluations remained sparse.

A major dilemma underlying these sparse tasks
is that the unlabeled event/time pairs are ambigu-
ous. Each unlabeled pair holds 3 possibilities:

1. The annotator looked at the pair of events and
decided that no temporal relation exists.

2. The annotator did not look at the pair of
events, so a relation may or may not exist.

3. The annotator failed to look at the pair of
events, so a single relation may exist.

Training and evaluation of temporal reasoners is
hampered by this ambiguity. To combat this, our

1As discussed below, all pairs in a given window size.

Events Times Rels R
TimeBank 7935 1414 6418 0.7
Bramsen 2006 627 – 615 1.0
TempEval-07 6832 1249 5790 0.7
TempEval-10 5688 2117 4907 0.6
TempEval-13 11145 2078 11098 0.8
Kolomiyets-12 1233 – 1139 0.9
Do 20122 324 232 3132 5.6
This work 1729 289 12715 6.3

Table 1: Events, times, relations and the ratio of
relations to events + times (R) in various corpora.

annotation adopts the VAGUE relation introduced
by TempEval 2007, and our approach forces anno-
tators to use it. This is the only work that includes
such a mechanism.

This paper is not the first to look into more dense
annotations. Bramsen et al. (2006) annotated multi-
sentence segments of text to build directed acyclic
graphs. Kolomiyets et al. (2012) annotated “tem-
poral dependency structures”, though they only
focused on relations between pairs of events. Do
et al. (2012) produced the densest annotation, but
“the annotator was not required to annotate all pairs
of event mentions, but as many as possible”. The
current paper takes a different tack to annotation
by requiring annotators to label every possible pair
of events/times in a given window. Thus this work
is the first annotation effort that can guarantee its
event/time graph to be strongly connected.

Table 1 compares the size and density of our
corpus to others. Ours is the densest and it contains
the largest number of temporal relations.

2Do et al. (2012) reports 6264 relations, but this includes
both the relations and their inverses. We thus halve the count
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3 A Framework for Dense Annotation

Frameworks for annotating text typically have two
independent facets: (1) the practical means of how
to label the text, and (2) the higher-level rules about
when something should be labeled. The first is
often accomplished through a markup language,
and we follow prior work in adopting TimeML here.
The second facet is the focus of this paper: when
should an annotator label an ordering relation?

Our proposal starts with documents that have al-
ready been annotated with events, time expressions,
and document creation times (DCT). The following
sentence serves as our motivating example:

Police confirmed Friday that the body
found along a highway in San Juan be-
longed to Jorge Hernandez.

This sentence is represented by a 4 node graph (3
events and 1 time). In a completely annotated graph
it would have 6 edges (relations) connecting the
nodes. In the TimeBank, from which this sentence
is drawn, only 3 of the 6 edges are labeled.

The impact of these annotation decisions (i.e.,
when to annotate a relation) can be significant. In
this example, a learner must somehow deal with
the 3 unlabeled edges. One option is to assume that
they are vague or ambiguous. However, all 6 edges
have clear well-defined ordering relations:

belonged BEFORE confirmed
belonged BEFORE found
found BEFORE confirmed
belonged BEFORE Friday
confirmed IS INCLUDED IN Friday
found IS INCLUDED IN Friday3

Learning algorithms handle these unlabeled
edges by making incorrect assumptions, or by ig-
noring large parts of the temporal graph. Sev-
eral models with rich temporal reasoners have
been published, but since they require more con-
nected graphs, improvement over pairwise classi-
fiers have been minimal (Chambers and Jurafsky,
2008; Yoshikawa et al., 2009). This paper thus
proposes an annotation process that builds denser
graphs with formal properties that learners can rely
on, such as locally complete subgraphs.

3.1 Ensuring Dense Graphs

While the ideal goal is to create a complete graph,
the time it would take to hand-label n(n − 1)/2

for accurate comparison to other corpora.
3Revealed by the previous sentence (not shown here).

edges is prohibitive. We approximate completeness
by creating locally complete graphs over neigh-
boring sentences. The resulting event graph for a
document is strongly connected, but not complete.
Specifically, the following edge types are included:

1. Event-Event, Event-Time, and Time-Time
pairs in the same sentence

2. Event-Event, Event-Time, and Time-Time
pairs between the current and next sentence

3. Event-DCT pairs for every event in the text
4. Time-DCT pairs for every time expression in

the text

Our process requires annotators to annotate the
above edge types, enforced via an annotation tool.
We describe the relation set and this tool next.

3.1.1 Temporal Relations
The TimeBank corpus uses 14 relations based on
the Allen interval relations. The TempEval contests
have used a small set of relations (TempEval-1) and
the larger set of 14 relations (TempEval-3). Pub-
lished work has mirrored this trend, and different
groups focus on different aspects of the semantics.

We chose a middle ground between coarse and
fine-grained distinctions for annotation, settling on
6 relations: before, after, includes, is included, si-
multaneous, and vague. We do not adopt a more
fine-grained set because we annotate pairs that are
far more ambiguous than those considered in previ-
ous efforts. Decisions between relations like before
and immediately before can complicate an already
difficult task. The added benefit of a corpus (or
working system) that makes fine-grained distinc-
tions is also not clear. We lean toward higher an-
notator agreement with relations that have greater
separation between their semantics4.

3.1.2 Enforcing Annotation
Imposing the above rules on annotators requires
automated assistance. We built a new tool that
reads TimeML formatted text, and computes the
set of required edges. Annotators are prompted to
assign a label for each edge, and skipping edges is
prohibited.5 The tool is unique in that it includes
a transitive reasoner that infers relations based on
the annotator’s latest annotations. For example,

4For instance, a relation like starts is a special case of in-
cludes if events are viewed as open intervals, and immediately
before is a special case of before. We avoid this overlap and
only use includes and before

5Note that annotators are presented with pairs in order from
document start to finish, starting with the first two events.

503



if event e1 IS INCLUDED in t1, and t1 BEFORE

e2, the tool automatically labels e1 BEFORE e2.
The transitivity inference is run after each input
label, and the human annotator cannot override
the inferences. This prohibits the annotator from
entering edges that break transitivity. As a result,
several properties are ensured through this process:
the graph (1) is a strongly connected graph, (2) is
consistent with no contradictions, and (3) has all
required edges labeled. These 3 properties are new
to all current ordering corpora.

3.2 Annotation Guidelines
Since the annotation tool frees the annotators from
the decision of when to label an edge, the focus is
now what to label each edge. This section describes
the guidelines for dense annotation.

The 80% confidence rule: The decision to label
an edge as VAGUE instead of a defined temporal
relation is critical. We adopted an 80% rule that in-
structed annotators to choose a specific non-vague
relation if they are 80% confident that it was the
writer’s intent that a reader infer that relation. By
not requiring 100% confidence, we allow for alter-
native interpretations that conflict with the chosen
edge label as long as that alternative is sufficiently
unlikely. In practice, annotators had different inter-
pretations of what constitutes 80% certainty, and
this generated much discussion. We mitigated these
disagreements with the following rule.

Majority annotator agreement: An edge’s la-
bel is the relation that received a majority of an-
notator votes, otherwise it is marked VAGUE. If a
document has 2 annotators, both have to agree on
the relation or it is labeled VAGUE. A document
with 3 annotators requires 2 to agree. This agree-
ment rule acts as a check to our 80% confidence
rule, backing off to VAGUE when decisions are un-
certain (arguably, this is the definition of VAGUE).

We also encouraged consistent labelings with
guidelines inspired by Bethard and Martin (2008).

Modal and conditional events: interpreted with
a possible worlds analysis. The core event was
treated as having occurred, whether or not the text
implied that it had occurred. For example,

They [EVENT expect] him to [EVENT
cut] costs throughout the organization.

This event pair is ordered (expect before cut) since
the expectation occurs before the cutting (in the

possible world where the cutting occurs). Negated
events and hypotheticals are treated similarly. One
assumes the event does occur, and all other events
are ordered accordingly. Negated states like “is not
anticipating” are interpreted as though the antici-
pation occurs, and surrounding events are ordered
with regard to its presumed temporal span.

Aspectual Events: annotated as IS INCLUDED

in their event arguments. For instance, events that
describe the manner in which another event is per-
formed are considered encompassed by the broader
event. Consider the following example:

The move may [EVENT help] [EVENT
prevent] Martin Ackerman from making
a run at the computer-services concern.

This event pair is assigned the relation (help IS IN-
CLUDED in prevent) because the help event is not
meaningful on its own. It describes the proportion
of the preventing accounted for by the move. In
TimeBank, the intentional action class is used in-
stead of the aspectual class in this case, but we still
consider it covered by this guideline.

Events that attribute a property: to a person
or event are interpreted to end when the entity ends.
For instance, ‘the talk is nonsense’ evokes a non-
sense event with an end point that coincides with
the end of the talk.

Time Expressions: the words now and today
were given “long now” interpretations if the words
could be replaced with nowadays and not change
the meaning of their sentences. The time’s dura-
tion starts sometime in the past and INCLUDES the
DCT. If nowadays is not suitable, then the now was
INCLUDED IN the DCT.

Generic Events: can be ordered with respect to
each other, but must be VAGUE with respect to
nearby non-generic events.

4 TimeBank-Dense: corpus statistics

We chose a subset of TimeBank documents for our
new corpus: TimeBank-Dense. This provided an
initial labeling of events and time expressions. Us-
ing the tool described above, we annotated 36 ran-
dom documents with at least two annotators each.
These 36 were annotated with 4 times as many
relations as the entire 183 document TimeBank.

The four authors of this paper were the four an-
notators. All four annotated the same initial docu-
ment, conflicts and disagreements were discussed,
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Annotated Relation Count

BEFORE 2590 INCLUDES 836
AFTER 2104 INCLUDED IN 1060
SIMULTAN. 215 VAGUE 5910
Total Relations: 12715

Table 2: Relation counts in TimeBank-Dense.

and guidelines were updated accordingly. The rest
of the documents were then annotated indepen-
dently. Document annotation was not random, but
we mixed pairs of authors where time constraints al-
lowed. Table 2 shows the relation counts in the final
corpus, and Table 3 gives the annotator agreement.
We show precision (holding one annotation as gold)
and kappa computed on the 4 types of pairs from
section 3.1. Micro-averaged precision was 65.1%,
compared to TimeBank’s 77%. Kappa ranged from
.56-.64, a slight drop from TimeBank’s .71.

The vague relation makes up 46% of the rela-
tions. This is the first empirical count of how many
temporal relations in news articles are truly vague.

Our lower agreement is likely due to the more
difficult task. Table 5 breaks down the individual
disagreements. The most frequent pertained to the
VAGUE relation. Practically speaking, VAGUE was
applied to the final graph if either annotator chose
it. This seems appropriate since a disagreement be-
tween annotators implies that the relation is vague.

The following example illustrates the difficulty
of labeling edges with a VAGUE relation:

No one was hurt, but firefighters or-
dered the evacuation of nearby homes
and said they’ll monitor the ground.

Both annotators chose VAGUE to label ordered and
said because the order is unclear. However, they
disagreed on evacuation with monitor. One chose
VAGUE, but the other chose IS INCLUDED. There is
a valid interpretation where a monitoring process
has already begun, and continues after the evacua-
tion. This interpretation reached 80% confidence
for one annotator, but not the other. In the face of
such a disagreement, the pair is labeled VAGUE.

How often do these disagreements occur? Ta-
ble 4 shows the 3 sources: (1) mutual vague: anno-
tators agree it is vague, (2) partial vague: one anno-
tator chooses vague, but the other does not, and (3)
no vague: annotators choose conflicting non-vague
relations. Only 17% of these disagreements are due
to hard conflicts (no vague). The released corpus
includes these 3 fine-grained VAGUE relations.

Annotators # Links Prec Kappa
A and B 9282 .65 .56
A and D 1605 .72 .63
B and D 279 .70 .64
C and D 1549 .65 .57

Table 3: Agreement between different annotators.

# Vague
Mutual VAGUE 1657 (28%)
Partial VAGUE 3234 (55%)
No VAGUE 1019 (17%)

Table 4: VAGUE relation origins. Partial vague:
one annotator does not choose vague. No vague:
neither annotator chooses vague.

b a i ii s v
b 1776 22 88 37 21 192
a 17 1444 32 102 9 155
i 71 34 642 45 23 191
ii 81 76 40 826 31 230
s 12 8 25 28 147 29
v 500 441 289 356 64 1197

Table 5: Relation agreement between the two main
annotators. Most disagreements involved VAGUE.

5 Conclusion

We described our annotation framework that pro-
duces corpora with formal guarantees about the an-
notated graph’s structure. Both the annotation tool
and the new TimeBank-Dense corpus are publicly
available.6 This is the first corpus with guarantees
of connectedness, consistency, and a semantics for
unlabeled edges. We hope to encourage a shift in
the temporal ordering community to consider the
entire document when making local decisions. Fur-
ther work is needed to handle difficult pairs with
the VAGUE relation. We look forward to evaluating
new algorithms on this dense corpus.
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Abstract

In linguistic annotation projects, we typ-
ically develop annotation guidelines to
minimize disagreement. However, in this
position paper we question whether we
should actually limit the disagreements
between annotators, rather than embracing
them. We present an empirical analysis
of part-of-speech annotated data sets that
suggests that disagreements are systematic
across domains and to a certain extend also
across languages. This points to an un-
derlying ambiguity rather than random er-
rors. Moreover, a quantitative analysis of
tag confusions reveals that the majority of
disagreements are due to linguistically de-
batable cases rather than annotation errors.
Specifically, we show that even in the ab-
sence of annotation guidelines only 2% of
annotator choices are linguistically unmo-
tivated.

1 Introduction

In NLP, we often model annotation as if it re-
flected a single ground truth that was guided by
an underlying linguistic theory. If this was true,
the specific theory should be learnable from the
annotated data. However, it is well known that
there are linguistically hard cases (Zeman, 2010),
where no theory provides a clear answer, so an-
notation schemes commit to more or less arbi-
trary decisions. For example, in parsing auxil-
iary verbs may head main verbs, or vice versa,
and in part-of-speech (POS) tagging, possessive
pronouns may belong to the category of deter-
miners or the category of pronouns. This posi-
tion paper argues that annotation projects should
embrace these hard cases rather than pretend they
can be unambiguously resolved. Instead of using
overly specific annotation guidelines, designed to

minimize inter-annotator disagreement (Duffield
et al., 2007), and adjudicating between annotators
of different opinions, we should embrace system-
atic inter-annotator disagreements. To motivate
this, we present an empirical analysis showing

1. that certain inter-annotator disagreements are
systematic, and

2. that actual errors are in fact so infrequent as
to be negligible, even when linguists annotate
without guidelines.

The empirical analysis presented below relies
on text corpora annotated with syntactic cate-
gories or parts-of-speech (POS). POS is part of
most linguistic theories, but nevertheless, there
are still many linguistic constructions – even very
frequent ones – whose POS analysis is widely
debated. The following sentences exemplify some
of these hard cases that annotators frequently
disagree on. Note that we do not claim that both
analyses in each of these cases (1–3) are equally
good, but that there is some linguistic motivation
for either analysis in each case.

(1) Noam goes out tonight
NOUN VERB ADP/PRT ADV/NOUN

(2) Noam likes social media
NOUN VERB ADJ/NOUN NOUN

(3) Noam likes his car
NOUN VERB DET/PRON NOUN

To substantiate our claims, we first compare
the distribution of inter-annotator disagreements
across domains and languages, showing that most
disagreements are systematic (Section 2). This
suggests that most annotation differences derive
from hard cases, rather than random errors.

We then collect a corpus of such disagreements
and have experts mark which ones are due to ac-
tual annotation errors, and which ones reflect lin-
guistically hard cases (Section 3). The results
show that the majority of disagreements are due
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to hard cases, and only about 20% of conflict-
ing annotations are actual errors. This suggests
that inter-annotator agreement scores often hide
the fact that the vast majority of annotations are
actually linguistically motivated. In our case, less
than 2% of the overall annotations are linguisti-
cally unmotivated.

Finally, in Section 4, we present an experiment
trying to learn a model to distinguish between hard
cases and annotation errors.

2 Annotator disagreements across
domains and languages

In this study, we had between 2-10 individual an-
notators with degrees in linguistics annotate dif-
ferent kinds of English text with POS tags, e.g.,
newswire text (PTB WSJ Section 00), transcripts
of spoken language (from a database containing
transcripts of conversations, Talkbank1), as well
as Twitter posts. Annotators were specifically not
presented with guidelines that would help them re-
solve hard cases. Moreover, we compare profes-
sional annotation to that of lay people. We in-
structed annotators to use the 12 universal POS
tags of Petrov et al. (2012). We did so in or-
der to make comparison between existing data
sets possible. Moreover, this allows us to fo-
cus on really hard cases, as any debatable case in
the coarse-grained tag set is necessarily also part
of the finer-grained tag set.2 For each domain,
we collected exactly 500 doubly-annotated sen-
tences/tweets. Besides these English data sets, we
also obtained doubly-annotated POS data from the
French Social Media Bank project (Seddah et al.,
2012).3 All data sets, except the French one, are
publicly available at http://lowlands.ku.
dk/.

We present disagreements as Hinton diagrams
in Figure 1a–c. Note that the spoken language data
does not include punctuation. The correlations
between the disagreements are highly significant,
with Spearman coefficients ranging from 0.644

1http://talkbank.org/
2Experiments with variation n-grams on WSJ (Dickinson

and Meurers, 2003) and the French data lead us to estimate
that the fine-to-coarse mapping of POS tags disregards about
20% of observed tag-pair confusion types, most of which re-
late to fine-grained verb and noun distinctions, e.g. past par-
ticiple versus past in “[..] criminal lawyers speculated/VBD
vs. VBN that [..]”.

3We mapped POS tags into the universal POS tags using
the mappings available here: https://code.google.
com/p/universal-pos-tags/

(spoken and WSJ) to 0.869 (spoken and Twit-
ter). Kendall’s τ ranges from 0.498 (Twitter and
WSJ) to 0.659 (spoken and Twitter). All diagrams
have a vaguely “dagger”-like shape, with the blade
going down the diagonal from top left to bot-
tom right, and a slightly curved “hilt” across the
counter-diagonal, ending in the more pronounced
ADP/PRT confusion cells.

Disagreements are very similar across all three
domains. In particular, adpositions (ADP) are con-
fused with particles (PRT) (as in the case of “get
out”); adjectives (ADJ) are confused with nouns
(as in “stone lion”); pronouns (PRON) are con-
fused with determiners (DET) (“my house”); nu-
merals are confused with adjectives, determiners,
and nouns (“2nd time”); and adjectives are con-
fused with adverbs (ADV) (“see you later”). In
Twitter, the X category is often confused with
punctuations, e.g., when annotating punctuation
acting as discourse continuation marker.

Our analyses show that a) experts disagree on
the known hard cases when freely annotating text,
and b) that these disagreements are the same
across text types. More surprisingly, though, we
also find that, as discussed next, c) roughly the
same disagreements are also observed when com-
paring the linguistic intuitions of lay people.

More specifically, we had lay annotators on the
crowdsourcing platform Crowdflower re-annotate
the training section of Gimpel et al. (2011). They
collected five annotations per word. Only annota-
tors that had answered correctly on 4 gold items
(randomly chosen from a set of 20 gold items
provided by the authors) were allowed to submit
annotations. In total, 177 individual annotators
supplied answers. We paid annotators a reward
of $0.05 for 10 items. The full data set con-
tains 14,619 items and is described in further de-
tail in Hovy et al. (2014). Annotators were satis-
fied with the task (4.5 on a scale from 1 to 5) and
felt that instructions were clear (4.4/5), and the pay
reasonable (4.1/5). The crowdsourced annotations
aggregated using majority voting agree with the
expert annotations in 79.54% of the cases. If we
pre-filter the data via Wiktionary and use an item-
response model (Hovy et al., 2013) rather than ma-
jority voting, the agreement rises to 80.58%.

Figure 2 presents the Hinton diagram of the dis-
agreements of lay people. Disagreements are very
similar to the disagreements between expert an-
notators, especially on Twitter data (Figure 1b).
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a) b) c)

Figure 1: Hinton diagrams of inter-annotator disagreement on (a) excerpt from WSJ (Marcus et al.,
1993), (b) random Twitter sample, and (c) pre-transcribed spoken language excerpts from talkbank.org

One difference is that lay people do not confuse
numerals very often, probably because they rely
more on orthographic cues than on distributional
evidence. The disagreements are still strongly cor-
related with the ones observed with expert anno-
tators, but at a slightly lower coefficient (with a
Spearman’s ρ of 0.493 and Kendall’s τ of 0.366
for WSJ).

Figure 2: Disagreement between lay annotators

Lastly, we compare the disagreements of anno-
tators on a French social media data set (Seddah et
al., 2012), which we mapped to the universal POS
tag set. Again, we see the familiar dagger shape.
The Spearman coefficient with English Twitter is
0.288; Kendall’s τ is 0.204. While the correlation
is weaker across languages than across domains, it
remains statistically significant (p < 0.001).

3 Hard cases and annotation errors

In the previous section, we demonstrated that
some disagreements are consistent across domains
and languages. We noted earlier, though, that dis-
agreements can arise both from hard cases and
from annotation errors. This can explain some

Figure 3: Disagreement on French social media

of the variation. In this section, we investigate
what happens if we weed out obvious errors by
detecting annotation inconsistencies across a cor-
pus. The disagreements that remain are the truly
hard cases.

We use a modified version of the a priori algo-
rithm introduced in Dickinson and Meurers (2003)
to identify annotation inconsistencies. It works
by collecting “variation n-grams”, i.e. the longest
sequence of words (n-gram) in a corpus that has
been observed with a token being tagged differ-
ently in another occurence of the same n-gram in
the same corpus. The algorithm starts off by look-
ing for unigrams and expands them until no longer
n-grams are found.

For each variation n-gram that we found in
WSJ-00, i.e, a word in various contexts and the
possible tags associated with it, we present anno-
tators with the cross product of contexts and tags.
Essentially, we ask for a binary decision: Is the tag
plausible for the given context?

We used 3 annotators with PhD degrees in lin-
guistics. In total, our data set contains 880 items,
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i.e. 440 annotated confusion tag pairs. The raw
agreement was 86%. Figure 4 shows how truly
hard cases are distributed over tag pairs (dark gray
bars), as well as the proportion of confusions with
respect to a given tag pair that are truly hard cases
(light gray bars). The figure shows, for instance,
that the variation n-gram regarding ADP-ADV is
the second most frequent one (dark gray), and
approximately 70% of ADP-ADV disagreements
are linguistically hard cases (light gray). NOUN-
PRON disagreements are always linguistically de-
batable cases, while they are less frequent.

Figure 4: Relative frequency of hard cases

A survey of hard cases. To further test the idea
of there being truly hard cases that probably can-
not be resolved by linguistic theory, we presented
nine linguistics faculty members with 10 of the
above examples and asked them to pick their fa-
vorite analyses. In 8/10 cases, the faculty mem-
bers disagreed on the right analysis.

4 Learning to detect annotation errors

In this section, we examine whether we can learn
a classifier to distinguish between hard cases and
annotation errors. In order to do so, we train a clas-
sifier on the annotated data set containing 440 tag-
confusion pairs by relying only on surface form
features. If we balance the data set and perform 3-
fold cross-validation, a L2-regularized logistic re-
gression (L2-LR) model achieves an f1-score for
detecting errors at 70% (cf. Table 1), which is
above average, but not very impressive.

The two classes are apparently not easily sepa-
rable using surface form features, as illustrated in

f1 HARD CASES ERRORS

L2-LR 73%(71-77) 70%(65-75)
NN 76%(76-77) 71%(68-72)

Table 1: Classification results

Figure 5: Hard cases and errors in 2d-PCA

the two-dimensional plot in Figure 5, obtained us-
ing PCA. The logistic regression decision bound-
ary is plotted as a solid, black line. This is prob-
ably also why the nearest neighbor (NN) classi-
fier does slightly better, but again, performance is
rather low. While other features may reveal that
the problem is in fact learnable, our initial experi-
ments lead us to conclude that, given the low ratio
of errors over truly hard cases, learning to detect
errors is often not worthwhile.

5 Related work

Juergens (2014) presents work on detecting lin-
guistically hard cases in the context of word
sense annotations, e.g., cases where expert an-
notators will disagree, as well as differentiat-
ing between underspecified, overspecified and
metaphoric cases. This work is similar to ours in
spirit, but considers a very different task. While
we also quantify the proportion of hard cases and
present an analysis of these cases, we also show
that disagreements are systematic.

Our work also relates to work on automatically
correcting expert annotations for inconsistencies
(Dickinson and Meurers, 2003). This work is
very different in spirit from our work, but shares
an interest in reconsidering expert annotations,
and we made use of their mining algorithm here.
There has also been recent work on adjudicat-
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ing noisy crowdsourced annotations (Dawid and
Skene, 1979; Smyth et al., 1995; Carpenter, 2008;
Whitehill et al., 2009; Welinder et al., 2010; Yan
et al., 2010; Raykar and Yu, 2012; Hovy et al.,
2013). Again, their objective is orthogonal to
ours, namely to collapse multiple annotations into
a gold standard rather than embracing disagree-
ments.

Finally, Plank et al. (2014) use small samples of
doubly-annotated POS data to estimate annotator
reliability and show how those metrics can be im-
plemented in the loss function when inducing POS
taggers to reflect confidence we can put in annota-
tions. They show that not biasing the theory to-
wards a single annotator but using a cost-sensitive
learning scheme makes POS taggers more robust
and more applicable for downstream tasks.

6 Conclusion

In this paper, we show that disagreements between
professional or lay annotators are systematic and
consistent across domains and some of them are
systematic also across languages. In addition, we
present an empirical analysis of POS annotations
showing that the vast majority of inter-annotator
disagreements are competing, but valid, linguis-
tic interpretations. We propose to embrace such
disagreements rather than using annotation guide-
lines to optimize inter-annotator agreement, which
would bias our models in favor of some linguistic
theory.

Acknowledgements

We would like to thank the anonymous reviewers
for their feedback, as well as Djamé Seddah for the
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Yan Yan, Rómer Rosales, Glenn Fung, Mark Schmidt,
Gerardo Hermosillo, Luca Bogoni, Linda Moy, and
Jennifer Dy. 2010. Modeling annotator expertise:
Learning when everybody knows a bit of something.
In AIStats.

Daniel Zeman. 2010. Hard problems of tagset con-
version. In Proceedings of the Second International
Conference on Global Interoperability for Language
Resources.

511



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 512–516,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Humans Require Context to Infer Ironic Intent
(so Computers Probably do, too)

Byron C. Wallace, Do Kook Choe, Laura Kertz and Eugene Charniak
Brown University

{byron wallace, do kook choe, laura kertz, eugene charniak}@brown.edu

Abstract

Automatically detecting verbal irony
(roughly, sarcasm) is a challenging task
because ironists say something other
than – and often opposite to – what they
actually mean. Discerning ironic intent
exclusively from the words and syntax
comprising texts (e.g., tweets, forum
posts) is therefore not always possible:
additional contextual information about
the speaker and/or the topic at hand is
often necessary. We introduce a new
corpus that provides empirical evidence
for this claim. We show that annota-
tors frequently require context to make
judgements concerning ironic intent, and
that machine learning approaches tend
to misclassify those same comments for
which annotators required additional
context.

1 Introduction & Motivation

This work concerns the task of detecting verbal
irony online. Our principal argument is that sim-
ple bag-of-words based text classification models
– which, when coupled with sufficient data, have
proven to be extremely successful for many natu-
ral language processing tasks (Halevy et al., 2009)
– are inadequate for irony detection. In this paper
we provide empirical evidence that context is often
necessary to recognize ironic intent.

This is consistent with the large body of prag-
matics/linguistics literature on irony and its us-
age, which has emphasized the role that context
plays in recognizing and decoding ironic utter-
ances (Grice, 1975; Clark and Gerrig, 1984; Sper-
ber and Wilson, 1981). But existing work on au-
tomatic irony detection – reviewed in Section 2
– has not explicitly attempted to operationalize
such theories, and has instead relied on features

(mostly word counts) intrinsic to the texts that are
to be classified as ironic. These approaches have
achieved some success, but necessarily face an
upper-bound: the exact same sentence can be both
intended ironically and unironically, depending on
the context (including the speaker and the topic at
hand). Only obvious verbal ironies will be recog-
nizable from intrinsic features alone.

Here we provide empirical evidence for the
above claims. We also introduce a new annotated
corpus that will allow researchers to build models
that augment existing approaches to irony detec-
tion with contextual information regarding the text
(utterance) to be classified and its author. Briefly,
our contributions are summarized as follows.

• We introduce the first version of the reddit
irony corpus, composed of annotated com-
ments from the social news website reddit.
Each sentence in every comment in this cor-
pus has been labeled by three independent an-
notators as having been intended by the au-
thor ironically or not. This dataset is publicly
available.1

• We provide empirical evidence that human
annotators consistently rely on contextual in-
formation to make ironic/unironic sentence
judgements.

• We show that the standard ‘bag-of-words’ ap-
proach to text classification fails to accurately
judge ironic intent on those cases for which
humans required additional context. This
suggests that, as humans require context to
make their judgements for this task, so too do
computers.

Our hope is that these observations and this
dataset will spur innovative new research on meth-
ods for verbal irony detection.

1https://github.com/bwallace/
ACL-2014-irony
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2 Previous Work

There has recently been a flurry of interesting
work on automatic irony detection (Tepperman
et al., 2006; Davidov et al., 2010; Carvalho et
al., 2009; Burfoot and Baldwin, 2009; Tsur et
al., 2010; González-Ibáñez et al., 2011; Filatova,
2012; Reyes et al., 2012; Lukin and Walker, 2013;
Riloff et al., 2013). In these works, verbal irony
detection has mostly been treated as a standard
text classification task, though with some innova-
tive approaches specific to detecting irony.

The most common data source used to experi-
ment with irony detection systems has been Twit-
ter (Reyes et al., 2012; González-Ibáñez et al.,
2011; Davidov et al., 2010), though Amazon prod-
uct reviews have been used experimentally as well
(Tsur et al., 2010; Davidov et al., 2010; Reyes et
al., 2012; Filatova, 2012). Walker et al. (2012)
also recently introduced the Internet Argument
Corpus (IAC), which includes a sarcasm label
(among others).

Some of the findings from these previous ef-
forts have squared with intuition: e.g., overzealous
punctuation (as in “great idea!!!!”) is indicative of
ironic intent (Carvalho et al., 2009). Other works
have proposed novel approaches specifically for
irony detection: Davidov et al. (2010), for ex-
ample, proposed a semi-supervised approach in
which they look for sentence templates indicative
of irony. Elsewhere, Riloff et al. (2013) proposed
a method that exploits contrasting sentiment in the
same utterance to detect irony.

To our knowledge, however, no previous work
on irony detection has attempted to leverage
contextual information regarding the author or
speaker (external to the utterance). But this is nec-
essary in some cases, however. For example, in
the case of Amazon product reviews, knowing the
kinds of books that an individual typically likes
might inform our judgement: someone who tends
to read and review Dostoevsky is probably be-
ing ironic if she writes a glowing review of Twi-
light. Of course, many people genuinely do enjoy
Twilight and so if the review is written subtly it
will likely be difficult to discern the author’s in-
tent without this background. In the case of Twit-
ter, it is likely to be difficult to classify utterances
without considering the contextualizing exchange
of tweets (i.e., the conversation) to which they be-
long.

1

2

3

4

Figure 1: The web-based tool used by our annotators to la-
bel reddit comments. Enumerated interface elements are de-
scribed as follows: 1 the text of the comment to be anno-
tated – sentences marked as ironic are highlighted; 2 buttons
to label sentences as ironic or unironic; 3 buttons to request
additional context (the embedding discussion thread or asso-
ciated webpage – see Section 3.2); 4 radio button to provide
confidence in comment labels (low, medium or high).

3 Introducing the reddit Irony Dataset

Here we introduce the first version (β 1.0) of
our irony corpus. Reddit (http://reddit.
com) is a social-news website to which news
stories (and other links) are posted, voted on
and commented upon. The forum compo-
nent of reddit is extremely active: popular
posts often have well into 1000’s of user com-
ments. Reddit comprises ‘sub-reddits’, which fo-
cus on specific topics. For example, http://
reddit.com/r/politics features articles
(and hence comments) centered around political
news. The current version of the corpus is avail-
able at: https://github.com/bwallace/
ACL-2014-irony. Data collection and annota-
tion is ongoing, so we will continue to release new
(larger) versions of the corpus in the future. The
present version comprises 3,020 annotated com-
ments scraped from the six subreddits enumerated
in Table 1. These comments in turn comprise a
total of 10,401 labeled sentences.2

3.1 Annotation Process
Three university undergraduates independently
annotated each sentence in the corpus. More
specifically, annotators have provided binary ‘la-
bels’ for each sentence indicating whether or not
they (the annotator) believe it was intended by the
author ironically (or not). This annotation was
provided via a custom-built browser-based anno-
tation tool, shown in Figure 1.

We intentionally did not provide much guid-
ance to annotators regarding the criteria for what

2We performed naı̈ve ‘segmentation’ of comments based
on punctuation.
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sub-reddit (URL) description number of labeled comments
politics (r/politics) Political news and editorials; focus on the US. 873
conservative (r/conservative) A community for political conservatives. 573
progressive (r/progressive) A community for political progressives (liberals). 543
atheism (r/atheism) A community for non-believers. 442
Christianity (r/Christianity) News and viewpoints on the Christian faith. 312
technology (r/technology) Technology news and commentary. 277

Table 1: The six sub-reddits that we have downloaded comments from and the corresponding number of comments for which
we have acquired annotations in this β version of the corpus. Note that we acquired labels at the sentence level, whereas the
counts above reflect comments, all of which contain at least one sentence.

constitutes an ‘ironic’ statement, for two reasons.
First, verbal irony is a notoriously slippery concept
(Gibbs and Colston, 2007) and coming up with an
operational definition to be consistently applied is
non-trivial. Second, we were interested in assess-
ing the extent of natural agreement between an-
notators for this task. The raw average agreement
between all annotators on all sentences is 0.844.
Average pairwise Cohen’s Kappa (Cohen, 1960)
is 0.341, suggesting fair to moderate agreement
(Viera and Garrett, 2005), as we might expect for
a subjective task like this one.

3.2 Context

Reddit is a good corpus for the irony detection
task in part because it provides a natural prac-
tical realization of the otherwise ill-defined con-
text for comments. In particular, each comment is
associated with a specific user (the author), and
we can view their previous comments. More-
over, comments are embedded within discussion
threads that pertain to the (usually external) con-
tent linked to in the corresponding submission (see
Figure 2). These pieces of information (previous
comments by the same user, the external link of
the embedding reddit thread, and the other com-
ments in this thread) constitute our context. All
of this is readily accessible. Labelers can opt to
request these pieces of context via the annotation
tool, and we record when they do so.

Consider the following example comment taken
from our dataset: “Great idea on the talkathon
Cruz. Really made the republicans look like the
sane ones.” Did the author intend this statement
ironically, or was this a subtle dig on Senator
Ted Cruz? Without additional context it is diffi-
cult to know. And indeed, all three annotators re-
quested additional context for this comment. This
context at first suggests that the comment may
have been intended literally: it was posted in the
r/conservative subreddit (Ted Cruz is a conserva-
tive senator). But if we peruse the author’s com-

Figure 2: An illustrative reddit comment (highlighted). The
title (“Virginia Republican ...”) links to an article, providing
one example of contextualizing content. The conversational
thread in which this comment is embedded provides addi-
tional context. The comment in question was presumably in-
tended ironically, though without the aforementioned context
this would be difficult to conclude with any certainty.

ment history, we see that he or she repeatedly de-
rides Senator Cruz (e.g., writing “Ted Cruz is no
Ronald Reagan. They aren’t even close.”). From
this contextual information, then, we can reason-
ably assume that the comment was intended iron-
ically (and all three annotators did so after assess-
ing the available contextual information).

4 Humans Need Context to Infer Irony

We explore the extent to which human annotators
rely on contextual information to decide whether
or not sentences were intended ironically. Recall
that our annotation tool allows labelers to request
additional context if they cannot make a decision
based on the comment text alone (Figure 1). On
average, annotators requested additional context
for 30% of comments (range across annotators of
12% to 56%). As shown in Figure 3, annotators
are consistently more confident once they have
consulted this information.

We tested for a correlation between these re-
quests for context and the final decisions regard-
ing whether comments contain at least one ironic
sentence. We denote the probability of at least one
annotator requesting additional context for com-
ment i by P (Ci). We then model the probability
of this event as a linear function of whether or not
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forced decision
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ironic →ironic
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unironic →unironic

unironic →ironic
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Figure 3: This plot illustrates the effect of viewing contextual information for three annotators (one table for each annotator).
For all comments for which these annotators requested context, we show forced (before viewing the requested contextual
content) and final (after) decisions regarding perceived ironic intent on behalf of the author. Each row shows one of four
possible decision sequences (e.g., a judgement of ironic prior to seeing context and unironic after). Numbers correspond to
counts of these sequences for each annotator (e.g., the first annotator changed their mind from ironic to unironic 86 times).
Cases that involve the annotator changing his or her mind are shown in red; those in which the annotator stuck with their initial
judgement are shown in blue. Color intensity is proportional to the average confidence judgements the annotator provided:
these are uniformly stronger after they have consulted contextualizing information. Note also that the context frequently results
in annotators changing their judgement.

any annotator labeled any sentence in comment i
as ironic. We code this via the indicator variable
Ii which is 1 when comment i has been deemed
to contain an ironic sentence (by any of the three
annotators) and 0 otherwise.

logit{P (Ci)} = β0 + β1Ii (1)

We used the regression model shown in Equa-
tion 1, where β0 is an intercept and β1 captures
the correlation between requests for context for a
given comment and its ultimately being deemed
to contain at least one ironic sentence. We fit this
model to the annotated corpus, and found a signif-
icant correlation: β̂1 = 1.508 with a 95% confi-
dence interval of (1.326, 1.690); p < 0.001.

In other words, annotators request context sig-
nificantly more frequently for those comments
that (are ultimately deemed to) contain an ironic
sentence. This would suggest that the words
and punctuation comprising online comments
alone are not sufficient to distinguish ironic from
unironic comments. Despite this, most machine
learning based approaches to irony detection have
relied nearly exclusively on such intrinsic features.

5 Machines Probably do, too

We show that the misclassifications (with respect
to whether comments contain irony or not) made
by a standard text classification model signifi-
cantly correlate with those comments for which
human annotators requested additional context.
This provides evidence that bag-of-words ap-
proaches are insufficient for the general task of

irony detection: more context is necessary.
We implemented a baseline classification ap-

proach using vanilla token count features (binary
bag-of-words). We removed stop-words and lim-
ited the vocabulary to the 50,000 most frequently
occurring unigrams and bigrams. We added ad-
ditional binary features coding for the presence
of punctuational features, such as exclamation
points, emoticons (for example, ‘;)’) and question
marks: previous work (Davidov et al., 2010; Car-
valho et al., 2009) has found that these are good
indicators of ironic intent.

For our predictive model, we used a linear-
kernel SVM (tuning the C parameter via grid-
search over the training dataset to maximize F1
score). We performed five-fold cross-validation,
recording the predictions ŷi for each (held-out)
comment i. Average F1 score over the five-folds
was 0.383 with range (0.330, 0.412); mean recall
was 0.496 (0.446, 0.548) and average precision
was 0.315 (0.261, 0.380). The five most predictive
tokens were: !, yeah, guys, oh and shocked. This
represents reasonable performance (with intuitive
predictive tokens); but obviously there is quite a
bit of room for improvement.3

We now explore empirically whether these mis-
classifications are made on the same comments for
which annotators requested context. To this end,
we introduce a variable Mi for each comment i
such that Mi = 1 if ŷi 6= yi, i.e., Mi is an in-

3Some of the recently proposed strategies mentioned in
Section 2 may improve performance here, but none of these
address the fundamental issue of context.
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dicator variable that encodes whether or not the
classifier misclassified comment i. We then ran
a second regression in which the output variable
was the logit-transformed probability of the model
misclassifying comment i, i.e., P (Mi). Here we
are interested in the correlation of the event that
one or more annotators requested additional con-
text for comment i (denoted by Ci) and model mis-
classifications (adjusting for the comment’s true
label). Formally:

logit{P (Mi)} = θ0 + θ1Ii + θ2Ci (2)

Fitting this to the data, we estimated θ̂2 = 0.971
with a 95% CI of (0.810, 1.133); p < 0.001. Put
another way, the model makes mistakes on those
comments for which annotators requested addi-
tional context (even after accounting for the an-
notator designation of comments).

6 Conclusions and Future Directions

We have described a new (publicly available) cor-
pus for the task of verbal irony detection. The
data comprises comments scraped from the so-
cial news website reddit. We recorded confidence
judgements and requests for contextualizing infor-
mation for each comment during annotation. We
analyzed this corpus to provide empirical evidence
that annotators quite often require context beyond
the comment under consideration to discern irony;
especially for those comments ultimately deemed
as being intended ironically. We demonstrated
that a standard token-based machine learning ap-
proach misclassified many of the same comments
for which annotators tend to request context.

We have shown that annotators rely on contex-
tual cues (in addition to word and grammatical fea-
tures) to discern irony and argued that this implies
computers should, too. The obvious next step is to
develop new machine learning models that exploit
the contextual information available in the corpus
we have curated (e.g., previous comments by the
same user, the thread topic).
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Abstract

This paper describes a new approach to
predicting the aspectual class of verbs in
context, i.e., whether a verb is used in a
stative or dynamic sense. We identify two
challenging cases of this problem: when
the verb is unseen in training data, and
when the verb is ambiguous for aspec-
tual class. A semi-supervised approach us-
ing linguistically-motivated features and a
novel set of distributional features based
on representative verb types allows us to
predict classes accurately, even for unseen
verbs. Many frequent verbs can be either
stative or dynamic in different contexts,
which has not been modeled by previous
work; we use contextual features to re-
solve this ambiguity. In addition, we intro-
duce two new datasets of clauses marked
for aspectual class.

1 Introduction

In this work, we focus on the automatic prediction
of whether a verb in context is used in a stative or
in a dynamic sense, the most fundamental distinc-
tion in all taxonomies of aspectual class. The as-
pectual class of a discourse’s finite verbs is an im-
portant factor in conveying and interpreting tem-
poral structure (Moens and Steedman, 1988; Dorr,
1992; Klavans and Chodorow, 1992); others are
tense, grammatical aspect, mood and whether the
utterance represents an event as completed. More
accurate temporal information processing is ex-
pected to be beneficial for a variety of natural lan-
guage processing tasks (Costa and Branco, 2012;
UzZaman et al., 2013).

While most verbs have one predominant inter-
pretation, others are more flexible for aspectual
class and can occur as either stative (1) or dynamic
(2) depending on the context. There are also cases
that allow for both readings, such as (3).

(1) The liquid fills the container. (stative)

(2) The pool slowly filled with water. (dynamic)

(3) Your soul was made to be filled with God
Himself. (both) (Brown corpus, religion)

Cases like (3) do not imply that there is a third
class, but rather that two interpretations are avail-
able for the sentence, of which usually one will be
chosen by a reader.

Following Siegel and McKeown (2000), we aim
to automatically classify clauses for fundamental
aspectual class, a function of the main verb and
a select group of complements, which may dif-
fer per verb (Siegel and McKeown, 2000; Siegel,
1998b). This corresponds to the aspectual class
of the clause’s main verb when ignoring any as-
pectual markers or transformations. For exam-
ple, English sentences with perfect tense are usu-
ally considered to introduce states to the discourse
(Smith, 1991; Katz, 2003), but we are interested in
the aspectual class before this transformation takes
place. The clause John has kissed Mary introduces
a state, but the fundamental aspectual class of the
‘tenseless’ clause John kiss Mary is dynamic.

In contrast to Siegel and McKeown (2000), we
do not conduct the task of predicting aspectual
class solely at the type level, as such an approach
ignores the minority class of ambiguous verbs. In-
stead we predict the aspectual class of verbs in
the context of their arguments and modifiers. We
show that this method works better than using only
type-based features, especially for verbs with am-
biguous aspectual class. In addition, we show
that type-based features, including novel distribu-
tional features based on representative verbs, accu-
rately predict predominant aspectual class for un-
seen verb types. Our work differs from prior work
in that we treat the problem as a three-way clas-
sification task, predicting DYNAMIC, STATIVE or
BOTH as the aspectual class of a verb in context.
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2 Related work

Aspectual class is well treated in the linguistic lit-
erature (Vendler, 1957; Dowty, 1979; Smith, 1991,
for example). Our notion of the stative/dynamic
distinction corresponds to Bach’s (1986) distinc-
tion between states and non-states; to states ver-
sus occurrences (events and processes) according
to Mourelatos (1978); and to Vendler’s (1957) dis-
tinction between states and the other three classes
(activities, achievements, accomplishments).

Early studies on the computational modeling
of aspectual class (Nakhimovsky, 1988; Passon-
neau, 1988; Brent, 1991; Klavans and Chodorow,
1992) laid foundations for a cluster of papers pub-
lished over a decade ago (Siegel and McKeown,
2000; Siegel, 1998b; Siegel, 1998a). Since then,
it has mostly been treated as a subtask within
temporal reasoning, such as in efforts related to
TimeBank (Pustejovsky et al., 2003) and the Tem-
pEval challenges (Verhagen et al., 2007; Verha-
gen et al., 2010; UzZaman et al., 2013), where
top-performing systems (Jung and Stent, 2013;
Bethard, 2013; Chambers, 2013) use corpus-based
features, WordNet synsets, parse paths and fea-
tures from typed dependencies to classify events
as a joint task with determining the event’s span.
Costa and Branco (2012) explore the usefulness of
a wider range of explicitly aspectual features for
temporal relation classification.

Siegel and McKeown (2000) present the most
extensive study of predicting aspectual class,
which is the main inspiration for this work. While
all of their linguistically motivated features (see
section 4.1) are type-based, they train on and eval-
uate over labeled verbs in context. Their data
set taken from medical discharge summaries com-
prises 1500 clauses containing main verbs other
than be and have which are marked for aspectual
class. Their model fails to outperform a baseline
of memorizing the most frequent class of a verb
type, and they present an experiment testing on un-
seen verb types only for the related task of classi-
fying completedness of events. We replicate their
method using publicly available software, create
a similar but larger corpus,1 and show that it is
indeed possible to predict the aspectual class of
unseen verbs. Siegel (1998a) investigates a classi-
fication method for the verb have in context; in-

1Direct comparison on their data is not possible; feature
values for the verbs studied are available, but full texts and
the English Slot Grammar parser (McCord, 1990) are not.

COMPLETE W/O have/be/none
genre clauses κ clauses κ

jokes 3462 0.85 2660 0.77
letters 1848 0.71 1444 0.62
news 2565 0.79 2075 0.69
all 7875 0.80 6161 0.70

Table 1: Asp-MASC: Cohen’s observed un-
weighted κ.

DYNAMIC STATIVE BOTH

DYNAMIC 4464 164 9
STATIVE 434 1056 29
BOTH 5 0 0

Table 2: Asp-MASC: confusion matrix for two
annotators, without have/be/none clauses, κ is 0.7.

spired by this work, our present work goes one
step further and uses a larger set of instance-based
contextual features to perform experiments on a
set of 20 verbs. To the best of our knowledge, there
is no previous work comprehensively addressing
aspectual classification of verbs in context.

3 Data

Verb type seed sets Using the LCS Database
(Dorr, 2001), we identify sets of verb types whose
senses are only stative (188 verbs, e.g. belong,
cost, possess), only dynamic (3760 verbs, e.g. al-
ter, knock, resign), or mixed (215 verbs, e.g. fill,
stand, take), following a procedure described by
Dorr and Olsen (1997).

Asp-MASC The Asp-MASC corpus consists of
7875 clauses from the letters, news and jokes sec-
tions of MASC (Ide et al., 2010), each labeled
by two annotators for the aspectual class of the
main verb.2 Texts were segmented into clauses us-
ing SPADE (Soricut and Marcu, 2003) with some
heuristic post-processing. We parse the corpus us-
ing the Stanford dependency parser (De Marneffe
et al., 2006) and extract the main verb of each seg-
ment. We use 6161 clauses for the classification
task, omitting clauses with have or be as the main
verb and those where no main verb could be iden-
tified due to parsing errors (none). Table 1 shows
inter-annotator agreement; Table 2 shows the con-
fusion matrix for the two annotators. Our two an-
notators exhibit different preferences on the 598
cases where they disagree between DYNAMIC and
STATIVE. Such differences in annotation prefer-

2Corpus freely available from
www.coli.uni-saarland.de/˜afried.
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DYNAMIC STATIVE BOTH

DYNAMIC 1444 201 54
STATIVE 168 697 20
BOTH 44 31 8

Table 3: Asp-Ambig: confusion matrix for two
annotators. Cohen’s κ is 0.6.

ences are not uncommon (Beigman Klebanov et
al., 2008). We observe higher agreement in the
jokes and news subcorpora than for letters; texts
in the letters subcorpora are largely argumentative
and thus have a different rhetorical style than the
more straightforward narratives and reports found
in jokes. Overall, we find substantial agreement.

The data for our experiments uses the label DY-
NAMIC or STATIVE whenever annotators agree,
and BOTH whenever they disagree or when at least
one annotator marked the clause as BOTH, assum-
ing that both readings are possible in such cases.
Because we don’t want to model the authors’ per-
sonal view of the theory, we refrain from applying
an adjudication step and model the data as is.

Asp-Ambig: (Brown) In order to facilitate a
first study on ambiguous verbs, we select 20 fre-
quent verbs from the list of ‘mixed’ verbs (see
section 3) and for each mark 138 sentences. Sen-
tences are extracted randomly from the Brown cor-
pus, such that the distribution of stative/dynamic
usages is expected to be natural. We present
entire sentences to the annotators who mark the
aspectual class of the verb in question as high-
lighted in the sentence. The data is processed in
the same way as Asp-MASC, discarding instances
with parsing problems. This results in 2667 in-
stances. κ is 0.6, the confusion matrix is shown in
Table 3. Details are listed in Table 10.

4 Model and Features

For predicting the aspectual class of verbs in con-
text (STATIVE, DYNAMIC, BOTH), we assume a
supervised learning setting and explore features
mined from a large background corpus, distribu-
tional features, and instance-based features. If not
indicated otherwise, experiments use a Random
Forest classifier (Breiman, 2001) trained with the
implementation and standard parameter settings
from Weka (Hall et al., 2009).

4.1 Linguistic indicator features (LingInd)
This set of corpus-based features is a reimple-
mentation of the linguistic indicators of Siegel

FEATURE EXAMPLE FEATURE EXAMPLE
frequency - continuous continually
present says adverb endlessly
past said evaluation better
future will say adverb horribly
perfect had won manner furiously
progressive is winning adverb patiently
negated not/never temporal again
particle up/in/... adverb finally
no subject - in-PP in an hour

for-PP for an hour

Table 4: LingInd feature set and examples for lex-
ical items associated with each indicator.

FEATURE VALUES

part-of-speech tag of the verb VB, VBG, VBN, ...
tense present, past, future
progressive true/false
perfect true/false
voice active/passive
grammatical dependents WordNet lexname/POS

Table 5: Instance-based (Inst) features

and McKeown (2000), who show that (some of)
these features correlate with either stative or dy-
namic verb types. We parse the AFE and XIE sec-
tions of Gigaword (Graff and Cieri, 2003) with
the Stanford dependency parser. For each verb
type, we obtain a normalized count showing how
often it occurs with each of the indicators in Ta-
ble 4, resulting in one value per feature per verb.
For example, for the verb fill, the value of the
feature temporal-adverb is 0.0085, meaning
that 0.85% of the occurrences of fill in the corpus
are modified by one of the temporal adverbs on the
list compiled by Siegel (1998b). Tense, progres-
sive, perfect and voice are extracted using a set of
rules following Loaiciga et al. (2014).3

4.2 Distributional Features (Dist)

We aim to leverage existing, possibly noisy sets
of representative stative, dynamic or mixed verb
types extracted from LCS (see section 3), mak-
ing up for unseen verbs and noise by averaging
over distributional similarities. Using an exist-
ing large distributional model (Thater et al., 2011)
estimated over the set of Gigaword documents
marked as stories, for each verb type, we build
a syntactically informed vector representing the
contexts in which the verb occurs. We compute
three numeric feature values per verb type, which
correspond to the average cosine similarities with
the verb types in each of the three seed sets.

3We thank the authors for providing us their code.
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FEATURES ACCURACY (%)
Baseline (Lemma) 83.6

LingInd 83.8
Inst 70.8
Inst+Lemma 83.7
Dist 83.4
LingInd+Inst+Dist+Lemma 84.1

Table 6: Experiment 1: SEEN verbs, using Asp-
MASC. Baseline memorizes most frequent class
per verb type in training folds.

4.3 Instance-based features (Inst)
Table 5 shows our set of instance-based syntac-
tic and semantic features. In contrast to the above
described type-based features, these features do
not rely on a background corpus, but are ex-
tracted from the clause being classified. Tense,
progressive, perfect and voice are extracted from
dependency parses as described above. For fea-
tures encoding grammatical dependents, we focus
on a subset of grammatical relations. The fea-
ture value is either the WordNet lexical filename
(e.g. noun.person) of the given relation’s argu-
ment or its POS tag, if the former is not avail-
able. We simply use the most frequent sense for
the dependent’s lemma. We also include features
that indicate, if there are any, the particle of the
verb and its prepositional dependents. For the
sentence A little girl had just finished her first
week of school, the instance-based feature values
would include tense:past, subj:noun.person,
dobj:noun.time or particle:none.

5 Experiments

The experiments presented in this section aim to
evaluate the effectiveness of the feature sets de-
scribed in the previous section, focusing on the
challenging cases of verb types unseen in the train-
ing data and highly ambiguous verbs. The feature
Lemma indicates that the verb’s lemma is used as
an additional feature.

Experiment 1: SEEN verbs
The setting of our first experiment follows Siegel
and McKeown (2000). Table 6 reports results for
10-fold cross-validation, with occurrences of all
verbs distributed evenly over the folds. No feature
combination significantly4 outperforms the base-
line of simply memorizing the most frequent class

4According to McNemar’s test with Yates’ correction for
continuity, p < 0.01.

FEATURES ACCURACY (%)

1 Baseline 72.5
2 Dist 78.3∗
3 LingInd 80.4∗
4 LingInd+Dist 81.9*†

Table 7: Experiment 2: UNSEEN verb types, Lo-
gistic regression, Asp-MASC. Baseline labels ev-
erything with the most frequent class in the train-
ing set (DYNAMIC). *Significantly4 different from
line 1. †Significantly4 different from line 3.

DATA FEATURES ACC. (%)

one-label Baseline 92.8
verbs LingInd 92.8

Dist 92.6
(1966 inst.) Inst+Lemma 91.4∗

LingInd+Inst+Lemma 92.4

multi-label Baseline 78.9
verbs LingInd 79.0

Dist 79.0
(4195 inst.) Inst 67.4∗

Inst+Lemma 79.9
LingInd+Inst+Lemma 80.9*
LingInd+Inst+Lemma+Dist 80.2*

Table 8: Experiment 3: ‘ONE- VS. MULTI-
LABEL’ verbs, Asp-MASC. Baseline as in Table
6. *Indicates that result is significantly4 different
from the respective baseline.

of a verb type in the respective training folds.

Experiment 2: UNSEEN verbs
This experiment shows a successful case of semi-
supervised learning: while type-based feature val-
ues can be estimated from large corpora in an un-
supervised way, some labeled training data is nec-
essary to learn their best combination. This exper-
iment specifically examines performance on verbs
not seen in labeled training data. We use 10-fold
cross validation but ensure that all occurrences of
a verb type appear in the same fold: verb types
in each test fold have not been seen in the re-
spective training data, ruling out the Lemma fea-
ture. A Logistic regression classifier (Hall et al.,
2009) works better here (using only numeric fea-
tures), and we present results in Table 7. Both the
LingInd and Dist features generalize across verb
types, and their combination works best.

Experiment 3: ONE- vs. MULTI-LABEL verbs

For this experiment, we compute results sepa-
rately for one-label verbs (those for which all in-
stances in Asp-MASC have the same label) and
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SYSTEM CLASS ACC. P R F

baseline micro-avg. 78.9 0.75 0.79 0.76

LingInd DYNAMIC 0.84 0.95 0.89
+Inst STATIVE 0.76 0.69 0.72
+Lemma BOTH 0.51 0.24 0.33

micro-avg. 80.9* 0.78 0.81 0.79

Table 9: Experiment 3: ‘MULTI-LABEL’, preci-
sion, recall and F-measure, detailed class statistics
for the best-performing system from Table 8.

for multi-label verbs (instances have differing la-
bels in Asp-MASC). We expect one-label verbs
to have a strong predominant aspectual class, and
multi-label verbs to be more flexible. Otherwise,
the experimental setup is as in experiment 1. Re-
sults appear in Table 8. In each case, the linguistic
indicator features again perform on par with the
baseline. For multi-label verbs, the feature combi-
nation Lemma+LingInd+Inst leads to significant4

improvement of 2% gain in accuracy over the
baseline; Table 9 reports detailed class statistics
and reveals a gain in F-measure of 3 points over
the baseline. To sum up, Inst features are essential
for classifying multi-label verbs, and the LingInd
features provide some useful prior. These results
motivate the need for an instance-based approach.

Experiment 4: INSTANCE-BASED classification
For verbs with ambiguous aspectual class, type-
based classification is not sufficient, as this ap-
proach selects a dominant sense for any given verb
and then always assigns that. Therefore we pro-
pose handling ambiguous verbs separately. As
Asp-MASC contains only few instances of each of
the ambiguous verbs, we turn to the Asp-Ambig
dataset. We perform a Leave-One-Out (LOO)
cross validation evaluation, with results reported
in Table 10.5 Using the Inst features alone (not
shown in Table 10) results in a micro-average ac-
curacy of only 58.1%: these features are only use-
ful when combined with the feature Lemma. For
classifying verbs whose most frequent class oc-
curs less than 56% of the time, Lemma+Inst fea-
tures are essential. Whether or not performance
is improved by adding LingInd/Dist features, with
their bias towards one aspectual class, depends
on the verb type. It is an open research question
which verb types should be treated in which way.

5 The third column also shows the outcome of using ei-
ther only the Lemma, only LingInd or only Dist in LOO; all
have almost the same outcome as using the majority class,
numbers differ only after the decimal point.
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t# OF MAJORITY
VERB INST. CLASS5

feel 128 96.1 STAT 93.0 93.8
say 138 94.9 DYN 93.5 93.5
make 136 91.9 DYN 91.9 91.2
come 133 88.0 DYN 87.2 87.2
take 137 85.4 DYN 85.4 85.4
meet 130 83.9 DYN 86.2 87.7
stand 130 80.0 STAT 79.2 83.1
find 137 74.5 DYN 69.3 68.8
accept 134 70.9 DYN 64.9 65.7
hold 134 56.0 BOTH 43.3 49.3
carry 136 55.9 DYN 55.9 58.1
look 138 55.8 DYN 72.5 74.6
show 133 54.9 DYN 69.2 68.4
appear 136 52.2 STAT 64.7 61.0
follow 122 51.6 BOTH 69.7 65.6
consider 138 50.7 DYN 61.6 70.3
cover 123 50.4 STAT 46.3 54.5
fill 134 47.8 DYN 66.4 62.7
bear 135 47.4 DYN 70.4 67.4
allow 135 37.8 DYN 48.9 51.9
micro-avg. 2667 66.3 71.0* 72.0*

Table 10: Experiment 4: INSTANCE-BASED.
Accuracy (in %) on Asp-Ambig. *Differs
significantly4 from the majority class baseline.

6 Discussion and conclusions

We have described a new, context-aware approach
to automatically predicting aspectual class, includ-
ing a new set of distributional features. We have
also introduced two new data sets of clauses la-
beled for aspectual class. Our experiments show
that in any setting where labeled training data
is available, improvement over the most frequent
class baseline can only be reached by integrating
instance-based features, though type-based fea-
tures (LingInd, Dist) may provide useful priors
for some verbs and successfully predict predom-
inant aspectual class for unseen verb types. In or-
der to arrive at a globally well-performing system,
we envision a multi-stage approach, treating verbs
differently according to whether training data is
available and whether or not the verb’s aspectual
class distribution is highly skewed.
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Abstract

Distinguishing between paradigmatic rela-
tions such as synonymy, antonymy and hy-
pernymy is an important prerequisite in a
range of NLP applications. In this paper,
we explore discourse relations as an alter-
native set of features to lexico-syntactic
patterns. We demonstrate that statistics
over discourse relations, collected via ex-
plicit discourse markers as proxies, can be
utilized as salient indicators for paradig-
matic relations in multiple languages, out-
performing patterns in terms of recall and
F1-score. In addition, we observe that
markers and patterns provide complemen-
tary information, leading to significant
classification improvements when applied
in combination.

1 Introduction

Paradigmatic relations (such as synonymy,
antonymy and hypernymy; cf. Murphy, 2003) are
notoriously difficult to distinguish automatically,
as first-order co-occurrences of the related words
tend to be very similar across the relations. For
example, in The boy/girl/person loves/hates the
cat, the nominal co-hyponyms boy, girl and their
hypernym person as well as the verbal antonyms
love and hate occur in identical contexts, respec-
tively. Vector space models, which represent
words by frequencies of co-occurring words to
enable comparisons in terms of distributional
similarity (Schütze, 1992; Turney and Pantel,
2010), hence perform below their potential when
inferring the type of relation that holds between
two words. This distinction is crucial, however,
in a range of tasks: in sentiment analysis, for
example, words of the same and opposing polarity
need to be distinguished; in textual entailment,
systems further need to identify hypernymy
because of directional inference requirements.

Accordingly, while there is a rich tradition on
identifying word pairs of a single paradigmatic re-
lation, there is little work that has addressed the
distinction between two or more paradigmatic re-
lations (cf. Section 2 for details). In more gen-
eral terms, previous approaches to distinguish-
ing between several semantic relations have pre-
dominantly relied on manually created knowledge
sources, or lexico-syntactic patterns that can be
automatically extracted from text. Each option
comes with its own shortcomings: knowledge
bases, on the one hand, are typically developed for
a single language or domain, meaning that they
might not generalize well; word patterns, on the
other hand, are noisy and can be sparse for infre-
quent word pairs.

In this paper, we propose to strike a balance
between availability and restrictedness by mak-
ing use of discourse markers. This approach has
several advantages: markers are frequently found
across genres (Webber, 2009), they exist in many
languages (Jucker and Yiv, 1998), and capture
various semantic properties (Hutchinson, 2004).
We implement discourse markers within a vector
space model that aims to distinguish between the
three paradigmatic relations synonymy, antonymy
and hypernymy in German and in English, across
the three word classes of nouns, verbs, adjectives.
We examine the performance of discourse markers
as vector space dimensions in isolation and also
explore their contribution in combination with lex-
ical patterns.

2 Related Work

As mentioned above, there is a rich tradition of
research on identifying a single paradigmatic rela-
tions. Work on synonyms includes Edmonds and
Hirst (2002), who employed a co-occurrence net-
work and second-order co-occurrence, and Cur-
ran (2003), who explored word-based and syntax-
based co-occurrence for thesaurus construction.
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Van der Plas and Tiedemann (2006) compared
a standard distributional approach against cross-
lingual alignment; Erk and Padó (2008) defined
a vector space model to identify synonyms and
the substitutability of verbs. Most computational
work on hypernyms was performed for nouns, cf.
the lexico-syntactic patterns by Hearst (1992) and
an extension of the patterns by dependency paths
(Snow et al., 2004). Weeds et al. (2004), Lenci
and Benotto (2012) and Santus et al. (2014) identi-
fied hypernyms in distributional spaces. Computa-
tional work on antonyms includes approaches that
tested the co-occurrence hypothesis (Charles and
Miller, 1989; Fellbaum, 1995), and approaches
driven by text understanding efforts and contradic-
tion frameworks (Harabagiu et al., 2006; Moham-
mad et al., 2008; de Marneffe et al., 2008).

Among the few approaches that distinguished
between paradigmatic semantic relations, Lin et al.
(2003) used patterns and bilingual dictionaries to
retrieve distributionally similar words, and relied
on clear antonym patterns such as ‘either X or Y’
in a post-processing step to distinguish synonyms
from antonyms. The study by Mohammad et al.
(2013) on the identification and ranking of oppo-
sites also included synonym/antonym distinction.
Yih et al. (2012) developed an LSA approach in-
corporating a thesaurus, to distinguish the same
two relations. Chang et al. (2013) extended this
approach to induce vector representations that can
capture multiple relations. Whereas the above
mentioned approaches rely on additional knowl-
edge sources, Turney (2006) developed a corpus-
based approach to model relational similarity, ad-
dressing (among other tasks) the distinction be-
tween synonyms and antonyms. More recently,
Schulte im Walde and Köper (2013) proposed to
distinguish between the three relations antonymy,
synonymy and hyponymy based on automatically
acquired word patterns.

Regarding pattern-based approaches to iden-
tify and distinguish lexical semantic relations in
more general terms, Hearst (1992) was the first
to propose lexico-syntactic patterns as empirical
pointers towards relation instances, focusing on
hyponymy. Girju et al. (2003) applied a sin-
gle pattern to distinguish pairs of nouns that are
in a causal relationship from those that are not,
and Girju et al. (2006) extended the work to-
wards part–whole relations, applying a super-
vised, knowledge-intensive approach. Chklovski
and Pantel (2004) were the first to apply pattern-

based relation extraction to verbs, distinguish-
ing five non-disjoint relations (similarity, strength,
antonymy, enablement, happens-before). Pantel
and Pennacchiotti (2006) developed Espresso, a
weakly-supervised system that exploits patterns in
large-scale web data to distinguish between five
noun-noun relations (hypernymy, meronymy, suc-
cession, reaction, production). Similarly to Girju
et al. (2006), they used generic patterns, but relied
on a bootstrapping cycle combined with reliability
measures, rather than manual resources. Whereas
each of the aforementioned approaches considers
only one word class and clearly disjoint categories,
we distinguish between paradigmatic relations that
can be distributionally very similar and propose a
unified framework for nouns, verbs and adjectives.

3 Baseline Model and Data Set

The task addressed in this work is to distin-
guish between synonymy, antonymy and hyper-
nymy. As a starting point, we build on the ap-
proach and data set used by Schulte im Walde
and Köper (2013, henceforth just S&K). In their
work, frequency statistics over automatically ac-
quired co-occurrence patterns were found to be
good indicators for the paradigmatic relation that
holds between two given words of the same word
class. They further experimented with refinements
of the vector space model, for example, by only
considering patterns of a specific length, weight-
ing by pointwise mutual information and applying
thresholds based on frequency and reliability.

Baseline Model. We re-implemented the best
model from S&K with the same setup: word pairs
are represented by vectors, with each entry corre-
sponding to one out of almost 100,000 patterns of
lemmatized word forms (e.g., X affect how
you Y ). Each value is calculated as the log fre-
quency of the corresponding pattern occurring be-
tween the word pairs in a corpus, based on exact
match. For English, we use the ukWaC corpus
(Baroni et al., 2009); for German, we rely on the
COW corpus instead of deWaC, as it is larger and
better balanced (Schäfer and Bildhauer, 2012).

Data Set. The evaluation data set by S&K is a
collection of target and response words in Ger-
man that has been collected via Amazon Mechan-
ical Turk. The data contains a balanced amount
of instances across word categories and relations,
also taking into account corpus frequency, degree
of ambiguity and semantic classes. In total, the
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S&K Reimplemented
P R F1 P R F1

Nouns
SYN–ANT 77.4 65.0 70.7 76.7 62.2 68.7
SYN–HYP 75.0 57.0 64.8 73.3 59.5 65.7

Verbs
SYN–ANT 70.6 40.0 51.1 84.6 36.7 51.2
SYN–HYP 42.0 26.7 32.6 52.6 33.3 40.8

Adjectives
SYN–ANT 88.9 66.7 76.2 94.1 66.7 78.0
SYN–HYP 68.4 54.2 60.5 65.0 54.2 59.1

Table 1: 2-way classification results by Schulte
im Walde and Köper (2013) and our re-
implementation. All numbers in percent.

data set consists of 692 pairs of instances, dis-
tributed over three word classes (nouns, verbs,
adjectives) and three paradigmatic relations (syn-
onymy, antonymy, hypernymy).

Intermediate Evaluation. We compare our re-
implementation to the model by S&K using their
80% training and 20% test split, focusing on 2-
way classifications involving synonymy. The re-
sults, summarized in Table 1, confirm that our re-
implementation achieves similar results. Observed
differences are probably an effect of the distinct
corpora applied to induce patterns and counts.

We notice that the performance of both models
strongly depends on the affected pair of relations
and word category. For example, precision varies
in the 2-way classification between synonymy and
antonymy from 70.6% to 94.1%. Given the small
amount of test data, some of the 80/20 splits might
be better suited for the model than others. To avoid
resulting bias effects, we perform our final evalua-
tion using 5-fold cross-validation on a merged set
of all training and test instances. To illustrate the
performance of models in multiple languages, we
further conduct experiments on a data set for En-
glish relation pairs that has been collected by Giu-
lia Benotto and Alessandro Lenci, following the
same methodology as the German collection. The
English data set consists of 648 pairs of instances,
also distributed over nouns, verbs, adjectives, and
covering synonymy, antonymy, hypernymy.

4 Markers for Relation Classification

The aim of this work is to establish corpus statis-
tics over discourse relations as a salient source of

CONTRAST but, altough, rather . . .
RESTATEMENT indeed, specifically, . . .

INSTANTIATION (for) example, instance, . . .

Table 2: Examples of discourse relations/markers.

information to distinguish between paradigmatic
relations. Our approach is motivated by linguis-
tic studies that indicated a connection between dis-
course relations and lexical relations of words oc-
curring in the respective discourse segments: Mur-
phy et al. (2009) have shown, for example, that
antonyms frequently serve as indicators for con-
trast relations in English and Swedish. More gen-
erally, pairs of word tokens have been identified as
strong features for classifying discourse relations
when no explicit discourse markers are available
(Pitler et al., 2009; Biran and McKeown, 2013).

Whereas word pairs have frequently been used
as features for disambiguating discourse relations,
to the best of our knowledge, our approach is novel
in that we are the first to apply discourse relations
as features for classifying lexical relations. One
reason for this might be that discourse relations in
general are only available in manually annotated
corpora. Previous work has shown, however, that
such relations can be classified reliably given the
presence of explicit discourse markers.1 We hence
rely on such markers as proxies for discourse rela-
tions (for examples, cf. Table 2).

4.1 Model and Hypothesis

We propose a vector space model that represents
pairs of words using as features the discourse
markers that occur between them. The under-
lying hypothesis of this model is as follows: if
two phrases frequently co-occur with a specific
discourse marker, then the discourse relation ex-
pressed by the corresponding marker should also
indicate the relation between the words in the af-
fected phrases. Following this hypothesis, contrast
relations might indicate antonymy, whereas elab-
orations may indicate synonymy or hyponymy.
Although such relations will not hold between
every pair of words in two connected discourse
segments, we hypothesize that correct instances
(of all considered word classes) can be identified
based on high relative frequency.

In our model, frequency statistics are com-
puted over sentence-internal co-occurrences of

1Pitler et al. (2008) report an accuracy of up to 93%.
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word pairs and discourse markers. Since discourse
relations are typically directed, we take into con-
sideration whether a word occurs to the left or
to the right of the respective marker. Accord-
ingly, the features of our model are special cases of
single-word patterns with an arbitrary number of
wild card tokens (e.g., the marker feature ‘though’
corresponds to the pattern “X ∗ though ∗ Y ”).
Yet, our specific choice of features has several ad-
vantages: Whereas strict and potentially long pat-
terns can be rare in text, discourse markers such as
“however”, “for example” and “additionally” are
frequently found across genres (Webber, 2009).
Although combinations of tokens could also be re-
placed by wild cards in any automatically acquired
pattern, this would generally lead to an exponen-
tially growing feature space. In contrast, the set
of discourse markers in our work is fixed: for En-
glish, we use 61 markers annotated in the Penn
Discourse TreeBank 2.0 (Prasad et al., 2008); for
German, we use 155 one-word translations of the
English markers, as obtained from an online dic-
tionary.23 Taking directionality into account, our
vector space model consists of 2x61 and 2x155
features, respectively.

4.2 Development Set and Hyperparameters

We select the hyperparameters of our model using
an independent development set, which we extract
from the lexical resource GermaNet (Hamp and
Feldweg, 1997). For each considered word cate-
gory, we extract instances of synonymy, antonymy
and hypernymy. In total, 1502 instances are iden-
tified, with 64 of them overlapping with the evalu-
ation data set described in Section 3. Note though
that the development set is not used for evaluation
but only to select the following hyperparameters.

We experimented with different vector values
(absolute frequency, log frequency, pointwise mu-
tual information (PMI)), distance measures (co-
sine, euclidean) and normalization schemes. In
contrast to S&K, who did not observe any im-
provements using PMI, we found it to perform
best, combined with euclidean distance and no
additional normalization. This finding might be
an immediate effect of discourse markers being

2http://dict.leo.org
3We also experimented with larger sets of markers, in-

cluding conjunctions and adverbials in sentence-initial posi-
tions, but did not notice any considerable effect. Future work
could use manual sets of markers, e.g. those by Pasch et al.
(2003), though such sets are only available in few languages.

generally more frequent than strict word patterns,
which also leads to more reliable PMI values.

5 Evaluation

In our evaluation, we assess the performance of the
marker-based model and demonstrate the benefits
of incorporating discourse markers into a pattern-
based model, which we apply as a baseline. We
evaluate on several data sets: the collection of
target-response pairs in German from previous
work, and a similar data set that was collected for
English target words (cf. Section 3); for compari-
son reasons, we also apply our models to the bal-
anced data set of related and unrelated noun pairs
by Yap and Baldwin (2009).4 We perform 3-way
and 2-way relation classification experiments, us-
ing 5-fold cross-validation and a nearest centroid
classifier (as applied by S&K).

Results. The 3-way classification results of the
baseline and our marker-based model are summa-
rized in Table 3, with best results for each set-
ting marked in bold. On the German data set,
our model always outperforms a random baseline
(33% F1-score). The results on the English data
set are overall a bit lower, possibly due to corpus
size. In almost all classification tasks, our marker-
based model achieves a higher recall and F1-score
than the pattern-based approach. The precision
results of the marker-based model are overall be-
low the pattern-based model. This drop in perfor-
mance does not come as a surprise though, con-
sidering that the model only makes use of 122 and
310 features, in comparison to tens of thousands
of features in the pattern approach.

A randomized significance test over classified
instances (cf. Yeh, 2000) revealed that only two
differences in results are significant. We hypoth-
esize that one reason for this outcome might be
that both models cover complementary sets of in-
stances. To verify this hypothesis, we apply a
combined model, which is based on a weighted
linear combination of distances computed by the
two individual models.5 As displayed in Table 3,
this combined model yields further improvements

4Note that we could, in principle, also apply our models to
unbalanced data. Our main focus lies however on examining
the direct impact of different feature sets. We hence decided
to keep the evaluation setup simple and used a classifier that
does not take into account class frequency.

5We determined the best weights on the development set
and found these to be 0.9 and 0.1 for the output of the pattern-
based and marker-based model, respectively.
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Nouns Verbs Adjectives

P R F1 P R F1 P R F1
G

er
m

an Patterns 55.6 40.8 47.0 55.6 35.6 43.4 53.5 41.1 46.5
Markers 42.6 38.7 40.5 48.4 46.2** 47.3 51.1 48.6 49.9

Combined 50.4 45.7* 48.0 52.6 50.2** 51.4** 53.4 50.8** 52.1

E
ng

lis
h Patterns 46.4 28.0 34.9 44.7 28.5 34.8 56.6 32.1 41.0

Markers 39.0 34.3 36.5 38.3 36.3 37.2 50.0 41.2** 45.2
Combined 43.0 37.8** 40.3* 41.8 39.6** 40.7* 53.5 44.4** 48.5**

Table 3: 3-way classification results using 5-fold cross-validation. All numbers in percent. Asterisks
indicate significant differences to the pattern-based baseline model (* p<0.10, ** p<0.05).

Combined
model

German English

P R F1 P R F1

Nouns

SYN–ANT 61.7 55.7 58.5 52.9 44.2 48.2
SYN–HYP 66.5 60.4 63.3 62.2 58.6 60.4
ANT–HYP 70.9 64.6 67.6 59.1 50.6 54.5

Verbs

SYN–ANT 58.9 55.0 56.8 49.6 45.8 47.6
SYN–HYP 67.6 64.0 65.8 66.4 63.0 64.7
ANT–HYP 67.3 66.4 66.9 62.9 60.7 61.8

Adjectives

SYN–ANT 74.8 69.4 72.0 67.0 56.6 61.3
SYN–HYP 58.0 56.1 57.0 56.4 46.0 50.7
ANT–HYP 73.7 70.7 72.2 69.8 57.8 63.2

Table 4: 2-way results of the combined model.
Bold numbers indicate improvements over both
individual models. All numbers in percent.

in recall and F1-score, leading to the best 3-way
classification results. All gains in recall are sig-
nificant, confirming that the single models in-
deed contribute complementary information. For
example, only the pattern-based model classifies
“intentional”–“accidental” as antonyms, and only
the marker-based model predicts the correct rela-
tion for “double”–“multiple” (hypernymy). The
combined model classifies both pairs correctly.

Table 4 further assesses the strength of the com-
bined model on the 2-way classifications. The
table highlights results indicating improvements
over both individual models. We observe that the
combined model achieves the best recall and F1-
score in 15 out of 18 cases.

Relation SYN ANT HYP

Patterns 0.97 0.97 0.94
Markers 0.77* 0.82* 0.91*

Combined 0.93* 0.98 0.96*

Table 5: Results in F1-score on the balanced data
set by Yap and Baldwin (* p<0.05).

A final experiment is performed on the data set
by Yap and Baldwin (2009) to see whether our
models can also distinguish word pairs of individ-
ual relations from unrelated pairs of words. The
results, listed in Table 5, show that the marker-
based model cannot perform this task as well as
the pattern-based model. The combined model,
however, outperforms both individual models in 2
out of 3 cases. Despite their simplicity, our models
achieve results close to the F1-scores reported by
Yap and Baldwin (0.98–0.99), who employed syn-
tactic pre-processing and an SVM-based classifier,
and experimented with different corpora.

6 Conclusions

In this paper, we proposed to use discourse mark-
ers as indicators for paradigmatic relations be-
tween words and demonstrated that a small set
of such markers can achieve higher recall than a
pattern-based model with tens of thousands of fea-
tures. Combining patterns and markers can further
improve results, leading to significant gains in re-
call and F1. As our new model only relies on a raw
corpus and a fixed list of discourse markers, it can
easily be extended to other languages.
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vector space model for word meaning in context. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, Waikiki,
Honolulu, Hawaii, 25-27 October 2008.

Christiane Fellbaum. 1995. Co-occurrence and
antonymy. International Journal of Lexicography,
8(4):281–303.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.
2003. Learning semantic constraints for the auto-
matic discovery of part-whole relations. In Proceed-
ings of the Human Language Technology Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics, Edmonton, Al-
berta, Canada, 27 May –1 June 2003, pages 80–87.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.
2006. Automatic discovery of part-whole relations.
Computational Linguistics, 32(1):83–135.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet -
a lexical-semantic net for German. In Proceedings
of the Workshop on Automatic Information Extrac-
tion and Building of Lexical Semantic Resources for
NLP Applications at ACL/EACL-97, Madrid, Spain,
12 July 1997, pages 9–15.

Sanda Harabagiu, Andrew Hickl, and Finley Lacatusu.
2006. Negation, contrast and contradiction in text
processing. In In Proceedings of the 21st National
Conference on Artificial Intelligence, pages 755–
762.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings
of the 15th International Conference on Computa-
tional Linguistics, Nantes, France, 23-28 August
1992, pages 539–545.

Ben Hutchinson. 2004. Acquiring the meaning of dis-
course markers. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics, Barcelona, Spain, 21–26 July 2004, pages
685–692.

Andreas H. Jucker and Zael Yiv, editors. 1998. Dis-
course Markers: Descriptions and Theory, vol-
ume 57 of Discourse & Beyond New Series. John
Benjamin Publishing Company.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
Proceedings of the First Joint Conference on Lexical
and Computational Semantic, pages 75–79.

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming
Zhou. 2003. Identifying synonyms among distri-
butionally similar words. In Proceedings of the 18th
International Joint Conference on Artificial Intelli-
gence, pages 1492–1493. Morgan Kaufmann Pub-
lishers Inc.

Saif M. Mohammad, Bonnie Dorr, and Graeme Hirst.
2008. Computing word-pair antonymy. In Proceed-
ings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 982–991,
Honolulu, Hawaii, USA.

Saif M. Mohammad, Bonnie J. Dorr, Graeme Hirst, and
Peter D. Turney. 2013. Computing lexical contrast.
Computational Linguistics, 39(3):555–590.

M. Lynne Murphy, Carita Paradis, Caroline Will-
ners, and Steven Jones. 2009. Discourse func-
tions of antonymy: A cross-linguistic investigation
of Swedish and English. Journal of Pragmatics,
41(11):2159–2184.

M. Lynne Murphy. 2003. Semantic relations and the
lexicon. Cambridge University Press.

529



Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: Leveraging generic patterns for automati-
cally harvesting semantic relations. In Proceedings
of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, Sydney,
Australia, 17–21 July 2006, pages 113–120.

Renate Pasch, Ursula Brausse, Eva Breindl, and Ulrich
Wassner. 2003. Handbuch der deutschen Konnek-
toren. Walter de Gruyter, Berlin.

Emily Pitler and Ani Nenkova. 2008. Revisiting
readability: A unified framework for predicting text
quality. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Process-
ing, pages 186–195, Honolulu, Hawaii, October.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009.
Automatic sense prediction for implicit discourse re-
lations in text. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 683–691,
Suntec, Singapore, August.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The Penn Discourse Tree-
Bank 2.0. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC-2008), Marrakesh, Marocco, May.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in
vector spaces with entropy. In Proceedings of the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, volume 2:
Short Papers, pages 38–42, Gothenburg, Sweden.
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Abstract

We replace the overlap mechanism of the
Lesk algorithm with a simple, general-
purpose Naive Bayes model that mea-
sures many-to-many association between
two sets of random variables. Even with
simple probability estimates such as max-
imum likelihood, the model gains signifi-
cant improvement over the Lesk algorithm
on word sense disambiguation tasks. With
additional lexical knowledge from Word-
Net, performance is further improved to
surpass the state-of-the-art results.

1 Introduction

To disambiguate a homonymous word in a given
context, Lesk (1986) proposed a method that mea-
sured the degree of overlap between the glosses
of the target and context words. Known as the
Lesk algorithm, this simple and intuitive method
has since been extensively cited and extended in
the word sense disambiguation (WSD) commu-
nity. Nonetheless, its performance in several WSD
benchmarks is less than satisfactory (Kilgarriff
and Rosenzweig, 2000; Vasilescu et al., 2004).
Among the popular explanations is a key limita-
tion of the algorithm, that “Lesk’s approach is very
sensitive to the exact wording of definitions, so the
absence of a certain word can radically change the
results.” (Navigli, 2009).

Compounding this problem is the fact that many
Lesk variants limited the concept of overlap to
the literal interpretation of string matching (with
their own variants such as length-sensitive match-
ing (Banerjee and Pedersen, 2002), etc.), and it
was not until recently that overlap started to take
on other forms such as tree-matching (Chen et al.,
2009) and vector space models (Abdalgader and
Skabar, 2012; Raviv et al., 2012; Patwardhan and
Pedersen, 2006). To address this limitation, a

Naive Bayes model (NBM) is proposed in this
study as a novel, probabilistic treatment of over-
lap in gloss-based WSD.

2 Related Work

In the extraordinarily rich literature on WSD, we
focus our review on those closest to the topic of
Lesk and NBM. In particular, we opt for the “sim-
plified Lesk” (Kilgarriff and Rosenzweig, 2000),
where inventory senses are assessed by gloss-
context overlap rather than gloss-gloss overlap.
This particular variant prevents proliferation of
gloss comparison on larger contexts (Mihalcea
et al., 2004) and is shown to outperform the origi-
nal Lesk algorithm (Vasilescu et al., 2004).

To the best of our knowledge, NBMs have been
employed exclusively as classifiers in WSD —
that is, in contrast to their use as a similarity mea-
sure in this study. Gale et al. (1992) used NB
classifier resembling an information retrieval sys-
tem: a WSD instance is regarded as a document d,
and candidate senses are scored in terms of “rel-
evance” to d. When evaluated on a WSD bench-
mark (Vasilescu et al., 2004), the algorithm com-
pared favourably to Lesk variants (as expected
for a supervised method). Pedersen (2000) pro-
posed an ensemble model with multiple NB clas-
sifiers differing by context window size. Hristea
(2009) trained an unsupervised NB classifier using
the EM algorithm and empirically demonstrated
the benefits of WordNet-assisted (Fellbaum, 1998)
feature selection over local syntactic features.

Among Lesk variants, Banerjee and Pedersen
(2002) extended the gloss of both inventory senses
and the context words to include words in their re-
lated synsets in WordNet. Senses were scored by
the sum of overlaps across all relation pairs, and
the effect of individual relation pairs was evalu-
ated in a later work (Banerjee and Pedersen, 2003).
Overlap was assessed by string matching, with the
number of matching words squared so as to assign
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higher scores to multi-word overlaps.

Breaking away from string matching, Wilks
et al. (1990) measured overlap as similarity be-
tween gloss- and context-vectors, which were ag-
gregated word vectors encoding second order co-
occurrence information in glosses. An extension
by Patwardhan and Pedersen (2006) differentiated
context word senses and extended shorter glosses
with related glosses in WordNet. Patwardhan et al.
(2003) measured overlap by concept similarity
(Budanitsky and Hirst, 2006) between each inven-
tory sense and the context words. Gloss overlaps
from their earlier work actually out-performed all
five similarity-based methods.

More recently, Chen et al. (2009) pro-
posed a tree-matching algorithm that measured
gloss-context overlap as the weighted sum of
dependency-induced lexical distance. Abdalgader
and Skabar (2012) constructed a sentential simi-
larity measure (Li et al., 2006) using lexical simi-
larity measures (Budanitsky and Hirst, 2006), and
overlap was measured by the cosine of their re-
spective sentential vectors. A related approach
(Raviv et al., 2012) also used Wikipedia-induced
concepts to encoded sentential vectors. These sys-
tems compared favourably to existing methods in
WSD performance, although by using sense fre-
quency information, they are essentially super-
vised methods.

Distributional methods have been used in many
WSD systems in quite different flavours than the
current study. Kilgarriff and Rosenzweig (2000)
proposed a Lesk variant where each gloss word is
weighted by its idf score in relation to all glosses,
and gloss-context association was incremented by
these weights rather than binary, overlap counts.
Miller et al. (2012) used distributional thesauri as a
knowledge base to increase overlaps, which were,
again, assessed by string matching.

In conclusion, the majority of Lesk variants
focused on extending the gloss to increase the
chance of overlapping, while the proposed NBM
aims to make better use of the limited lexical
knowledge available. In contrast to string match-
ing, the probabilistic nature of our model offers
a “softer” measurement of gloss-context associa-
tion, resulting in a novel approach to unsupervised
WSD with state-of-the-art performance in more
than one WSD benchmark (Section 4).

3 Model and Task Descriptions

3.1 The Naive Bayes Model
Formally, given two sets e = {ei} and f = { f j}
each consisting of multiple random events, the
proposed model measures the probabilistic asso-
ciation p(f|e) between e and f. Under the assump-
tion of conditional independence among the events
in each set, a Naive Bayes treatment of the mea-
sure can be formulated as:

p(f|e) =∏
j

p( f j|{ei}) = ∏
j

p({ei}| f j)p( f j)
p({ei})

=
∏ j[p( f j)∏i p(ei| f j)]

∏ j ∏i p(ei)
,

(1)
In the second expression, Bayes’s rule is applied
not only to take advantage of the conditional inde-
pendence among ei’s, but also to facilitate proba-
bility estimation, since p({ei}| f j) is easier to esti-
mate in the context of WSD, where sample spaces
of e and f become asymmetric (Section 3.2).

3.2 Model Application in WSD
In the context of WSD, e can be regarded as an
instance of a polysemous word w, while f repre-
sents certain lexical knowledge about the sense s
of w manifested by e.1 WSD is thus formulated as
identifying the sense s∗ in the sense inventory S
of w s.t.:

s∗ = argmax
s∈S

p(f|e) (2)

In one of their simplest forms, ei’s correspond
to co-occurring words in the instance of w, and
f j’s consist of the gloss words of sense s. Conse-
quently, p(f|e) is essentially measuring the asso-
ciation between context words of w and definition
texts of s, i.e., the gloss-context association in the
simplified Lesk algorithm (Kilgarriff and Rosen-
zweig, 2000). A major difference, however, is that
instead of using hard, overlap counts between the
two sets of words from the gloss and the context,
this probabilistic treatment can implicitly model
the distributional similarity among the elements ei

and f j (and consequently between the sets e and
f) over a wider range of contexts. The result is a
“softer” proxy of association than the binary view
of overlaps in existing Lesk variants.

The foregoing discussion offers a second mo-
tivation for applying Bayes’s rule on the second

1Think of the notations e and f mnemonically as exem-
plars and features, respectively.
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Senses Hypernyms Hyponyms Synonyms
factory building

complex,
complex

brewery,
factory,
mill, ...

works,
industrial
plant

life form organism,
being

perennial,
crop...

flora,
plant life

Table 1: Lexical knowledge for the word plant un-
der its two meanings factory and life form.

expression in Equation (1): it is easier to estimate
p(ei| f j) than p( f j|ei), since the vocabulary for the
lexical knowledge features ( f j) is usually more
limited than that of the contexts (ei) and hence esti-
mation of the former suffices on a smaller amount
of data than that of the latter.

3.3 Incorporating Additional Lexical
Knowledge

The input of the proposed NBM is bags of words,
and thus it is straightforward to incorporate var-
ious forms of lexical knowledge (LK) for word
senses: by concatenating a tokenized knowledge
source to the existing knowledge representation f,
while the similarity measure remains unchanged.

The availability of LK largely depends on the
sense inventory used in a WSD task. WordNet
senses are often used in Senseval and SemEval
tasks, and hence senses (or synsets, and possibly
their corresponding word forms) that are seman-
tic related to the inventory senses under WordNet
relations are easily obtainable and have been ex-
ploited by many existing studies.

As pointed out by Patwardhan et al. (2003),
however, “not all of these relations are equally
helpful.” Relation pairs involving hyponyms were
shown to result in better F-measure when used
in gloss overlaps (Banerjee and Pedersen, 2003).
The authors attributed the phenomenon to the the
multitude of hyponyms compared to other rela-
tions. We further hypothesize that, beyond sheer
numbers, synonyms and hyponyms offer stronger
semantic specification that helps distinguish the
senses of a given ambiguous word, and thus are
more effective knowledge sources for WSD.

Take the word plant for example. Selected hy-
pernyms, hyponyms, and synonyms pertaining to
its two senses factory and life form are listed in
Table 1. Hypernyms can be overly general terms
(e.g., being). Although conceptually helpful for
humans in coarse-grained WSD, this generality is

likely to inflate the hypernyms’ probabilistic esti-
mation. Hyponyms, on the other hand, help spec-
ify their corresponding senses with information
that is possibly missing from the often overly brief
glosses: the many technical terms as hyponyms
in Table 1 — though rare — are likely to occur
in the (possibly domain-specific) contexts that are
highly typical of the corresponding senses. Par-
ticularly for the NBM, the co-occurrence is likely
to result in stronger gloss-definition associations
when similar contexts appear in a WSD instance.

We also observe that some semantically related
words appear under rare senses (e.g., still as an
alcohol-manufacturing plant, and annual as a one-
year-life-cycle plant; omitted from Table 1). This
is a general phenomenon in gloss-based WSD and
is beyond the scope of the current discussion.2

Overall, all three sources of LK may complement
each other in WSD tasks, with hyponyms particu-
larly promising in both quantity and quality com-
pared to hypernyms and synonyms.3

3.4 Probability Estimation
A most open-ended question is how to estimate the
probabilities in Equation (1). In WSD in particu-
lar, the estimation concerns the marginal and con-
ditional probabilities of and between word tokens.
Many options are available to this end in statis-
tical machine learning (MLE, MAP, etc.), infor-
mation theory (Church and Hanks, 1990; Turney,
2001), as well as the rich body of research in lex-
ical semantic similarity Resnik, 1995; Jiang and
Conrath, 1997; Budanitsky and Hirst, 2006).

Here we choose maximum likelihood — not
only for its simplicity, but also to demonstrate
model strength with a relatively crude probability
estimation. To avoid underflow, Equation (1) is
estimated as the following log probability:

∑
i

log
c( f j)
c(·) +∑

i
∑

j
log

c(ei, f j)
c( f j)

−|f|∑
j

log
c(ei)
c(·)

=(1−|e|)∑
i

logc( f j)−|f|∑
j

logc(ei)

+∑
i

∑
j

logc(ei, f j)+ |f|(|e|−1) logc(·),

where c(x) is the count of word x, c(·) is the corpus
2We do, however, refer curious readers to the work of Ra-

viv et al. (2012) for a novel treatment of a similar problem.
3Note that LK expansion is a feature of our model rather

than a requirement. What type of knowledge to include is
eventually a decision made by the user based on the applica-
tion and LK availability.
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size, c(x,y) is the joint count of x and y, and |v| is
the dimension of vector v.

Nonetheless, we do investigate how model per-
formance responds to estimation quality. Specif-
ically in WSD, a source corpus is defined as the
source of the majority of the WSD instances in a
given dataset, and a baseline corpus of a smaller
size and less resemblance to the instances is used
for all datasets. The assumption is that a source
corpus offers better estimates for the model than
the baseline corpus, and difference in model per-
formance is expected when using probability esti-
mation of different quality.

4 Evaluation

4.1 Data, Scoring, and Pre-processing
Various aspects of the model discussed in Section
3 are evaluated in the English lexical sample tasks
from Senseval-2 (Edmonds and Cotton, 2001) and
SemEval-2007 (Pradhan et al., 2007). Training
sections are used as development data and test
sections held out for final testing. Model perfor-
mance is evaluated in terms of WSD accuracy us-
ing Equation (2) as the scoring function. Accu-
racy is defined as the number of correct responses
over the number of instances. Because it is a rare
event for the NBM to produce identical scores,4

the model always proposes a unique answer and
accuracy is thus equivalent to F-score commonly
used in existing reports.

Multiword expressions (MWEs) in the
Senseval-2 sense inventory are not explicitly
marked in the contexts. Several of the top-ranking
systems implemented their own MWE detection
algorithms (Kilgarriff and Rosenzweig, 2000;
Litkowski, 2002). Without digressing to the
details of MWE detection — and meanwhile,
to ensure fair comparison with existing systems
— we implement two variants of the prediction
module, one completely ignorant of MWE and
defaulting to INCORRECT for all MWE-related
answers, while the other assuming perfect MWE
detection and performing regular disambiguation
algorithm on the MWE-related senses (not de-
faulting to CORRECT). All results reported for
Senseval-2 below are harmonic means of the two
outcomes.

Each inventory sense is represented by a set of
LK tokens (e.g., definition texts, synonyms, etc.)

4This has never occurred in the hundreds of thousands of
runs in our development process.

from their corresponding WordNet synset (or in
the coarse-grained case, a concatenation of tokens
from all synsets in a sense group). The MIT-JWI
library (Finlayson, 2014) is used for accessing
WordNet. Usage examples in glosses (included by
the library by default) are removed in our experi-
ments.5

Basic pre-processing is performed on the con-
texts and the glosses, including lower-casing, stop-
word removal, lemmatization on both datasets,
and tokenization on the Senseval-2 instances.6

Stanford CoreNLP7 is used for lemmatization and
tokenization. Identical procedures are applied to
all corpora used for probability estimation.

Binomial test is used for significance testing,
and with one exception explicitly noted in Sec-
tion 4.3, all differences presented are statistically
highly significant (p< 0.001).

4.2 Comparing Lexical Knowledge Sources

To study the effect of different types of LK in
WSD (Section 3.3), for each inventory sense, we
choose synonyms (syn), hypernyms (hpr), and hy-
ponyms (hpo) as extended LK in addition to its
gloss. The WSD model is evaluated with gloss-
only (glo), individual extended LK sources, and
the combination of all four sources (all). The re-
sults are listed in Table 2 together with existing re-
sults (1st and 2nd correspond to the results of the
top two unsupervised methods in each dataset).8

By using only glosses, the proposed model
already shows statistically significant improve-
ment over the basic Lesk algorithm (92.4%
and 140.5% relative improvement in Senseval-
2 coarse- and fine-grained tracks, respectively).9

Moreover, comparison between coarse- and fine-
grained tracks reveals interesting properties of dif-
ferent LK sources. Previous hypotheses (Section
3.3) are empirically confirmed that WSD perfor-

5We also compared the two Lesk baselines (with and
without usage examples) on the development data but did not
observe significant differences as reported by Kilgarriff and
Rosenzweig (2000).

6The SemEval-2007 instances are already tokenized.
7http://nlp.stanford.edu/software/

corenlp.shtml.
8We excluded the results of UNED (Fernández-Amorós

et al., 2001) in Senseval-2 because, by using sense frequency
information that is only obtainable from sense-annotated cor-
pora, it is essentially a supervised system.

9Comparisons are made against the simplified Lesk al-
gorithm (Kilgarriff and Rosenzweig, 2000) without usage
examples. The comparison is unavailable in SemEval2007
since we have not found existing experiments with this exact
configuration.
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Dataset glo syn hpr hpo all 1st 2nd Lesk
Senseval-2 Coarse .475 .478 .494 .518 .523 .469 .367 .262

Senseval-2 Fine .362 .371 .326 .379 .388 .412 .293 .163
SemEval-2007 .494 .511 .507 .550 .573 .538 .521 –

Table 2: Lexical knowledge sources and WSD performance (F-measure) on the Senseval-2 (fine- and
coarse-grained) and the SemEval-2007 dataset.

Figure 1: Model response to probability esti-
mates of different quality on the SemEval-2007
dataset. Error bars indicate confidence intervals
(p< .001), and the dashed line corresponds to the
best reported result.

mance benefits most from hyponyms and least
from hypernyms. Specifically, highly similar, fine-
grained sense candidates apparently share more
hypernyms in the fine-grained case than in the
coarse-grained case; adding to the generality of
hypernyms (both semantic and distributional), we
postulate that their probability in the NBM is uni-
formly inflated among many sense candidates, and
hence they decrease in distinguishability. Syn-
onyms might help with regard to semantic spec-
ification, though their limited quantity also limits
their benefits. These patterns on the LK types are
consistent in all three experiments.

When including all four LK sources, our model
outperforms the state-of-the-art systems with sta-
tistical significance in both coarse-grained tasks.
For the fine-grained track, it achieves 2nd place
after that of Tugwell and Kilgarriff (2001), which
used a decision list (Yarowsky, 1995) on manu-
ally selected corpora evidence for each inventory
sense, and thus is not subject to loss of distin-
guishability in the glosses as Lesk variants are.

4.3 Probability Estimation

To evaluate model response to probability esti-
mation of different quality (Section 3.4), source
corpora are chosen as the majority value of the
doc-source attribute of instances in each dataset,

namely, the British National Corpus for Senseval-
2 (94%) and the Wall Street Journal for SemEval-
2007 (86%). The Brown Corpus is shared by both
datasets as the baseline corpus. Figure 1 shows the
comparison on the SemEval-2007 dataset. Across
all experiments, higher WSD accuracy is consis-
tently witnessed using the source corpus; differ-
ences are statistically highly significant except for
hpo (which is significant with p< 0.01).

5 Conclusions and Future Work

We have proposed a general-purpose Naive Bayes
model for measuring association between two sets
of random events. The model replaced string
matching in the Lesk algorithm for word sense dis-
ambiguation with a probabilistic measure of gloss-
context overlap. The base model on average more
than doubled the accuracy of Lesk in Senseval-2
on both fine- and coarse-grained tracks. With ad-
ditional lexical knowledge, the model also outper-
formed state of the art results with statistical sig-
nificance on two coarse-grained WSD tasks.

For future work, we plan to apply the model
in other shared tasks, including open-text WSD,
so as to compare with more recent Lesk variants.
We would also like to explore how to incorpo-
rate syntactic features and employ alternative sta-
tistical methods (e.g., parametric models) to im-
prove probability estimation and inference. Other
NLP problems involving compositionality in gen-
eral might also benefit from the proposed many-
to-many similarity measure.
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Abstract

Unsupervised domain adaptation often re-
lies on transforming the instance represen-
tation. However, most such approaches
are designed for bag-of-words models, and
ignore the structured features present in
many problems in NLP. We propose a
new technique called marginalized struc-
tured dropout, which exploits feature
structure to obtain a remarkably simple
and efficient feature projection. Applied
to the task of fine-grained part-of-speech
tagging on a dataset of historical Por-
tuguese, marginalized structured dropout
yields state-of-the-art accuracy while in-
creasing speed by more than an order-of-
magnitude over previous work.

1 Introduction

Unsupervised domain adaptation is a fundamen-
tal problem for natural language processing, as
we hope to apply our systems to datasets unlike
those for which we have annotations. This is par-
ticularly relevant as labeled datasets become stale
in comparison with rapidly evolving social media
writing styles (Eisenstein, 2013), and as there is
increasing interest in natural language processing
for historical texts (Piotrowski, 2012). While a
number of different approaches for domain adap-
tation have been proposed (Pan and Yang, 2010;
Søgaard, 2013), they tend to emphasize bag-of-
words features for classification tasks such as sen-
timent analysis. Consequently, many approaches
rely on each instance having a relatively large
number of active features, and fail to exploit the
structured feature spaces that characterize syn-
tactic tasks such as sequence labeling and pars-
ing (Smith, 2011).

As we will show, substantial efficiency im-
provements can be obtained by designing domain

adaptation methods for learning in structured fea-
ture spaces. We build on work from the deep
learning community, in which denoising autoen-
coders are trained to remove synthetic noise from
the observed instances (Glorot et al., 2011a). By
using the autoencoder to transform the original
feature space, one may obtain a representation
that is less dependent on any individual feature,
and therefore more robust across domains. Chen
et al. (2012) showed that such autoencoders can
be learned even as the noising process is analyt-
ically marginalized; the idea is similar in spirit
to feature noising (Wang et al., 2013). While
the marginalized denoising autoencoder (mDA) is
considerably faster than the original denoising au-
toencoder, it requires solving a system of equa-
tions that can grow very large, as realistic NLP
tasks can involve 105 or more features.

In this paper we investigate noising functions
that are explicitly designed for structured feature
spaces, which are common in NLP. For example,
in part-of-speech tagging, Toutanova et al. (2003)
define several feature “templates”: the current
word, the previous word, the suffix of the current
word, and so on. For each feature template, there
are thousands of binary features. To exploit this
structure, we propose two alternative noising tech-
niques: (1) feature scrambling, which randomly
chooses a feature template and randomly selects
an alternative value within the template, and (2)
structured dropout, which randomly eliminates
all but a single feature template. We show how it
is possible to marginalize over both types of noise,
and find that the solution for structured dropout is
substantially simpler and more efficient than the
mDA approach of Chen et al. (2012), which does
not consider feature structure.

We apply these ideas to fine-grained part-of-
speech tagging on a dataset of Portuguese texts
from the years 1502 to 1836 (Galves and Faria,
2010), training on recent texts and evaluating
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on older documents. Both structure-aware do-
main adaptation algorithms perform as well as
standard dropout — and better than the well-
known structural correspondence learning (SCL)
algorithm (Blitzer et al., 2007) — but structured
dropout is more than an order-of-magnitude faster.
As a secondary contribution of this paper, we
demonstrate the applicability of unsupervised do-
main adaptation to the syntactic analysis of histor-
ical texts.

2 Model

In this section we first briefly describe the de-
noising autoencoder (Glorot et al., 2011b), its ap-
plication to domain adaptation, and the analytic
marginalization of noise (Chen et al., 2012). Then
we present three versions of marginalized denois-
ing autoencoders (mDA) by incorporating differ-
ent types of noise, including two new noising pro-
cesses that are designed for structured features.

2.1 Denoising Autoencoders
Assume instances x1, . . . ,xn, which are drawn
from both the source and target domains. We will
“corrupt” these instances by adding different types
of noise, and denote the corrupted version of xi
by x̃i. Single-layer denoising autoencoders recon-
struct the corrupted inputs with a projection matrix
W : Rd → Rd, which is estimated by minimizing
the squared reconstruction loss

L =
1
2

n∑
i=1

||xi −Wx̃i||2. (1)

If we write X = [x1, . . . ,xn] ∈ Rd×n, and we
write its corrupted version X̃, then the loss in (1)
can be written as

L(W) =
1
2n
tr

[(
X−WX̃

)> (
X−WX̃

)]
.

(2)
In this case, we have the well-known closed-

form solution for this ordinary least square prob-
lem:

W = PQ−1, (3)

where Q = X̃X̃> and P = XX̃>. After ob-
taining the weight matrix W, we can insert non-
linearity into the output of the denoiser, such as
tanh(WX). It is also possible to apply stack-
ing, by passing this vector through another autoen-
coder (Chen et al., 2012). In pilot experiments,
this slowed down estimation and had little effect
on accuracy, so we did not include it.

High-dimensional setting Structured predic-
tion tasks often have much more features than
simple bag-of-words representation, and perfor-
mance relies on the rare features. In a naive im-
plementation of the denoising approach, both P
and Q will be dense matrices with dimension-
ality d × d, which would be roughly 1011 ele-
ments in our experiments. To solve this problem,
Chen et al. (2012) propose to use a set of pivot
features, and train the autoencoder to reconstruct
the pivots from the full set of features. Specifi-
cally, the corrupted input is divided to S subsets

x̃i =
[
(x̃)1i

>
, . . . , (x̃)Si

>]>. We obtain a projec-
tion matrix Ws for each subset by reconstructing
the pivot features from the features in this subset;
we can then use the sum of all reconstructions as
the new features, tanh(

∑S
s=1 WsXs).

Marginalized Denoising Autoencoders In the
standard denoising autoencoder, we need to gen-
erate multiple versions of the corrupted data X̃
to reduce the variance of the solution (Glorot et
al., 2011b). But Chen et al. (2012) show that it
is possible to marginalize over the noise, analyt-
ically computing expectations of both P and Q,
and computing

W = E[P]E[Q]−1, (4)

where E[P] =
∑n

i=1E[xix̃>i ] and E[Q] =∑n
i=1E[x̃ix̃>i ]. This is equivalent to corrupting

the data m→∞ times. The computation of these
expectations depends on the type of noise.

2.2 Noise distributions

Chen et al. (2012) used dropout noise for domain
adaptation, which we briefly review. We then de-
scribe two novel types of noise that are designed
for structured feature spaces, and explain how they
can be marginalized to efficiently compute W.

Dropout noise In dropout noise, each feature is
set to zero with probability p > 0. If we define
the scatter matrix of the uncorrupted input as S =
XX>, the solutions under dropout noise are

E[Q]α,β =

{
(1− p)2Sα,β if α 6= β

(1− p)Sα,β if α = β
, (5)

and
E[P]α,β = (1− p)Sα,β, (6)
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where α and β index two features. The form of
these solutions means that computing W requires
solving a system of equations equal to the num-
ber of features (in the naive implementation), or
several smaller systems of equations (in the high-
dimensional version). Note also that p is a tunable
parameter for this type of noise.

Structured dropout noise In many NLP set-
tings, we have several feature templates, such as
previous-word, middle-word, next-word, etc, with
only one feature per template firing on any token.
We can exploit this structure by using an alterna-
tive dropout scheme: for each token, choose ex-
actly one feature template to keep, and zero out all
other features that consider this token (transition
feature templates such as 〈yt, yt−1〉 are not con-
sidered for dropout). Assuming we haveK feature
templates, this noise leads to very simple solutions
for the marginalized matrices E[P] and E[Q],

E[Q]α,β =

{
0 if α 6= β
1
KSα,β if α = β

(7)

E[P]α,β =
1
K

Sα,β, (8)

ForE[P], we obtain a scaled version of the scat-
ter matrix, because in each instance x̃, there is ex-
actly a 1/K chance that each individual feature
survives dropout. E[Q] is diagonal, because for
any off-diagonal entry E[Q]α,β , at least one of α
and β will drop out for every instance. We can
therefore view the projection matrix W as a row-
normalized version of the scatter matrix S. Put
another way, the contribution of β to the recon-
struction for α is equal to the co-occurence count
of α and β, divided by the count of β.

Unlike standard dropout, there are no free
hyper-parameters to tune for structured dropout.
Since E[Q] is a diagonal matrix, we eliminate the
cost of matrix inversion (or of solving a system of
linear equations). Moreover, to extend mDA for
high dimensional data, we no longer need to di-
vide the corrupted input x̃ to several subsets.1

For intuition, consider standard feature dropout
with p = K−1

K . This will look very similar to
structured dropout: the matrix E[P] is identical,
and E[Q] has off-diagonal elements which are
scaled by (1 − p)2, which goes to zero as K is

1E[P] is an r by dmatrix, where r is the number of pivots.

large. However, by including these elements, stan-
dard dropout is considerably slower, as we show in
our experiments.

Scrambling noise A third alternative is to
“scramble” the features by randomly selecting al-
ternative features within each template. For a fea-
ture α belonging to a template F , with probability
p we will draw a noise feature β also belonging
to F , according to some distribution q. In this
work, we use an uniform distribution, in which
qβ = 1

|F | . However, the below solutions will also
hold for other scrambling distributions, such as
mean-preserving distributions.

Again, it is possible to analytically marginal-
ize over this noise. Recall that E[Q] =∑n

i=1E[x̃ix̃>i ]. An off-diagonal entry in the ma-
trix x̃x̃> which involves features α and β belong-
ing to different templates (Fα 6= Fβ) can take four
different values (xi,α denotes feature α in xi):

• xi,αxi,β if both features are unchanged,
which happens with probability (1− p)2.

• 1 if both features are chosen as noise features,
which happens with probability p2qαqβ .

• xi,α or xi,β if one feature is unchanged and
the other one is chosen as the noise feature,
which happens with probability p(1 − p)qβ
or p(1− p)qα.

The diagonal entries take the first two values
above, with probability 1 − p and pqα respec-
tively. Other entries will be all zero (only one
feature belonging to the same template will fire
in xi). We can use similar reasoning to compute
the expectation of P. With probability (1 − p),
the original features are preserved, and we add the
outer-product xix>i ; with probability p, we add the
outer-product xiq>. Therefore E[P] can be com-
puted as the sum of these terms.

3 Experiments

We compare these methods on historical Por-
tuguese part-of-speech tagging, creating domains
over historical epochs.

3.1 Experiment setup

Datasets We use the Tycho Brahe corpus to
evaluate our methods. The corpus contains a total
of 1,480,528 manually tagged words. It uses a set
of 383 tags and is composed of various texts from
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historical Portuguese, from 1502 to 1836. We di-
vide the texts into fifty-year periods to create dif-
ferent domains. Table 1 presents some statistics of
the datasets. We hold out 5% of data as develop-
ment data to tune parameters. The two most recent
domains (1800-1849 and 1750-1849) are treated
as source domains, and the other domains are tar-
get domains. This scenario is motivated by train-
ing a tagger on a modern newstext corpus and ap-
plying it to historical documents.

Dataset # of Tokens

Total Narrative Letters Dissertation Theatre

1800-1849 125719 91582 34137 0 0
1750-1799 202346 57477 84465 0 60404
1700-1749 278846 0 130327 148519 0
1650-1699 248194 83938 115062 49194 0
1600-1649 295154 117515 115252 62387 0
1550-1599 148061 148061 0 0 0
1500-1549 182208 126516 0 55692 0

Overall 1480528 625089 479243 315792 60404

Table 1: Statistics of the Tycho Brahe Corpus

CRF tagger We use a conditional random field
tagger, choosing CRFsuite because it supports
arbitrary real valued features (Okazaki, 2007),
with SGD optimization. Following the work of
Nogueira Dos Santos et al. (2008) on this dataset,
we apply the feature set of Ratnaparkhi (1996).
There are 16 feature templates and 372, 902 fea-
tures in total. Following Blitzer et al. (2006), we
consider pivot features that appear more than 50
times in all the domains. This leads to a total of
1572 pivot features in our experiments.

Methods We compare mDA with three alterna-
tive approaches. We refer to baseline as training
a CRF tagger on the source domain and testing on
the target domain with only base features. We also
include PCA to project the entire dataset onto a
low-dimensional sub-space (while still including
the original features). Finally, we compare against
Structural Correspondence Learning (SCL; Blitzer
et al., 2006), another feature learning algorithm.
In all cases, we include the entire dataset to com-
pute the feature projections; we also conducted ex-
periments using only the test and training data for
feature projections, with very similar results.

Parameters All the hyper-parameters are de-
cided with our development data on the training
set. We try different low dimension K from 10 to

2000 for PCA. Following Blitzer (2008) we per-
form feature centering/normalization, as well as
rescaling for SCL. The best parameters for SCL
are dimensionality K = 25 and rescale factor
α = 5, which are the same as in the original pa-
per. For mDA, the best corruption level is p = 0.9
for dropout noise, and p = 0.1 for scrambling
noise. Structured dropout noise has no free hyper-
parameters.

3.2 Results
Table 2 presents results for different domain adap-
tation tasks. We also compute the transfer ra-
tio, which is defined as adaptation accuracy

baseline accuracy , shown in
Figure 1. The generally positive trend of these
graphs indicates that adaptation becomes progres-
sively more important as we select test sets that are
more temporally remote from the training data.

In general, mDA outperforms SCL and PCA,
the latter of which shows little improvement over
the base features. The various noising approaches
for mDA give very similar results. However, struc-
tured dropout is orders of magnitude faster than
the alternatives, as shown in Table 3. The scram-
bling noise is most time-consuming, with cost
dominated by a matrix multiplication.

Method PCA SCL mDA

dropout structured scambling

Time 7,779 38,849 8,939 339 327,075

Table 3: Time, in seconds, to compute the feature
transformation

4 Related Work

Domain adaptation Most previous work on do-
main adaptation focused on the supervised setting,
in which some labeled data is available in the tar-
get domain (Jiang and Zhai, 2007; Daumé III,
2007; Finkel and Manning, 2009). Our work fo-
cuses on unsupervised domain adaptation, where
no labeled data is available in the target domain.
Several representation learning methods have been
proposed to solve this problem. In structural corre-
spondence learning (SCL), the induced represen-
tation is based on the task of predicting the pres-
ence of pivot features. Autoencoders apply a sim-
ilar idea, but use the denoised instances as the la-
tent representation (Vincent et al., 2008; Glorot et
al., 2011b; Chen et al., 2012). Within the con-
text of denoising autoencoders, we have focused
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Task baseline PCA SCL mDA

dropout structured scrambling

from 1800-1849
→ 1750 89.12 89.09 89.69 90.08 90.08 90.01
→ 1700 90.43 90.43 91.06 91.56 91.57 91.55
→ 1650 88.45 88.52 87.09 88.69 88.70 88.57
→ 1600 87.56 87.58 88.47 89.60 89.61 89.54
→ 1550 89.66 89.61 90.57 91.39 91.39 91.36
→ 1500 85.58 85.63 86.99 88.96 88.95 88.91
from 1750-1849
→ 1700 94.64 94.62 94.81 95.08 95.08 95.02
→ 1650 91.98 90.97 90.37 90.83 90.84 90.80
→ 1600 92.95 92.91 93.17 93.78 93.78 93.71
→ 1550 93.27 93.21 93.75 94.06 94.05 94.02
→ 1500 89.80 89.75 90.59 91.71 91.71 91.68

Table 2: Accuracy results for adaptation from labeled data in 1800-1849, and in 1750-1849.

Figure 1: Transfer ratio for adaptation to historical text

on dropout noise, which has also been applied as
a general technique for improving the robustness
of machine learning, particularly in neural net-
works (Hinton et al., 2012; Wang et al., 2013).

On the specific problem of sequence labeling,
Xiao and Guo (2013) proposed a supervised do-
main adaptation method by using a log-bilinear
language adaptation model. Dhillon et al. (2011)
presented a spectral method to estimate low di-
mensional context-specific word representations
for sequence labeling. Huang and Yates (2009;
2012) used an HMM model to learn latent rep-
resentations, and then leverage the Posterior Reg-
ularization framework to incorporate specific bi-
ases. Unlike these methods, our approach uses a
standard CRF, but with transformed features.

Historical text Our evaluation concerns syntac-
tic analysis of historical text, which is a topic of in-
creasing interest for NLP (Piotrowski, 2012). Pen-
nacchiotti and Zanzotto (2008) find that part-of-
speech tagging degrades considerably when ap-
plied to a corpus of historical Italian. Moon and
Baldridge (2007) tackle the challenging problem
of tagging Middle English, using techniques for

projecting syntactic annotations across languages.
Prior work on the Tycho Brahe corpus applied su-
pervised learning to a random split of test and
training data (Kepler and Finger, 2006; Dos San-
tos et al., 2008); they did not consider the domain
adaptation problem of training on recent data and
testing on older historical text.

5 Conclusion and Future Work

Denoising autoencoders provide an intuitive so-
lution for domain adaptation: transform the fea-
tures into a representation that is resistant to the
noise that may characterize the domain adaptation
process. The original implementation of this idea
produced this noise directly (Glorot et al., 2011b);
later work showed that dropout noise could be an-
alytically marginalized (Chen et al., 2012). We
take another step towards simplicity by showing
that structured dropout can make marginalization
even easier, obtaining dramatic speedups without
sacrificing accuracy.
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Abstract

Word embeddings learned on unlabeled
data are a popular tool in semantics, but
may not capture the desired semantics. We
propose a new learning objective that in-
corporates both a neural language model
objective (Mikolov et al., 2013) and prior
knowledge from semantic resources to
learn improved lexical semantic embed-
dings. We demonstrate that our embed-
dings improve over those learned solely on
raw text in three settings: language mod-
eling, measuring semantic similarity, and
predicting human judgements.

1 Introduction

Word embeddings are popular representations for
syntax (Turian et al., 2010; Collobert and We-
ston, 2008; Mnih and Hinton, 2007), semantics
(Huang et al., 2012; Socher et al., 2013), morphol-
ogy (Luong et al., 2013) and other areas. A long
line of embeddings work, such as LSA and ran-
domized embeddings (Ravichandran et al., 2005;
Van Durme and Lall, 2010), has recently turned
to neural language models (Bengio et al., 2006;
Collobert and Weston, 2008; Turian et al., 2010).
Unsupervised learning can take advantage of large
corpora, which can produce impressive results.

However, the main drawback of unsupervised
learning is that the learned embeddings may not
be suited for the task of interest. Consider se-
mantic embeddings, which may capture a notion
of semantics that improves one semantic task but
harms another. Controlling this behavior is chal-
lenging with an unsupervised objective. However,
rich prior knowledge exists for many tasks, and
there are numerous such semantic resources.

We propose a new training objective for learn-
ing word embeddings that incorporates prior

∗This work was done while the author was visiting JHU.

knowledge. Our model builds on word2vec
(Mikolov et al., 2013), a neural network based
language model that learns word embeddings by
maximizing the probability of raw text. We extend
the objective to include prior knowledge about
synonyms from semantic resources; we consider
both the Paraphrase Database (Ganitkevitch et al.,
2013) and WordNet (Fellbaum, 1999), which an-
notate semantic relatedness between words. The
latter was also used in (Bordes et al., 2012) for
training a network for predicting synset relation.
The combined objective maximizes both the prob-
ability of the raw corpus and encourages embed-
dings to capture semantic relations from the re-
sources. We demonstrate improvements in our
embeddings on three tasks: language modeling,
measuring word similarity, and predicting human
judgements on word pairs.

2 Learning Embeddings
We present a general model for learning word em-
beddings that incorporates prior knowledge avail-
able for a domain. While in this work we con-
sider semantics, our model could incorporate prior
knowledge from many types of resources. We be-
gin by reviewing the word2vec objective and then
present augmentations of the objective for prior
knowledge, including different training strategies.

2.1 Word2vec
Word2vec (Mikolov et al., 2013) is an algorithm
for learning embeddings using a neural language
model. Embeddings are represented by a set of
latent (hidden) variables, and each word is rep-
resented by a specific instantiation of these vari-
ables. Training learns these representations for
each word wt (the tth word in a corpus of size T )
so as to maximize the log likelihood of each token
given its context: words within a window sized c:

max
1
T

T∑
t=1

log p
(
wt|wt+c

t−c

)
, (1)
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where wt+c
t−c is the set of words in the window of

size c centered at wt (wt excluded).
Word2vec offers two choices for modeling of

Eq. (1): a skip-gram model and a continuous bag-
of-words model (cbow). The latter worked better
in our experiments so we focus on it in our presen-
tation. cbow defines p(wt|wt+c

t−c) as:

exp
(
e
′
wt

> ·∑−c≤j≤c,j 6=0 ewt+j

)
∑

w exp
(
e′w
> ·∑−c≤j≤c,j 6=0 ewt+j

) , (2)

where ew and e
′
w represent the input and output

embeddings respectively, i.e., the assignments to
the latent variables for word w. While some learn
a single representation for each word (e′w , ew),
our results improved when we used a separate em-
bedding for input and output in cbow.

2.2 Relation Constrained Model
Suppose we have a resource that indicates rela-
tions between words. In the case of semantics,
we could have a resource that encodes semantic
similarity between words. Based on this resource,
we learn embeddings that predict one word from
another related word. We define R as a set of rela-
tions between two words w and w′. R can contain
typed relations (e.g., w is related to w′ through
a specific type of semantic relation), and rela-
tions can have associated scores indicating their
strength. We assume a single relation type of uni-
form strength, though it is straightforward to in-
clude additional characteristics into the objective.

Define Rw to be the subset of relations in R
which involve word w. Our objective maximizes
the (log) probability of all relations by summing
over all words N in the vocabulary:

1
N

N∑
i=1

∑
w∈Rwi

log p (w|wi) , (3)

p(w|wi) = exp
(
e′w

T ewi

)
/
∑

w̄ exp
(
e′̄w

T ewi

)
takes a form similar to Eq. (2) but without the
context: e and e′ are again the input and output
embeddings. For our semantic relations e′w and
ew are symmetrical, so we use a single embedding.
Embeddings are learned such that they are predic-
tive of related words in the resource. We call this
the Relation Constrained Model (RCM).

2.3 Joint Model
The cbow and RCM objectives use separate data
for learning. While RCM learns embeddings

suited to specific tasks based on knowledge re-
sources, cbow learns embeddings for words not in-
cluded in the resource but appear in a corpus. We
form a joint model through a linear combination
of the two (weighted by C):

1
T

T∑
t=1

log p
(
wt|wt+c

t−c

)
+
C

N

N∑
i=1

∑
w∈Rwi

log p (w|wi)

Based on our initial experiments, RCM uses the
output embeddings of cbow.

We learn embeddings using stochastic gradient
ascent. Updates for the first term for e′ and e are:

e′w − αcbow
(
σ(f(w))− I[w=wt]

) · t+c∑
j=t−c

ewj

ewj − αcbow

∑
w

(
σ(f(w))− I[w=wt]

) · e′w,
where σ(x) = exp{x}/(1 + exp{x}), I[x] is 1
when x is true, f(w) = e′w

>∑t+c
j=t−c ewj . Second

term updates are:

e′w − αRCM

(
σ(f ′(w))− I[w∈Rwi ]

)
· e′wi

e′wi
− αRCM

∑
w

(
σ(f ′(w))− I[w∈Rwi ]

)
· e′w,

where f ′(w) = e′w
>e′wi

. We use two learning
rates: αcbow and αRCM.

2.4 Parameter Estimation
All three models (cbow, RCM and joint) use the
same training scheme based on Mikolov et al.
(2013). There are several choices to make in pa-
rameter estimation; we present the best perform-
ing choices used in our results.

We use noise contrastive estimation (NCE)
(Mnih and Teh, 2012), which approximately max-
imizes the log probability of the softmax objec-
tive (Eq. 2). For each objective (cbow or RCM),
we sample 15 words as negative samples for each
training instance according to their frequencies in
raw texts (i.e. training data of cbow). Suppose w
has frequency u(w), then the probability of sam-
pling w is p(w) ∝ u(w)3/4.

We use distributed training, where shared em-
beddings are updated by each thread based on
training data within the thread, i.e., asynchronous
stochastic gradient ascent. For the joint model,
we assign threads to the cbow or RCM objective
with a balance of 12:1(i.e. C is approximately 1

12 ).
We allow the cbow threads to control convergence;
training stops when these threads finish process-
ing the data. We found this an effective method
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for balancing the two objectives. We trained each
cbow objective using a single pass over the data set
(except for those in Section 4.1), which we empir-
ically verified was sufficient to ensure stable per-
formances on semantic tasks.

Model pre-training is critical in deep learning
(Bengio et al., 2007; Erhan et al., 2010). We eval-
uate two strategies: random initialization, and pre-
training the embeddings. For pre-training, we first
learn using cbow with a random initialization. The
resulting trained model is then used to initialize
the RCM model. This enables the RCM model to
benefit from the unlabeled data, but refine the em-
beddings constrained by the given relations.

Finally, we consider a final model for training
embeddings that uses a specific training regime.
While the joint model balances between fitting the
text and learning relations, modeling the text at
the expense of the relations may negatively impact
the final embeddings for tasks that use the embed-
dings outside of the context of word2vec. There-
fore, we use the embeddings from a trained joint
model to pre-train an RCM model. We call this
setting Joint→RCM.

3 Evaluation

For training cbow we use the New York Times
(NYT) 1994-97 subset from Gigaword v5.0
(Parker et al., 2011). We select 1,000 paragraphs
each for dev and test data from the December 2010
portion of the NYT. Sentences are tokenized using
OpenNLP1, yielding 518,103,942 tokens for train-
ing, 42,953 tokens for dev and 41,344 for test.

We consider two resources for training the
RCM term: the Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) and WordNet (Fell-
baum, 1999). For each semantic pair extracted
from these resources, we add a relation to the
RCM objective. Since we use both resources for
evaluation, we divide each into train, dev and test.

PPDB is an automatically extracted dataset con-
taining tens of millions of paraphrase pairs, in-
cluding words and phrases. We used the “lexi-
cal” version of PPDB (no phrases) and filtered to
include pairs that contained words found in the
200,000 most frequent words in the NYT corpus,
which ensures each word in the relations had sup-
port in the text corpus. Next, we removed dupli-
cate pairs: if <A,B> occurred in PPDB, we re-
moved relations of <B,A>. PPDB is organized

1https://opennlp.apache.org/

PPDB Relations WordNet Relations
Train XL 115,041 Train 68,372

XXL 587,439 (not used in
XXXL 2,647,105 this work)

Dev 1,582 Dev 1,500
Test 1,583 Test 1,500

Table 1: Sizes of semantic resources datasets.

into 6 parts, ranging from S (small) to XXXL.
Division into these sets is based on an automat-
ically derived accuracy metric. Since S contains
the most accurate paraphrases, we used these for
evaluation. We divided S into a dev set (1582
pairs) and test set (1583 pairs). Training was based
on one of the other sets minus relations from S.

We created similar splits using WordNet, ex-
tracting synonyms using the 100,000 most fre-
quent NYT words. We divide the vocabulary into
three sets: the most frequent 10,000 words, words
with ranks between 10,001-30,000 and 30,001-
100,000. We sample 500 words from each set to
construct a dev and test set. For each word we
sample one synonym to form a pair. The remain-
ing words and their synonyms are used for train-
ing. However we did not use the training data be-
cause it is too small to affect the results. Table 1
summarizes the datasets.

4 Experiments

The goal of our experiments is to demonstrate the
value of learning semantic embeddings with infor-
mation from semantic resources. In each setting,
we will compare the word2vec baseline embed-
ding trained with cbow against RCM alone, the
joint model and Joint→RCM. We consider three
evaluation tasks: language modeling, measuring
semantic similarity, and predicting human judge-
ments on semantic relatedness. In all of our ex-
periments, we conducted model development and
tuned model parameters (C, αcbow, αRCM, PPDB
dataset, etc.) on development data, and evaluate
the best performing model on test data. The mod-
els are notated as follows: word2vec for the base-
line objective (cbow or skip-gram), RCM-r/p and
Joint-r/p for random and pre-trained initializations
of the RCM and Joint objectives, and Joint→RCM
for pre-training RCM with Joint embeddings. Un-
less otherwise notes, we train using PPDB XXL.
We initially created WordNet training data, but
found it too small to affect results. Therefore,
we include only RCM results trained on PPDB,
but show evaluations on both PPDB and WordNet.
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Model NCE HS
word2vec (cbow) 8.75 6.90
RCM-p 8.55 7.07
Joint-r (αRCM = 1× 10−2) 8.33 6.87
Joint-r (αRCM = 1× 10−3) 8.20 6.75
Joint→RCM 8.40 6.92

Table 2: LM evaluation on held out NYT data.

We trained 200-dimensional embeddings and used
output embeddings for measuring similarity. Dur-
ing the training of cbow objectives we remove all
words with frequencies less than 5, which is the
default setting of word2vec.

4.1 Language Modeling

Word2vec is fundamentally a language model,
which allows us to compute standard evaluation
metrics on a held out dataset. After obtaining
trained embeddings from any of our objectives,
we use the embeddings in the word2vec model
to measure perplexity of the test set. Measuring
perplexity means computing the exact probability
of each word, which requires summation over all
words in the vocabulary in the denominator of the
softmax. Therefore, we also trained the language
models with hierarchical classification (Mikolov
et al., 2013) strategy (HS). The averaged perplexi-
ties are reported on the NYT test set.

While word2vec and joint are trained as lan-
guage models, RCM is not. In fact, RCM does not
even observe all the words that appear in the train-
ing set, so it makes little sense to use the RCM em-
beddings directly for language modeling. There-
fore, in order to make fair comparison, for every
set of trained embeddings, we fix them as input
embedding for word2vec, then learn the remain-
ing input embeddings (words not in the relations)
and all the output embeddings using cbow. Since
this involves running cbow on NYT data for 2 it-
erations (one iteration for word2vec-training/pre-
training/joint-modeling and the other for tuning
the language model), we use Joint-r (random ini-
tialization) for a fair comparison.

Table 2 shows the results for language mod-
eling on test data. All of our proposed models
improve over the baseline in terms of perplexity
when NCE is used for training LMs. When HS is
used, the perplexities are greatly improved. How-
ever in this situation only the joint models improve
the results; and Joint→RCM performs similar to
the baseline, although it is not designed for lan-
guage modeling. We include the optimal αRCM

in the table; while set αcbow = 0.025 (the default
setting of word2vec). Even when our goal is to
strictly model the raw text corpus, we obtain im-
provements by injecting semantic information into
the objective. RCM can effectively shift learning
to obtain more informative embeddings.

4.2 Measuring Semantic Similarity
Our next task is to find semantically related words
using the embeddings, evaluating on relations
from PPDB and WordNet. For each of the word
pairs in the evaluation set <A,B>, we use the co-
sine distance between the embeddings to score A
with a candidate word B′. We use a large sample
of candidate words (10k, 30k or 100k) and rank all
candidate words for pairs where B appears in the
candidates. We then measure the rank of the cor-
rect B to compute mean reciprocal rank (MRR).
Our goal is to use word A to select word B as
the closest matching word from the large set of
candidates. Using this strategy, we evaluate the
embeddings from all of our objectives and mea-
sure which embedding most accurately selected
the true correct word.

Table 3 shows MRR results for both PPDB
and WordNet dev and test datasets for all models.
All of our methods improve over the baselines in
nearly every test set result. In nearly every case,
Joint→RCM obtained the largest improvements.
Clearly, our embeddings are much more effective
at capturing semantic similarity.

4.3 Human Judgements
Our final evaluation is to predict human judge-
ments of semantic relatedness. We have pairs of
words from PPDB scored by annotators on a scale
of 1 to 5 for quality of similarity. Our data are
the judgements used by Ganitkevitch et al. (2013),
which we filtered to include only those pairs for
which we learned embeddings, yielding 868 pairs.

We assign a score using the dot product between
the output embeddings of each word in the pair,
then order all 868 pairs according to this score.
Using the human judgements, we compute the
swapped pairs rate: the ratio between the number
of swapped pairs and the number of all pairs. For
pair p scored yp by the embeddings and judged ŷp

by an annotator, the swapped pair rate is:∑
p1,p2∈D I[(yp1 − yp2) (ŷp2 − ŷp1) < 0]∑

p1,p2∈D I[yp1 6= yp2 ]
(4)

where I[x] is 1 when x is true.
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PPDB WordNet

Model Dev Test Dev Test
10k 30k 100k 10k 30k 100k 10k 30k 100k 10k 30k 100k

word2vec (cbow) 49.68 39.26 29.15 49.31 42.53 30.28 10.24 8.64 5.14 10.04 7.90 4.97
word2vec (skip-gram) 48.70 37.14 26.20 - - - 8.61 8.10 4.62 - - -
RCM-r 55.03 42.52 26.05 - - - 13.33 9.05 5.29 - - -
RCM-p 61.79 53.83 40.95 65.42 55.82 41.20 15.25 12.13 7.46 14.13 11.23 7.39
Joint-r 59.91 50.87 36.81 - - - 15.73 11.36 7.14 13.97 10.51 7.44
Joint-p 59.75 50.93 37.73 64.30 53.27 38.97 15.61 11.20 6.96 - - -
Joint→RCM 64.22 54.99 41.34 68.20 57.87 42.64 16.81 11.67 7.55 16.16 11.21 7.56

Table 3: MRR for semantic similarity on PPDB and WordNet dev and test data. Higher is better. All
RCM objectives are trained with PPDB XXL. To preserve test data integrity, only the best performing
setting of each model is evaluated on the test data.

Model Swapped Pairs Rate
word2vec (cbow) 17.81
RCM-p 16.66
Joint-r 16.85
Joint-p 16.96
Joint→RCM 16.62

Table 4: Results for ranking the quality of PPDB
pairs as compared to human judgements.

PPDB Dev
Model Relations 10k 30k 100k
RCM-r XL 24.02 15.26 9.55
RCM-p XL 54.97 45.35 32.95
RCM-r XXL 55.03 42.52 26.05
RCM-p XXL 61.79 53.83 40.95
RCM-r XXXL 51.00 44.61 28.42
RCM-p XXXL 53.01 46.35 34.19

Table 5: MRR on PPDB dev data for training on
an increasing number of relations.

Table 4 shows that all of our models obtain
reductions in error as compared to the baseline
(cbow), with Joint→RCM obtaining the largest re-
duction. This suggests that our embeddings are
better suited for semantic tasks, in this case judged
by human annotations.

PPDB Dev
Model αRCM 10k 30k 100k
Joint-p 1× 10−1 47.17 36.74 24.50

5× 10−2 54.31 44.52 33.07
1× 10−2 59.75 50.93 37.73
1× 10−3 57.00 46.84 34.45

Table 6: Effect of learning rate αRCM on MRR for
the RCM objective in Joint models.

4.4 Analysis
We conclude our experiments with an analysis of
modeling choices. First, pre-training RCM models
gives significant improvements in both measuring
semantic similarity and capturing human judge-
ments (compare “p” vs. “r” results.) Second, the
number of relations used for RCM training is an

important factor. Table 5 shows the effect on dev
data of using various numbers of relations. While
we see improvements from XL to XXL (5 times as
many relations), we get worse results on XXXL,
likely because this set contains the lowest quality
relations in PPDB. Finally, Table 6 shows different
learning rates αRCM for the RCM objective.

The baseline word2vec and the joint model have
nearly the same averaged running times (2,577s
and 2,644s respectively), since they have same
number of threads for the CBOW objective and the
joint model uses additional threads for the RCM
objective. The RCM models are trained with sin-
gle thread for 100 epochs. When trained on the
PPDB-XXL data, it spends 2,931s on average.

5 Conclusion

We have presented a new learning objective for
neural language models that incorporates prior
knowledge contained in resources to improve
learned word embeddings. We demonstrated that
the Relation Constrained Model can lead to better
semantic embeddings by incorporating resources
like PPDB, leading to better language modeling,
semantic similarity metrics, and predicting hu-
man semantic judgements. Our implementation is
based on the word2vec package and we made it
available for general use 2.

We believe that our techniques have implica-
tions beyond those considered in this work. We
plan to explore the embeddings suitability for
other semantics tasks, including the use of re-
sources with both typed and scored relations. Ad-
ditionally, we see opportunities for jointly learn-
ing embeddings across many tasks with many re-
sources, and plan to extend our model accordingly.

Acknowledgements Yu is supported by China
Scholarship Council and by NSFC 61173073.

2https://github.com/Gorov/JointRCM
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Abstract

In this paper, we propose new algorithms
for learning segmentation strategies for si-
multaneous speech translation. In contrast
to previously proposed heuristic methods,
our method finds a segmentation that di-
rectly maximizes the performance of the
machine translation system. We describe
two methods based on greedy search and
dynamic programming that search for the
optimal segmentation strategy. An experi-
mental evaluation finds that our algorithm
is able to segment the input two to three
times more frequently than conventional
methods in terms of number of words,
while maintaining the same score of auto-
matic evaluation.1

1 Introduction

The performance of speech translation systems
has greatly improved in the past several years,
and these systems are starting to find wide use in
a number of applications. Simultaneous speech
translation, which translates speech from the
source language into the target language in real
time, is one example of such an application. When
translating dialogue, the length of each utterance
will usually be short, so the system can simply
start the translation process when it detects the end
of an utterance. However, in the case of lectures,
for example, there is often no obvious boundary
between utterances. Thus, translation systems re-
quire a method of deciding the timing at which
to start the translation process. Using estimated
ends of sentences as the timing with which to start
translation, in the same way as a normal text trans-
lation, is a straightforward solution to this problem
(Matusov et al., 2006). However, this approach

1The implementation is available at
http://odaemon.com/docs/codes/greedyseg.html.

impairs the simultaneity of translation because the
system needs to wait too long until the appearance
of a estimated sentence boundary. For this reason,
segmentation strategies, which separate the input
at appropriate positions other than end of the sen-
tence, have been studied.

A number of segmentation strategies for simul-
taneous speech translation have been proposed in
recent years. Fügen et al. (2007) and Bangalore et
al. (2012) propose using prosodic pauses in speech
recognition to denote segmentation boundaries,
but this method strongly depends on characteris-
tics of the speech, such as the speed of speaking.
There is also research on methods that depend on
linguistic or non-linguistic heuristics over recog-
nized text (Rangarajan Sridhar et al., 2013), and it
was found that a method that predicts the location
of commas or periods achieves the highest perfor-
mance. Methods have also been proposed using
the phrase table (Yarmohammadi et al., 2013) or
the right probability (RP) of phrases (Fujita et al.,
2013), which indicates whether a phrase reorder-
ing occurs or not.

However, each of the previously mentioned
methods decides the segmentation on the basis
of heuristics, so the impact of each segmenta-
tion strategy on translation performance is not di-
rectly considered. In addition, the mean number
of words in the translation unit, which strongly af-
fects the delay of translation, cannot be directly
controlled by these methods.2

In this paper, we propose new segmentation al-
gorithms that directly optimize translation perfor-
mance given the mean number of words in the
translation unit. Our approaches find appropri-
ate segmentation boundaries incrementally using
greedy search and dynamic programming. Each
boundary is selected to explicitly maximize trans-

2The method using RP can decide relative frequency of
segmentation by changing a parameter, but guessing the
length of a translation unit from this parameter is not trivial.
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lation accuracy as measured by BLEU or another
evaluation measure.

We evaluate our methods on a speech transla-
tion task, and we confirm that our approaches can
achieve translation units two to three times as fine-
grained as other methods, while maintaining the
same accuracy.

2 Optimization Framework

Our methods use the outputs of an existing ma-
chine translation system to learn a segmentation
strategy. We define F = {fj : 1 ≤ j ≤ N},
E = {ej : 1 ≤ j ≤ N} as a parallel corpus
of source and target language sentences used to
train the segmentation strategy. N represents the
number of sentences in the corpus. In this work,
we consider sub-sentential segmentation, where
the input is already separated into sentences, and
we want to further segment these sentences into
shorter units. In an actual speech translation sys-
tem, these sentence boundaries can be estimated
automatically using a method like the period es-
timation mentioned in Rangarajan Sridhar et al.
(2013). We also assume the machine translation
system is defined by a function MT (f) that takes
a string of source words f as an argument and re-
turns the translation result ê.3

We will introduce individual methods in the fol-
lowing sections, but all follow the general frame-
work shown below:

1. Decide the mean number of words µ and the
machine translation evaluation measure EV
as parameters of algorithm. We can use an
automatic evaluation measure such as BLEU
(Papineni et al., 2002) as EV . Then, we cal-
culate the number of sub-sentential segmen-
tation boundaries K that we will need to in-
sert into F to achieve an average segment
length µ:

K := max
(

0,

⌊∑
f∈F |f |

µ

⌋
−N

)
. (1)

2. Define S as a set of positions in F in which
we will insert segmentation boundaries. For
example, if we will segment the first sentence
after the third word and the third sentence af-
ter the fifth word, then S = {⟨1, 3⟩ , ⟨3, 5⟩}.

3In this work, we do not use the history of the language
model mentioned in Bangalore et al. (2012). Considering this
information improves the MT performance and we plan to
include this in our approach in future work.

Figure 1: Concatenated translation MT (f ,S).

Based on this representation, choose K seg-
mentation boundaries in F to make the set
S∗ that maximizes an evaluation function ω
as below:

S∗ := arg max
S∈{S′:|S′|=K}

ω(S;F , E , EV, MT ).

(2)
In this work, we define ω as the sum of the
evaluation measure for each parallel sentence
pair ⟨fj ,ej⟩:

ω(S) :=
N∑

j=1

EV (MT (fj ,S), ej), (3)

where MT (f ,S) represents the concatena-
tion of all partial translations {MT (f (n))}
given the segments S as shown in Figure 1.

Equation (3) indicates that we assume all
parallel sentences to be independent of each
other, and the evaluation measure is calcu-
lated for each sentence separately. This lo-
cality assumption eases efficient implementa-
tion of our algorithm, and can be realized us-
ing a sentence-level evaluation measure such
as BLEU+1 (Lin and Och, 2004).

3. Make a segmentation model MS∗ by treating
the obtained segmentation boundaries S∗ as
positive labels, all other positions as negative
labels, and training a classifier to distinguish
between them. This classifier is used to de-
tect segmentation boundaries at test time.

Steps 1. and 3. of the above procedure are triv-
ial. In contrast, choosing a good segmentation ac-
cording to Equation (2) is difficult and the focus
of the rest of this paper. In order to exactly solve
Equation (2), we must perform brute-force search
over all possible segmentations unless we make
some assumptions about the relation between the
ω yielded by different segmentations. However,
the number of possible segmentations is exponen-
tially large, so brute-force search is obviously in-
tractable. In the following sections, we propose 2
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I ate lunch but she left

Segments already selected at the k-th iteration

ω = 0.5 ω = 0.8
(k+1)-th segment

ω = 0.7

Figure 2: Example of greedy search.

Algorithm 1 Greedy segmentation search
S∗ ← ∅
for k = 1 to K do

S∗ ← S∗ ∪
{

arg max
s�∈S∗

ω(S∗ ∪ {s})
}

end for
return S∗

methods that approximately search for a solution
to Equation (2).

2.1 Greedy Search
Our first approximation is a greedy algorithm that
selects segmentation boundaries one-by-one. In
this method, k already-selected boundaries are left
unchanged when deciding the (k+1)-th boundary.
We find the unselected boundary that maximizes ω
and add it to S:

Sk+1 = Sk ∪
{

arg max
s�∈Sk

ω(Sk ∪ {s})
}

. (4)

Figure 2 shows an example of this process for a
single sentence, and Algorithm 1 shows the algo-
rithm for calculating K boundaries.

2.2 Greedy Search with Feature Grouping
and Dynamic Programming

The method described in the previous section
finds segments that achieve high translation per-
formance for the training data. However, because
the translation system MT and evaluation mea-
sure EV are both complex, the evaluation function
ω includes a certain amount of noise. As a result,
the greedy algorithm that uses only ω may find a
segmentation that achieves high translation perfor-
mance in the training data by chance. However,
these segmentations will not generalize, reducing
the performance for other data.

We can assume that this problem can be solved
by selecting more consistent segmentations of the
training data. To achieve this, we introduce a con-
straint that all positions that have similar charac-
teristics must be selected at the same time. Specif-
ically, we first group all positions in the source

I ate lunch but she left
PRP VBD NN CC PRP VBD

I ate an apple and an orange
PRP VBD DT NN CC DT NN

WORD:
 POS:

WORD:
 POS:

Group
PRP+VBD

Group
NN+CC

Group
DT+NN

Figure 3: Grouping segments by POS bigrams.

sentences using features of the position, and intro-
duce a constraint that all positions with identical
features must be selected at the same time. Figure
3 shows an example of how this grouping works
when we use the POS bigram surrounding each
potential boundary as our feature set.

By introducing this constraint, we can expect
that features which have good performance over-
all will be selected, while features that have rela-
tively bad performance will not be selected even if
good performance is obtained when segmenting at
a specific location. In addition, because all posi-
tions can be classified as either segmented or not
by evaluating whether the corresponding feature is
in the learned feature set or not, it is not necessary
to train an additional classifier for the segmenta-
tion model when using this algorithm. In other
words, this constraint conducts a kind of feature
selection for greedy search.

In contrast to Algorithm 1, which only selected
one segmentation boundary at once, in our new
setting there are multiple positions selected at one
time. Thus, we need to update our search algo-
rithm to handle this setting. To do so, we use
dynamic programming (DP) together with greedy
search. Algorithm 2 shows our Greedy+DP search
algorithm. Here, c(ϕ;F) represents the number
of appearances of ϕ in the set of source sentences
F , and S(F , Φ) represents the set of segments de-
fined by both F and the set of features Φ.

The outer loop of the algorithm, like Greedy,
iterates over all S of size 1 to K. The inner loop
examines all features that appear exactly j times
in F , and measures the effect of adding them to
the best segmentation with (k − j) boundaries.

2.3 Regularization by Feature Count

Even after we apply grouping by features, it
is likely that noise will still remain in the less
frequently-seen features. To avoid this problem,
we introduce regularization into the Greedy+DP
algorithm, with the evaluation function ω rewrit-
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Algorithm 2 Greedy+DP segmentation search
Φ0 ← ∅
for k = 1 to K do

for j = 0 to k − 1 do
Φ′ ← {ϕ : c(ϕ;F) = k − j ∧ ϕ�∈ Φj}
Φk,j ← Φj∪

{
arg max

ϕ∈Φ′
ω(S(F , Φj ∪ {ϕ}))

}
end for
Φk ← arg max

Φ∈{Φk,j :0≤j<k}
ω(S(F , Φ))

end for
return S(F , ΦK)

ten as below:

ωα(Φ) := ω(S(F , Φ))− α|Φ|. (5)

The coefficient α is the strength of the regulariza-
tion with regards to the number of selected fea-
tures. A larger α will result in a larger penalty
against adding new features into the model. As
a result, the Greedy+DP algorithm will value fre-
quently appearing features. Note that the method
described in the previous section is equal to the
case of α = 0 in this section.

2.4 Implementation Details

Our Greedy and Greedy+DP search algorithms
are completely described in Algorithms 1 and 2.
However, these algorithms require a large amount
of computation and simple implementations of
them are too slow to finish in realistic time. Be-
cause the heaviest parts of the algorithm are the
calculation of MT and EV , we can greatly im-
prove efficiency by memoizing the results of these
functions, only recalculating on new input.

3 Experiments

3.1 Experimental Settings

We evaluated the performance of our segmentation
strategies by applying them to English-German
and English-Japanese TED speech translation data
from WIT3 (Cettolo et al., 2012). For English-
German, we used the TED data and splits from
the IWSLT2013 evaluation campaign (Cettolo et
al., 2013), as well as 1M sentences selected from
the out-of-domain training data using the method
of Duh et al. (2013). For English-Japanese, we
used TED data and the dictionary entries and sen-
tences from EIJIRO.4 Table 1 shows summaries of
the datasets we used.

4http://eowp.alc.co.jp/info2/

f -e Type #words
f e

En-De
Train MT 21.8M 20.3M
Train Seg. 424k 390k
Test 27.6k 25.4k

En-Ja
Train MT 13.7M 19.7M
Train Seg. 401k 550k
Test 8.20k 11.9k

Table 1: Size of MT training, segmentation train-
ing and testing datasets.

We use the Stanford POS Tagger (Toutanova
et al., 2003) to tokenize and POS tag English
and German sentences, and KyTea (Neubig et al.,
2011) to tokenize Japanese sentences. A phrase-
based machine translation (PBMT) system learned
by Moses (Koehn et al., 2007) is used as the trans-
lation system MT . We use BLEU+1 as the eval-
uation measure EV in the proposed method. The
results on the test data are evaluated by BLEU and
RIBES (Isozaki et al., 2010), which is an evalu-
ation measure more sensitive to global reordering
than BLEU.

We evaluated our algorithm and two conven-
tional methods listed below:
Greedy is our first method that uses simple greedy

search and a linear SVM (using surrounding
word/POS 1, 2 and 3-grams as features) to
learn the segmentation model.

Greedy+DP is the algorithm that introduces
grouping the positions in the source sentence
by POS bigrams.

Punct-Predict is the method using predicted po-
sitions of punctuation (Rangarajan Sridhar et
al., 2013).

RP is the method using right probability (Fujita et
al., 2013).

3.2 Results and Discussion
Figures 4 and 5 show the results of evaluation for
each segmentation strategy measured by BLEU
and RIBES respectively. The horizontal axis is the
mean number of words in the generated transla-
tion units. This value is proportional to the delay
experienced during simultaneous speech transla-
tion (Rangarajan Sridhar et al., 2013) and thus a
smaller value is desirable.

RP, Greedy, and Greedy+DP methods have
multiple results in these graphs because these
methods have a parameter that controls segmen-
tation frequency. We move this parameter from
no segmentation (sentence-based translation) to
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Figure 4: BLEU score of test set.
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Figure 5: RIBES score of test set.

segmenting every possible boundary (word-based
translation) and evaluate the results.

First, focusing on the Greedy method, we can
see that it underperforms the other methods. This
is a result of over-fitting as will be described in
detail later. In contrast, the proposed Greedy+DP
method shows high performance compared to the
other methods. Especially, the result of BLEU on
the English-German and the RIBES on both lan-
guage pairs show higher performance than RP at
all speed settings. Punct-Predict does not have
an adjustable parameter, so we can only show
one point. We can see that Greedy+DP can be-
gin translation about two to three times faster than
Punct-Predict while maintaining the same perfor-
mance.

Figure 6 shows the BLEU on the training data.
From this figure, it is clear that Greedy achieves
much higher performance than Greedy+DP. From
this result, we can see that the Greedy algorithm is
choosing a segmentation that achieves high accu-
racy on the training data but does not generalize to
the test data. In contrast, the grouping constraint in
the Greedy+DP algorithm is effectively suppress-
ing this overfitting.

The mean number of words µ can be decided
independently from other information, but a con-
figuration of µ affects tradeoff relation between
translation accuracy and simultaneity. For exam-
ple, smaller µ makes faster translation speed but
it also makes less translation accuracy. Basically,
we should choose µ by considering this tradeoff.

4 Conclusion and Future Work

We proposed new algorithms for learning a seg-
mentation strategy in simultaneous speech trans-
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Figure 6: BLEU score of training set.

lation. Our algorithms directly optimize the per-
formance of a machine translation system accord-
ing to an evaluation measure, and are calculated by
greedy search and dynamic programming. Exper-
iments show our Greedy+DP method effectively
separates the source sentence into smaller units
while maintaining translation performance.

With regards to future work, it has been
noted that translation performance can be im-
proved by considering the previously translated
segment when calculating LM probabilities (Ran-
garajan Sridhar et al., 2013). We would like to ex-
pand our method to this framework, although in-
corporation of context-sensitive translations is not
trivial. In addition, the Greedy+DP algorithm uses
only one feature per a position in this paper. Using
a variety of features is also possible, so we plan to
examine expansions of our algorithm to multiple
overlapping features in future work.
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Abstract

We present a simple joint inference of
deep case analysis and zero subject gener-
ation for the pre-ordering in Japanese-to-
English machine translation. The detec-
tion of subjects and objects from Japanese
sentences is more difficult than that from
English, while it is the key process to gen-
erate correct English word orders. In addi-
tion, subjects are often omitted in Japanese
when they are inferable from the context.
We propose a new Japanese deep syntac-
tic parser that consists of pointwise proba-
bilistic models and a global inference with
linguistic constraints. We applied our new
deep parser to pre-ordering in Japanese-to-
English SMT system and show substantial
improvements in automatic evaluations.

1 Introduction

Japanese to English translation is known to be one
of the most difficult language pair for statistical
machine translation (SMT). It has been widely be-
lieved for years that the difference of word or-
ders, i.e., Japanese is an SOV language, while En-
glish is an SVO language, makes the English-to-
Japanese and Japanese-to-English translation dif-
ficult. However, simple, yet powerful pre-ordering
techniques have made this argument a thing of the
past (Isozaki et al., 2010b; Komachi et al., 2006;
Fei and Michael, 2004; Lerner and Petrov, 2013;
Wu et al., 2011; Katz-Brown and Collins, 2008;
Neubig et al., 2012; Hoshino et al., 2013). Pre-
ordering processes the source sentence in such a
way that word orders appear closer to their final
positions on the target side.

While many successes of English-to-Japanese
translation have been reported recently, the quality
improvement of Japanese-to-English translation is
still small even with the help of pre-ordering (Goto

et al., 2013). We found that there are two ma-
jor issues that make Japanese-to-English transla-
tion difficult. One is that Japanese subject and ob-
ject cannot easily be identified compared to En-
glish, while their detections are the key process
to generate correct English word orders. Japanese
surface syntactic structures are not always corre-
sponding to their deep structures, i.e., semantic
roles. The other is that Japanese is a pro-drop lan-
guage in which certain classes of pronouns may
be omitted when they are pragmatically inferable.
In Japanese-to-English translation, these omitted
pronouns have to be generated properly.

There are several researches that focused on the
pre-ordering with Japanese deep syntactic analysis
(Komachi et al., 2006; Hoshino et al., 2013) and
zero pronoun generation (Taira et al., 2012) for
Japanese-to-English translation. However, these
two issues have been considered independently,
while they heavily rely on one another.

In this paper, we propose a simple joint infer-
ence which handles both Japanese deep structure
analysis and zero pronoun generation. To the best
of our knowledge, this is the first study that ad-
dresses these two issues at the same time.

This paper is organized as follows. First, we de-
scribe why Japanese-to-English translation is dif-
ficult. Second, we show the basic idea of this
work and its implementation based on pointwise
probabilistic models and a global inference with
an integer linear programming (ILP). Several ex-
periments are employed to confirm that our new
model can improve the Japanese to English trans-
lation quality.

2 What makes Japanese-to-English
translation difficult?

Japanese syntactic relations between arguments
and predicates are usually specified by particles.
There are several types of particles, but we focus
on が (ga), を (wo) and は (wa) for the sake of
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Table 1: An example of difficult sentence for pars-
ing

Sentence: 今日 は お酒 が 飲める.
Gloss: today wa TOP liquor ga NOM can drink.
Translation: (I) can drink liquor today.

simplicity 1.

• ga is usually a subject marker. However, it
becomes an object marker if the predicate has
a potential voice type, which is usually trans-
lated into can, be able to, want to, or would
like to.

• wo is an object marker.

• wa is a topic case marker. The topic can be
anything that a speaker wants to talk about. It
can be subject, object, location, time or any
other grammatical elements.

We cannot always identify Japanese subject and
object only by seeing the surface case markers ga,
wo and wa. Especially the topic case marker is
problematic, since there is no concept of topic in
English. It is necessary to get a deep interpretation
of topic case markers in order to develop accurate
Japanese-to-English SMT systems.

Another big issue is that Japanese subject (or
even an object) can be omitted when they can
pragmatically be inferable from the context. Such
a pronoun-dropping is not a unique phenomenon
in Japanese actually. For instance, Spanish also
allows to omit pronouns. However, the inflec-
tional suffix of Spanish verbs include a hint of the
person of the subject. On the other hand, infer-
ring Japanese subjects is more difficult than Span-
ish, since Japanese verbs usually do not have any
grammatical cues to tell the subject type.

Table 1 shows an example Japanese sentence
which cannot be parsed only with the surface
structure. The second token wa specifies the rela-
tion between今日 (today) and飲める (can drink).
Human can easily tell that the relation of them is
not a subject but an adverb (time). The topic case
marker wa implies that the time when the speaker
drinks liquor is the focus of this sentence. The
4th token ga indicates the relation between お酒
(liquor) and 飲める (can drink). Since the predi-
cate has a potential voice (can drink), the ga par-
ticle should be interpreted as an object here. In

1Other case markers are less frequent than these three
markers

this sentence, the subject is omitted. In general, it
is unknown who speaks this sentence, but the first
person is a natural interpretation in this context.

Another tricky phenomenon is that detecting
voice type is not always deterministic. There
are several ways to generate a potential voice in
Japanese, but we usually put the suffix wordれる
(reru) or られる (rareru) after predicates. How-
ever, these suffix words are also used for a passive
voice.

In summary, we can see that the following
four factors are the potential causes that make the
Japanese parsing difficult.

• Japanese voice type detection is not straight-
forward. reru or rareru are used either for
passive or potential voice.

• surface case ga changes its interpretation
from subject to object when the predicate has
a potential voice.

• topic case marker wa is used as a topic case
marker which doesn’t exist in English. Topic
is either subject, object or any grammatical
elements depending on the context.

• Japanese subject is often omitted when it is
inferable from the context. There is no cue to
tell the subject person in verb suffix (inflec-
tion) like in Spanish verbs

We should note that they are not always inde-
pendent issues. For instance, the deep case detec-
tion helps to tell the voice type, and vice versa.

Another note is that they are unique issues
observed only in Japanese-to-English translation.
In English-to-Japanese translation, it is accept-
able to generate Japanese sentences that do not
use Japanese topic markers wa. Also, generating
Japanese pronoun from English pronoun is accept-
able, although it sounds redundant and unnatural
for native speakers.

3 A joint inference of deep case analysis
and zero subject generation

3.1 Probabilistic model over
predicate-argument structures

Our deep parser runs on the top of a dependency
parse tree. First, it extracts all predicates and their
arguments from a dependency tree by using man-
ual rules over POS tags. Since our pre-ordering
system generates the final word orders from a
labeled dependency tree, we formalize our deep
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parsing task as a simple labeling problem over de-
pendency links, where the label indicates the deep
syntactic roles between head and modifier.

We here define a joint probability over a predi-
cate and its arguments as follows:

P (p, z, v, A, S,D) (1)

where

• p: a predicate

• z: a zero subject candidate for p. z ∈ Z =
{I, you, we, it, he/she, imperative, already exists}

• v: voice type of the predicate p. v ∈ V =
{active, passive, potential}

• ak ∈ A: k-th argument which modifies or is
modified by the predicate2.

• dk ∈ D: deep case label which represents a
deep relation between ak and p. d ∈ { sub-
ject, object, other }, where other means that
deep case is neither subject nor object.

• sk ∈ S: surface relation (surface case
marker) between ak and p.

We assume that a predicate p is independent
from other predicates in a sentence. This assump-
tion allows us to estimate the deep structures of p
separately, with no regard to which decisions are
made in other predicates.

An optimal zero subject label z, deep cases D,
and voice type v for a given predicate p can be
solved as the following optimization problem.

〈ẑ, v̂, D̂〉 = argmax
z,v,D

P (p, z, v, A, S, D)

Since the inference of this joint probability is diffi-
cult, we decompose P (p, z, v, A, S, D) into small
independent sub models:

P (p, z, v, A, S, D) ≈
Pz(z|p,A, S)Pv(v|p,A, S)
Pd(D|p, v, A, S)P (p,A, S) (2)

We do not take the last term P (p, A, S) into con-
sideration, since it is constant for the optimization.
In the next sections, we describe how these proba-
bilities Pz , Pd, and Pv are computed.

2Generally, an argument modifies a predicate, but in rela-
tive clauses, a predicate modifies an argument

3.1.1 Zero subject model: Pz(z|p,A, S)
This model estimates the syntactic zero subject 3

of the predicate p. For instance, z= I means that the
subject of p is omitted and its type is first person.
z=imperative means that we do not need to aug-
ment a subject because the predicate is imperative.
z=already exists means that a subject already ap-
pears in the sentence. A maximum entropy classi-
fier is used in our zero subject model, which takes
the contextual features extracted from p, A, and S.

3.1.2 Voice type model: Pv(v|p, A, S)
This model estimates the voice type of a predicate.
We also use a maximum entropy classifier for this
model. This classifier is used only when the predi-
cate has the ambiguous suffix reru or rareru. If the
predicate does not have any ambiguous suffix, this
model returns pre-defined voice types with with
very high probabilities.

3.1.3 Deep case model: Pd(D|p, v,A, S)
This model estimates the deep syntactic role be-
tween a predicate p and its arguments A. This
model helps to resolve the deep cases when their
surface cases are topic. We define Pd as follows
after introducing an independent assumption over
predicate-argument structures:

P (D|p, v, A, S) ≈∏
i

[max(p(di|ai, p) − m(si, di, v), δ)].

p(d|a, p) models the deep relation between p and
a. We use a maximum likelihood estimation for
p(d|a, p):

p(d = subj|a, p) =
freq(s = ga, a, active form of p)

freq(a, active form of p)

p(d = obj|a, p) =
freq(s = wo, a, active form of p)

freq(a, active form of p)
,

where freq(s = ga, a, active form of p) is the
frequency of how often an argument a and p ap-
pears with the surface case ga. The frequencies
are aggregated only when the predicate appear in
active voice. If the voice type is active, we can
safely assume that the surface cases ga and wo
correspond to subject and object respectively. We
compute the frequencies from a large amount of
auto-parsed data.

m(s, d, v) is a non-negative penalty variable de-
scribing how the deep case d generates the sur-
face case s depending on the voice type v. Since

3Here syntactic subject means the subject which takes the
voice type into account.
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the number of possible surface cases, deep cases,
and voice types are small, we define this penalty
manually by referring to the Japanese grammar
book (descriptive grammar research group, 2009).
We use these manually defined penalties in order
to put more importance on syntactic preferences
rather than those of semantics. Even if a predicate-
augment structure is semantically irrelevant, we
take this structure as long as it is syntactically cor-
rect in order to avoid SMT from generating liberal
translations.

δ is a very small positive constant to avoid zero
probability.

3.2 Joint inference with linguistic constraints
Our initial model (2) assumes that zero subjects
and deep cases are generated independently. How-
ever, this assumption does not always capture
real linguistic phenomena. English is a subject-
prominent language in which almost all sentences
(or predicates) must have a subject. This implies
that it is more reasonable to introduce strong lin-
guistic constraints to the final solution for pre-
ordering, which are described as follows:

• Subject is a mandatory role. A subject must
be inferred either by zero subject or deep case
model 4. When the voice type is passive, an
object role in D is considered as a syntactic
subject.

• A predicate can not have multiple subjects
and objects respectively.

These two constraints avoid the model from in-
ferring syntactically irrelevant solutions.

In order to find the result with the constraints
above, we formalize our model as an integer lin-
ear programming, ILP. Let {x1, , ..., xn} be bi-
nary variables, i.e., xi ∈ {0, 1}. xi corresponds
to the binary decisions in our model, e.g., xk =
1 if di = subj and v = active. Let {p1, ..., pn} be
probability vector corresponding to the binary de-
cisions. ILP can be formalized as a mathematical
problem, in which the objective function and the
constraints are linear:

{x̂1, ..., x̂n} = argmax
{x1,...,xn}∈{0,1}n

n∑
i=1

log(pi)xi

s.t. linear constraints over {x1, .., xn}.
After taking the log of (2), our optimization model
can be converted into an ILP. Also, the constraints

4imperative is also handled as an invisible subject

described above can be represented as linear equa-
tions over binary variables X . We leave the details
of the representations to (Punyakanok et al., 2004;
Iida and Poesio, 2011).

3.3 Japanese pre-ordering with deep parser

We use a simple rule-based approach to make pre-
ordered Japanese sentences from our deep parse
trees, which is similar to the algorithms described
in (Komachi et al., 2006; Katz-Brown and Collins,
2008; Hoshino et al., 2013). First, we naively re-
verse all the bunsetsu-chunks 5. Then, we move
a subject chunk just before its predicate. This
process converts SOV to SVO. When the subject
is omitted, we generate a subject with our deep
parser and insert it to a subject position in the
source sentence. There are three different ways
to generate a subject.

1. Generate real Japanese words (Insert 私 (I),
あなた (you).. etc)

2. Generate virtual seed Japanese words (Insert
1st person, 2nd person..., which are not in
the Japanese lexicon.)

3. Generate only a single virtual seed Japanese
word regardless of the subject type. (Insert
zero subject)

1) is the most aggressive method, but it causes
completely incorrect translations if the detection
of subject type fails. 2) and 3) is rather conser-
vative, since they leave SMT to generate English
pronouns.

We decided to use the following hybrid ap-
proach, since it shows the best performance in our
preliminary experiments.

• In the training of SMT, use 3).

• In decoding, use 1) if the input sentence only
has one predicate. Otherwise, use 3).

3.4 Examples of parsing results

Table 2 shows examples of our deep parser output.
It can be seen that our parser can correctly identify
the deep case of topic case markers wa.

5bunsetsu is a basic Japanese grammatical unit consisting
of one content word and functional words.
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Table 2: Examples of deep parser output
今日は (today wa) {d=other} 酒が (liquor ga) {d=obj} 飲める (can drink) {v=potential, z=I}
ニュースが (news ga) {d=subj} 伝えられた (was broadcast) {v=passive, z=already exist}
パスタは (pasta wa) {d=obj} 食べましたか (ate+question) {v=active, z=you}
あなたは (you wa) {d=subj} 食べましたか (ate+question) {v=active, z=already exist}

4 Experiments

4.1 Experimental settings

We carried out all our experiments using a state-
of-the-art phrase-based statistical Japanese-to-
English machine translation system (Och, 2003)
with pre-ordering. During the decoding, we
use the reordering window (distortion limit) to 4
words. For parallel training data, we use an in-
house collection of parallel sentences. These come
from various sources with a substantial portion
coming from the web. We trained our system on
about 300M source words. Our test set contains
about 10,000 sentences randomly sampled from
the web.

The dependency parser we apply is an imple-
mentation of a shift-reduce dependency parser
which uses a bunsetsu-chunk as a basic unit for
parsing (Kudo and Matsumoto, 2002).

The zero subject and voice type models were
trained with about 20,000 and 5,000 manually an-
notated web sentences respectively. In order to
simplify the rating tasks for our annotators, we ex-
tracted only one candidate predicate from a sen-
tence for annotations.

We tested the following six systems.

• baseline: no pre-ordering.

• surface reordering : pre-ordering only with
surface dependency relations.

• independent deep reordering: pre-ordering
using deep parser without global linguistic
constraints.

• independent deep reordering + zero sub-
ject: pre-ordering using deep parser and zero
subject generation without global linguistic
constraints.

• joint deep reordering: pre-ordering using
our new deep parser with global linguistic
constraints.

• joint deep reordering + zero-subject: pre-
ordering using deep parser and zero subject
generation with global linguistic constraints.

Table 3: Results for different reordering methods
System BLEU RIBES
baseline (no reordering) 16.15 52.67
surface reordering 19.39 60.30
independent deep reordering 19.68 61.27
independent deep reordering + zero subj. 19.81 61.67
joint deep reordering 19.76 61.43
joint deep reordering + zero subj. 19.90 61.89

As translation metrics, we used BLEU (Pap-
ineni et al., 2002), as well as RIBES (Isozaki et
al., 2010a), which is designed for measuring the
quality of distant language pairs in terms of word
orders.

4.2 Results

Table 3 shows the experimental results for six pre-
reordering systems. It can be seen that the pro-
posed method with deep parser outperforms base-
line and naive reordering with surface syntactic
trees. The zero subject generation can also im-
prove both BLEU and RIBES scores, but the im-
provements are smaller than those with reordering.
Also, joint inference with global linguistics con-
straints outperforms the model which solves deep
syntactic analysis and zero subject generation in-
dependently.

5 Conclusions

In this paper, we proposed a simple joint inference
of deep case analysis and zero subject generation
for Japanese-to-English SMT. Our parser consists
of pointwise probabilistic models and a global in-
ference with linguistic constraints. We applied our
new deep parser to pre-ordering in Japanese-to-
English SMT system and showed substantial im-
provements in automatic evaluations.

Our future work is to enhance our deep parser so
that it can handle other linguistic phenomena, in-
cluding causative voice, coordinations, and object
ellipsis. Also, the current system is built on the
top of a dependency parser. The final output of our
deep parser is highly influenced by the parsing er-
rors. It would be interesting to develop a full joint
inference of dependency parsing and deep syntac-
tic analysis.
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Abstract

In this paper we explicitly consider sen-
tence skeleton information for Machine
Translation (MT). The basic idea is that
we translate the key elements of the input
sentence using a skeleton translation mod-
el, and then cover the remain segments us-
ing a full translation model. We apply our
approach to a state-of-the-art phrase-based
system and demonstrate very promising
BLEU improvements and TER reductions
on the NIST Chinese-English MT evalua-
tion data.

1 Introduction

Current Statistical Machine Translation (SMT) ap-
proaches model the translation problem as a pro-
cess of generating a derivation of atomic transla-
tion units, assuming that every unit is drawn out
of the same model. The simplest of these is the
phrase-based approach (Och et al., 1999; Koehn
et al., 2003) which employs a global model to
process any sub-strings of the input sentence. In
this way, all we need is to increasingly translate
a sequence of source words each time until the
entire sentence is covered. Despite good result-
s in many tasks, such a method ignores the roles
of each source word and is somewhat differen-
t from the way used by translators. For exam-
ple, an important-first strategy is generally adopt-
ed in human translation - we translate the key ele-
ments/structures (or skeleton) of the sentence first,
and then translate the remaining parts. This es-
pecially makes sense for some languages, such as
Chinese, where complex structures are usually in-
volved.

Note that the source-language structural infor-
mation has been intensively investigated in recent
studies of syntactic translation models. Some of
them developed syntax-based models on complete

syntactic trees with Treebank annotations (Liu et
al., 2006; Huang et al., 2006; Zhang et al., 2008),
and others used source-language syntax as soft
constraints (Marton and Resnik, 2008; Chiang,
2010). However, these approaches suffer from
the same problem as the phrase-based counterpart
and use the single global model to handle differ-
ent translation units, no matter they are from the
skeleton of the input tree/sentence or other not-so-
important sub-structures.

In this paper we instead explicitly model the
translation problem with sentence skeleton infor-
mation. In particular,

• We develop a skeleton-based model which
divides translation into two sub-models: a
skeleton translation model (i.e., translating
the key elements) and a full translation model
(i.e., translating the remaining source words
and generating the complete translation).

• We develop a skeletal language model to de-
scribe the possibility of translation skeleton
and handle some of the long-distance word
dependencies.

• We apply the proposed model to Chinese-
English phrase-based MT and demonstrate
promising BLEU improvements and TER re-
ductions on the NIST evaluation data.

2 A Skeleton-based Approach to MT

2.1 Skeleton Identification
The first issue that arises is how to identify the
skeleton for a given source sentence. Many ways
are available. E.g., we can start with a full syntac-
tic tree and transform it into a simpler form (e.g.,
removing a sub-tree). Here we choose a simple
and straightforward method: a skeleton is obtained
by dropping all unimportant words in the origi-
nal sentence, while preserving the grammaticali-
ty. See the following for an example skeleton of a
Chinese sentence.
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Original Sentence (subscripts represent indices):
z[1]

per
ë[2]

ton
°Y�z[3]

seawater desalination
?n[4]

treatment
�[5]

of

¤�[6]

the cost
3[7] 5[8]

5
�[9]

yuan
�[10]

of
Ä:[11]

from
þ[12]

?�Ú[13]

has been further
eü[14]

reduced
"[15]

.
(The cost of seawater desalination treatment has
been further reduced from 5 yuan per ton.)

Sentence Skeleton (subscripts represent indices):
¤�[6]

the cost
?�Ú[13]

has been further
eü[14]

reduced
"[15]

.
(The cost has been further reduced.)

Obviously the skeleton used in this work can be
viewed as a simplified sentence. Thus the prob-
lem is in principle the same as sentence simpli-
fication/compression. The motivations of defin-
ing the problem in this way are two-fold. First,
as the skeleton is a well-formed (but simple) sen-
tence, all current MT approaches are applicable
to the skeleton translation problem. Second, ob-
taining simplified sentences by word deletion is
a well-studied issue (Knight and Marcu, 2000;
Clarke and Lapata, 2006; Galley and McKeown,
2007; Cohn and Lapata, 2008; Yamangil and
Shieber, 2010; Yoshikawa et al., 2012). Many
good sentence simpliciation/compression methods
are available to our work. Due to the lack of space,
we do not go deep into this problem. In Section
3.1 we describe the corpus and system employed
for automatic generation of sentence skeletons.

2.2 Base Model

Next we describe our approach to integrating
skeleton information into MT models. We start
with an assumption that the 1-best skeleton is pro-
vided by the skeleton identification system. Then
we define skeleton-based translation as a task of
searching for the best target string t̂ given the
source string and its skeleton τ :

t̂ = arg max
t

P(t|τ, s) (1)

As is standard in SMT, we further assume that
1) the translation process can be decomposed in-
to a derivation of phrase-pairs (for phrase-based
models) or translation rules (for syntax-based
models); 2) and a linear function g(·) is used to
assign a model score to each derivation. Let ds,τ,t
(or d for short) denote a translation derivation. The

above problem can be redefined in a Viterbi fash-
ion - we find the derivation d̂with the highest mod-
el score given s and τ :

d̂ = arg max
d

g(d) (2)

In this way, the MT output can be regarded as the
target-string encoded in d̂.

To compute g(d), we use a linear combination
of a skeleton translation model gskel(d) and a full
translation model gfull(d):

g(d) = gskel(d) + gfull(d) (3)

where the skeleton translation model handles the
translation of the sentence skeleton, while the full
translation model is the baseline model and han-
dles the original problem of translating the whole
sentence. The motivation here is straightforward:
we use an additional score gskel(d) to model the
problem of skeleton translation and interpolate it
with the baseline model. See Figure 1 for an exam-
ple of applying the above model to phrase-based
MT. In the figure, each source phrase is translated
into a target phrase, which is represented by linked
rectangles. The skeleton translation model focus-
es on the translation of the sentence skeleton, i.e.,
the solid (red) rectangles; while the full transla-
tion model computes the model score for all those
phrase-pairs, i.e., all solid and dashed rectangles.

Another note on the model. Eq. (3) provides a
very flexible way for model selection. While we
will restrict ourself to phrase-based translation in
the following description and experiments, we can
choose different models/features for gskel(d) and
gfull(d). E.g., one may introduce syntactic fea-
tures into gskel(d) due to their good ability in cap-
turing structural information; and employ a stan-
dard phrase-based model for gfull(d) in which not
all segments of the sentence need to respect syn-
tactic constraints.

2.3 Model Score Computation
In this work both the skeleton translation model
gskel(d) and full translation model gfull(d) resem-
ble the usual forms used in phrase-based MT, i.e.,
the model score is computed by a linear combina-
tion of a group of phrase-based features and lan-
guage models. In phrase-based MT, the transla-
tion problem is modeled by a derivation of phrase-
pairs. Given a translation model m, a language
model lm and a vector of feature weights w, the
model score of a derivation d is computed by
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zë °Y�z ?n � ¤� 3 5 � � Ä: þ ?�Ú eü "

the cost

ph
ra

se
1

p1

Skeleton:

Full:
g(dτ ;w

τ ,m, lmτ ) = wτ
m · fm(p1) + wτlm · lmτ (”the cost”)

g(d;w,m, lm) = wm · fm(p1) + wlm · lm(”the cost”)

zë °Y�z ?n � ¤� 3 5 � � Ä: þ ?�Ú eü "

the cost of seawater desalination treatment

ph
ra

se
s2

&
3

p1 p2 p3

Skeleton:

Full:
g(dτ ;w

τ ,m, lmτ ) = wτ
m · fm(p1) + wτlm · lmτ (”the cost X”)

g(d;w,m, lm) = wm · fm(p1 ◦ p2 ◦ p3) + wlm · lm(”the cost of seawater desalination treatment”)

zë °Y�z ?n � ¤� 3 5 � � Ä: þ ?�Ú eü "

the cost of seawater desalination treatment has been further reduced

ph
ra

se
s4

&
5

p1 p2 p3 p4 p5

Skeleton:

Full:

g(dτ ;w
τ ,m, lmτ ) = wτ

m · fm(p1 ◦ p4 ◦ p5)+

wτlm · lmτ (”the cost X has been further reduced”)
g(d;w,m, lm) = wm · fm(p1 ◦ p2 ◦ ... ◦ p5) + wlm · lm(”the cost of seawater ... further reduced”)

zë °Y�z ?n � ¤� 3 5 � � Ä: þ ?�Ú eü "

the cost of seawater desalination treatment has been further reduced from 5 yuan per ton .

ph
ra

se
s6

-9

p1 p2 p3 p4 p5 p6 p7 p8 p9

Skeleton:

Full:

g(dτ ;w
τ ,m, lmτ ) = wτ

m · fm(p1 ◦ p4 ◦ p5 ◦ p9)+

wτlm · lmτ (”the cost X has been further reduced X .”)
g(d;w,m, lm) = wm · fm(p1 ◦ p2 ◦ ... ◦ p9) + wlm · lm(”the cost of seawater ... per ton .”)

Figure 1: Example derivation and model scores for a sentence in LDC2006E38. The solid (red) rect-
angles represent the sentence skeleton, and the dashed (blue) rectangles represent the non-skeleton seg-
ments. X represents a slot in the translation skeleton. ◦ represents composition of phrase-pairs.

g(d;w,m, lm) = wm · fm(d)+wlm · lm(d) (4)

where fm(d) is a vector of feature values defined
on d, and wm is the corresponding weight vector.
lm(d) andwlm are the score and weight of the lan-
guage model, respectively.

To ease modeling, we only consider skeleton-
consistent derivations in this work. A deriva-
tion d is skeleton-consistent if no phrases in d
cross skeleton boundaries (e.g., a phrase where t-
wo of the source words are in the skeleton and
one is outside). Obviously, from any skeleton-
consistent derivation d we can extract a skeleton
derivation dτ which covers the sentence skeleton
exactly. For example, in Figure 1, the deriva-
tion of phrase-pairs {p1, p2, ..., p9} is skeleton-
consistent, and the skeleton derivation is formed
by {p1, p4, p5, p9}.

Then, we can simply define gskel(d) and
gfull(d) as the model scores of dτ and d:

gskel(d) , g(dτ ;wτ ,m, lmτ ) (5)

gfull(d) , g(d;w,m, lm) (6)

This model makes the skeleton translation and
full translation much simpler because they per-
form in the same way of string translation in
phrase-based MT. Both gskel(d) and gfull(d) share
the same translation model m which can easily
learned from the bilingual data1. On the other
hand, it has different feature weight vectors for in-
dividual models (i.e., w and wτ ).

For language modeling, lm is the standard n-
gram language model adopted in the baseline sys-
tem. lmτ is a skeletal language for estimating the
well-formedness of the translation skeleton. Here
a translation skeleton is a target string where all
segments of non-skeleton translation are general-
ized to a symbol X. E.g., in Figure 1, the trans-

1In gskel(d), we compute the reordering model score on
the skeleton though it is learned from the full sentences. In
this way the reordering problems in skeleton translation and
full translation are distinguished and handled separately.
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lation skeleton is ’the cost X has been further re-
duced X .’, where two Xs represent non-skeleton
segments in the translation. In such a way of string
representation, the skeletal language model can be
implemented as a standard n-gram language mod-
el, that is, a string probability is calculated by a
product of a sequence of n-gram probabilities (in-
volving normal words and X). To learn the skele-
tal language model, we replace non-skeleton parts
of the target sentences in the bilingual corpus to
Xs using the source sentence skeletons and word
alignments. The skeletal language model is then
trained on these generalized strings in a standard
way of n-gram language modeling.

By substituting Eq. (4) into Eqs. (5) and (6),
and then Eqs. (3) and (2), we have the final model
used in this work:

d̂ = arg max
d

(
wm · fm(d) + wlm · lm(d) +

wτ
m · fm(dτ ) + wτlm · lmτ (dτ )

)
(7)

Figure 1 shows the translation process and as-
sociated model scores for the example sentence.
Note that this method does not require any new
translation models for implementation. Given a
baseline phrase-based system, all we need is to
learn the feature weights w and wτ on the devel-
opment set (with source-language skeleton anno-
tation) and the skeletal language model lmτ on
the target-language side of the bilingual corpus.
To implement Eq. (7), we can perform standard
decoding while ”doubly weighting” the phrases
which cover a skeletal section of the sentence, and
combining the two language models and the trans-
lation model in a linear fashion.

3 Evaluation

3.1 Experimental Setup
We experimented with our approach on Chinese-
English translation using the NiuTrans open-
source MT toolkit (Xiao et al., 2012). Our bilin-
gual corpus consists of 2.7M sentence pairs. Al-
l these sentences were aligned in word level us-
ing the GIZA++ system and the ”grow-diag-final-
and” heuristics. A 5-gram language model was
trained on the Xinhua portion of the English Gi-
gaword corpus in addition to the target-side of the
bilingual data. This language model was used
in both the baseline and our improved system-
s. For our skeletal language model, we trained a
5-gram language model on the target-side of the

bilingual data by generalizing non-skeleton seg-
ments to Xs. We used the newswire portion of the
NIST MT06 evaluation data as our developmen-
t set, and used the evaluation data of MT04 and
MT05 as our test sets. We chose the default fea-
ture set of the NiuTrans.Phrase engine for building
the baseline, including phrase translation proba-
bilities, lexical weights, a 5-gram language mod-
el, word and phrase bonuses, a ME-based lexical-
ized reordering model. All feature weights were
learned using minimum error rate training (Och,
2003).

Our skeleton identification system was built
using the t3 toolkit2 which implements a state-
of-the-art sentence simplification system. We
used the NEU Chinese sentence simplification
(NEUCSS) corpus as our training data (Zhang
et al., 2013). It contains the annotation of sen-
tence skeleton on the Chinese-language side of
the Penn Parallel Chinese-English Treebank (LD-
C2003E07). We trained our system using the Parts
1-8 of the NEUCSS corpus and obtained a 65.2%
relational F1 score and 63.1% compression rate in
held-out test (Part 10). For comparison, we also
manually annotated the MT development and test
data with skeleton information according to the
annotation standard provided within NEUCSS.

3.2 Results

Table 1 shows the case-insensitive IBM-version
BLEU and TER scores of different systems. We
see, first of all, that the MT system benefits from
our approach in most cases. In both the manual
and automatic identification of sentence skeleton
(rows 2 and 4), there is a significant improvemen-
t on the ”All” data set. However, using different
skeleton identification results for training and in-
ference (row 3) does not show big improvements
due to the data inconsistency problem.

Another interesting question is whether the
skeletal language model really contributes to the
improvements. To investigate it, we removed the
skeletal language model from our skeleton-based
translation system (with automatic skeleton iden-
tification on both the development and test sets).
Seen from row −lmτ of Table 1, the removal of
the skeletal language model results in a significan-
t drop in both BLEU and TER performance. It
indicates that this language model is very benefi-
cial to our system. For comparison, we removed

2http://staffwww.dcs.shef.ac.uk/people/T.Cohn/t3/
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Entry MT06 (Dev) MT04 MT05 All
system dev-skel test-skel BLEU TER BLEU TER BLEU TER BLEU TER
baseline - - 35.06 60.54 38.53 61.15 34.32 62.82 36.64 61.54
SBMT manual manual 35.71 59.60 38.99 60.67 35.35 61.60 37.30 60.73
SBMT manual auto 35.72 59.62 38.75 61.16 35.02 62.20 37.03 61.19
SBMT auto auto 35.57 59.66 39.21 60.59 35.29 61.89 37.33 60.80
−lmτ auto auto 35.23 60.17 38.86 60.78 34.82 62.46 36.99 61.16
−mτ auto auto 35.50 59.69 39.00 60.69 35.10 62.03 37.12 60.90
s-space - - 35.00 60.50 38.39 61.20 34.33 62.90 36.57 61.58
s-feat. - - 35.16 60.50 38.60 61.17 34.25 62.88 36.70 61.58

Table 1: BLEU4[%] and TER[%] scores of different systems. Boldface means a significant improvement
(p < 0.05). SBMT means our skeleton-based MT system. −lmτ (or −mτ ) means that we remove the
skeletal language model (or translation model) from our proposed approach. s-space means that we
restrict the baseline system to the search space of skeleton-consistent derivations. s-feat. means that we
introduce an indicator feature for skeleton-consistent derivations into the baseline system.

the skeleton-based translation model from our sys-
tem as well. Row −mτ of Table 1 shows that the
skeleton-based translation model can contribute to
the overall improvement but there is no big differ-
ences between baseline and −mτ .

Apart from showing the effects of the skeleton-
based model, we also studied the behavior of the
MT system under the different settings of search
space. Row s-space of Table 1 shows the BLEU
and TER results of restricting the baseline sys-
tem to the space of skeleton-consistent derivation-
s, i.e., we remove both the skeleton-based trans-
lation model and language model from the SBMT
system. We see that the limited search space is a
little harmful to the baseline system. Further, we
regarded skeleton-consistent derivations as an in-
dicator feature and introduced it into the baseline
system. Seen from row s-feat., this feature does
not show promising improvements. These results
indicate that the real improvements are due to the
skeleton-based model/features used in this work,
rather than the ”well-formed” derivations.

4 Related Work

Skeleton is a concept that has been used in several
sub-areas in MT for years. For example, in confu-
sion network-based system combination it refer-
s to the backbone hypothesis for building confu-
sion networks (Rosti et al., 2007; Rosti et al.,
2008); Liu et al. (2011) regard skeleton as a short-
ened sentence after removing some of the function
words for better word deletion. In contrast, we de-
fine sentence skeleton as the key segments of a
sentence and develop a new MT approach based
on this information.

There are some previous studies on the use of
sentence skeleton or related information in MT
(Mellebeek et al., 2006a; Mellebeek et al., 2006b;
Owczarzak et al., 2006). In spite of their good
ideas of using skeleton skeleton information, they
did not model the skeleton-based translation prob-
lem in modern SMT pipelines. Our work is a fur-
ther step towards the use of sentence skeleton in
MT. More importantly, we develop a complete ap-
proach to this issue and show its effectiveness in a
state-of-the-art MT system.

5 Conclusion and Future Work

We have presented a simple but effective approach
to integrating the sentence skeleton information
into a phrase-based system. The experimental re-
sults show that the proposed approach achieves
very promising BLEU improvements and TER re-
ductions on the NIST evaluation data. In our fu-
ture work we plan to investigate methods of inte-
grating both syntactic models (for skeleton trans-
lation) and phrasal models (for full translation) in
our system. We also plan to study sophisticated
reordering models for skeleton translation, rather
than reusing the baseline reordering model which
is learned on the full sentences.
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Abstract 

Data selection has been demonstrated to 

be an effective approach to addressing 

the lack of high-quality bitext for statisti-

cal machine translation in the domain of 

interest. Most current data selection 

methods solely use language models 

trained on a small scale in-domain data to 

select domain-relevant sentence pairs 

from general-domain parallel corpus. By 

contrast, we argue that the relevance be-

tween a sentence pair and target domain 

can be better evaluated by the combina-

tion of language model and translation 

model. In this paper, we study and exper-

iment with novel methods that apply 

translation models into domain-relevant 

data selection. The results show that our 

methods outperform previous methods. 

When the selected sentence pairs are 

evaluated on an end-to-end MT task, our 

methods can increase the translation per-

formance by 3 BLEU points.
*
 

1 Introduction 

Statistical machine translation depends heavily 

on large scale parallel corpora. The corpora are 

necessary priori knowledge for training effective 

translation model. However, domain-specific 

machine translation has few parallel corpora for 

translation model training in the domain of inter-

est. For this, an effective approach is to automat-

ically select and expand domain-specific sen-

tence pairs from large scale general-domain par-

allel corpus. The approach is named Data Selec-

tion. Current data selection methods mostly use 

language models trained on small scale in-

domain data to measure domain relevance and 

select domain-relevant parallel sentence pairs to 

expand training corpora. Related work in litera-

ture has proven that the expanded corpora can 

substantially improve the performance of ma-

                                                 
* Corresponding author 

chine translation (Duh et al., 2010; Haddow and 

Koehn, 2012). 

However, the methods are still far from satis-

factory for real application for the following rea-

sons: 

 There isn’t ready-made domain-specific 

parallel bitext. So it’s necessary for data se-

lection to have significant capability in min-

ing parallel bitext in those assorted free texts. 

But the existing methods seldom ensure 

parallelism in the target domain while se-

lecting domain-relevant bitext. 

 Available domain-relevant bitext needs keep 

high domain-relevance at both the sides of 

source and target language. But it’s difficult 

for current method to maintain two-sided 

domain-relevance when we aim at enhanc-

ing parallelism of bitext.   

In a word, current data selection methods can’t 

well maintain both parallelism and domain-

relevance of bitext. To overcome the problem, 

we first propose the method combining transla-

tion model with language model in data selection. 

The language model measures the domain-

specific generation probability of sentences, be-

ing used to select domain-relevant sentences at 

both sides of source and target language. Mean-

while, the translation model measures the trans-

lation probability of sentence pair, being used to 

verify the parallelism of the selected domain-

relevant bitext. 

2 Related Work 

The existing data selection methods are mostly 

based on language model. Yasuda et al. (2008) 

and Foster et al. (2010) ranked the sentence pairs 

in the general-domain corpus according to the 

perplexity scores of sentences, which are com-

puted with respect to in-domain language models. 

Axelrod et al. (2011) improved the perplexity-

based approach and proposed bilingual cross-

entropy difference as a ranking function with in- 

and general- domain language models. Duh et al. 

(2013) employed the method of (Axelrod et al., 

569



2011) and further explored neural language mod-

el for data selection rather than the conventional 

n-gram language model. Although previous 

works in data selection (Duh et al., 2013; Koehn 

and Haddow, 2012; Axelrod et al., 2011; Foster 

et al., 2010; Yasuda et al., 2008) have gained 

good performance, the methods which only 

adopt language models to score the sentence 

pairs are sub-optimal. The reason is that a sen-

tence pair contains a source language sentence 

and a target language sentence, while the existing 

methods are incapable of evaluating the mutual 

translation probability of sentence pair in the tar-

get domain. Thus, we propose novel methods 

which are based on translation model and lan-

guage model for data selection. 

3 Training Data Selection Methods 

We present three data selection methods for 

ranking and selecting domain-relevant sentence 

pairs from general-domain corpus, with an eye 

towards improving domain-specific translation 

model performance. These methods are based on 

language model and translation model, which are 

trained on small in-domain parallel data.  

3.1 Data Selection with Translation Model 

Translation model is a key component in statisti-

cal machine translation. It is commonly used to 

translate the source language sentence into the 

target language sentence. However, in this paper, 

we adopt the translation model to evaluate the 

translation probability of sentence pair and de-

velop a simple but effective variant of translation 

model to rank the sentence pairs in the general-

domain corpus. The formulations are detailed as 

below: 

 (   )  
 

(    )
  
∏ ∑  (     )

  
   

  
       (1) 

  √ (   )
  

       (2) 

Where  (   ) is the translation model, which is 

IBM Model 1 in this paper, it represents the 

translation probability of target language sen-

tence   conditioned on source language sentence 

 .    and    are the number of words in sentence 

  and  respectively.  (     )  is the translation 

probability of word    conditioned on word   and 

is estimated from the small in-domain parallel 

data. The parameter   is a constant and is as-

signed with the value of 1.0.   is the length-

normalized IBM Model 1, which is used to score 

general-domain sentence pairs. The sentence pair 

with higher score is more likely to be generated 

by in-domain translation model, thus, it is more 

relevant to the in-domain corpus and will be re-

mained to expand the training data.  

3.2 Data Selection by Combining Transla-

tion and Language model  

As described in section 1, the existing data selec-

tion methods which only adopt language model 

to score sentence pairs are unable to measure the 

mutual translation probability of sentence pairs. 

To solve the problem, we develop the second 

data selection method, which is based on the 

combination of translation model and language 

model. Our method and ranking function are 

formulated as follows: 

   (   )   (   )   ( )        (3) 

    √ (   )
  

 √ ( )
  

             (4) 

Where  (   ) is a joint probability of sentence   

and   according to the translation model  (   ) 
and language model  ( ), whose parameters are 

estimated from the small in-domain text.   is the 

improved ranking function and used to score the 

sentence pairs with the length-normalized trans-

lation model  (   )and language model  ( ). 
The sentence pair with higher score is more simi-

lar to in-domain corpus, and will be picked out.  

3.3 Data Selection by Bidirectionally   

Combining Translation and Language 

Models  

As presented in subsection 3.2, the method com-

bines translation model and language model to 

rank the sentence pairs in the general-domain 

corpus. However, it does not evaluate the inverse 

translation probability of sentence pair and the 

probability of target language sentence. Thus, we 

take bidirectional scores into account and simply 

sum the scores in both directions.  

  √ (   )
  

 √ ( )
  

 √ (   )
  

 √ ( )
  

 

 (5) 

Again, the sentence pairs with higher scores are 

presumed to be better and will be selected to in-

corporate into the domain-specific training data. 

This approach makes full use of two translation 

models and two language models for sentence 

pairs ranking. 
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4 Experiments 

4.1 Corpora 

We conduct our experiments on the Spoken Lan-

guage Translation English-to-Chinese task. Two 

corpora are needed for the data selection. The in-

domain data is collected from CWMT09, which 

consists of spoken dialogues in a travel setting, 

containing approximately 50,000 parallel sen-

tence pairs in English and Chinese. Our general-

domain corpus mined from the Internet contains 

16 million sentence pairs. Both the in- and gen-

eral- domain corpora are identically tokenized (in 

English) and segmented (in Chinese)
1
. The de-

tails of corpora are listed in Table 1. Additionally, 

we evaluate our work on the 2004 test set of 

“863” Spoken Language Translation task (“863” 

SLT), which consists of 400 English sentences 

with 4 Chinese reference translations for each. 

Meanwhile, the 2005 test set of “863” SLT task, 

which contains 456 English sentences with 4 ref-

erences each, is used as the development set to 

tune our systems.  

Bilingual Cor-

pus 

#sentence #token 

Eng Chn Eng Chn 

In-domain 50K 50K 360K 310K 

General-domain 16M 16M 3933M 3602M 

Table 1. Data statics 

4.2 System settings 

We use the NiuTrans
2

 toolkit which adopts 

GIZA++ (Och and Ney, 2003) and MERT (Och, 

2003) to train and tune the machine translation 

system. As NiuTrans integrates the mainstream 

translation engine, we select hierarchical phrase-

based engine (Chiang, 2007) to extract the trans-

lation rules and carry out our experiments. 

Moreover, in the decoding process, we use the 

NiuTrans decoder to produce the best outputs, 

and score them with the widely used NIST mt-

eval131a
3
 tool. This tool scores the outputs in 

several criterions, while the case-insensitive 

BLEU-4 (Papineni et al., 2002) is used as the 

evaluation for the machine translation system. 

4.3 Translation and Language models 

Our work relies on the use of in-domain lan-

guage models and translation models to rank the 

sentence pairs from the general-domain bilingual 

training set. Here, we employ ngram language 

                                                 
1http://www.nlplab.com/NiuPlan/NiuTrans.YourData.ch.html 

2http://www.nlplab.com/NiuPlan/NiuTrans.ch.html#download 

3 http://ww.itl.nist.gov/iad/mig/tools 

model and IBM Model 1 for data selection. Thus, 

we use the SRI Language Modeling Toolkit 

(Stolcke, 2002) to train the in-domain 4-gram 

language model with interpolated modified 

Kneser-Ney discounting (Chen and Goodman, 

1998). The language model is only used to score 

the general-domain sentences. Meanwhile, we 

use the language model training scripts integrat-

ed in the NiuTrans toolkit to train another 4-gram 

language model, which is used in MT tuning and 

decoding. Additionally, we adopt GIZA++ to get 

the word alignment of in-domain parallel data 

and form the word translation probability table. 

This table will be used to compute the translation 

probability of general-domain sentence pairs.  

4.4 Baseline Systems 

As described above, by using the NiuTrans 

toolkit, we have built two baseline systems to 

fulfill “863” SLT task in our experiments. The 

In-domain baseline trained on spoken language 

corpus has 1.05 million rules in its hierarchical-

phrase table. While, the General-domain baseline 

trained on 16 million sentence pairs has a hierar-

chical phrase table containing 1.7 billion transla-

tion rules. These two baseline systems are 

equipped with the same language model which is 

trained on large-scale monolingual target lan-

guage corpus. The BLEU scores of the In-

domain and General-domain baseline system are 

listed in Table 2.  

Corpus 
Hierarchical 

phrase 
Dev Test 

In-domain 1.05M 15.01 21.99 

General-domain 1747M 27.72 34.62 

Table 2. Translation performances of In-domain and 

General-domain baseline systems 

The results show that General-domain system 

trained on a larger amount of bilingual resources 

outperforms the system trained on the in-domain 

corpus by over 12 BLEU points. The reason is 

that large scale parallel corpus maintains more 

bilingual knowledge and language phenomenon, 

while small in-domain corpus encounters data 

sparse problem, which degrades the translation 

performance. However, the performance of Gen-

eral-domain baseline can be improved further. 

We use our three methods to refine the general-

domain corpus and improve the translation per-

formance in the domain of interest. Thus, we 

build several contrasting systems trained on re-

fined training data selected by the following dif-

ferent methods.  
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 Ngram: Data selection by 4-gram LMs with 

Kneser-Ney smoothing. (Axelrod et al., 

2011) 

 Neural net: Data selection by Recurrent 

Neural LM, with the RNNLM Tookit. (Duh 

et al., 2013) 

 Translation Model (TM): Data selection 

with translation model: IBM Model 1. 

 Translation model and Language Model 

(TM+LM): Data selection by combining 4-

gram LMs with Kneser-Ney smoothing and 

IBM model 1(equal weight).  

 Bidirectional TM+LM: Data selection by 

bidirectionally combining translation and 

language models (equal weight).  

4.5 Results of Training Data Selection 

We adopt five methods for extracting domain-

relevant parallel data from general-domain cor-

pus. Using the scoring methods, we rank the sen-

tence pairs of the general-domain corpus and 

select only the top N = {50k, 100k, 200k, 400k, 

600k, 800k, 1000k} sentence pairs as refined 

training data. New MT systems are then trained 

on these small refined training data. Figure 1 

shows the performances of systems trained on 

selected corpora from the general-domain corpus. 

The horizontal coordinate represents the number 

of selected sentence pairs and vertical coordinate 

is the BLEU scores of MT systems.  

 
Figure 1. Results of the systems trained on only a sub-

set of the general-domain parallel corpus. 

From Figure 1, we conclude that these five da-

ta selection methods are effective for domain-

specific translation. When top 600k sentence 

pairs are picked out from general-domain corpus 

to train machine translation systems, the systems 

perform higher than the General-domain baseline 

trained on 16 million parallel data. The results 

indicate that more training data for translation 

model is not always better. When the domain-

specific bilingual resources are deficient, the 

domain-relevant sentence pairs will play an im-

portant role in improving the translation perfor-

mance.  

Additionally, it turns out that our methods 

(TM, TM+LM and Bidirectional TM+LM) are 

indeed more effective in selecting domain-

relevant sentence pairs. In the end-to-end SMT 

evaluation, TM selects top 600k sentence pairs 

of general-domain corpus, but increases the 

translation performance by 2.7 BLEU points. 

Meanwhile, the TM+LM and Bidirectional 

TM+LM have gained 3.66 and 3.56 BLEU point 

improvements compared against the general-

domain baseline system. Compared with the 

mainstream methods (Ngram and Neural net), 

our methods increase translation performance by 

nearly 3 BLEU points, when the top 600k sen-

tence pairs are picked out. Although, in the fig-

ure 1, our three methods are not performing bet-

ter than the existing methods in all cases, their 

overall performances are relatively higher. We 

therefore believe that combining in-domain 

translation model and language model to score 

the sentence pairs is well-suited for domain-

relevant sentence pair selection. Furthermore, we 

observe that the overall performance of our 

methods is gradually improved. This is because 

our methods are combining more statistical char-

acteristics of in-domain data in ranking and se-

lecting sentence pairs. The results have proven 

the effectiveness of our methods again. 

5 Conclusion 

We present three novel methods for translation 

model training data selection, which are based on 

the translation model and language model. Com-

pared with the methods which only employ lan-

guage model for data selection, we observe that 

our methods are able to select high-quality do-

main-relevant sentence pairs and improve the 

translation performance by nearly 3 BLEU points. 

In addition, our methods make full use of the 

limited in-domain data and are easily implement-

ed. In the future, we are interested in applying 
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our methods into domain adaptation task of sta-

tistical machine translation in model level. 
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Abstract

We propose a number of refinements to the
canonical approach to interactive trans-
lation prediction. By more permissive
matching criteria, placing emphasis on
matching the last word of the user prefix,
and dealing with predictions to partially
typed words, we observe gains in both
word prediction accuracy (+5.4%) and let-
ter prediction accuracy (+9.3%).

1 Introduction

As machine translation enters the workflow of
professional translators, the exact nature of this
human-computer interaction is currently an open
challenge. Instead of tasking translators to post-
edit the output of machine translation systems, a
more interactive approach may be more fruitful.

One such idea is interactive translation predic-
tion (Langlais et al., 2000b): While the user writes
the translation for a sentence, the system makes
suggestions for sequent words. If the user di-
verges from the suggestions, the system recalcu-
lates its prediction, and offers new suggestions.
This input modality is familiar to anybody who
has used auto-complete functions in text editors,
cell phones, or web applications.

The technical challenge is to come up with a
method that predicts words that the user will ac-
cept. The standard approach to this problem uses
the search graph of the machine translation sys-
tem. Such search graphs may be recomputed in a
constraint decoding process restricted to the par-
tial user input (called the prefix), but this is often
too slow with big models and limited computing
resources, so we use static word graphs.

The user prefix is matched against the search
graph. If the user prefix cannot be found in the
search graph, approximate string matching is used
by finding a path with minimal string edit distance,
i.e., a path in the graph with the minimal number
of insertions, deletions and substitutions to match
the user prefix.

This paper presents a number of refinements
to extend this approach, by allowing more per-
missive matching criterion, placing emphasis on
matching the last word of the user prefix, and deal-
ing with predictions to partially typed words. We
show improvements in word prediction accuracy
from 56.1% to 60.5% and letter prediction accu-
racy from 75.2% to 84.5% on a publicly available
benchmark (English-Spanish news translation).

2 Related Work

The interactive machine translation paradigm was
first explored in the TransType and TransType2
projects (Langlais et al., 2000a; Foster et al.,
2002; Bender et al., 2005; Barrachina et al., 2009).
Given the computational cost and need for quick
response time, most current word operates on
search graphs (Och et al., 2003). Such search
graphs can be efficiently represented and pro-
cessed with finite state tools (Civera et al., 2004).
More recently, the approach has been extended to
SCFG-based translation models (González-Rubio
et al., 2013).

There are several ways the sentence completion
predictions can be presented to the user: show-
ing the complete sentence prediction, only a few
words, or multiple choices. User actions may be
also extended to mouse actions to pinpoint the di-
vergence from an acceptable translation (Sanchis-
Trilles et al., 2008), or hand-writing (Alabau et al.,
2011) and speech modalities (Cubel et al., 2009).

3 Properties of Core Algorithm

Our implementation of the core algorithm follows
closely Koehn (2009). It is a dynamic program-
ming solution that computes the minimal cost to
reach each node in the search graph by matching
parts of the user prefix. Cost is measured primar-
ily in terms of string edit distance (number of dele-
tions, insertions and substitutions), and secondary
in terms of translation model score for the matched
path in the graph. Search is done iteratively, with
an increasing number of allowable edits.
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Figure 1: Average response time of baseline
method based on length of the prefix and number
of edits: The main bottleneck is the string edit dis-
tance between prefix and path.

3.1 Experimental Setup
Given the large number of proposed variations of
the algorithm, we do not carry out user studies, but
rather use a simulated setting. We predict transla-
tions that were crafted by manual post-editing of
machine translation output. We also use the search
graphs of the system that produced the original
machine translation output.

Such data has been made available by the CAS-
MACAT project1. In the project’s first field trial2,
professional translators corrected machine transla-
tions of news stories from a competitive English–
Spanish machine translation system (Koehn and
Haddow, 2012). This test set consists of 24,444
word predictions and 141,662 letter predictions.

3.2 Prediction Speed
Since the interactive translation prediction process
is used in an interactive setting where each key
stroke of the user may trigger a new request, very
fast response time is needed. According to stan-
dards in usability engineering

0.1 second is about the limit for having
the user feel that the system is reacting
instantaneously (Nielsen, 1993).

So, this is the time limit we have to set ourselves
to predict the next words of a translator.

What are the main factors that influence pro-
cessing time in our core algorithm? See Figure 1
for an illustration. We plot processing time against

1http://www.casmacat.eu/
2http://www.casmacat.eu/uploads/Deliverables/d6.1.pdf
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Figure 2: Ratio of prefix matching processes aban-
doned due to exceeding the 100ms time limit
(showing only curves with a minimum of 5 edits).

the length of the user prefix and the string edit dis-
tance between the user prefix and the search graph.
The graph clearly shows that the main slowdown
in processing time occurs when the edit rate in-
creases.

To guarantee a response in 100ms, the algo-
rithms aborts when this time is exceeded and re-
lies on a prediction based on string edit distance
against the best path in the graph. The larger the
number of edits, the more often this occurs, as Fig-
ure 2 shows.

3.3 Accuracy

We are mainly interested in the accuracy of the
method: How often does it predict a word that the
user accepts? There is a trade-off between speed
and accuracy.

One way we can balance this trade-off is by re-
moving nodes from the search graph. By thresh-
old pruning (Sanchis-Trilles and Ortiz-Martı́nez,
2014), we remove nodes from the search graph
that are only part of paths that are worse than the
best path by a specified score difference.

See Table 1 how the choice of the score differ-
ence threshold impacts failure rate and accuracy.
A wider threshold has the potential to achieve bet-
ter results (if we allows for up to 1 second of pro-
cessing time), but with the constraint of 100ms re-
sponse time, the optimum is with a threshold of
0.4. Wider thresholds lead to a higher failure rate,
causing overall lower accuracy.
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Threshold 100ms Max 1000ms Max
Acc. Fail Acc. Fail

0.3 55.8% 4.5% 56.9% 0.0%
0.4 56.1% 6.5% 58.0% 0.0%
0.5 55.9% 9.0% 58.8% 0.0%
0.6 55.5% 11.6% 59.4% 0.0%
0.8 54.4% 17.1% 59.4% 0.0%
1.0 52.7% 21.7% 58.6% 6.5%

Table 1: Impact of threshold pruning on search ac-
curacy and failure rate (i.e., failure to complete
search in given time and resorting to matching
against best translation).

4 Refinements

We now introduce a number of refinements over
the core method. Given the constraints established
in the previous section (maximum response time
of 100ms, pruning threshold 0.4), we set out to
improve accuracy.

4.1 Matching Last Word
The first idea is that it is more important to match
the last word of the user prefix than having mis-
matches in earlier words. We attempt to find the
last word in the predicted path either before or
after the optimal matching position according to
string edit distance.

We combine the matched path in the prefix with
the optimal suffix, and search for the last user pre-
fix word within a window. This means that we
either move words from the suffix to the prefix or
the other way around, without changing the over-
all string along the path.

Table 2 shows the impact on accuracy for differ-
ent window sizes. While we expected some gains
by checking for the word somewhere around the
optimal position in the predicted path, we do see
significant gains by not placing any restrictions to
where the word can be found, except for a bias
to less distant positions. For instance, examining
a window of up to 3 words gives us a word pre-
diction accuracy of 57.2% versus the 56.1% base-
line. Finding the last word anywhere boosts per-
formance to 59.1%.

The table also reports accuracy numbers when
we allow the process to run up to 1 second —
which is basically an exhaustive search but not
practically useful. These numbers shed some light
on why an unlimited window size in matching the
last word helps: the gains come partially from the
cases where the initial search fails. Finding the
last user word anywhere in the machine transla-

Window 100ms Max 1000ms Max
baseline 56.1% 58.0%
1 word 56.6% 58.4%
2 words 56.9% 58.6%
3 words 57.2% 58.9%
5 words 57.8% 59.3%

anywhere 59.1% 59.5%

Table 2: Search for the last prefix word in a win-
dow around the predicted position in the matched
path.

Word Matching 100ms Max 1000ms Max
baseline 59.1% 59.5%

case-insensitive 58.7% 59.4%

Table 3: Search with case-insensitive word match-
ing (say, University and university).

tion output is a better fallback than computing op-
timal string edit distance. Analysis of the data
suggests that gains mainly come from large length
mismatches between user translation and machine
translation, even in the case of first pass searches.

4.2 Case-Insensitive Matching
Some mismatches between words matter less than
others. For instance, if the user prefix differs only
in casing from the machine translation (say, Uni-
versity instead of university), then we may still
want to treat that as a word match in our al-
gorithm. However, as Table 3 shows, allowing
case-insensitive matching leads to lower accuracy
(58.7% vs. 59.1%).

A major reason is computational cost. The most
inner loop in the algorithm compares words. This
is optimized by representing words as integers.
However, if we allow case-insensitive matching,
this simple method does not work anymore. We do
precompute approximate word matches and store
matching words identifiers in a hash map, but still
the ratio of searches that do not complete in 100ms
increases from 6.5% to 9.7%. By extending the al-
lowable time to 1 second, the accuracy gap is re-
duced to 0.1%.

4.3 Approximate Word Matching
When a word in the user translation differs from
a word in the decoder search graph only by a few
letters, then it should be considered a lesser error
than substitutions of completely different words.
Such word differences may be due to casing, mor-
phological variants, or spelling inconsistencies.

We compute word dissimilarity by computing
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Max. Dissimilarity 100ms Max. 1000ms Max.
baseline 59.1% 59.5%

30% 60.2% 61.0%
20% 60.4% 61.3%
10% 60.6% 61.5%

Table 4: Counting substitutions between similar
words as half an error. Dissimilarity is measured
as letter edit distance

Min Stem / Max Suffix 100ms 1000ms
baseline 59.1% 59.5%

4 / 3 59.4% 60.1%
3 / 3 59.5% 60.2%
2 / 3 59.5% 60.3%

Table 5: Counting substitutions between morpho-
logical variants as half an error. Morphological
variance is approximated by requiring a minimum
number of initial letters to match and a maximum
of final letters to differ.

the ratio of letter edit operations to the length of
the shorter word.3 We now set a threshold for
maximum dissimilarity, under which mismatched
words are considered only half the edit cost of
other edit operations.

Table 4 shows that we get significantly higher
word prediction accuracy than with the baseline
approach (up to 60.6% vs. 59.1%), and the best
performance with a 10% threshold. We observe
the same computational problem as in the previous
section (about 9.2% first pass failures, vs. 6.5%),
reflected in a higher accuracy gap for 100ms and
1000ms time limits.

4.4 Stemmed Matching
We suspected that the main benefit of approximate
word matching is the better handling of morpho-
logical variants. In Spanish, this mainly consti-
tutes itself as different word endings. Thus, we re-
define our word dissimilarity measure by consider
words similar, if they agree in at least a number
of leading letters (presumably the stem), and may
differ in at most a number of trailing letters (pre-
sumably the morpheme).

Table 5 shows that this is successful in increas-
ing the word prediction rate (59.5% vs. 59.1%)
but not as much as with the more general approx-
imate word matching in the previous section (re-
call: 60.6%).

3For instance, if a 6 letter word and a 4 letter word can
be matched with two deletions and one substitution, then the
dissimilarity score is 3

4
= .75.

# Method Word Acc. Letter Acc.
1 baseline 56.0% 75.2%
2 1+matching last word 59.0% 80.6%
3 2+case insensitive 58.7% 80.4%
4 2+dissimilarity 10% 60.5% 80.6%
5 2+stem 2/3 59.4% 80.5%
6 4+desperate 60.5% 84.5%

Table 6: Extending the approach to word com-
pletion. Impact of refinements of letter prediction
accuracy with additional desperate word matching
against the entire vocabulary.

5 Word Completion

Besides word prediction, word completion is also
a useful feature in an interactive translation tool.
When the machine translation system decides for
college over university, but the user types the letter
u, it should change its prediction.

To enable word completion in the canonical al-
gorithm, we allow matching of the final user word
(if not followed by a space character) as a prefix of
any word as a zero cost operation. The predicted
suffix that is returned to the user then starts with
the remaining letters of the word in the path.

Table 6 shows that the refinements that helped
sentence completion also benefit word comple-
tion. From a baseline accuracy of 75.2% correctly
predicted letters, we reach up to 80.6%. Note that
the baseline word prediction accuracy is slightly
lower (56.0% vs. 56.1%) than in the previous ex-
periments, since the previously correctly matched
last word may be mistaken as the prefix of another
word.

We add an additional refinement to this task: If
the potentially incomplete final word of the user
prefix cannot be found in the predicted path, then
we explore the entire vocabulary from the un-
pruned search graph for completions. If multiple
words match, the one with the highest path score
is used. This desperate word completion method
gives significant gains (84.5% over 80.6%).

6 Conclusion and Future Work

We observe most improvements by a focus on
the last word of the user prefix and approximate
word matching. This suggests that there may be
additional gains by a stronger focus on the tail
of the user prefix. Also, the findings from the
time/productivity tradeoffs indicate that more time
efficient algorithms and implementations should
be explored.
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Abstract

We propose a novel approach to cross-
lingual model transfer based on feature
representation projection. First, a com-
pact feature representation relevant for the
task in question is constructed for either
language independently and then the map-
ping between the two representations is
determined using parallel data. The tar-
get instance can then be mapped into
the source-side feature representation us-
ing the derived mapping and handled di-
rectly by the source-side model. This ap-
proach displays competitive performance
on model transfer for semantic role label-
ing when compared to direct model trans-
fer and annotation projection and suggests
interesting directions for further research.

1 Introduction

Cross-lingual model transfer approaches are con-
cerned with creating statistical models for var-
ious tasks for languages poor in annotated re-
sources, utilising resources or models available
for these tasks in other languages. That includes
approaches such as direct model transfer (Ze-
man and Resnik, 2008) and annotation projec-
tion (Yarowsky et al., 2001). Such methods have
been successfully applied to a variety of tasks,
including POS tagging (Xi and Hwa, 2005; Das
and Petrov, 2011; Täckström et al., 2013), syntac-
tic parsing (Ganchev et al., 2009; Smith and Eis-
ner, 2009; Hwa et al., 2005; Durrett et al., 2012;
Søgaard, 2011), semantic role labeling (Padó and
Lapata, 2009; Annesi and Basili, 2010; Tonelli
and Pianta, 2008; Kozhevnikov and Titov, 2013)
and others.

Direct model transfer attempts to find a shared
feature representation for samples from the two
languages, usually generalizing and abstract-
ing away from language-specific representations.

Once this is achieved, instances from both lan-
guages can be mapped into this space and a model
trained on the source-language data directly ap-
plied to the target language. If parallel data is
available, it can be further used to enforce model
agreement on this data to adjust for discrepancies
between the two languages, for example by means
of projected transfer (McDonald et al., 2011).

The shared feature representation depends on
the task in question, but most often each aspect
of the original feature representation is handled
separately. Word types, for example, may be re-
placed by cross-lingual word clusters (Täckström
et al., 2012) or cross-lingual distributed word rep-
resentations (Klementiev et al., 2012). Part-of-
speech tags, which are often language-specific,
can be converted into universal part-of-speech
tags (Petrov et al., 2012) and morpho-syntactic
information can also be represented in a unified
way (Zeman et al., 2012; McDonald et al., 2013;
Tsarfaty, 2013). Unfortunately, the design of such
representations and corresponding conversion pro-
cedures is by no means trivial.

Annotation projection, on the other hand, does
not require any changes to the feature represen-
tation. Instead, it operates on translation pairs,
usually on sentence level, applying the available
source-side model to the source sentence and
transferring the resulting annotations through the
word alignment links to the target one. The quality
of predictions on source sentences depends heav-
ily on the quality of parallel data and the domain
it belongs to (or, rather, the similarity between this
domain and that of the corpus the source-language
model was trained on). The transfer itself also
introduces errors due to translation shifts (Cyrus,
2006) and word alignment errors, which may lead
to inaccurate predictions. These issues are gen-
erally handled using heuristics (Padó and Lapata,
2006) and filtering, for example based on align-
ment coverage (van der Plas et al., 2011).
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Figure 1: Dependency-based semantic role labeling example. The top arcs depict dependency relations,
the bottom ones – semantic role structure. Rendered with https://code.google.com/p/whatswrong/.

1.1 Motivation
The approach proposed here, which we will refer
to as feature representation projection (FRP), con-
stitutes an alternative to direct model transfer and
annotation projection and can be seen as a com-
promise between the two.

It is similar to direct transfer in that we also
use a shared feature representation. Instead of
designing this representation manually, however,
we create compact monolingual feature represen-
tations for source and target languages separately
and automatically estimate the mapping between
the two from parallel data. This allows us to make
use of language-specific annotations and account
for the interplay between different types of infor-
mation. For example, a certain preposition at-
tached to a token in the source language might
map into a morphological tag in the target lan-
guage, which would be hard to handle for tradi-
tional direct model transfer other than using some
kind of refinement procedure involving parallel
data. Note also that any such refinement procedure
applicable to direct transfer would likely work for
FRP as well.

Compared to annotation projection, our ap-
proach may be expected to be less sensitive to par-
allel data quality, since we do not have to com-
mit to a particular prediction on a given instance
from parallel data. We also believe that FRP
may profit from using other sources of informa-
tion about the correspondence between source and
target feature representations, such as dictionary
entries, and thus have an edge over annotation pro-
jection in those cases where the amount of parallel
data available is limited.

2 Evaluation

We evaluate feature representation projection on
the task of dependency-based semantic role label-
ing (SRL) (Hajič et al., 2009).

This task consists in identifying predicates and
their arguments in sentences and assigning each
argument a semantic role with respect to its pred-
icate (see figure 1). Note that only a single word
– the syntactic head of the argument phrase – is
marked as an argument in this case, as opposed
to constituent- or span-based SRL (Carreras and
Màrquez, 2005). We focus on the assignment of
semantic roles to identified arguments.

For the sake of simplicity we cast it as a multi-
class classification problem, ignoring the interac-
tion between different arguments in a predicate. It
is well known that such interaction plays an impor-
tant part in SRL (Punyakanok et al., 2008), but it
is not well understood which kinds of interactions
are preserved across languages and which are not.
Also, should one like to apply constraints on the
set of semantic roles in a given predicate, or, for
example, use a reranker (Björkelund et al., 2009),
this can be done using a factorized model obtained
by cross-lingual transfer.

In our setting, each instance includes the word
type and part-of-speech and morphological tags (if
any) of argument token, its parent and correspond-
ing predicate token, as well as their dependency
relations to their respective parents. This repre-
sentation is further denoted ω0.

2.1 Approach

We consider a pair of languages (Ls, Lt) and
assume that an annotated training set Ds

T =
{(xs, ys)} is available in the source language as
well as a parallel corpus of instance pairs Dst ={(
xs, xt

)}
and a target dataset Dt

E =
{
xt
}

that
needs to be labeled.

We design a pair of intermediate compact
monolingual feature representations ωs

1 and ωt
1

and models Ms and Mt to map source and target
samples xs and xt from their original representa-
tions, ωs

0 and ωt
0, to the new ones. We use the par-
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allel instances in the new feature representation

D̄st =
{(
xs

1, x
t
1

)}
=
{(
Ms(xs),Mt(xt)

)}
to determine the mappingMts (usually, linear) be-
tween the two spaces:

Mts = argmaxM

∑
(xs

1,xt
1∈D̄st)

∥∥∥xs
1 −M(xt

1)
∥∥∥

2

Then a classification model My is trained on the
source training data

D̄s
T = {(xs

1, y
s)} = {(Ms(xs), ys)}

and the labels are assigned to the target samples
xt ∈ Dt

E using a composition of the models:

yt = My(Mts(Mt(xt)))

2.2 Feature Representation
Our objective is to make the feature represen-
tation sufficiently compact that the mapping be-
tween source and target feature spaces could be
reliably estimated from a limited amount of paral-
lel data, while preserving, insofar as possible, the
information relevant for classification.

Estimating the mapping directly from raw cat-
egorical features (ω0) is both computationally ex-
pensive and likely inaccurate – using one-hot en-
coding the feature vectors in our experiments
would have tens of thousands of components.
There is a number of ways to make this repre-
sentation more compact. To start with, we re-
place word types with corresponding neural lan-
guage model representations estimated using the
skip-gram model (Mikolov et al., 2013a). This
corresponds to Ms and Mt above and reduces the
dimension of the feature space, making direct es-
timation of the mapping practical. We will refer to
this representation as ω1.

To go further, one can, for example, apply
dimensionality reduction techniques to obtain a
more compact representation of ω1 by eliminating
redundancy or define auxiliary tasks and produce
a vector representation useful for those tasks. In
source language, one can even directly tune an in-
termediate representation for the target problem.

2.3 Baselines
As mentioned above we compare the performance
of this approach to that of direct transfer and an-
notation projection. Both baselines are using the

same set of features as the proposed model, as de-
scribed earlier.

The shared feature representation for di-
rect transfer is derived from ω0 by replacing
language-specific part-of-speech tags with univer-
sal ones (Petrov et al., 2012) and adding cross-
lingual word clusters (Täckström et al., 2012) to
word types. The word types themselves are left as
they are in the source language and replaced with
their gloss translations in the target one (Zeman
and Resnik, 2008). In English-Czech and Czech-
English we also use the dependency relation infor-
mation, since the annotations are partly compati-
ble.

The annotation projection baseline implementa-
tion is straightforward. The source-side instances
from a parallel corpus are labeled using a classi-
fier trained on source-language training data and
transferred to the target side. The resulting anno-
tations are then used to train a target-side classifier
for evaluation. Note that predicate and argument
identification in both languages is performed us-
ing monolingual classifiers and only aligned pairs
are used in projection. A more common approach
would be to project the whole structure from the
source language, but in our case this may give
unfair advantage to feature representation projec-
tion, which relies on target-side argument identifi-
cation.

2.4 Tools

We use the same type of log-linear classifiers
in the model itself and the two baselines to
avoid any discrepancy due to learning proce-
dure. These classifiers are implemented using
PYLEARN2 (Goodfellow et al., 2013), based on
THEANO (Bergstra et al., 2010). We also use this
framework to estimate the linear mapping Mts be-
tween source and target feature spaces in FRP.

The 250-dimensional word representations for
ω1 are obtained using WORD2VEC tool. Both
monolingual data and that from the parallel cor-
pus are included in the training. In Mikolov et al.
(2013b) the authors consider embeddings of up to
800 dimensions, but we would not expect to bene-
fit as much from larger vectors since we are using
a much smaller corpus to train them. We did not
tune the size of the word representation to our task,
as this would not be appropriate in a cross-lingual
transfer setup, but we observe that the classifier
is relatively robust to their dimension when evalu-
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ated on source language – in our experiments the
performance of the monolingual classifier does not
improve significantly if the dimension is increased
past 300 and decreases only by a small margin
(less than one absolute point) if it is reduced to
100. It should be noted, however, that the dimen-
sion that is optimal in this sense is not necessarily
the best choice for FRP, especially if the amount
of available parallel data is limited.

2.5 Data

We use two language pairs for evaluation:
English-Czech and English-French. In the first
case, the data is converted from Prague Czech-
English Dependency Treebank 2.0 (Hajič et al.,
2012) using the script from Kozhevnikov and
Titov (2013). In the second, we use CoNLL 2009
shared task (Hajič et al., 2009) corpus for English
and the manually corrected dataset from van der
Plas et al. (2011) for French. Since the size of
the latter dataset is relatively small – one thou-
sand sentences – we reserve the whole dataset for
testing and only evaluate transfer from English to
French, but not the other way around. Datasets for
other languages are sufficiently large, so we take
30 thousand samples for testing and use the rest
as training data. The validation set in each exper-
iment is withheld from the corresponding training
corpus and contains 10 thousand samples.

Parallel data for both language pairs is de-
rived from Europarl (Koehn, 2005), which we pre-
process using MATE-TOOLS (Björkelund et al.,
2009; Bohnet, 2010).

3 Results

The classification error of FRP and the baselines
given varying amount of parallel data is reported
in figures 2, 3 and 4. The training set for each
language is fixed. We denote the two baselines AP
(annotation projection) and DT (direct transfer).

The number of parallel instances in these exper-
iments is shown on a logarithmic scale, the values
considered are 2, 5, 10, 20 and 50 thousand pairs.

Please note that we report only a single value
for direct transfer, since this approach does not ex-
plicitly rely on parallel data. Although some of
the features – namely, gloss translations and cross-
lingual clusters – used in direct transfer are, in fact,
derived from parallel data, we consider the effect
of this on the performance of direct transfer to be
indirect and outside the scope of this work.

2 5 10 20 50

0.34

0.36
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0.40

0.42

Number of parallel instances, ×103

Error
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Figure 2: English-Czech transfer results
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Figure 3: Czech-English transfer results

The rather inferior performance of direct trans-
fer baseline on English-French may be partially
attributed to the fact that it cannot rely on depen-
dency relation features, as the corpora we consider
make use of different dependency relation inven-
tories. Replacing language-specific dependency
annotations with the universal ones (McDonald
et al., 2013) may help somewhat, but we would
still expect the methods directly relying on paral-
lel data to achieve better results given a sufficiently
large parallel corpus.

Overall, we observe that the proposed method
with ω1 representation demonstrates performance
competitive to direct transfer and annotation pro-
jection baselines.
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Figure 4: English-French transfer results

4 Additional Related Work

Apart from the work on direct/projected transfer
and annotation projection mentioned above, the
proposed method can be seen as a more explicit
kind of domain adaptation, similar to Titov (2011)
or Blitzer et al. (2006).

It is also somewhat similar in spirit to Mikolov
et al. (2013b), where a small number of word
translation pairs are used to estimate a mapping
between distributed representations of words in
two different languages and build a word transla-
tion model.

5 Conclusions

In this paper we propose a new method of cross-
lingual model transfer, report initial evaluation re-
sults and highlight directions for its further devel-
opment.

We observe that the performance of this method
is competitive with that of established cross-
lingual transfer approaches and its application re-
quires very little manual adjustment – no heuris-
tics or filtering and no explicit shared feature rep-
resentation design. It also retains compatibility
with any refinement procedures similar to pro-
jected transfer (McDonald et al., 2011) that may
have been designed to work in conjunction with
direct model transfer.

6 Future Work

This paper reports work in progress and there is
a number of directions we would like to pursue
further.

Better Monolingual Representations The rep-
resentation we used in the initial evaluation does
not discriminate between aspects that are relevant
for the assignment of semantic roles and those that
are not. Since we are using a relatively small set of
features to start with, this does not present much of
a problem. In general, however, retaining only rel-
evant aspects of intermediate monolingual repre-
sentations would simplify the estimation of map-
ping between them and make FRP more robust.

For source language, this is relatively straight-
forward, as the intermediate representation can be
directly tuned for the problem in question using
labeled training data. For target language, how-
ever, we assume that no labeled data is available
and auxiliary tasks have to be used to achieve this.

Alternative Sources of Information The
amount of parallel data available for many
language pairs is growing steadily. However,
cross-lingual transfer methods are often applied
in cases where parallel resources are scarce or of
poor quality and must be used with care. In such
situations an ability to use alternative sources of
information may be crucial. Potential sources
of such information include dictionary entries or
information about the mapping between certain
elements of syntactic structure, for example a
known part-of-speech tag mapping.

The available parallel data itself may also be
used more comprehensively – aligned arguments
of aligned predicates, for example, constitute only
a small part of it, while the mapping of vector rep-
resentations of individual tokens is likely to be the
same for all aligned words.

Multi-source Transfer One of the strong points
of direct model transfer is that it naturally fits the
multi-source transfer setting. There are several
possible ways of adapting FRP to such a setting.
It remains to be seen which one would produce
the best results and how multi-source feature rep-
resentation projection would compare to, for ex-
ample, multi-source projected transfer (McDonald
et al., 2011).
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tion to the CoNLL-2005 shared task: Semantic role
labeling. In Proceedings of CoNLL-2005, Ann Ar-
bor, MI USA.

Lea Cyrus. 2006. Building a resource for studying
translation shifts. CoRR, abs/cs/0606096.

Dipanjan Das and Slav Petrov. 2011. Unsuper-
vised part-of-speech tagging with bilingual graph-
based projections. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
600–609, Portland, Oregon, USA, June. Association
for Computational Linguistics.

Greg Durrett, Adam Pauls, and Dan Klein. 2012. Syn-
tactic transfer using a bilingual lexicon. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1–11,
Jeju Island, Korea, July. Association for Computa-
tional Linguistics.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages

369–377, Suntec, Singapore, August. Association
for Computational Linguistics.

Ian J. Goodfellow, David Warde-Farley, Pascal Lam-
blin, Vincent Dumoulin, Mehdi Mirza, Razvan Pas-
canu, James Bergstra, Frédéric Bastien, and Yoshua
Bengio. 2013. Pylearn2: a machine learning re-
search library. CoRR, abs/1308.4214.
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parse or not to parse? In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Thierry Declerck,
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Abstract

Creating cross-language article links
among different online encyclopedias is
now an important task in the unification
of multilingual knowledge bases. In this
paper, we propose a cross-language article
linking method using a mixed-language
topic model and hypernym translation
features based on an SVM model to link
English Wikipedia and Chinese Baidu
Baike, the most widely used Wiki-like
encyclopedia in China. To evaluate our
approach, we compile a data set from the
top 500 Baidu Baike articles and their
corresponding English Wiki articles. The
evaluation results show that our approach
achieves 80.95% in MRR and 87.46%
in recall. Our method does not heavily
depend on linguistic characteristics and
can be easily extended to generate cross-
language article links among different
online encyclopedias in other languages.

1 Introduction

Online encyclopedias are among the most fre-
quently used Internet services today. One of
the largest and best known online encyclopedias
is Wikipedia. Wikipedia has many language ver-
sions, and articles in one language contain hyper-
links to corresponding pages in other languages.
However, the coverage of different language ver-
sions of Wikipedia is very inconsistent. Table 1
shows the statistics of inter-language link pages
in the English and Chinese editions in February
2014. The total number of Chinese articles is
about one-quarter of English ones, and only 2.3%
of English articles have inter-language links to
their Chinese versions.

∗corresponding author

Articles Inter-language Links Ratio
zh 755,628 zh2en 486,086 64.3%
en 4,470,246 en2zh 106,729 2.3%

Table 1: Inter-Language Links in Wikipedia

However, there are alternatives to Wikipedia for
some languages. In China, for example Baidu
Baike and Hudong are the largest encyclopedia
sites, containing more than 6.2 and 7 million Chi-
nese articles respectively. Similarly, in Korea,
Naver Knowledge Encyclopedia has a large pres-
ence.

Since alternative encyclopedias like Baidu
Baike are larger (by article count) and growing
faster than the Chinese Wikipedia, it is worth-
while to investigate creating cross-language links
among different online encyclopedias. Several
works have focused on creating cross-language
links between Wikipedia language versions (Oh
et al., 2008; Sorg and Cimiano, 2008) or find-
ing a cross-language link for each entity mention
in a Wikipedia article, namely Cross-Language
Link Discovery (CLLD) (Tang et al., 2013; Mc-
Namee et al., 2011). These works were able to
exploit the link structure and metadata common
to all Wikipedia language versions. However,
when linking between different online encyclope-
dia platforms this is more difficult as many of these
structural features are different or not shared. To
date, little research has been done into linking be-
tween encyclopedias on different platforms.

Title translation is an effective and widely used
method of creating cross-language links between
encyclopedia articles. (Wang et al., 2012; Adafre
and de Rijke, 2005) However, title translation
alone is not always sufficient. In some cases, for
example, the titles of corresponding articles in dif-
ferent languages do not even match. Other meth-
ods must be used along with title translation to cre-
ate a more robust linking tool.
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In this paper, we propose a method compris-
ing title and hypernym translation and mixed-
language topic model methods to select and link
related articles between the English Wikipedia and
Baidu Baike online encyclopedias. We also com-
pile a suitable dataset from the above two ency-
clopedias to evaluate the linking accuracy of our
method.

2 Method

Cross-language article linking between different
encyclopedias can be formulated as follows: For
each encyclopedia K, a collection of human-
written articles, can be defined as K = {ai}ni=1,
where ai is an article in K and n is the size of
K. Article linking can then be defined as fol-
lows: Given two encyclopedia K1 and K2, cross-
language article linking is the task of finding the
corresponding equivalent article aj from encyclo-
pedia K2 for each article ai from encyclopedia
K1. Equivalent articles are articles that describe
the same topic in different languages.

Our approach to cross-language article linking
comprises two stages: candidate selection, which
produces a list of candidate articles, and candidate
ranking, which ranks that list.

2.1 Candidate Selection
Since knowledge bases (KB) may contain millions
of articles, comparison between all possible pairs
in two knowledge bases is time-consuming and
sometimes impractical. To avoid brute-force com-
parison, we first select plausible candidate articles
on which to focus our efforts. To extract possible
candidates, two similarity calculation methods are
carried out: title matching and title similarity.

2.1.1 Title Matching
In our title matching method, we formulate can-
didate selection as an English-Chinese cross-
language information retrieval (CLIR) problem
(Schönhofen et al., 2008), in which every English
article’s title is treated as a query and all the arti-
cles in the Chinese encyclopedia are treated as the
documents. We employ the two main CLIR meth-
ods: query translation and document translation.

In query translation, we translate the title of ev-
ery English article into Chinese and then use these
translated titles as queries to retrieve articles from
the Chinese encyclopedia. In document transla-
tion, we translate the contents of the entire Chinese
encyclopedia into English and then search them

using the original English titles. The top 100 re-
sults for the query-translation and the top 100 re-
sults for document-translation steps are unionized.
The resulting list contains our title-matching can-
didates.

For the query- and document-translation steps,
we use the Lucene search engine with similar-
ity scores calculated by the Okapi BM25 ranking
function (Beaulieu et al., 1997). We separate all
words in the translated and original English article
titles with the “OR” operator before submission to
the search engine. For all E-C and C-E translation
tasks, we use Google Translate.

2.1.2 Title Similarity
In the title similarity method, every Chinese arti-
cle title is represented as a vector, and each dis-
tinct character in all these titles is a dimension of
all vectors. The title of each English article is
translated into Chinese and represented as a vec-
tor. Then, cosine similarity between this vector
and the vector of each Chinese title is measured as
title similarity.

2.2 Candidate Ranking

The second stage of our approach is to score
each viable candidate using a supervised learning
method, and then sort all candidates in order of
score from high to low as final output.

Each article xi in KB K1 can be
represented by a feature vector xi =
(f1(xi), f2(xi), . . . , fn(xi)). Also, we have
yj = (f1(yj), f2(yj), . . . , fn(yj)) for a candidate
article yj in KB K2. Then, individual feature
functions Fk(xi, yj) are based on the feature
properties of both article ai and aj . The top pre-
dicted corresponding article yj in the knowledge
base K2 for an input article xi in K1 should
receive a higher score than any other entity in
K2, am ∈ K2,m 6= j. We use the support
vector machine (SVM) approach to determine the
probability of each pair (xi,yj) being equivalent.
Our SVM model’s features are described below.

Title Matching and Title Similarity Feature
(Baseline)
We use the results of title matching and title sim-
ilarity from the candidate selection stage as two
features for the candidate ranking stage. The sim-
ilarity values generated by title matching and title
similarity are used directly as real value features
in the SVM model.
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Mixed-language Topic Model Feature (MTM)
For a linked English-Chinese article pair, the dis-
tribution of words used in each usually shows
some convergence. The two semantically corre-
sponding articles often have many related terms,
which results in clusters of specific words. If two
articles do not describe the same topic, the distri-
bution of terms is often scattered. (Misra et al.,
2008) Thus, the distribution of terms is good mea-
surement of article similarity.

Because the number of all possible words is too
large, we adopt a topic model to gather the words
into some latent topics. For this feature, we use
the Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). LDA can be seen as a typical probabilistic
approach to latent topic computation. Each topic
is represented by a distribution of words, and each
word has a probability score used to measure its
contribution to the topic. To train the LDA model,
the pair English and Chinese articles are concate-
nated into a single document. English and Chinese
terms are all regarded as terms of the same lan-
guage and the LDA topic model, namely mixed-
language topic model, generates both English and
Chinese terms for each latent topic. Then, for each
English article and Chinese candidate pair in test-
ing, the LDA model provides the distribution of
the latent topics. Next, we can use entropy to mea-
sure the distribution of topics. The entropy of the
estimated topic distribution of a related article is
expected to be lower than that of an unrelated ar-
ticle. We can calculate the entropy of the distribu-
tion as a value for SVM. The entropy is defined as
follows:

H = −
T∑

j=1

~θdj log ~θdj

where T is the number of latent topics, θdj is the
topic distribution of a given topic j.

Hypernym Translation Feature (HT)
The first sentence of an encyclopedia article usu-
ally contains the title of the article. It may also
contain a hypernym that defines the category of
the article. For example, the first sentence of the
“iPad” article in the English Wikipedia begins,
“iPad is a line of tablet computers designed and
marketed by Apple Inc. . .” In this sentence, the
term “tablet computers” is the hypernym of iPad.
These extracted hypernyms can be treated as arti-
cle categories. Therefore, articles containing the
same hypernym are likely to belong to the same

category.
In this study, we only carry out title hypernym

extraction on the first sentences of English articles
due to the looser syntactic structure of Chinese. To
generate dependency parse trees for the sentences,
we adopt the Stanford Dependency Parser. Then,
we manually designed seven patterns to extract hy-
pernyms from the parse tree structures. To demon-
strate this idea, let us take the English article “The
Hunger Games” for example. The first sentence of
this article is “The Hunger Games is a 2008 young
adult novel by American writer Suzanne Collins.”
Since article titles may be named entities or com-
pound nouns, the dependency parser may mislabel
them and thus output an incorrect parse tree. To
avoid this problem, we first replace all instances of
an article’s title in the first sentence with pronouns.
For example, the previous sentence is rewritten as
“It is a 2008 young adult novel by American writer
Suzanne Collins.” Then, the dependency parser
generates the following parse tree:

novel�

It� is� a� 2008� young� adult� collins�
nsubj� cop� det� num� amod� nn� prep_by�

suzanne� writer� American�
nn� nn�amod�

Next, we apply our predefined syntactic patterns
to extract the hypernym. (Hearst, 1992) If any pat-
tern matches the structure of the dependency parse
tree, the hypernym can be extracted. In the above
example, the following pattern is matched:

NN�

It� is� NN�
nsubj� cop� nn�

[target]�

In this pattern, the rightmost leaf is the hyper-
nym target. Thus, we can extract the hypernym
“novel” from the previous example. The term
“novel” is the extracted hypernym of the English
article “The Hunger Games”.

After extracting the hypernym of the English ar-
ticle, the hypernym is translated into Chinese. The
value of this feature in the SVM model is calcu-
lated as follows:

Fhypernym(h) = log count(translated(h))

where h is the hypernym, translated(h) is the
Chinese translation of the term h.

English Title Occurrence Feature (ETO)
In a Baidu Baike article, the first sentence may
contain a parenthetical translation of the main ti-
tle. For example, the first sentence of the Chinese
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article on San Francisco is “旧金山（San Fran-
cisco），又译‘圣弗朗西斯科’、‘三藩市’。”.
We regard the appearance of the English title in
the first sentence of a Baidu Baike article as a bi-
nary feature: If the English title appears in the first
sentence, the value of this feature is 1; otherwise,
the value is 0.

3 Evalutaion

3.1 Evaluation Dataset

In order to evaluate the performance of cross-
language article linking between English Wikiep-
dia and Chinese Baidu Baike, we compile
an English-Chinese evaluation dataset from
Wikipedia and Baidu Baike online encyclopedias.
First, our spider crawls the entire contents of En-
glish Wikipedia and Chinese Baidu Baike. Since
the two encyclopedias’ article formats differ, we
copy the information in each article (title, content,
category, etc.) into a standardized XML structure.
In order to generate the gold standard evalua-
tion sets of correct English and Chinese article
pairs, we automatically collect English-Chinese
inter-language links from Wikipedia. For pairs
that have both English and Chinese articles, the
Chinese article title is regarded as the translation
of the English one. Next, we check if there is a
Chinese article in Baidu Baike with exactly the
same title as the one in Chinese Wikipedia. If
so, the corresponding English Wikipedia article
and the Baidu Baike article are paired in the gold
standard.

To evaluate the performance of our method on
linking different types of encyclopedia articles, we
compile a set containing the most popular articles.
We select the top 500 English-Chinese article pairs
with the highest page view counts in Baidu Baike.
This set represents the articles people in China are
most interested in.

Because our approach uses an SVM model, the
data set should be split into training and test sets.
For statistical generality, each data set is randomly
split 4:1 (training:test) 30 times. The final evalua-
tion results are calculated as the mean of the aver-
age of these 30 evaluation sets.

3.2 Evaluation Metrics

To measure the quality of cross-language entity
linking, we use the following three metrics. For
each English article queries, ten output Baidu
Baike candidates are generated in a ranked list. To

define the metrics, we use following notations: N
is the number of English query; ri,j is j-th correct
Chinese article for i-th English query; ci,k is k-th
candiate the system output for i-th English query.

Top-k Accuracy (ACC)
ACC measures the correctness of the first candi-
date in the candidate list. ACC = 1 means that all
top candidates are correctly linked (i.e. they match
one of the references), and ACC = 0 means that
none of the top candidates is correct.

ACC =
1
N

N∑
i=1

{
1 if ∃ri,j : ri,j = ci,k
0 otherwise

}

Mean Reciprocal Rank (MRR)
Traditional MRR measures any correct answer
produced by the system from among the candi-
dates. 1/MRR approximates the average rank of
the correct transliteration. An MRR closer to 1 im-
plies that the correct answer usually appears close
to the top of the n-best lists.

RRi =

{
minj

1
j if ∃ri,j , ci,k : ri,j = ci,k

0 otherwise

}
MRR = 1

N

∑N
i=1RRi

Recall
Recall is the fraction of the retrieved articles that
are relevant to the given query. Recall is used to
measure the performance of the candidate selec-
tion method. If the candidate selection method can
actually select the correct Chinese candidate, the
recall will be high.

Recall =
|relevant articles| ∩ |retrieved articles|

|relevant articles|
3.3 Evaluation Results
The overall results of our method achieves 80.95%
in MRR and 87.46% in recall. Figure 1 shows the
top-k ACC from the top 1 to 5. These results show
that our method is very effective in linking articles
in English Wikipedia to those in Baidu Baike.

In order to show the benefits of each feature
used in the SVM model, we conduct a experiment
to test the performance of different feature combi-
nations. Because title similarity of the articles is a
widely used method, we choose English and Chi-
nese title similarity as the baseline. Then, another
feature is added to each configuration until all the
features have been added. Table 2 shows the final
results of different feature combinations.
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Figure 1: Top-k Accuracy

Level Configuration MRR
0 Baseline (BL) 0.6559

1
BL + MTM∗1 0.6967†

BL + HT∗2 0.6975†

BL + ETO∗3 0.6981†

2
BL + MTM + HT 0.7703†

BL + MTM + ETO 0.7558†

BL + HT + ETO 0.7682†

3 BL + MTM + HT + ETO 0.8095†

∗1MTM: mix-language topic model
∗2HT: hypernym translation
∗3ETO: English title occurrence
† This config. outperforms the best config. in last level with

statistically significant difference.

Table 2: MRRs of Feature Combinations

In the results, we can observe that mix-language
topic model, hypernym, and English title oc-
curence features all noticeably improve the perfor-
mance. Combining two of these three feature has
more improvement and the combination of all the
features achieves the best.

4 Discussion

Although our method can effectively generate
cross-language links with high accuracy, some
correct candidates are not ranked number one. Af-
ter examining the results, we can divide errors into
several categories:

The first kind of error is due to large literal dif-
ferences between the English and Chinese titles.
For example, for the English article “Nero”, our
approach ranks the Chinese candidate “尼禄王”
(“King Nero”) as number one, instead of the cor-
rect answer “尼禄·克劳狄乌斯·德鲁苏斯·日耳
曼尼库斯” (the number two candidate). The title
of the correct Chinese article is the full name of
the Roman Emperor Nero (Nero Claudius Drusus

Germanicus). The false positive “尼禄王” is a his-
torical novel about the life of the Emperor Nero.
Because of the large difference in title lengths, the
value of the title similarity feature between the En-
glish article “Nero” and the corresponding Chi-
nese article is low. Such length differences may
cause the SVM model to rank the correct answer
lower when the difference of other features are not
so significant because the contents of the Chinese
candidates are similar.

The second error type is caused by articles that
have duplicates in Baidu Baike. For example, for
the English article “Jensen Ackles”, our approach
generates a link to the Chinese article “Jensen”
in Baidu Baike. However, there is another Baidu
article “詹森·阿克斯” (“Jensen Ackles”). These
two articles both describe the actor Jensen Ackles.
In this case, our approach still generates a correct
link, although it is not the one in the gold standard.

The third error type is translation errors. For ex-
ample, the English article “Raccoon” is linked to
the Baidu article “狸” (raccoon dog), though the
correct one is “浣熊” (raccoon). The reason is that
Google Translate provides the translation “狸” in-
stead of “浣熊”.

5 Conclusion

Cross-language article linking is the task of creat-
ing links between online encyclopedia articles in
different languages that describe the same content.
We propose a method based on article hypernym
and topic model to link English Wikipedia articles
to corresponding Chinese Baidu Baike articles.
Our method comprises two stages: candidate se-
lection and candidate ranking. We formulate can-
didate selection as a cross-language information
retrieval task based on the title similarity between
English and Chinese articles. In candidate rank-
ing, we employ several features of the articles in
our SVM model. To evaluate our method, we com-
pile a dataset from English Wikipedia and Baidu
Baike, containing the 500 most popular Baidu ar-
ticles. Evaluation results of our method show an
MRR of up to 80.95% and a recall of 87.46%. This
shows that our method is effective in generating
cross-language links between English Wikipedia
and Baidu Baike with high accuracy. Our method
does not heavily depend on linguistic characteris-
tics and can be easily extended to generate cross-
language article links among different encyclope-
dias in other languages.
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Abstract

We present a nonparametric density esti-
mation technique for image caption gener-
ation. Data-driven matching methods have
shown to be effective for a variety of com-
plex problems in Computer Vision. These
methods reduce an inference problem for
an unknown image to finding an exist-
ing labeled image which is semantically
similar. However, related approaches for
image caption generation (Ordonez et al.,
2011; Kuznetsova et al., 2012) are ham-
pered by noisy estimations of visual con-
tent and poor alignment between images
and human-written captions. Our work
addresses this challenge by estimating a
word frequency representation of the vi-
sual content of a query image. This al-
lows us to cast caption generation as an
extractive summarization problem. Our
model strongly outperforms two state-of-
the-art caption extraction systems accord-
ing to human judgments of caption rele-
vance.

1 Introduction

Automatic image captioning is a much studied
topic in both the Natural Language Processing
(NLP) and Computer Vision (CV) areas of re-
search. The task is to identify the visual content
of the input image, and to output a relevant natural
language caption.

Much prior work treats image captioning as
a retrieval problem (see Section 2). These ap-
proaches use CV algorithms to retrieve similar im-
ages from a large database of captioned images,
and then transfer text from the captions of those
images to the query image. This is a challenging
problem for two main reasons. First, visual simi-
larity measures do not perform reliably and do not

Query Image: Captioned Images:

1. 2. 3.

4. 5. 6.

1.) 3 month old baby girl with blue eyes in her crib
2.) A photo from the Ismail’s portrait shoot

3.) A portrait of a man, in black and white

4.) Portrait in black and white with the red rose

5.) I apparently had this saved in black and white as well

6.) Portrait in black and white

Table 1: Example of a query image from the SBU-
Flickr dataset (Ordonez et al., 2011), along with
scene-based estimates of visually similar images.
Our system models visual content using words that
are frequent in these captions (highlighted) and ex-
tracts a single output caption.

capture all of the relevant details which humans
might describe. Second, image captions collected
from the web often contain contextual or back-
ground information which is not visually relevant
to the image being described.

In this paper, we propose a system for transfer-
based image captioning which is designed to ad-
dress these challenges. Instead of selecting an out-
put caption according to a single noisy estimate
of visual similarity, our system uses a word fre-
quency model to find a smoothed estimate of vi-
sual content across multiple captions, as Table 1
illustrates. It then generates a description of the
query image by extracting the caption which best
represents the mutually shared content.

The contributions of this paper are as follows:
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1. Our caption generation system effectively lever-
ages information from the massive amounts of
human-written image captions on the internet. In
particular, it exhibits strong performance on the
SBU-Flickr dataset (Ordonez et al., 2011), a noisy
corpus of one million captioned images collected
from the web. We achieve a remarkable 34%
improvement in human relevance scores over a
recent state-of-the-art image captioning system
(Kuznetsova et al., 2012), and 48% improvement
over a scene-based retrieval system (Patterson et
al., 2014) using the same computed image fea-
tures.

2. Our approach uses simple models which can
be easily reproduced by both CV and NLP re-
searchers. We provide resources to enable com-
parison against future systems.1

2 Image Captioning by Transfer

The IM2TEXT model by Ordonez et al. (2011)
presents the first web-scale approach to image cap-
tion generation. IM2TEXT retrieves the image
which is the closest visual match to the query im-
age, and transfers its description to the query im-
age. The COLLECTIVE model by Kuznetsova et
al. (2012) is a related approach which uses trained
CV recognition systems to detect a variety of vi-
sual entities in the query image. A separate de-
scription is retrieved for each visual entity, which
are then fused into a single output caption. Like
IM2TEXT, their approach uses visual similarity as
a proxy for textual relevance.

Other related work models the text more di-
rectly, but is more restrictive about the source
and quality of the human-written training data.
Farhadi et al. (2010) and Hodosh et al. (2013)
learn joint representations for images and cap-
tions, but can only be trained on data with very
strong alignment between images and descriptions
(i.e. captions written by Mechanical Turkers). An-
other line of related work (Fan et al., 2010; Aker
and Gaizauskas, 2010; Feng and Lapata, 2010)
generates captions by extracting sentences from
documents which are related to the query image.
These approaches are tailored toward specific do-
mains, such as travel and news, where images tend
to appear with corresponding text.

1See http://bllip.cs.brown.edu/
download/captioning_resources.zip or ACL
Anthology.

3 Dataset

In this paper, we use the SBU-Flickr dataset2. Or-
donez et al. (2011) query Flickr.com using a
huge number of words which describe visual en-
tities, in order to build a corpus of one million
images with captions which refer to image con-
tent. However, further analysis by Hodosh et al.
(2013) shows that many captions in SBU-Flickr
(∼67%) describe information that cannot be ob-
tained from the image itself, while a substantial
fraction (∼23%) contain almost no visually rel-
evant information. Nevertheless, this dataset is
the only web-scale collection of captioned images,
and has enabled notable research in both CV and
NLP.3

4 Our Approach

4.1 Overview

For a query image Iq, our task is to generate a rele-
vant description by selecting a single caption from
C, a large dataset of images with human-written
captions. In this section, we first define the feature
space for visual similarity, then formulate a den-
sity estimation problem with the aim of modeling
the words which are used to describe visually sim-
ilar images to Iq. We also explore methods for
extractive caption generation.

4.2 Measuring Visual Similarity

Data-driven matching methods have shown to be
very effective for a variety of challenging prob-
lems (Hays and Efros, 2008; Makadia et al.,
2008; Tighe and Lazebnik, 2010). Typically these
methods compute global (scene-based) descriptors
rather than object and entity detections. Scene-
based techniques in CV are generally more robust,
and can be computed more efficiently on large
datasets.

The basic IM2TEXT model uses an equally
weighted average of GIST (Oliva and Torralba,
2001) and TinyImage (Torralba et al., 2008) fea-
tures, which coarsely localize low-level features
in scenes. The output is a multi-dimensional
image space where semantically similar scenes
(e.g. streets, beaches, highways) are projected
near each other.

2http://tamaraberg.com/CLSP11/
3In particular, papers stemming from the 2011 JHU-CLSP

Summer Workshop (Berg et al., 2012; Dodge et al., 2012;
Mitchell et al., 2012) and more recently, the best paper award
winner at ICCV (Ordonez et al., 2013).

593



Patterson and Hays (2012) present “scene at-
tribute” representations which are characterized
using low-level perceptual attributes as used by
GIST (e.g. openness, ruggedness, naturalness),
as well as high-level attributes informed by open-
ended crowd-sourced image descriptions (e.g., in-
door lighting, running water, places for learning).
Follow-up work (Patterson et al., 2014) shows
that their attributes provide improved matching for
image captioning over IM2TEXT baseline. We
use their publicly available4 scene attributes for
our experiments. Training set and query images
are represented using 102-dimensional real-valued
vectors, and similarity between images is mea-
sured using the Euclidean distance.

4.3 Density Estimation
As shown in Bishop (2006), probability density
estimates at a particular point can be obtained by
considering points in the training data within some
local neighborhood. In our case, we define some
region R in the image space which contains Iq.
The probability mass of that space is

P =
∫
R
p(Iq)dIq (1)

and if we assume thatR is small enough such that
p(Iq) is roughly constant in R, we can approxi-
mate

p(Iq) ≈ kimg

nimgV img
(2)

where kimg is the number of images within R in
the training data, nimg is the total number of im-
ages in the training data, and V img is the volume
ofR. In this paper, we fix kimg to a constant value,
so that V img is determined by the training data
around the query image.5

At this point, we extend the density estima-
tion technique in order to estimate a smoothed
model of descriptive text. Let us begin by consid-
ering p(w|Iq), the conditional probability of the
word6 w given Iq. This can be described using a

4https://github.com/genp/sun_
attributes

5As an alternate approach, one could fix the value of
V img and determine kimg from the number of points in R,
giving rise to the kernel density approach (a.k.a. Parzen
windows). However we believe the KNN approach is more
appropriate here, because the number of samples is nearly
10000 times greater than the number of dimensions in the
image representation.

6Here, we use word to refer to non-function words, and
assume all function words have been removed from the cap-
tions.

Bayesian model:

p(w|Iq) =
p(Iq|w)p(w)

p(Iq)
(3)

The prior for w is simply its unigram frequency in
C, where ntxt

w and ntxt are word token counts:

p(w) =
ntxt

w

ntxt
(4)

Note that ntxt is not the same as nimg because a
single captioned image can have multiple words
in its caption. Likewise, the conditional density

p(Iq|w) ≈ ktxt
w

ntxt
w V img

(5)

considers instances of observed words within R,
although the volume of R is still defined by the
image space. ktxt

w is the number of times w is used
withinR while ntxt

w is the total number of times w
is observed in C.

Combining Equations 2, 4, and 5 and canceling
out terms gives us the posterior probability:

p(w|Iq) =
ktxt

w

kimg
· n

img

ntxt
(6)

If the number of words in each caption is inde-
pendent of its image’s location in the image space,
then p(w|Iq) is approximately the observed uni-
gram frequency for the captions insideR.

4.4 Extractive Caption Generation

We compare two selection methods for extractive
caption generation:

1. SumBasic SumBasic (Nenkova and Vander-
wende, 2005) is a sentence selection algorithm for
extractive multi-document summarization which
exclusively maximizes the appearance of words
which have high frequency in the original docu-
ments. Here, we adapt SumBasic to maximize the
average value of p(w|Iq) in a single extracted cap-
tion:

output = arg max
ctxt∈R

∑
w∈ctxt

1
|ctxt|p(w|Iq) (7)

The candidate captions ctxt do not necessarily
have to be observed in R, but in practice we did
not find increasing the number of candidate cap-
tions to be more effective than increasing the size
ofR directly.
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Figure 1: BLEU scores vs k for SumBasic extrac-
tion.

2. KL Divergence We also consider a KL
Divergence selection method. This method out-
performs the SumBasic selection method for ex-
tractive multi-document summarization (Haghighi
and Vanderwende, 2009). It also generates the best
extractive captions for Feng and Lapata (2010),
who caption images by extracting text from a re-
lated news article. The KL Divergence method is

output = arg min
ctxt∈R

∑
w

p(w|Iq) log
p(w|Iq)
p(w|ctxt)

(8)

5 Evaluation

5.1 Automatic Evaluation
Although BLEU (Papineni et al., 2002) scores
are widely used for image caption evaluation, we
find them to be poor indicators of the quality of
our model. As shown in Figure 1, our system’s
BLEU scores increase rapidly until about k = 25.
Past this point we observe the density estimation
seems to get washed out by oversmoothing, but the
BLEU scores continue to improve until k = 500
but only because the generated captions become
increasingly shorter. Furthermore, although we
observe that our SumBasic extracted captions ob-
tain consistently higher BLEU scores, our per-
sonal observations find KL Divergence captions to
be better at balancing recall and precision. Never-
theless, BLEU scores are the accepted metric for
recent work, and our KL Divergence captions with
k = 25 still outperform all other previously pub-
lished systems and baselines. We omit full results
here due to space, but make our BLEU setup with
captions for all systems and baselines available for
documentary purposes.

System Relevance
COLLECTIVE 2.38 (σ = 1.45)
SCENE ATTRIBUTES 2.15 (σ = 1.45)
SYSTEM 3.19 (σ = 1.50)
HUMAN 4.09 (σ = 1.14)

Table 2: Human evaluations of relevance: mean
ratings and standard deviations. See Section 5.2.

5.2 Human Evaluation

We perform our human evaluation of caption rele-
vance using a similar setup to that of Kuznetsova
et al. (2012), who have humans rate the image cap-
tions on a 1-5 scale (5: perfect, 4: almost per-
fect, 3: 70-80% good, 2: 50-70% good, 1: to-
tally bad). Evaluation is performed using Amazon
Mechanical Turk. Evaluators are shown both the
caption and the query image, and are specifically
instructed to ignore errors in grammaticality and
coherence.

We generate captions using our system with KL
Divergence sentence selection and k = 25. We
also evaluate the original HUMAN captions for
the query image, as well as generated captions
from two recently published caption transfer sys-
tems. First, we consider the SCENE ATTRIBUTES

system (Patterson et al., 2014), which represents
both the best scene-based transfer model and a
k = 1 nearest-neighbor baseline for our system.
We also compare against the COLLECTIVE system
(Kuznetsova et al., 2012), which is the best object-
based transfer model.

In order to facilitate comparison, we use the
same test/train split that is used in the publicly
available system output for the COLLECTIVE sys-
tem7. However, we remove some query images
which have contamination between the train and
test set (this occurs when a photographer takes
multiple shots of the same scene and gives all the
images the exact same caption). We also note that
their test set is selected based on images where
their object detection systems had good perfor-
mance, and may not be indicative of their perfor-
mance on other query images.

Table 2 shows the results of our human study.
Captions generated by our system have 48%
improvement in relevance over the SCENE AT-
TRIBUTES system captions, and 34% improve-

7http://www.cs.sunysb.edu/
˜pkuznetsova/generation/cogn/captions.
html
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COLLECTIVE: One of the birds seen in
company of female and
juvenile.

View of this woman sit-
ting on the sidewalk in
Mumbai by the stained
glass. The boy walk-
ing by next to match-
ing color walls in gov t
building.

Found this mother bird
feeding her babies in
our maple tree on the
phone.

Found in floating grass
spotted alongside the
scenic North Cascades
Hwy near Ruby arm a
black bear.

SCENE
ATTRIBUTES:

This small bird is pretty
much only found in the
ancient Caledonian pine
forests of the Scottish
Highlands.

me and allison in front
of the white house

The sand in this beach
was black...I repeat
BLACK SAND

Not the green one, but
the almost ghost-like
white one in front of it.

SYSTEM: White bird found in
park standing on brick
wall

by the white house pine tree covered in ice
:)

Pink flower in garden w/
moth

HUMAN: Some black head bird
taken in bray head.

Us girls in front of the
white house

Male cardinal in snowy
tree knots

Black bear by the road
between Ucluelet and
Port Alberni, B.C.,
Canada

Table 3: Example query images and generated captions.

ment over the COLLECTIVE system captions. Al-
though our system captions score lower than the
human captions on average, there are some in-
stances of our system captions being judged as
more relevant than the human-written captions.

6 Discussion and Examples

Example captions are shown in Table 3. In many
instances, scene-based image descriptors provide
enough information to generate a complete de-
scription of the image, or at least a sufficiently
good one. However, there are some kinds of
images for which scene-based features alone are
insufficient. For example, the last example de-
scribes the small pink flowers in the background,
but misses the bear.

Image captioning is a relatively novel task for
which the most compelling applications are prob-
ably not yet known. Much previous work in im-
age captioning focuses on generating captions that
concretely describe detected objects and entities
(Kulkarni et al., 2011; Yang et al., 2011; Mitchell
et al., 2012; Yu and Siskind, 2013). However,
human-generated captions and annotations also
describe perceptual features, contextual informa-
tion, and other types of content. Additionally, our
system is robust to instances where entity detec-
tion systems fail to perform. However, one could

consider combined approaches which incorporate
more regional content structures. For example,
previous work in nonparametric hierarchical topic
modeling (Blei et al., 2010) and scene labeling
(Liu et al., 2011) may provide avenues for further
improvement of this model. Compression meth-
ods for removing visually irrelevant information
(Kuznetsova et al., 2013) may also help increase
the relevance of extracted captions. We leave these
ideas for future work.
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Daumé III. 2012. Midge: Generating image de-
scriptions from computer vision detections. In Euro-
pean Chapter of the Association for Computational
Linguistics (EACL).

Ani Nenkova and Lucy Vanderwende. 2005. The im-
pact of frequency on summarization.

Aude Oliva and Antonio Torralba. 2001. Modeling the
shape of the scene: A holistic representation of the
spatial envelope. International Journal of Computer
Vision, 42:145–175.

V. Ordonez, G. Kulkarni, and T.L. Berg. 2011.
Im2text: Describing images using 1 million cap-
tioned photographs. In NIPS.

Vicente Ordonez, Jia Deng, Yejin Choi, Alexander C
Berg, and Tamara L Berg. 2013. From large scale
image categorization to entry-level categories. In In-
ternational Conference on Computer Vision.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Genevieve Patterson and James Hays. 2012. Sun at-
tribute database: Discovering, annotating, and rec-
ognizing scene attributes. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, pages 2751–2758. IEEE.

Genevieve Patterson, Chen Xu, Hang Su, and James
Hays. 2014. The sun attribute database: Beyond
categories for deeper scene understanding. Interna-
tional Journal of Computer Vision.

Joseph Tighe and Svetlana Lazebnik. 2010. Su-
perparsing: scalable nonparametric image parsing
with superpixels. In Computer Vision–ECCV 2010,
pages 352–365. Springer.

Antonio Torralba, Robert Fergus, and William T Free-
man. 2008. 80 million tiny images: A large data
set for nonparametric object and scene recognition.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(11):1958–1970.

597



Yezhou Yang, Ching Lik Teo, Hal Daumé III, and Yian-
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Abstract

This work explores methods of automat-
ically detecting corrections of individual
mistakes in sentence revisions for ESL
students. We have trained a classifier
that specializes in determining whether
consecutive basic-edits (word insertions,
deletions, substitutions) address the same
mistake. Experimental result shows that
the proposed system achieves an F1-score
of 81% on correction detection and 66%
for the overall system, out-performing the
baseline by a large margin.

1 Introduction

Quality feedback from language tutors can
help English-as-a-Second-Language (ESL) stu-
dents improve their writing skills. One of the tu-
tors’ tasks is to isolate writing mistakes within
sentences, and point out (1) why each case is
considered a mistake, and (2) how each mistake
should be corrected. Because this is time consum-
ing, tutors often just rewrite the sentences with-
out giving any explanations (Fregeau, 1999). Due
to the effort involved in comparing revisions with
the original texts, students often fail to learn from
these revisions (Williams, 2003).

Computer aided language learning tools offer
a solution for providing more detailed feedback.
Programs can be developed to compare the stu-
dent’s original sentences with the tutor-revised
sentences. Swanson and Yamangil (2012) have
proposed a promising framework for this purpose.
Their approach has two components: one to de-
tect individual corrections within a revision, which
they termed correction detection; another to deter-
mine what the correction fixes, which they termed
error type selection. Although they reported a
high accuracy for the error type selection classifier
alone, the bottleneck of their system is the other

component – correction detection. An analysis of
their system shows that approximately 70% of the
system’s mistakes are caused by mis-detections
in the first place. Their correction detection al-
gorithm relies on a set of heuristics developed
from one single data collection (the FCE corpus
(Yannakoudakis et al., 2011)). When determining
whether a set of basic-edits (word insertions, dele-
tions, substitutions) contributes to the same cor-
rection, these heuristics lack the flexibility to adapt
to a specific context. Furthermore, it is not clear if
the heuristics will work as well for tutors trained
to mark up revisions under different guidelines.

We propose to improve upon the correction de-
tection component by training a classifier that de-
termines which edits in a revised sentence address
the same error in the original sentence. The classi-
fier can make more accurate decisions adjusted to
contexts. Because the classifier were trained on re-
visions where corrections are explicitly marked by
English experts, it is also possible to build systems
adjusted to different annotation standards.

The contributions of this paper are: (1) We show
empirically that a major challenge in correction
detection is to determine the number of edits that
address the same error. (2) We have developed a
merging model that reduces mis-detection by 1/3,
leading to significant improvement in the accu-
racies of combined correction detection and er-
ror type selection. (3) We have conducted experi-
ments across multiple corpora, indicating that the
proposed merging model is generalizable.

2 Correction Detection

Comparing a student-written sentence with its re-
vision, we observe that each correction can be de-
composed into a set of more basic edits such as
word insertions, word deletions and word substi-
tutions. In the example shown in Figure 1, the
correction “to change ⇒ changing” is composed
of a deletion of to and a substitution from change
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Figure 1: Detecting corrections from revisions. Our system detects individual corrections by comparing the original sentence
with its revision, so that each correction addresses one error. Each polygon corresponds to one correction; the labels are codes
of the error types. The codes follow the annotation standard in FCE corpus (Nicholls, 2003). In this example, W is incorrect
Word order; UT is Unnecessary preposiTion; FV is wrong Verb Form; RN is Nnoun needs to be Replaced; ID is IDiom error.

Figure 2: A portion of the example from Figure 1 undergoing the two-step correction detection process. The basic edits are
indicated by black polygons. The corrections are shown in red polygons.

(a) (b)

Figure 3: Basic edits extracted by the edit-distance algo-
rithm (Levenshtein, 1966) do not necessarily match our lin-
guistic intuition. The ideal basic-edits are shown in Figure
3a, but since the algorithm only cares about minimizing the
number of edits, it may end up extracting basic-edits shown
in Figure 3b.

to changing; the correction “moment ⇒ minute”
is itself a single word substitution. Thus, we can
build systems to detect corrections which operates
in two steps: (1) detecting the basic edits that took
place during the revision, and (2) merging those
basic edits that address the same error. Figure 2 il-
lustrates the process for a fragment of the example
sentence from Figure 1.

In practice, however, this two-step approach
may result in mis-detections due to ambiguities.
Mis-detections may be introduced from either
steps. While detecting basic edits, Figures 3 gives
an example of problems that might arise. Because
the Levenshtein algorithm only tries to minimize
the number of edits, it does not care whether the
edits make any linguistic sense. For merging basic
edits, Swanson and Yamangil applied a distance
heuristic – basic-edits that are close to each other
(e.g. basic edits with at most one word lying in
between) are merged. Figure 4 shows cases for
which the heuristic results in the wrong scope.

These errors caused their system to mis-detect
30% of the corrections. Since mis-detected cor-
rections cannot be analyzed down the pipeline,

(a) The basic edits are addressing the same problem. But
these basic edits are non-adjacent, and therefore not merged by
S&Y’s algorithm.

(b) The basic edits in the above two cases address different
problems though they are adjacent. S&Y’s merging algorithm
incorrectly merges them.

Figure 4: Merging mistakes by the algorithm proposed in
Swanson and Yamangil (2012) (S&Y), which merges adja-
cent basic edits.

the correction detection component became the
bottle-neck of their overall system. Out of the
42% corrections that are incorrectly analyzed1,
30%/42%≈70% are caused by mis-detections in
the first place. An improvement in correction de-
tection may increase the system accuracy overall.

We conducted an error analysis to attribute er-
rors to either step when the system detects a wrong
set of corrections for a sentence. We examine
the first step’s output. If the resulting basic ed-
its do not match with those that compose the ac-
tual corrections, we attribute the error to the first
step. Otherwise, we attribute the error to the sec-
ond step. Our analysis confirms that the merging
step is the bottleneck in the current correction de-
tection system – it accounts for 75% of the mis-
detections. Therefore, to effectively reduce the
algorithm’s mis-detection errors, we propose to

1Swanson and Yamangil reported an overall system with
58% F-score.
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build a classifier to merge with better accuracies.
Other previous tasks also involve comparing

two sentences. Unlike evaluating grammar er-
ror correction systems (Dahlmeier and Ng, 2012),
correction detection cannot refer to a gold stan-
dard. Our error analysis above also highlights our
task’s difference with previous work that identify
corresponding phrases between two sentences, in-
cluding phrase extraction (Koehn et al., 2003) and
paraphrase extraction (Cohn et al., 2008). They
are fundamentally different in that the granularity
of the extracted phrase pairs is a major concern
in our work – we need to guarantee each detected
phrase pair to address exactly one writing prob-
lem. In comparison, phrase extraction systems
aim to improve the end-to-end MT or paraphrasing
systems. A bigger concern is to guarantee the ex-
tracted phrase pairs are indeed translations or para-
phrases. Recent work therefore focuses on identi-
fying the alignment/edits between two sentences
(Snover et al., 2009; Heilman and Smith, 2010).

3 A Classifier for Merging Basic-Edits

Figures 4 highlights the problems with indiscrimi-
nantly merging basic-edits that are adjacent. Intu-
itively, it seems that the decision should be more
context dependent. Certain patterns may indicate
that two adjacent basic-edits are a part of the same
correction while others may indicate that they each
address a different problem. For example, in Fig-
ure 5a, when the insertion of one word is followed
by the deletion of the same word, the insertion
and deletion are likely addressing one single error.
This is because these two edits would combine to-
gether as a word-order change. On the other hand,
in Figure 5b, if one edit includes a substitution be-
tween words with the same POS’s, then it is likely
fixing a word choice error by itself. In this case, it
should not be merged with other edits.

To predict whether two basic-edits address the
same writing problem more discriminatively, we
train a Maximum Entropy binary classifier based
on features extracted from relevant contexts for
the basic edits. We use features in Table 1 in the
proposed classifier. We design the features to in-
dicate: (A) whether merging the two basic-edits
matches the pattern for a common correction. (B)
whether one basic-edit addresses one single error.

We train the classifier using samples extracted
from revisions where individual corrections are
explicitly annotated. We first extract the basic-

(a) The pattern indicates that
the two edits address the
same problem

(b) The pattern indicates that
the two edits do not address
the same problem

Figure 5: Patterns indicating whether two edits address the
same writing mistake.

Figure 6: Extracting training instances for the merger. Our
goal is to train classifiers to tell if two basic edits should
be merged (True or False). We break each correction (outer
polygons, also colored in red) in the training corpus into a set
of basic edits (black polygons). We construct an instance for
each consecutive pair of basic edits. If two basic edits were
extracted from the same correction, we will mark the outcome
as True, otherwise we will mark the outcome as False.

edits that compose each correction. We then create
a training instance for each pair of two consecutive
basic edits: if two consecutive basic edits need to
be merged, we will mark the outcome as True, oth-
erwise it is False. We illustrate this in Figure 6.

4 Experimental Setup

We combine Levenshtein algorithm with different
merging algorithms for correction detection.

4.1 Dataset

An ideal data resource would be a real-world col-
lection of student essays and their revisions (Tajiri
et al., 2012). However, existing revision corpora
do not have the fine-grained annotations necessary
for our experimental gold standard. We instead
use error annotated data, in which the corrections
were provided by human experts. We simulate the
revisions by applying corrections onto the original
sentence. The teachers’ annotations are treated as
gold standard for the detailed corrections.

We considered four corpora with different ESL
populations and annotation standards, including
FCE corpus (Yannakoudakis et al., 2011), NU-
CLE corpus (Dahlmeier et al., 2013), UIUC cor-
pus2 (Rozovskaya and Roth, 2010) and HOO2011
corpus (Dale and Kilgarriff, 2011). These corpora
all provide experts’ corrections along with error

2UIUC corpus contains annotations of essays collected
from ICLE (Granger, 2003) and CLEC (Gui and Yang, 2003).
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Type name description

A

gap-between-edits Gap between the two edits. In particular, we use the number of words between the two edits’
original words, as well as the revised words. Note that Swanson and Yamangil’s approach is a
special case that only considers if the basic-edits have zero gap in both sentences.

tense-change We detect patterns such as: if the original-revision pair matches the pattern “V-ing⇒to V”.
word-order-error Whether the basic-edits’ original word set and the revised word set are the same (one or zero).
same-word-set If the original sentence and the revised sentence have the same word set, then it’s likely that all

the edits are fixing the word order error.
revised-to The phrase comprised of the two revised words.

B

editdistance=1 If one basic-edit is a substitution, and the original/revised word only has 1 edit distance, it
indicates that the basic-edit is fixing a misspelling error.

not-in-dict If the original word does not have a valid dictionary entry, then it indicates a misspelling error.
word-choice If the original and the revised words have the same POS, then it is likely fixing a word choice

error.
preposition-error Whether the original and the revised words are both prepositions.

Table 1: Features used in our proposed classifier.

corpus sentences sentences with≥ 2 corrections
revised sentences

FCE 33,900 53.45%
NUCLE 61,625 48.74%
UIUC 883 61.32%
HOO2011 966 42.05%

Table 2: Basic statistics of the corpora that we consider.

type mark-ups. The basic statistics of the corpora
are shown in Table 2. In these corpora, around half
of revised sentences contains multiple corrections.
We have split each corpus into 11 equal parts. One
part is used as the development dataset; the rest are
used for 10-fold cross validation.

4.2 Evaluation Metrics
In addition to evaluating the merging algorithms
on the stand-alone task of correction detection, we
have also plugged in the merging algorithms into
an end-to-end system in which every automati-
cally detected correction is further classified into
an error type. We replicated the error type selector
described in Swanson and Yamangil (2012). The
error type selector’s accuracies are shown in Table
33 . We compare two merging algorithms, com-
bined with Levenshtein algorithm:

S&Y The merging heuristic proposed by Swan-
son and Yamangil, which merges the adjacent ba-
sic edits into single corrections.

MaxEntMerger We use the Maximum Entropy
classifier to predict whether we should merge the
two edits, as described in Section 34.

We evaluate extrinsically the merging compo-
nents’ effect on overall system performance by

3Our replication has a slightly lower error type selection
accuracy on FCE (80.02%) than the figure reported by Swan-
son and Yamangil (82.5%). This small difference on error
type selection does not affect our conclusions about correc-

Corpus Error Types Accuracy
FCE 73 80.02%
NUCLE 27 67.36%
UIUC 8 80.23%
HOO2011 38 64.88%

Table 3: Error type selection accuracies on different cor-
pora. We use a Maximum Entropy classifier along with fea-
tures suggested by Swanson and Yamangil for this task. The
reported figures come from 10-fold cross validations on dif-
ferent corpora.

comparing the boundaries of system’s detected
corrections with the gold standard. We evaluate
both (1) the F-score in detecting corrections (2)
the F-score in correctly detecting both the correc-
tions’ and the error types they address.

5 Experiments

We design experiments to answer two questions:

1. Do the additional contextual information
about correction patterns help guide the merging
decisions? How much does a classifier trained for
this task improve the system’s overall accuracy?

2. How well does our method generalize over re-
visions from different sources?

Our major experimental results are presented in
Table 4 and Table 6. Table 4 compares the over-
all educational system’s accuracies with different
merging algorithms. Table 6 shows the system’s
F1 score when trained and tested on different cor-
pora. We make the following observations:

First, Table 4 shows that by incorporating cor-
rection patterns into the merging algorithm, the

tion detection.
4We use the implementation at http://homepages.

inf.ed.ac.uk/lzhang10/maxent_toolkit.
html.
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errors in correction detection step were reduced.
This led to a significant improvement on the over-
all system’s F1-score on all corpora. The improve-
ment is most noticeable on FCE corpus, where
the error in correction detection step was reduced
by 9%. That is, one third of the correction mis-
detections were eliminated. Table 5 shows that the
number of merging errors are significantly reduced
by the new merging algorithm. In particular, the
number of false positives (system proposes merges
when it should not) is significantly reduced.

Second, our proposed model is able to gener-
alize over different corpora. As shown in Table
6. The models built on corpora can generally im-
prove the correction detection accuracy5. Mod-
els built on the same corpus generally perform
the best. Also, as suggested by the experimental
result, among the four corpora, FCE corpus is a
comparably good resource for training correction
detection models with our current feature set. One
reason is that FCE corpus has many more training
instances, which benefits model training. We tried
varying the training dataset size, and test it on dif-
ferent corpora. Figure 7 suggests that the model’s
accuracies increase with the training corpus size.

6 Conclusions

A revision often contains multiple corrections that
address different writing mistakes. We explore
building computer programs to accurately detect
individual corrections in one single revision. One
major challenge lies in determining whether con-
secutive basic-edits address the same mistake. We
propose a classifier specialized in this task. Our
experiments suggest that: (1) the proposed classi-
fier reduces correction mis-detections in previous
systems by 1/3, leading to significant overall sys-
tem performance. (2) our method is generalizable
over different data collections.
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Method Corpus Correction
Detection F1

Overall
F1-score

S&Y FCE 70.40% 57.10%
MaxEntMerger FCE 80.96% 66.36%
S&Y NUCLE 61.18% 39.32%
MaxEntMerger NUCLE 63.88% 41.00%
S&Y UIUC 76.57% 65.08%
MaxEntMerger UIUC 82.81% 70.55%
S&Y HOO2011 68.73% 50.95%
MaxEntMerger HOO2011 75.71% 56.14%

Table 4: Extrinsic evaluation, where we plugged the two
merging models into an end-to-end feedback detection sys-
tem by Swanson and Yamangil.

Merging algorithm TP FP FN TN
S&Y 33.73% 13.46% 5.71% 47.10%
MaxEntMerger 36.04% 3.26% 3.41% 57.30%

Table 5: Intrinsic evaluation, where we evaluate the pro-
posed merging model’s prediction accuracy on FCE corpus.
This table shows a breakdown of true-positives (TP), false-
positives (FP), false-negatives (FN) and true-negatives (TN)
for the system built on FCE corpus.

training
testing FCE NUCLE UIUC HOO2011

S&Y 70.44 61.18% 76.57% 68.73%
FCE 80.96% 61.26% 83.07% 75.43%
NUCLE 74.53% 63.88% 78.57% 74.73%
UIUC 77.25% 58.21% 82.81% 70.83%
HOO2011 71.94% 54.99% 71.19% 75.71%

Table 6: Correction detection experiments by building the
model on one corpus, and applying it onto another. We
evaluate the correction detection performance with F1 score.
When training and testing on the same corpus, we run a 10-
fold cross validation.
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Figure 7: We illustrate the performance of correction detec-
tion systems trained on subsets of FCE corpus. Each curve in
this figure represents the F1-scores for correction detection
of the model trained on a subset of FCE and tested on differ-
ent corpora. When testing on FCE, we used 1

11
of the FCE

corpus, which we kept as development data.
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Abstract

To support empirical study of online pri-
vacy policies, as well as tools for users
with privacy concerns, we consider the
problem of aligning sections of a thousand
policy documents, based on the issues they
address. We apply an unsupervised HMM;
in two new (and reusable) evaluations, we
find the approach more effective than clus-
tering and topic models.

1 Introduction

Privacy policy documents are verbose, often eso-
teric legal documents that many people encounter
as clients of companies that provide services on
the web. McDonald and Cranor (2008) showed
that, if users were to read the privacy policies of
every website they access during the course of a
year, they would end up spending a substantial
amount of their time doing just that and would
often still not be able to answer basic questions
about what these policies really say. Unsurpris-
ingly, many people do not read them (Federal
Trade Commission, 2012).

Such policies therefore offer an excellent op-
portunity for NLP tools that summarize or ex-
tract key information that (i) helps users under-
stand the implications of agreeing to these poli-
cies and (ii) helps legal analysts understand the
contents of these policies and make recommenda-
tions on how they can be improved or made more
clear. Past applications of NLP have sought to
parse privacy policies into machine-readable rep-
resentations (Brodie et al., 2006) or extract sub-
policies from larger documents (Xiao et al., 2012).
Machine learning has been applied to assess cer-
tain attributes of policies (Costante et al., 2012;
Ammar et al., 2012; Costante et al., 2013; Zim-
meck and Bellovin, 2013).

This paper instead analyzes policies in aggre-
gate, seeking to align sections of policies. This

task is motivated by an expectation that many poli-
cies will address similar issues,1 such as collec-
tion of a user’s contact, location, health, and fi-
nancial information, sharing with third parties, and
deletion of data. This expectation is supported
by recommendation by privacy experts (Gellman,
2014) and policymakers (Federal Trade Commis-
sion, 2012); in the financial services sector, the
Gramm-Leach-Bliley Act requires these institu-
tions to address a specific set of issues. Aligning
policy sections is a first step toward our aforemen-
tioned summarization and extraction goals.

We present the following contributions:
• A new corpus of over 1,000 privacy policies

gathered from widely used websites, manually
segmented into subtitled sections by crowdwork-
ers (§2).
• An unsupervised approach to aligning the policy

sections based on the issues they discuss. For
example, sections that discuss “user data on the
company’s server” should be grouped together.
The approach is inspired by the application of
hidden Markov models to sequence alignment in
computational biology (Durbin et al., 1998; §3).
• Two reusable evaluation benchmarks for the re-

sulting alignment of policy sections (§4). We
demonstrate that our approach outperforms naı̈ve
methods (§5).
Our corpus and benchmarks are available at

http://usableprivacy.org/data.

2 Data Collection

We collected 1,010 unique privacy policy
documents from the top websites ranked by
Alexa.com.2 These policies were collected during
a period of six weeks during December 2013 and
January 2014. They are a snapshot of privacy
policies of mainstream websites covering fifteen

1Personal communication, Joel Reidenberg.
2http://www.alexa.com
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Business Computers Games Health
Home News Recreation Shopping
Arts Kids and Teens Reference Regional
Science Society Sports

Table 1: Fifteen website categories provided by Alexa.com.
We collect privacy policies from the top 100 websites in each.

of Alexa.com’s seventeen categories (Table 1).3

Finding a website’s policy is not trivial. Though
many well-regulated commercial websites provide
a “privacy” link on their homepages, not all do.
We found university websites to be exceptionally
unlikely to provide such a link. Even once the pol-
icy’s URL is identified, extracting the text presents
the usual challenges associated with scraping doc-
uments from the web. Since every site is differ-
ent in its placement of the document (e.g., buried
deep within the website, distributed across several
pages, or mingled together with Terms of Service)
and format (e.g., HTML, PDF, etc.), and since we
wish to preserve as much document structure as
possible (e.g., section labels), full automation was
not a viable solution.

We therefore crowdsourced the privacy policy
document collection using Amazon Mechanical
Turk. For each website, we created a HIT in
which a worker was asked to copy and paste the
following privacy policy-related information into
text boxes: (i) privacy policy URL; (ii) last up-
dated date (or effective date) of the current privacy
policy; (iii) privacy policy full text; and (iv) the
section subtitles in the top-most layer of the pri-
vacy policy. To identify the privacy policy URL,
workers were encouraged to go to the website and
search for the privacy link. Alternatively, they
could form a search query using the website name
and “privacy policy” (e.g., “Amazon.com privacy
policy”) and search in the returned results for the
most appropriate privacy policy URL. Given the
privacy policy full text and the section subtitles,
we partition the full privacy document into differ-
ent sections, delimited by the section subtitles. A
privacy policy is then converted into XML.

Each HIT was completed by three workers, paid
$0.05, for a total cost of $380 (including Ama-
zon’s surcharge).

3The “Adult” category was excluded; the “World” cate-
gory was excluded since it contains mainly popular websites
in different languages, and we opted to focus on policies in
English in this first stage of research, though mulitlingual pol-
icy analysis presents interesting challenges for future work.

3 Approach

Given the corpus of privacy policies described in
§2, we designed a model to efficiently infer an
alignment of policy sections. While we expect that
different kinds of websites will likely address dif-
ferent privacy issues, we believe that many poli-
cies will discuss roughly the same set of issues.
Aligning the policies is a first step in a larger effort
to (i) automatically analyze policies to make them
less opaque to users and (ii) support legal experts
who wish to characterize the state of privacy on-
line and make recommendations (Costante et al.,
2012; Ammar et al., 2012; Costante et al., 2013).

We are inspired by multiple sequence alignment
methods in computational biology (Durbin et al.,
1998) and by Barzilay and Lee (2004), who de-
scribed a hidden Markov model (HMM) for doc-
ument content where each state corresponds to a
distinct topic and generates sentences relevant to
that topic according to a language model. We
estimate an HMM-like model on our corpus, ex-
ploiting similarity across privacy policies to the
extent it is evident in the data. In our formula-
tion, each hidden state corresponds to an issue or
topic, characterized by a distribution over words
and bigrams appearing in privacy policy sections
addressing that issue. The transition distribution
captures tendencies of privacy policy authors to
organize these sections in similar orders, though
with some variation.

The generative story for our model is as follows.
Let S denote the set of hidden states.

1. Choose a start state y1 from S according to the
start-state distribution.

2. For t = 1, 2, . . ., until yt is the stopping state:

(a) Sample the tth section of the document by
drawing a bag of terms, ot, according to the
emission multinomial distribution for state yt.
Note the difference from traditional HMMs, in
which a single observation symbol is drawn
at each time step. ot is generated by repeat-
edly sampling from a distribution over terms
that includes all unigrams and bigrams except
those that occur in fewer than 5% of the doc-
uments and in more than 98% of the docu-
ments. This filtering rule was designed to
eliminate uninformative stopwords as well as
company-specific terms (e.g., the name of the
company).4

4The emission distributions are not a proper language
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Websites with Unique privacy Unique privacy Ave. sections Ave. tokens
Category privacy URL policies policies w/ date per policy per policy
Arts 94 80 72 11.1 (± 3.8) 2894 (± 1815)
Business 100 95 75 10.1 (± 4.9) 2531 (± 1562)
Computers 100 78 62 10.7 (± 4.9) 2535 (± 1763)
Games 92 80 51 10.2 (± 4.9) 2662 (± 2267)
Health 92 86 57 10.0 (± 4.4) 2325 (± 1891)
Home 100 84 68 11.5 (± 3.8) 2493 (± 1405)
Kids and Teens 96 86 62 10.3 (± 4.5) 2683 (± 1979)
News 96 91 68 10.7 (± 3.9) 2588 (± 2493)
Recreation 98 97 67 11.9 (± 4.5) 2678 (± 1421)
Reference 84 86 55 9.9 (± 4.1) 2002 (± 1454)
Regional 98 91 72 11.2 (± 4.2) 2557 (± 1359)
Science 71 75 49 9.2 (± 4.1) 1705 (± 1136)
Shopping 100 99 84 12.0 (± 4.1) 2683 (± 1154)
Society 96 94 65 10.2 (± 4.6) 2505 (± 1587)
Sports 96 62 38 10.9 (± 4.0) 2222 (± 1241)
Average 94.2 85.6 63.0 10.7 (± 4.3) 2471 (± 1635)

Table 2: Statistics of each website category, including (i) the number of websites with an identified privacy policy link; (ii)
number of unique privacy policies in each category (note that in rare cases, multiple unique privacy policies were identified
for the same website, e.g., a website that contains links to both new and old versions of its privacy policy); (iii) number of
websites with an identified privacy modification date; (iv) average number of sections per policy; (v) average number of tokens
per policy.

(b) Sample the next state, yt+1, according to the
transition distribution over S.

This model can nearly be understood as a hid-
den semi-Markov model (Baum and Petrie, 1966),
though we treat the section lengths as observable.
Indeed, our model does not even generate these
lengths, since doing so would force the states to
“explain” the length of each section, not just its
content. The likelihood function for the model is
shown in Figure 1.

The parameters of the model are almost iden-
tical to those of a classic HMM (start state dis-
tribution, emission distributions, and transition
distributions), except that emissions are char-
acterized by multinomial rather than a cate-
gorical distributions. These are learned us-
ing Expectation-Maximization, with a forward-
backward algorithm to calculate marginals (E-
step) and smoothed maximum likelihood estima-
tion for the M-step (Rabiner, 1989). After learn-
ing, the most probable assignment of a policy’s
sections to states can be recovered using a variant
of the Viterbi algorithm.

We consider three HMM variants. “Vanilla” al-
lows all transitions. The other two posit an order-
ing on the states S = {s1, s2, . . . , sK}, and re-
strict the set of transitions that are possible, impos-
ing bias on the learner. “All Forward” only allows

models (e.g., a bigram may be generated by as many as three
draws from the emission distribution: once for each unigram
it contains and once for the bigram).

sk to transition to {sk, sk+1, . . . , sK}. “Strict For-
ward” only allows sk to transition to sk or sk+1.

4 Evaluation

Developing a gold-standard alignment of privacy
policies would either require an interface that al-
lows each annotator to interact with the entire cor-
pus of previously aligned documents while read-
ing the one she is annotating, or the definition (and
likely iterative refinement) of a set of categories
for manually labeling policy sections. These were
too costly for us to consider, so we instead pro-
pose two generic methods to evaluate models
for sequence alignment of a collection of docu-
ments with generally similar content. Though our
model (particularly the restricted variants) treats
the problem as one of alignment, our evaluations
consider groupings of policy sections. In the se-
quel, a grouping on a set X is defined as a collec-
tion of subsets Xi ⊆ X; these may overlap (i.e.,
there might be x ∈ Xi ∩Xj) and need not be ex-
haustive (i.e., there might be x ∈ X \⋃iXi).

4.1 Evaluation by Human QA

This study was carried out as part of a larger col-
laboration with legal scholars who study privacy.
In that work, we have formulated a set of nine mul-
tiple choice questions about a single policy that
ask about collection of contact, location, health,
and financial information, sharing of each with
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Pπ,η,γ (〈yt,ot〉nt=1 | 〈`t〉nt=1) = π(y1)
n∏

t=1

(
`t∏

i=1

η(ot,i | yi)

)
γ(yt+1 | yt)

Figure 1: The likelihood function for the alignment model (one privacy policy). yt is the hidden state for the tth section, ot is
the bag of unigram and bigram terms observed in that section, and `t is the size of the bag. Start-state, emission, and transition
distributions are denoted respectively by π, η, and γ. yn+1 is the silent stopping state.

third parties, and deletion of data.5 The questions
were inspired primarily by the substantive interest
of these domain experts—not by this particular al-
gorithmic study.

For thirty policies, we obtained answers from
each of six domain experts who were not involved
in designing the questions. For the purposes of this
study, the experts’ answers are not important. In
addition to answering each question for each pol-
icy, we also asked each expert to copy and paste
the text of the policy that contains the answer.
Experts were allowed to select as many sections
for each question as they saw fit, since answering
some questions may require synthesizing informa-
tion from different sections.

For each of the nine questions, we take the
union of all policy sections that contain text se-
lected by any annotator as support for her answer.
This results in nine groups of policy sections,
which we call answer-sets denoted A1, . . . , A9.
Our method allows these to overlap (63% of the
sections in any Ai occurred in more than one Ai),
and they are not exhaustive (since many sections
of the policies were not deemed to contain answers
to any of the nine questions by any expert).

Together, these can be used as a gold standard
grouping of policy sections, against which we can
compare our system’s output. To do this, we define
the set of section pairs that are grouped together
in answer sets, G = |{〈a, b〉 | ∃Ai 3 a, b}|, and
a similar set of pairs H from a model’s grouping.
From these sets, we calculate estimates of preci-
sion (|G ∩H|/|H|) and recall (|G ∩H|/|G|).

One shortcoming of this approach, for which
the second evaluation seeks to compensate, is that
a very small, and likely biased, subset of the policy
sections is considered.

4.2 Evaluation by Direct Judgment

We created a separate gold standard of judgments
of pairs of privacy policy sections. The data se-
lected for judgment was a sample of pairs stratified

5The questions are available in an online appendix at
http://usableprivacy.org/data.

by a simple measure of text similarity. We derived
unigram tfidf vectors for each section in each of
50 randomly sampled policies per category. We
then binned pairs of sections by cosine similarity
(into four bins bounded by 0.25, 0.5, and 0.75).
We sampled 994 section pairs uniformly across the
15 categories’ four bins each.

Crowdsourcing was used to determine, for each
pair, whether the two sections should be grouped
together. A HIT consisted of a pair of policy sec-
tions and a multiple choice question, “After read-
ing the two sections given below, would you say
that they broadly discuss the same topic?” The
possible answers were:

1. Yes, both the sections essentially convey the
same message in a privacy policy.

2. Although, the sections do not convey the same
message, the broadly discuss the same topic.
(For ease of understanding, some examples of
content on “the same topic” were included.)

3. No, the sections discuss two different topics.
The first two options were considered a “yes” for
the majority voting and for defining a gold stan-
dard. Every section-pair was annotated by at least
three annotators (as many as 15, increased until
an absolute majority was reached). Turkers with
an acceptance rate greater than 95% with an ex-
perience of at least 100 HITs were allowed and
paid $0.03 per annotation. The total cost includ-
ing some initial trials was $130. 535 out of the
994 pairs were annotated to be similar in topic. An
example is shown in Figure 2.

As in §4.1, we calculate precision and recall on
pairs. This does not penalize the model for group-
ing together a “no” pair; we chose it nonetheless
because it is interpretable.

5 Experiment

In this section, we evaluate the three HMM vari-
ants described in §3, and two baselines, using the
methods in §4. All of the methods require the
specification of the number of groups or hidden
states, which we fix to ten, the average number of
sections per policy.

608



Section 5 of classmates.com:
[46 words] . . . You may also be required to use a password to access certain pages on the Services where certain
types of your personal information can be changed or deleted. . . . [113 words]
Section 2 of 192.com:
[50 words] . . . This Policy sets out the means by which You can have Your Personal Information removed from
the Service. 192.com is also committed to keeping Personal Information of users of the Service secure and only to
use it for the purposes set out in this Policy and as agreed by You. . . . [24 words]

Figure 2: Selections from sections that discuss the issue of “deletion of personal information” and were labeled as discussing
the same issue by crowdworkers. Both naı̈ve grouping and LDA put them in two different groups, but the Strict Forward variant
of our model correctly groups them together.

Precision Recall F1

Mean S.D. Mean S.D. Mean S.D.
Clust. 0.63 – 0.30 – 0.40 –
LDA 0.56 0.03 0.20 0.05 0.29 0.06

Vanilla 0.62 0.04 0.41 0.04 0.49 0.03
All F. 0.63 0.03 0.47 0.12 0.53 0.06

Strict F. 0.62 0.05 0.46 0.18 0.51 0.07
Clust. 0.62 – 0.23 – 0.34 –
LDA 0.57 0.03 0.18 0.01 0.28 0.02

Vanilla 0.57 0.01 0.30 0.03 0.39 0.02
All F. 0.58 0.02 0.32 0.06 0.41 0.04

Strict F. 0.58 0.03 0.32 0.14 0.40 0.08

Table 3: Evaluation by human QA (above) and direct judg-
ment (below), aggregated across ten independent runs where
appropriate (see text). Vanilla, All F(orward), and Strict
F(orward) are three variants of our HMM.

Baselines. Our first baseline is a greedy divisive
clustering algorithm6 to partition the policy sec-
tions into ten clusters. In this method, the de-
sired K-way clustering solution is computed by
performing a sequence of bisections. The imple-
mentation uses unigram features and cosine simi-
larity. Our second baseline is latent Dirichlet allo-
cation (LDA; Blei et al., 2003), with ten topics and
online variational Bayes for inference (Hoffman et
al., 2010).7 To more closely match our models,
LDA is given access to the same unigram and bi-
gram tokens.

Results. Table 3 shows the results. For LDA
and the HMM variants (which use random initial-
ization), we report mean and standard deviation
across ten independent runs. All three variants
of the HMM improve over the baselines on both
tasks, in terms of F1. In the human QA evalu-
ation, this is mostly due to recall improvements
(i.e., more pairs of sections relevant to the same
policy question were grouped together).

The three variants of the model performed sim-
ilarly on average, though Strict Forward had very
high variance. Its maximum performance across

6As implemented in CLUTO, http://glaros.dtc.
umn.edu/gkhome/cluto/cluto/overview

7As implemented in gensim (Řehůřek and Sojka, 2010).

ten runs was very high (67% and 53% F1 on the
two tasks), suggesting the potential benefits of
good initialization or model selection.

6 Conclusion

We considered the task of aligning sections of
a collection of roughly similarly-structured legal
documents, based on the issues they address. We
introduced an unsupervised model for this task
along with two new (and reusable) evaluations.
Our experiments show the approach to be more ef-
fective than clustering and topic models. The cor-
pus and evaluation data have been made available
at http://usableprivacy.org/data . In
future work, policy section alignments will be
used in automated analysis to extract useful infor-
mation for users and privacy scholars.
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Jerry den Hartog. 2012. A machine learning solu-
tion to assess privacy policy completeness. In Proc.
of the ACM Workshop on Privacy in the Electronic
Society.

Elisa Costante, Jerry Hartog, and Milan Petkovi.
2013. What websites know about you. In Roberto
Pietro, Javier Herranz, Ernesto Damiani, and Radu
State, editors, Data Privacy Management and Au-
tonomous Spontaneous Security, volume 7731 of
Lecture Notes in Computer Science, pages 146–159.
Springer Berlin Heidelberg.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. 1998. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nu-
cleic Acids. Cambridge University Press.

Federal Trade Commission. 2012. Protecting con-
sumer privacy in an era of rapid change: Recom-
mendations for businesses and policymakers.

Robert Gellman. 2014. Fair information prac-
tices: a basic history (v. 2.11). Available at
http://www.bobgellman.com/rg-docs/
rg-FIPShistory.pdf.

Matthew D Hoffman, David M Blei, and Francis R
Bach. 2010. Online learning for latent Dirichlet al-
location. In NIPS.

Aleecia M. McDonald and Lorrie Faith Cranor. 2008.
The cost of reading privacy policies. I/S: A Journal
of Law and Policy for the Information Society, 4(3).

Lawrence Rabiner. 1989. A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286.
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Abstract 

We introduce a generalized framework to enrich 

the personalized language models for cold start 

users. The cold start problem is solved with 

content written by friends on social network 

services. Our framework consists of a mixture 

language model, whose mixture weights are es-

timated with a factor graph. The factor graph is 

used to incorporate prior knowledge and heuris-

tics to identify the most appropriate weights. 

The intrinsic and extrinsic experiments show 

significant improvement on cold start users. 

1 Introduction 

Personalized language models (PLM) on social 

network services are useful in many aspects (Xue 

et al., 2009; Wen et al., 2012; Clements, 2007), 

For instance, if the authorship of a document is 

in doubt, a PLM may be used as a generative 

model to identify it. In this sense, a PLM serves 

as a proxy of one’s writing style. Furthermore, 

PLMs can improve the quality of information 

retrieval and content-based recommendation sys-

tems, where documents or topics can be recom-

mended based on the generative probabilities. 

However, it is challenging to build a PLM for 

users who just entered the system, and whose 

content is thus insufficient to characterize them. 

These are called “cold start” users. Producing 

better recommendations is even more critical for 

cold start users to make them continue to use the 

system. Therefore, this paper focuses on how to 

overcome the cold start problem and obtain a 

better PLM for cold start users. 

The content written by friends on a social 

network service, such as Facebook or Twitter, is 

exploited. It can be either a reply to an original 

post or posts by friends. Here the hypothesis is 

that friends, who usually share common interests, 

tend to discuss similar topics and use similar 

words than non-friends. In other words, we be-

lieve that a cold start user’s language model can 

be enriched and better personalized by incorpo-

rating content written by friends. 

Intuitively, a linear combination of document-

level language models can be used to incorporate 

content written by friends. However, it should be 

noticed that some documents are more relevant 

than others, and should be weighted higher. To 

obtain better weights, some simple heuristics 

could be exploited. For example, we can measure 

the similarity or distance between a user lan-

guage model and a document language model. In 

addition, documents that are shared frequently in 

a social network are usually considered to be 

more influential, and could contribute more to 

the language model. More complex heuristics 

can also be derived. For instance, if two docu-

ments are posted by the same person, their 

weights should be more similar. The main chal-

lenge lies in how such heuristics can be utilized 

in a systematic manner to infer the weights of 

each document-level language model. 

In this paper, we exploit the information on 

social network services in two ways. First, we 

impose the social dependency assumption via a 

finite mixture model. We model the true, albeit 

unknown, personalized language model as a 

combination of a biased user language model and 

a set of relevant document language models. Due 

to the noise inevitably contained in social media 

content, instead of using all available documents, 

we argue that by properly specifying the set of 

relevant documents, a better personalized lan-

guage model can be learnt. In other words, each 

user language model is enriched by a personal-

ized collection of background documents. 

Second, we propose a factor graph model 

(FGM) to incorporate prior knowledge (e.g. the 

heuristics described above) into our model. Each 
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mixture weight is represented by a random vari-

able in the factor graph, and an efficient algo-

rithm is proposed to optimize the model and infer 

the marginal distribution of these variables. Use-

ful information about these variables is encoded 

by a set of potential functions. 

The main contributions of this work are sum-

marized below: 

 To solve the cold start problem encountered 

when estimating PLMs, a generalized frame-

work based on FGM is proposed. We incorpo-

rate social network information into user lan-

guage models through the use of FGM. An it-

erative optimization procedure utilizing per-

plexity is presented to learn the parameters. 

To our knowledge, this is the first proposal to 

use FGM to enrich language models. 

 Perplexity is selected as an intrinsic evalua-

tion, and experiment on authorship attribution 

is used as an extrinsic evaluation. The results 

show that our model yields significant im-

provements for cold start users. 

2 Methodology 

2.1 Social-Driven Personalized Language 

Model 

The language model of a collection of documents 

can be estimated by normalizing the counts of 

words in the entire collection (Zhai, 2008). To 

build a user language model, one naïve way is to 

first normalize word frequency 𝑐(𝑤, 𝑑)  within 

each document, and then average over all the 

documents in a user’s document collection. The 

resulting unigram user language model is: 

𝑃𝑢(𝑤) =
1

|𝒟𝑢|
∑

𝑐(𝑤, 𝑑)

|𝑑|𝑑∈𝒟𝑢

 

=
1

|𝒟𝑢|
∑ 𝑃𝑑(𝑤)

𝑑∈𝒟𝑢

 

(1) 

where 𝑃𝑑(𝑤) is the language model of a particu-

lar document, and 𝒟𝑢 is the user’s document col-

lection. This formulation is basically an equal-

weighted finite mixture model. 

A simple yet effective way to smooth a lan-

guage model is to linearly interpolate with a 

background language model (Chen and Good-

man, 1996; Zhai and Lafferty, 2001). In the line-

ar interpolation method, all background docu-

ments are treated equally. The entire document 

collection is added to the user language model 

𝑃𝑢(𝑤) with the same interpolation coefficient. 

Our main idea is to specify a set of relevant 

documents for the target user using information 

embedded in a social network, and enrich the 

smoothing procedure with these documents. Let 

𝒟𝑟𝑒𝑙  denote the content from relevant persons 

(e.g. social neighbors) of u1, our idea can be con-

cisely expressed as: 

𝑃𝑢1
′ (𝑤) = 𝜆𝑢1

𝑃𝑢1
(𝑤) + ∑ 𝜆𝑑𝑖

𝑃𝑑𝑖
(𝑤)

𝑑𝑖∈𝒟𝑟𝑒𝑙

 (2) 

where 𝜆𝑑𝑖
 is the mixture weight of the language 

model of document di, and 𝜆𝑢1
+ ∑ 𝜆𝑑𝑖

= 1 . 

Documents posted by irrelevant users are not 

included as we believe the user language model 

can be better personalized by exploiting the so-

cial relationship in a more structured way. In our 

experiment, we choose the first degree neighbor 

documents as 𝒟𝑟𝑒𝑙. 

Also note that we have made no assumption 

about how the “base” user language model 

𝑃𝑢1
(𝑤) is built. In practice, it need not be models 

following maximum likelihood estimation, but 

any language model can be integrated into our 

framework to achieve a better refined model. 

Furthermore, any smoothing method can be ap-

plied to the language model without degrading 

the effectiveness. 

2.2 Factor Graph Model (FGM) 

Now we discuss how the mixture weights can be 

estimated. We introduce a factor graph model 

(FGM) to make use of the diverse information on 

a social network. Factor graph (Kschischang et 

al., 2006) is a bipartite graph consisting of a set 

of random variables and a set of factors which 

signifies the relationships among the variables. It 

is best suited in situations where the data is clear-

ly of a relational nature (Wang et al., 2012). The 

joint distribution of the variables is factored ac-

cording to the graph structure. Using FGM, one 

can incorporate the knowledge into the potential 

function for optimization and perform joint in-

ference over documents. As shown in Figure 1, 

the variables included in the model are described 

as follows: 

Candidate variables 𝑦𝑖 = 〈𝑢, 𝑑𝑖〉 . The ran-

dom variables in the top layer stand for the de-

grees of belief that a document di should be in-

cluded in the PLM of the target user 𝑢. 

Figure 1: A two-layered factor graph (FGM) 

proposed to estimate the mixture weights. 
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Attribute variables xi. Local information is 

stored as the random variables in the bottom lay-

er. For example, x1 might represent the number 

of common friends between the author of a doc-

ument di and our target user. 

The potential functions in the FGM are: 

Attribute-to-candidate function. This poten-

tial function captures the local dependencies of a 

candidate variable to the relevant attributes. Let 

the candidate variable yi correspond to a docu-

ment di, the attribute-to-candidate function of yi 

is defined in a log-linear form: 

𝑓(𝑦𝑖 , 𝐴) =
1

𝑍𝛼
𝑒𝑥𝑝{𝛼𝑇𝐟(𝑦𝑖, 𝐴)} (3) 

where A is the set of attributes of either the doc-

ument di or target user u; f is a vector of feature 

functions which locally model the value of yi 

with attributes in A; 𝑍𝛼  is the local partition 

function and 𝛼 is the weight vector to be learnt. 

In our experiment, we define the vector of 

functions as 𝐟 = 〈𝑓𝑠𝑖𝑚, 𝑓𝑜𝑜𝑣 , 𝑓𝑝𝑜𝑝, 𝑓𝑐𝑚𝑓, 𝑓𝑎𝑓〉𝑇 as: 

 Similarity function 𝑓𝑠𝑖𝑚 . The similarity be-

tween language models of the target user and 

a document should play an important role. We 

use cosine similarity between two unigram 

models in our experiments. 

 Document quality function 𝑓𝑜𝑜𝑣. The out-of-

vocabulary (OOV) ratio is used to measure the 

quality of a document. It is defined as 

𝑓𝑜𝑜𝑣 = 1 −
|{𝑤: 𝑤 ∈ 𝑑𝑖 ∩ 𝑤 ∉ 𝑉}|

|𝑑𝑖|
 (4) 

where 𝑉  is the vocabulary set of the entire 

corpus, with stop words excluded. 

 Document popularity function 𝑓𝑝𝑜𝑝 . This 

function is defined as the number of times di is 

shared to model the popularity of documents. 

 Common friend function 𝑓𝑐𝑚𝑓. It is defined 

as the number of common friends between the 

target user u1 and the author of di. 

 Author friendship function 𝑓𝑎𝑓 . Assuming 

that documents posted by a user with more 

friends are more influential, this function is 

defined as the number of friends of di’s author. 

Candidate-to-candidate function. This po-

tential function defines the correlation of a can-

didate variable yi with another candidate variable 

yj in the factor graph. The function is defined as 

𝑔(𝑦𝑖 , 𝑦𝑗) =
1

𝑍𝑖𝑗,𝛽
𝑒𝑥𝑝{𝛽𝑇𝐠(𝑦𝑖, 𝑦𝑗)} (5) 

where g is a vector of feature functions indicat-

ing whether two variables are correlated. If we 

further denote the set of all related variables as 

𝐺(𝑦𝑖) , then for any candidate variable yi, we 

have the following brief expression: 

𝑔(𝑦𝑖 , 𝐺(𝑦𝑖)) = ∏ 𝑔(𝑦𝑖 , 𝑦𝑗)

𝑦𝑗∈𝐺(𝑦𝑖)

 (6) 

For two candidate variables, let the corre-

sponding document be di and dj, respectively, we 

define the vector 𝐠 = 〈𝑔𝑟𝑒𝑙 , 𝑔𝑐𝑎𝑡〉𝑇 as: 

 User relationship function 𝑔𝑟𝑒𝑙. We assume 

that two candidate variables have higher de-

pendency if they represent documents of the 

same author or the two authors are friends. 

The dependency should be even greater if two 

documents are similar. Let 𝑎(𝑑)  denote the 

author of a document d and 𝒩[𝑢] denote the 

closed neighborhood of a user u, we define 

𝑔𝑟𝑒𝑙 = 𝕀{𝑎(𝑑𝑗) ∈ 𝒩[𝑎(𝑑𝑖)]} × 𝑠𝑖𝑚(𝑑𝑖 , 𝑑𝑗) (7) 

 Co-category function 𝑔𝑐𝑎𝑡. For any two can-

didate variables, it is intuitive that the two var-

iables would have a higher correlation if di 

and dj are of the same category. Let 𝑐(𝑑) de-

note the category of document d, we define 

𝑔𝑐𝑎𝑡 = 𝕀{𝑐(𝑑𝑖) = 𝑐(𝑑𝑗)} × 𝑠𝑖𝑚(𝑑𝑖 , 𝑑𝑗) (8) 

2.3 Model Inference and Optimization 

Let Y and X be the set of all candidate variables 

and attribute variables, respectively. The joint 

distribution encoded by the FGM is given by 

multiplying all potential functions. 

𝑃(𝑌, 𝑋) = ∏ 𝑓(𝑦𝑖, 𝐴)𝑔(𝑦𝑖 , 𝐺(𝑦𝑖))

𝑖

 (9) 

The desired marginal distribution can be ob-

tained by marginalizing all other variables. Since 

under most circumstances, however, the factor 

graph is densely connected, the exact inference is 

intractable and approximate inference is required. 

After obtaining the marginal probabilities, the 

mixture weights 𝜆𝑑𝑖
 in Eq. 2 are estimated by 

normalizing the corresponding marginal proba-

bilities 𝑃(𝑦𝑖) over all candidate variables, which 

can be written as 

𝜆𝑑𝑖
= (1 − 𝜆𝑢1

)
𝑃(𝑦𝑖)

∑ 𝑃(𝑦𝑗)𝑗:𝑑𝑗∈𝒟𝑟𝑒𝑙

 (10) 

where the constraint 𝜆𝑢1
+ ∑ 𝜆𝑑𝑖

= 1 leads to a 

valid probability distribution for our mixture 

model. 

A factor graph is normally optimized by gra-

dient-based methods. Unfortunately, since the 

ground truth values of the mixture weights are 

not available, we are prohibited from using su-

pervised approaches. Here we propose a two-step 

iterative procedure to optimize our model. At 

613



first, all the model parameters (i.e. 𝛼, 𝛽, 𝜆𝑢) are 

randomly initialized. Then, we infer the marginal 

probabilities of candidate variables. Given these 

marginal probabilities, we can evaluate the per-

plexity of the user language model on a held-out 

dataset, and search for better parameters. This 

procedure is repeated until convergence. Also, 

notice that by using FGM, we reduce the number 

of parameters from 1 + |𝒟𝑟𝑒𝑙| to 1 + |𝛼| + |𝛽|, 

lowering the risk of overfitting. 

3 Experiments 

3.1 Dataset and Experiment Setup 

We perform experiments on the Twitter dataset 

collected by Galuba et al. (2010). Twitter data 

have been used to verify models with different 

purposes (Lin et al., 2011; Tan et al., 2011). To 

emphasize on the cold start scenario, we random-

ly selected 15 users with about 35 tweets and 70 

friends as candidates for an authorship attribution 

task. Our experiment corpus consists of 4322 

tweets. All words with less than 5 occurrences 

are removed. Stop words and URLs are also re-

moved and all tweets are stemmed. We identify 

the 100 most frequent terms as categories. The 

size of the vocabulary set is 1377. 

We randomly partitioned the tweets of each 

user into training, validation and testing sets. The 

reported result is the average of 10 random splits. 

In all experiments, we vary the size of training 

data from 1% to 15%, and hold out the same 

number of tweets from each user as validation 

and testing data. The statistics of our dataset, 

given 15% training data, are shown in Table 1. 

 Loopy belief propagation (LBP) is used to ob-

tain the marginal probabilities of the variables 

(Murphy et al., 1999). Parameters are searched 

with the pattern search algorithm (Audet and 

Dennis, 2002). To not lose generality, we use the 

default configuration in all experiments. 

# of Max. Min. Avg. 

Tweets 70 19 35.4 

Friends 139 24 68.9 

Variables 467 97 252.7 

Edges 9216 231 3427.1 

Table 1: Dataset statistics 

3.2 Baseline Methods 

We compare our framework with two baseline 

methods. The first (“Cosine”) is a straightfor-

ward implementation that sets all mixture 

weights 𝜆𝑑𝑖
 to the cosine similarity between the 

probability mass vectors of the document and 

user unigram language models. The second 

(“PS”) uses the pattern search algorithm to per-

form constrained optimization over the mixture 

weights. As mentioned in section 2.3, the main 

difference between this method and ours 

(“FGM”) is that we reduce the search space of 

the parameters by FGM. Furthermore, social 

network information is exploited in our frame-

work, while the PS method performs a direct 

search over mixture weights, discarding valuable 

knowledge. 

Different from other smoothing methods that 

are usually mutually exclusive, any other 

smoothing methods can be easily merged into 

our framework. In Eq. 2, the base language 

model 𝑃𝑢1
(𝑤) can be already smoothed by any 

techniques before being plugged into our frame-

work. Our framework then enriches the user lan-

guage model with social network information. 

We select four popular smoothing methods to 

demonstrate such effect, namely additive 

smoothing, absolute smoothing (Ney et al., 1995), 

Jelinek-Mercer smoothing (Jelinek and Mercer, 

1980) and Dirichlet smoothing (MacKay and 

Peto, 1994). The results of using only the base 

model (i.e. set 𝜆𝑑𝑖
= 0 in Eq. 2) are denoted as 

“Base” in the following tables. 

Train % 
Additive Absolute 

Base Cosine PS FGM Base Cosine PS FGM 
1% 900.4 712.6 725.5 537.5** 895.3 703.1 722.1 544.5** 

5% 814.5 623.4 690.5 506.8** 782.4 607.9 678.4 510.2** 

10% 757.7 566.6 684.8 481.2** 708.4 552.7 661.0 485.8** 

15% 693.8 521.0 635.2 474.8** 647.4 504.3 622.3 474.1** 

Train % 
Jelinek-Mercer Dirichlet 

Base Cosine PS FGM Base Cosine PS FGM 
1% 637.8 571.4 643.1 541.0** 638.5 571.3 643.1 541.0** 

5% 593.9 526.1 602.9 505.4** 595.0 526.6 616.5 507.2** 

10% 559.2 494.1 573.8 483.6** 560.4 494.9 579.6 486.0** 

15% 535.3 473.4 560.2 473.0 535.7 473.6 563.2 474.4 

Table 2: Testing set perplexity. ** indicates that the best score among all methods is significantly bet-

ter than the next highest score, by t-test at a significance level of 0.05. 
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3.3 Perplexity 

As an intrinsic evaluation, we first compute the 

perplexity of unseen sentences under each user 

language model. The result is shown in Table 2. 

Our method significantly outperforms all of 

the methods in almost all settings. We observe 

that the “PS” method takes a long time to con-

verge and is prone to overfitting, likely because 

it has to search about a few hundred parameters 

on average. As expected, the advantage of our 

model is more apparent when the data is sparse. 

3.4 Authorship Attribution (AA) 

The authorship attribution (AA) task is chosen as 

the extrinsic evaluation metric. Here the goal is 

not about comparing with the state-of-the-art ap-

proaches in AA, but showing that LM-based ap-

proaches can benefit from our framework. 

To apply PLM on this task, a naïve Bayes 

classifier is implemented (Peng et al., 2004). The 

most probable author of a document d is the one 

whose PLM yields the highest probability, and is 

determined by 𝑢∗ = argmax𝑢{∏ 𝑃𝑢(𝑤)𝑤∈𝑑 }. 

The result is shown in Table 3. Our model im-

proves personalization and outperforms the base-

lines under cold start settings. When data is 

sparse, the “PS” method tends to overfit the 

noise, while the “Cosine” method contains too 

few information and is severely biased. Our 

method strikes a balance between model com-

plexity and the amount of information included, 

and hence performs better than the others. 

4 Related Work 

Personalization has long been studied in various 

textual related tasks. Personalized search is es-

tablished by modeling user behavior when using 

search engines (Shen et al., 2005; Xue et al., 

2009). Query language model could be also ex-

panded based on personalized user modeling 

(Chirita et al., 2007). Personalization has also 

been modeled in many NLP tasks such as sum-

marization (Yan et al., 2011) and recommenda-

tion (Yan et al., 2012). Different from our pur-

pose, these models do not aim at exploiting so-

cial media content to enrich a language model. 

Wen et al. (2012) combines user-level language 

models from a social network, but instead of fo-

cusing on the cold start problem, they try to im-

prove the speech recognition performance using 

a mass amount of texts on social network. On the 

other hand, our work explicitly models the more 

sophisticated document-level relationships using 

a probabilistic graphical model. 

5 Conclusion 

The advantage of our model is threefold. First, 

prior knowledge and heuristics about the social 

network can be adapted in a structured way 

through the use of FGM. Second, by exploiting a 

well-studied graphical model, mature inference 

techniques, such as LBP, can be applied in the 

optimization procedure, making it much more 

effective and efficient. Finally, different from 

most smoothing methods that are mutually ex-

clusive, any other smoothing method can be in-

corporated into our framework to be further en-

hanced. Using only 1% of the training corpus, 

our model can improve the perplexity of base 

models by as much as 40% and the accuracy of 

authorship attribution by at most 15%. 
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Train % 
Additive Absolute 

Base Cosine PS FGM Base Cosine PS FGM 
1% 54.67 58.27 61.07 63.74 49.47 57.60 58.27 64.27** 

5% 61.47 63.20 62.67 68.40** 59.60 62.40 61.33 66.53** 

10% 61.47 65.73 66.27 69.20** 61.47 65.20 64.67 71.87** 

15% 64.27 67.07 62.13 70.40** 64.67 68.27 63.33 71.60** 

Train % 
Jelinek-Mercer Dirichlet 

Base Cosine PS FGM Base Cosine PS FGM 
1% 54.00 60.93 62.00 64.80** 52.80 60.40 61.87 64.67** 

5% 62.67 65.47 64.00 68.00 60.80 65.33 62.40 66.93 

10% 63.87 68.00 67.87 68.53 62.53 67.87 66.40 68.53 

15% 65.87 70.40 64.14 69.87 65.47 70.27 64.53 68.40 

Table 3: Accuracy (%) of authorship attribution. ** indicates that the best score among all methods is 

significantly better than the next highest score, by t-test at a significance level of 0.05. 
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Abstract

Latent topics derived by topic models such
as Latent Dirichlet Allocation (LDA) are
the result of hidden thematic structures
which provide further insights into the
data. The automatic labelling of such
topics derived from social media poses
however new challenges since topics may
characterise novel events happening in the
real world. Existing automatic topic la-
belling approaches which depend on exter-
nal knowledge sources become less appli-
cable here since relevant articles/concepts
of the extracted topics may not exist in ex-
ternal sources. In this paper we propose
to address the problem of automatic la-
belling of latent topics learned from Twit-
ter as a summarisation problem. We in-
troduce a framework which apply sum-
marisation algorithms to generate topic la-
bels. These algorithms are independent
of external sources and only rely on the
identification of dominant terms in doc-
uments related to the latent topic. We
compare the efficiency of existing state
of the art summarisation algorithms. Our
results suggest that summarisation algo-
rithms generate better topic labels which
capture event-related context compared to
the top-n terms returned by LDA.

1 Introduction
Topic model based algorithms applied to social
media data have become a mainstream technique
in performing various tasks including sentiment
analysis (He, 2012) and event detection (Zhao et
al., 2012; Diao et al., 2012). However, one of
the main challenges is the task of understanding
the semantics of a topic. This task has been ap-
proached by investigating methodologies for iden-
tifying meaningful topics through semantic coher-

ence (Aletras and Stevenson, 2013; Mimno et al.,
2011; Newman et al., 2010) and for characterising
the semantic content of a topic through automatic
labelling techniques (Hulpus et al., 2013; Lau et
al., 2011; Mei et al., 2007). In this paper we focus
on the latter.

Our research task of automatic labelling a topic
consists on selecting a set of words that best de-
scribes the semantics of the terms involved in this
topic. The most generic approach to automatic la-
belling has been to use as primitive labels the top-
n words in a topic distribution learned by a topic
model such as LDA (Griffiths and Steyvers, 2004;
Blei et al., 2003). Such top words are usually
ranked using the marginal probabilities P (wi|tj)
associated with each word wi for a given topic tj .
This task can be illustrated by considering the fol-
lowing topic derived from social media related to
Education:

school protest student fee choic motherlod
tuition teacher anger polic

where the top 10 words ranked by P (wi|tj) for
this topic are listed. Therefore the task is to find
the top-n terms which are more representative of
the given topic. In this example, the topic certainly
relates to a student protest as revealed by the top
3 terms which can be used as a good label for this
topic.

However previous work has shown that top
terms are not enough for interpreting the coherent
meaning of a topic (Mei et al., 2007). More re-
cent approaches have explored the use of external
sources (e.g. Wikipedia, WordNet) for supporting
the automatic labelling of topics by deriving can-
didate labels by means of lexical (Lau et al., 2011;
Magatti et al., 2009; Mei et al., 2007) or graph-
based (Hulpus et al., 2013) algorithms applied on
these sources.

Mei et al. (2007) proposed an unsupervised
probabilistic methodology to automatically assign
a label to a topic model. Their proposed approach
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was defined as an optimisation problem involving
the minimisation of the KL divergence between a
given topic and the candidate labels while max-
imising the mutual information between these two
word distributions. Lau et al. (2010) proposed to
label topics by selecting top-n terms to label the
overall topic based on different ranking mecha-
nisms including pointwise mutual information and
conditional probabilities.

Methods relying on external sources for auto-
matic labelling of topics include the work by Ma-
gatti et al. (2009) which derived candidate topic
labels for topics induced by LDA using the hi-
erarchy obtained from the Google Directory ser-
vice and expanded through the use of the OpenOf-
fice English Thesaurus. Lau et al. (2011) gen-
erated label candidates for a topic based on top-
ranking topic terms and titles of Wikipedia arti-
cles. They then built a Support Vector Regres-
sion (SVR) model for ranking the label candidates.
More recently, Hulpus et al. (2013) proposed to
make use of a structured data source (DBpedia)
and employed graph centrality measures to gener-
ate semantic concept labels which can characterise
the content of a topic.

Most previous topic labelling approaches focus
on topics derived from well formatted and static
documents. However in contrast to this type of
content, the labelling of topics derived from tweets
presents different challenges. In nature microp-
ost content is sparse and present ill-formed words.
Moreover, the use of Twitter as the “what’s-
happening-right now” tool, introduces new event-
dependent relations between words which might
not have a counter part in existing knowledge
sources (e.g. Wikipedia). Our original interest in
labelling topics stems from work in topic model
based event extraction from social media, in par-
ticular from tweets (Shen et al., 2013; Diao et
al., 2012). As opposed to previous approaches,
the research presented in this paper addresses the
labelling of topics exposing event-related content
that might not have a counter part on existing ex-
ternal sources. Based on the observation that a
short summary of a collection of documents can
serve as a label characterising the collection, we
propose to generate topic label candidates based
on the summarisation of a topic’s relevant docu-
ments. Our contributions are two-fold:

- We propose a novel approach for topics la-
belling that relies on term relevance of documents

relating to a topic; and
- We show that summarisation algorithms,

which are independent of extenal sources, can be
used with success to label topics, presenting a
higher perfomance than the top-n terms baseline.

2 Methodology
We propose to approach the topic labelling prob-
lem as a multi-document summarisation task. The
following describes our proposed framework to
characterise documents relevant to a topic.

2.1 Preliminaries

Given a set of documents the problem to be solved
by topic modelling is the posterior inference of the
variables, which determine the hidden thematic
structures that best explain an observed set of doc-
uments. Focusing on the Latent Dirichlet Alloca-
tion (LDA) model (Blei et al., 2003; Griffiths and
Steyvers, 2004), let D be a corpus of documents
denoted as D = {d1,d2, ..,dD}; where each doc-
ument consists of a sequence ofNd words denoted
by d = (w1, w2, .., wNd

); and each word in a
document is an item from a vocabulary index of
V different terms denoted by {1, 2, .., V }. Given
D documents containing K topics expressed over
V unique words, LDA generative process is de-
scribed as follows:
- For each topic k ∈ {1, ...K} draw φk ∼
Dirichlet(β),
- For each document d ∈ {1..D}:
? draw θd ∼ Dirichlet(α);
? For each word n ∈ {1..Nd} in document d:
◦ draw a topic zd,n ∼ Multinomial(θd);
◦ draw a word wd,n ∼ Multinomial(ϕzd,n

).
where φk is the word distribution for topic k,

and θd is the distribution of topics in document
d. Topics are interpreted using the top N terms
ranked based on the marginal probability p(wi|tj).
2.2 Automatic Labelling of Topic Models

Given K topics over the document collection D,
the topic labelling task consists on discovering a
sequence of words for each topic k ∈ K. We pro-
pose to generate topic label candidates by sum-
marising topic relevant documents. Such docu-
ments can be derived using both the observed data
from the corpus D and the inferred topic model
variables. In particular, the prominent topic of a
document d can be found by

kd = arg max
k∈K

p(k|d) (1)
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Therefore given a topic k, a set of C documents
related to this topic can be obtained via equation
1.

Given the set of documents C relevant to topic k,
we proposed to generate a label of a desired length
x from the summarisation of C.

2.3 Topic Labelling by Summarisation

We compare different summarisation algorithms
based on their ability to provide a good label to a
given topic. In particular we investigate the use of
lexical features by comparing three different well-
known multi-document summarisation algorithms
against the top-n topic terms baseline. These al-
gorithms include:

Sum Basic (SB) This is a frequency based sum-
marisation algorithm (Nenkova and Vanderwende,
2005), which computes initial word probabilities
for words in a text. It then weights each sen-
tence in the text (in our case a micropost) by
computing the average probability of the words in
the sentence. In each iteration it picks the high-
est weighted document and from it the highest
weighted word. It uses an update function which
penalises words which have already been picked.

Hybrid TFIDF (TFIDF) It is similar to SB,
however rather than computing the initial word
probabilities based on word frequencies it weights
terms based on TFIDF. In this case the document
frequency is computed as the number of times a
word appears in a micropost from the collection
C. Following the same procedure as SB it returns
the top x weighted terms.

Maximal Marginal Relevance (MMR) This is a
relevance based ranking algorithm (Carbonell and
Goldstein, 1998), which avoids redundancy in the
documents used for generating a summary. It mea-
sures the degree of dissimilarity between the docu-
ments considered and previously selected ones al-
ready in the ranked list.

Text Rank (TR) This is a graph-based sum-
mariser method (Mihalcea and Tarau, 2004) where
each word is a vertex. The relevance of a vertex
(term) to the graph is computed based on global
information recursively drawn from the whole
graph. It uses the PageRank algorithm (Brin and
Page, 1998) to recursively change the weight of
the vertices. The final score of a word is there-
fore not only dependent on the terms immediately
connected to it but also on how these terms con-

nect to others. To assign the weight of an edge
between two terms, TextRank computes word co-
occurrence in windows of N words (in our case
N = 10). Once a final score is calculated for each
vertex of the graph, TextRank sorts the terms in
a reverse order and provided the top T vertices in
the ranking. Each of these algorithms produces a
label of a desired length x for a given topic k.

3 Experimental Setup

3.1 Dataset

Our Twitter Corpus (TW) was collected between
November 2010 and January 2011. TW comprises
over 1 million tweets. We used the OpenCalais’
document categorisation service1 to generate cate-
gorical sets. In particular, we considered four dif-
ferent categories which contain many real-world
events, namely: War and Conflict (War), Disaster
and Accident (DisAc), Education (Edu) and Law
and Crime (LawCri). The final TW dataset after
removing retweets and short microposts (less than
5 words after removing stopwords) contains 7000
tweets in each category.

We preprocessed TW by first removing: punc-
tuation, numbers, non-alphabet characters, stop
words, user mentions, and URL links. We then
performed Porter stemming (Porter, 1980) in order
to reduce the vocabulary size. Finally to address
the issue of data sparseness in the TW dataset, we
removed words with a frequency lower than 5.

3.2 Generating the Gold Standard

Evaluation of automatic topic labelling often re-
lied on human assessment which requires heavy
manual effort (Lau et al., 2011; Hulpus et al.,
2013). However performing human evaluations of
Social Media test sets comprising thousands of in-
puts become a difficult task. This is due to both
the corpus size, the diversity of event-related top-
ics and the limited availability of domain experts.
To alleviate this issue here, we followed the distri-
bution similarity approach, which has been widely
applied in the automatic generation of gold stan-
dards (GSs) for summary evaluations (Donaway et
al., 2000; Lin et al., 2006; Louis and Nenkova,
2009; Louis and Nenkova, 2013). This approach
compares two corpora, one for which no GS labels
exist, against a reference corpus for which a GS
exists. In our case these corpora correspond to the
TW and a Newswire dataset (NW). Since previous

1OpenCalais service, http://www.opencalais.com
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research has shown that headlines are good indi-
cators of the main focus of a text, both in struc-
ture and content, and that they can act as a human
produced abstract (Nenkova, 2005), we used head-
lines as the GS labels of NW.

The News Corpus (NW) was collected during
the same period of time as the TW corpus. NW
consists of a collection of news articles crawled
from traditional news media (BBC, CNN, and
New York Times) comprising over 77,000 articles
which include supplemental metadata (e.g. head-
line, author, publishing date). We also used the
OpenCalais’ document categorisation service to
automatically label news articles and considered
the same four topical categories, (War, DisAc,
Edu and LawCri). The same preprocessing steps
were performed on NW.

Therefore, following a similarity alignment ap-
proach we performed the steps oulined in Algo-
rithm 1 for generating the GS topic labels of a topic
in TW.

Algorithm 1 GS for Topic Labels
Input: LDA topics for TW, and the LDA topics for NW for

category c.
Output: Gold standard topic label for each of the LDA top-

ics for TW.
1: for each topic i ∈ {1, 2, ..., 100} from TW do
2: for each topic j ∈ {1, 2..., 100} from NW do
3: Compute the Cosine similarity between word dis-

tributions of topic ti and topic tj .
4: end for
5: Select topic j which has the highest similarity to i and

whose similarity measure is greater than a threshold
(in this case 0.7)

6: end for
7: for each of the extracted topic pairs (ti − tj) do
8: Collect relevant news articles Cj

NW of topic tj from
the NW set.

9: Extract the headlines of news articles from Cj
NW and

select the top x most frequent words as the gold stan-
dard label for topic ti in the TW set

10: end for

These steps can be outlined as follows:1) We
ran LDA on TW and NW separately for each cate-
gory with the number of topics set to 100; 2) We
then aligned the Twitter topics and Newswire top-
ics by the similarity measurement of word distri-
butions of these topics (Ercan and Cicekli, 2008;
Haghighi and Vanderwende, 2009; Wang et al.,
2009; Delort and Alfonseca, 2012); 3) Finally to
generate the GS label for each aligned topic pair
(ti − tj), we extracted the headlines of the news
articles relevant to tj and selected the top x most
frequent words (after stop word removal and stem-
ming). The generated label was used as the gold

standard label for the corresponding Twitter topic
ti in the topic pair.

4 Experimental Results
We compared the results of the summarisation
techniques with the top terms (TT) of a topic as
our baseline. These TT set corresponds to the
top x terms ranked based on the probability of
the word given the topic (p(w|k)) from the topic
model. We evaluated these summarisation ap-
proaches with the ROUGE-1 method (Lin, 2004),
a widely used summarisation evaluation metric
that correlates well with human evaluation (Liu
and Liu, 2008). This method measures the over-
lap of words between the generated summary and
a reference, in our case the GS generated from the
NW dataset.

The evaluation was performed at x =
{1, .., 10}. Figure 1 presents the ROUGE-1 per-
formance of the summarisation approaches as the
lengthx of the generated topic label increases. We
can see in all four categories that the SB and
TFIDF approaches provide a better summarisa-
tion coverage as the length of the topic label in-
creases. In particular, in both the Education
and Law & Crime categories, both SB and
TFIDF outperforms TT and TR by a large margin.
The obtained ROUGE-1 performance is within the
same range of performance previously reported on
Social Media summarisation (Inouye and Kalita,
2011; Nichols et al., 2012; Ren et al., 2013).

Table 1 presents average results for ROUGE-
1 in the four categories. Particularly the SB
and TFIDF summarisation techniques consis-
tently outperform the TT baseline across all four
categories. SB gives the best results in three cate-
gories except War.

ROUGE-1

TT SB TFIDF MMR TR
War 0.162 0.184 0.192 0.154 0.141
DisAc 0.134 0.194 0.160 0.132 0.124
Edu 0.106 0.240 0.187 0.104 0.023
LawCri 0.035 0.159 0.149 0.034 0.115

Table 1: Average ROUGE-1 for topic labels at x =
{1..10}, generated from the TW dataset.

The generated labels with summarisation at x =
5 are presented in Table 2, where GS represents the
label generated from the Newswire headlines.

Different summarisation techniques reveal
words which do not appear in the top terms but
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Figure 1: Performance in ROUGE for Twitter-derived topic labels, where x is the number of terms in the
generated label

which are relevant to the information clustered
by the topic. In this way, the labels generated for
topics belonging to different categories generally
extend the information provided by the top terms.
For example in Table 2, the DisAc headline is
characteristic of the New Zealand’s Pike River’s
coal mine blast accident, which is an event
occurred in November 2010.

Although the top 5 terms set from the LDA topic
extracted from TW (listed under TT) does capture
relevant information related to the event, it does
not provide information regarding the blast. In this
sense the topic label generated by SB more accu-
rately describes this event.

We can also notice that the GS labels generated
from Newswire media presented in Table 2 appear
on their own, to be good labels for the TW topics.
However as we described in the introduction we
want to avoid relaying on external sources for the
derivation of topic labels.

This experiment shows that frequency based
summarisation techniques outperform graph-
based and relevance based summarisation
techniques for generating topic labels that im-
prove upon the top-terms baseline, without relying
on external sources. This is an attractive property
for automatically generating topic labels for
tweets where their event-related content might not
have a counter part on existing external sources.

5 Conclusions and Future Work
In this paper we proposed a novel alternative to
topic labelling which do not rely on external data
sources. To the best of out knowledge no existing
work has been formally studied for automatic la-
belling through summarisation. This experiment
shows that existing summarisation techniques can
be exploited to provide a better label of a topic,
extending in this way a topic’s information by pro-

War DisAc

GS protest brief polic
afghanistan attack world
leader bomb obama
pakistan

mine zealand rescu miner
coal fire blast kill man dis-
ast

TT polic offic milit recent
mosqu

mine coal pike river
zealand

SB terror war polic arrest offic mine coal explos river pike
TFIDF polic war arrest offic terror mine coal pike safeti

zealand
MMR recent milit arrest attack

target
trap zealand coal mine ex-
plos

TR war world peac terror hope mine zealand plan fire fda

Edu LawCri

GS school protest student fee
choic motherlod tuition
teacher anger polic

man charg murder arrest
polic brief woman attack
inquiri found

TT student univers protest oc-
cupi plan

man law child deal jail

SB student univers school
protest educ

man arrest law kill judg

TFIDF student univers protest
plan colleg

man arrest law judg kill

MMR nation colleg protest stu-
dent occupi

found kid wife student jail

TR student tuition fee group
hit

man law child deal jail

Table 2: Labelling examples for topics generated
from the TW Dataset. GS represents the gold-
standard generated from the relevant Newswire
dataset. All terms are Porter stemmed as described
in subsection 3.1

viding a richer context than top-terms. These re-
sults show that there is room to further improve
upon existing summarisation techniques to cater
for generating candidate labels.
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Abstract
String similarity is most often measured
by weighted or unweighted edit distance
d(x, y). Ristad and Yianilos (1998) de-
fined stochastic edit distance—a probabil-
ity distribution p(y | x) whose parame-
ters can be trained from data. We general-
ize this so that the probability of choosing
each edit operation can depend on contex-
tual features. We show how to construct
and train a probabilistic finite-state trans-
ducer that computes our stochastic con-
textual edit distance. To illustrate the im-
provement from conditioning on context,
we model typos found in social media text.

1 Introduction

Many problems in natural language processing
can be viewed as stochastically mapping one
string to another: e.g., transliteration, pronuncia-
tion modeling, phonology, morphology, spelling
correction, and text normalization. Ristad and
Yianilos (1998) describe how to train the param-
eters of a stochastic editing process that moves
through the input string x from left to right, trans-
forming it into the output string y. In this paper we
generalize this process so that the edit probabilities
are conditioned on input and output context.

We further show how to model the conditional
distribution p(y | x) as a probabilistic finite-state
transducer (PFST), which can be easily combined
with other transducers or grammars for particu-
lar applications. We contrast our probabilistic
transducers with the more general framework of
weighted finite-state transducers (WFST), explain-
ing why our restriction provides computational ad-
vantages when reasoning about unknown strings.

Constructing the finite-state transducer is tricky,
so we give the explicit construction for use by oth-
ers. We describe how to train its parameters when
the contextual edit probabilities are given by a log-
linear model. We provide a library for training
both PFSTs and WFSTs that works with OpenFST
(Allauzen et al., 2007), and we illustrate its use
with simple experiments on typos, which demon-
strate the benefit of context.

2 Stochastic Contextual Edit Distance

Our goal is to define a family of probability distri-
butions pθ(y | x), where x ∈ Σ∗x and y ∈ Σ∗y are
input and output strings over finite alphabets Σx
and Σy, and θ is a parameter vector.

Let xi denote the ith character of x. If i < 1 or
i > |x|, then xi is the distinguished symbol BOS

or EOS (“beginning/end of string”). Let xi:j denote
the (j − i)-character substring xi+1xi+2 · · ·xj .

Consider a stochastic edit process that reads in-
put string x while writing output string y. Having
read the prefix x0:i and written the prefix y0:j , the
process must stochastically choose one of the fol-
lowing 2|Σy|+ 1 edit operations:

• DELETE: Read xi+1 but write nothing.
• INSERT(t) for some t ∈ Σy: Write yj+1 = t

without reading anything.
• SUBST(t) for some t ∈ Σy: Read xi+1 and

write yj+1 = t. Note that the traditional
COPY operation is obtained as SUBST(xi+1).

In the special case where xi+1 = EOS, the choices
are instead INSERT(t) and HALT (where the latter
may be viewed as copying the EOS symbol).

The probability of each edit operation depends
on θ and is conditioned on the left input context
C1 = x(i−N1):i, the right input context C2 =
xi:(i+N2) , and the left output context C3 =
y(j−N3):j , where the constants N1, N2, N3 ≥ 0
specify the model’s context window sizes.1 Note
that the probability cannot be conditioned on right
output context because those characters have not
yet been chosen. Ordinary stochastic edit dis-
tance (Ristad and Yianilos, 1998) is simply the
case (N1, N2, N3) = (0, 1, 0), while Bouchard-
Côté et al. (2007) used roughly (1, 2, 0).

Now pθ(y | x) is the probability that this pro-
cess will write y as it reads a given x. This is the
total probability (given x) of all latent edit oper-
ation sequences that write y. In general there are
exponentially many such sequences, each imply-
ing a different alignment of y to x.

1IfN2 = 0, so that we do not condition on xi+1, we must
still condition on whether xi+1 = EOS (a single bit). We
gloss over special handling for N2 = 0; but it is in our code.
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This model is reminiscent of conditional mod-
els in MT that perform stepwise generation of one
string or structure from another—e.g., string align-
ment models with contextual features (Cherry and
Lin, 2003; Liu et al., 2005; Dyer et al., 2013), or
tree transducers (Knight and Graehl, 2005).

3 Probabilistic FSTs

We will construct a probabilistic finite-state
transducer (PFST) that compactly models pθ(y |
x) for all (x, y) pairs.2 Then various computa-
tions with this distribution can be reduced to stan-
dard finite-state computations that efficiently em-
ploy dynamic programming over the structure of
the PFST, and the PFST can be easily combined
with other finite-state distributions and functions
(Mohri, 1997; Eisner, 2001).

A PFST is a two-tape generalization of the well-
known nondeterministic finite-state acceptor. It
is a finite directed multigraph where each arc is
labeled with an input in Σx ∪ {ε}, an output in
Σy∪{ε}, and a probability in [0, 1]. (ε is the empty
string.) Each state (i.e., vertex) has a halt proba-
bility in [0, 1], and there is a single initial state qI.
Each path from qI to a final state qF has

• an input string x, given by the concatenation
of its arcs’ input labels;
• an output string y, given similarly;
• a probability, given by the product of its arcs’

probabilities and the halt probability of qF.

We define p(y | x) as the total probability of all
paths having input x and output y. In our applica-
tion, a PFST path corresponds to an edit sequence
that reads x and writes y. The path’s probability is
the probability of that edit sequence given x.

We must take care to ensure that for any x ∈ Σ∗x,
the total probability of all paths accepting x is 1,
so that pθ(y | x) is truly a conditional probability
distribution. This is guaranteed by the following
sufficient conditions (we omit the proof for space),
which do not seem to appear in previous literature:

• For each state q and each symbol b ∈ Σx, the
arcs from q with input label b or ε must have
total probability of 1. (These are the available
choices if the next input character is x.)

2Several authors have given recipes for finite-state trans-
ducers that perform a single contextual edit operation (Kaplan
and Kay, 1994; Mohri and Sproat, 1996; Gerdemann and van
Noord, 1999). Such “rewrite rules” can be individually more
expressive than our simple edit operations of section 2; but it
is unclear how to train a cascade of them to model p(y | x).

• For each state q, the halt action and the arcs
from q with input label ε must have total
probability of 1. (These are the available
choices if there is no next input character.)

• Every state q must be co-accessible, i.e., there
must be a path of probability > 0 from q to
some qF . (Otherwise, the PFST could lose
some probability mass to infinite paths. The
canonical case of this involves an loop q → q
with input label ε and probability 1.)

We take the first two conditions to be part of the
definition of a PFST. The final condition requires
our PFST to be “tight” in the same sense as a
PCFG (Chi and Geman, 1998), although the tight-
ness conditions for a PCFG are more complex.
In section 7, we discuss the costs and benefits of
PFSTs relative to other options.

4 The Contextual Edit PFST

We now define a PFST topology that concisely
captures the contextual edit process of section 2.
We are given the alphabets Σx,Σy and the context
window sizes N1, N2, N3 ≥ 0.

For each possible context triple C =
(C1, C2, C3) as defined in section 2, we construct
an edit state qC whose outgoing arcs correspond
to the possible edit operations in that context.

One might expect that the SUBST(t) edit oper-
ation that reads s = xi+1 and writes t = yj+1

would correspond to an arc with s, t as its input
and output labels. However, we give a more effi-
cient design where in the course of reaching qC ,
the PFST has already read s and indeed the en-
tire right input context C2 = xi:(i+N2). So our
PFST’s input and output actions are “out of sync”:
its read head is N2 characters ahead of its write
head. When the edit process of section 2 has read
x0:i and written y0:j , our PFST implementation
will actually have read x0:(i+N2) and written y0:j .

This design eliminates the need for nondeter-
ministic guessing (of the right context xi:(i+N2)) to
determine the edit probability. The PFST’s state is
fully determined by the characters that it has read
and written so far. This makes left-to-right com-
position in section 5 efficient.

A fragment of our construction is illustrated in
Figure 1. An edit state qC has the following out-
going edit arcs, each of which corresponds to an
edit operation that replaces some s ∈ Σx ∪ {ε}
with some t ∈ Σy ∪ {ε}:
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y     _

a     bc

z       _

a      b

x      _

a     ba

x       _ε:z /

ε:ε /
 

ε:y /

ε:x / 

insert z

insert x

substitute y for b

delete b
b      c

x      _   

read c

c:ε / 1

      p(INSERT(x) | (a,bc,x) )

       
p(INSE

RT(z) | (a
,bc,x

) )

p(SUBST(y) | (a,bc,x) )

      p
(DELE

TE(b) | (a,
bc,x) )

a     ba

x       _

a      bc

x       _

Figure 1: A fragment of a PFST withN1 = 1, N2 = 2, N3 =
1. Edit states are shaded. A state qC is drawn with left and
right input contexts C1, C2 in the left and right upper quad-
rants, and left output context C3 in the left lower quadrant.
Each arc is labeled with input:output / probability.

• A single arc with probability p(DELETE | C)
(here s = (C2)1, t = ε)
• For each t ∈ Σy, an arc with probability
p(INSERT(t) | C) (here s = ε)
• For each t ∈ Σy, an arc with probability
p(SUBST(t) | C) (here s = (C2)1)

Each edit arc is labeled with input ε (because s
has already been read) and output t. The arc leads
from qC to qC′ , a state that moves s and t into
the left contexts: C ′1 = suffix(C1s,N1), C ′2 =
suffix(C2, N2 − |s|), C ′3 = suffix(C3t,N3).

Section 2 mentions that the end of x requires
special handling. An edit state qC whose C2 =
EOSN2 only has outgoing INSERT(t) arcs, and has
a halt probability of p(HALT | C). The halt proba-
bility at all other states is 0.

We must also build some non-edit states of the
form qC where |C2| < N2. Such a state does not
have the full N2 characters of lookahead that are
needed to determine the conditional probability of
an edit. Its outgoing arcs deterministically read
a new character into the right input context. For
each s ∈ Σx, we have an arc of probability 1 from
qC to qC′ where C ′ = (C1, C2s, C3), labeled with
input s and output ε. Following such arcs from qC
will reach an edit state after N2 − |C2| steps.

The initial state qI with I = (BOSN1 , ε, BOSN3)
is a non-edit state. Other non-edit states are con-
structed only when they are reachable from an-
other state. In particular, a DELETE or SUBST arc
always transitions to a non-edit state, since it con-
sumes one of the lookahead characters.

5 Computational Complexity

We summarize some useful facts without proof.
For fixed alphabets Σx and Σy, our final

PFST, T , has O(|Σx|N1+N2 |Σy|N3) states and
O(|Σx|N1+N2 |Σy|N3+1) arcs. Composing this T
with deterministic FSAs takes time linear in the
size of the result, using a left-to-right, on-the-fly
implementation of the composition operator ◦.

Given strings x and y, we can compute pθ(y |
x) as the total probability of all paths in x ◦ T ◦ y.
This acyclic weighted FST has O(|x| · |y|) states
and arcs. It takes onlyO(|x| · |y|) time to construct
it and sum up its paths by dynamic programming,
just as in other edit distance algorithms.

Given only x, taking the output language of
x ◦ T yields the full distribution pθ(y | x)
as a cyclic PFSA with O(|x| · ΣN3

y ) states and
O(|x| · ΣN3+1

y ) arcs. Finding its most probable
path (i.e., most probable aligned y) takes time
O(|arcs| log |states|), while computing every arc’s
expected number of traversals under p(y | x) takes
time O(|arcs| · |states|).3

pθ(y | x) may be used as a noisy channel
model. Given a language model p(x) repre-
sented as a PFSA X , X ◦ T gives p(x, y) for all
x, y. In the case of an n-gram language model
with n ≤ N1 + N2, this composition is effi-
cient: it merely reweights the arcs of T . We
use Bayes’ Theorem to reconstruct x from ob-
served y: X ◦ T ◦ y gives p(x, y) (proportional
to p(x | y)) for each x. This weighted FSA has
O(ΣN1+N2

x · |y|) states and arcs.

6 Parameterization and Training

While the parameters θ could be trained via var-
ious objective functions, it is particularly effi-
cient to compute the gradient of conditional log-
likelihood,

∑
k log pθ(yk | xk), given a sample

of pairs (xk, yk). This is a non-convex objective
function because of the latent x-to-y alignments:
we do not observe which path transduced xk to yk.
Recall from section 5 that these possible paths are
represented by the small weighted FSA xk◦T ◦yk.

Now, a path’s probability is defined by multiply-
ing the contextual probabilities of edit operations
e. As suggested by Berg-Kirkpatrick et al. (2010),
we model these steps using a conditional log-
linear model, pθ(e | C) def= 1

ZC
exp

(
θ · ~f(C, e)

)
.

3Speedups: In both runtimes, a factor of |x| can be elimi-
nated from |states| by first decomposing x ◦T into its O(|x|)
strongly connected components. And the |states| factor in the
second runtime is unnecessary in practice, as just the first few
iterations of conjugate gradient are enough to achieve good
approximate convergence when solving the sparse linear sys-
tem that defines the forward probabilities in the cyclic PFSA.
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To increase log pθ(yk | xk), we must raise the
probability of the edits e that were used to trans-
duce xk to yk, relative to competing edits from the
same contexts C. This means raising θ · f(C, e)
and/or lowering ZC . Thus, log pθ(yk | xk) de-
pends only on the probabilities of edit arcs in T
that appear in xk ◦ T ◦ yk, and the competing edit
arcs from the same edit states qC .

The gradient∇θ log pθ(yk | xk) takes the form∑
C,e

c(C, e)

[
~f(C, e)−

∑
e′
pθ(e′ | C)~f(C, e′)

]
where c(C, e) is the expected number of times that
e was chosen in context C given (xk, yk). (That
can be found by the forward-backward algorithm
on xk ◦T ◦ yk.) So the gradient adds up the differ-
ences between observed and expected feature vec-
tors at contexts C, where contexts are weighted by
how many times they were likely encountered.

In practice, it is efficient to hold the counts
c(C, e) constant over several gradient steps, since
this amortizes the work of computing them. This
can be viewed as a generalized EM algorithm that
imputes the hidden paths (giving c) at the “E” step
and improves their probability at the “M” step.

Algorithm 1 provides the training pseudocode.

Algorithm 1 Training a PFST Tθ by EM.
1: while not converged do
2: reset all counts to 0 . begin the “E step”
3: for k ← 1 to K do . loop over training data
4: M = xk ◦ Tθ ◦ yk . small acyclic WFST
5: ~α = FORWARD-ALGORITHM(M )
6: ~β = BACKWARD-ALGORITHM(M )
7: for arc A ∈M , from state q → q′ do
8: if A was derived from an arc in Tθ

representing edit e, from edit state qC , then
9: c(C, e) += αq · prob(A) · βq′/βqI

10: θ ← L-BFGS(θ, EVAL, max iters=5) . the “M step”
11: function EVAL(θ) . objective function & its gradient
12: F ← 0;∇F ← 0
13: for context C such that (∃e)c(C, e) > 0 do
14: count← 0; expected← 0; ZC ← 0
15: for possible edits e in context C do
16: F += c(C, e) · (θ · ~f(C, e))

17: ∇F += c(C, e) · ~f(C, e)
18: count += c(C, e)
19: expected += exp(θ · ~f(C, e)) · ~f(C, e)

20: ZC += exp(θ · ~f(C, e))

21: F -= count · logZC ;∇F -= count ·expected/ZC
22: return (F,∇F )

7 PFSTs versus WFSTs

Our PFST model of p(y | x) enforces a normal-
ized probability distribution at each state. Drop-

ping this requirement gives a weighted FST
(WFST), whose path weightsw(x, y) can be glob-
ally normalized (divided by a constant Zx) to ob-
tain probabilities p(y | x). WFST models of con-
textual edits were studied by Dreyer et al. (2008).

PFSTs and WFSTs are respectively related to
MEMMs (McCallum et al., 2000) and CRFs (Laf-
ferty et al., 2001). They gain added power from
hidden states and ε transitions (although to permit
a finite-state encoding, they condition on x in a
more restricted way than MEMMs and CRFs).

WFSTs are likely to beat PFSTs as linguistic
models,4 just as CRFs beat MEMMs (Klein and
Manning, 2002). A WFST’s advantage is that the
probability of an edit can be indirectly affected by
the weights of other edits at a distance. Also, one
could construct WFSTs where an edit’s weight di-
rectly considers local right output context C4.

So why are we interested in PFSTs? Because
they do not require computing a separate normal-
izing contant Zx for every x. This makes it com-
putationally tractable to use them in settings where
x is uncertain because it is unobserved, partially
observed (e.g., lacks syllable boundaries), or nois-
ily observed. E.g., at the end of section 5, X rep-
resented an uncertain x. So unlike WFSTs, PFSTs
are usable as the conditional distributions in noisy
channel models, channel cascades, and Bayesian
networks. In future we plan to measure their mod-
eling disadvantage and attempt to mitigate it.

PFSTs are also more efficient to train under con-
ditional likelihood. It is faster to compute the gra-
dient (and fewer steps seem to be required in prac-
tice), since we only have to raise the probabilities
of arcs in xk ◦ T ◦ yk relative to competing arcs
in xk ◦ T . We visit at most |xk| · |yk| · |Σy| arcs.
By contrast, training a WFST must raise the prob-
ability of the paths in xk ◦ T ◦ yk relative to the
infinitely many competing paths in xk ◦ T . This
requires summing around cycles in xk ◦T , and re-
quires visiting all of its |xk| · |Σy|N3+1 arcs.

8 Experiments

To demonstrate the utility of contextual edit trans-
ducers, we examine spelling errors in social me-
dia data. Models of spelling errors are useful in
a variety of settings including spelling correction
itself and phylogenetic models of string variation

4WFSTs can also use a simpler topology (Dreyer et al.,
2008) while retaining determinism, since edits can be scored
“in retrospect” after they have passed into the left context.
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Figure 2: (a) Mean log p(y | x) for held-out test examples. (b) Mean expected edit distance (similarly).

(Mays et al., 1991; Church and Gale, 1991; Ku-
kich, 1992; Andrews et al., 2014).

To eliminate experimental confounds, we use
no dictionary or language model as one would in
practice, but directly evaluate our ability to model
p(correct | misspelled). Consider (xk, yk) =
(feeel, feel). Our model defines p(y | xk) for all y.
Our training objective (section 6) tries to make this
large for y = yk. A contextual edit model learns
here that e 7→ ε is more likely in the context of ee.

We report on test data how much probability
mass lands on the true yk. We also report how
much mass lands “near” yk, by measuring the ex-
pected edit distance of the predicted y to the truth.
Expected edit distance is defined as

∑
y pθ(y |

xk)d(y, yk) where d(y, yk) is the Levenshtein dis-
tance between two strings. It can be computed us-
ing standard finite-state algorithms (Mohri, 2003).

8.1 Data
We use an annotated corpus (Aramaki, 2010) of
50000 misspelled words x from tweets along with
their corrections y. All examples have d(x, y) = 1
though we do not exploit this fact. We randomly
selected 6000 training pairs and 100 test pairs. We
regularized the objective by adding λ·||θ||22, where
for each training condition, we chose λ by coarse
grid search to maximize the conditional likelihood
of 100 additional development pairs.

8.2 Context Windows and Edit Features
We considered four different settings for the con-
text window sizes (N1, N2, N3): (0,1,0)=stochas-
tic edit distance, (1,1,0), (0,2,0), and (1,1,1).

Our log-linear edit model (section 6) includes
a dedicated indicator feature for each contextual
edit (C, e), allowing us to fit any conditional dis-
tribution p(e | C). In our “backoff” setting, each
(C, e) also has 13 binary backoff features that it

shares with other (C ′, e′). So we have a total of 14
feature templates, which generate over a million
features in our largest model. The shared features
let us learn that certain properties of a contextual
edit tend to raise or lower its probability (and the
regularizer encourages such generalization).

Each contextual edit (C, e) can be character-
ized as a 5-tuple (s, t, C1, C

′
2, C3): it replaces

s ∈ Σx ∪ {ε} with t ∈ Σy ∪ {ε} when s falls be-
tween C1 and C ′2 (so C2 = sC ′2) and t is preceded
by C3. Then each of the 14 features of (C, e) in-
dicates that a particular subset of this 5-tuple has a
particular value. The subset always includes s, t,
or both. It never includes C1 or C ′2 without s, and
never includes C3 without t.

8.3 Results

Figures 2a and 2b show the learning curves. We
see that both metrics improve with more training
data; with more context; and with backoff. With
backoff, all of the contextual edit models substan-
tially beat ordinary stochastic edit distance, and
their advantage grows with training size.

9 Conclusion

We have presented a trainable, featurizable model
of contextual edit distance. Our main contribu-
tion is an efficient encoding of such a model as
a tight PFST—that is, a WFST that is guaranteed
to directly define conditional string probabilities
without need for further normalization. We are re-
leasing OpenFST-compatible code that can train
both PFSTs and WFSTs (Cotterell and Renduch-
intala, 2014). We formally defined PFSTs, de-
scribed their speed advantage at training time, and
noted that they are crucial in settings where the in-
put string is unknown. In future, we plan to deploy
our PFSTs in such settings.
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Abstract

This paper introduces an unsupervised
graph-based method that selects textual
labels for automatically generated topics.
Our approach uses the topic keywords to
query a search engine and generate a graph
from the words contained in the results.
PageRank is then used to weigh the words
in the graph and score the candidate labels.
The state-of-the-art method for this task is
supervised (Lau et al., 2011). Evaluation
on a standard data set shows that the per-
formance of our approach is consistently
superior to previously reported methods.

1 Introduction

Topic models (Hofmann, 1999; Blei et al., 2003)
have proved to be a useful way to represent the
content of document collections, e.g. (Chaney and
Blei, 2012; Ganguly et al., 2013; Gretarsson et
al., 2012; Hinneburg et al., 2012; Snyder et al.,
2013). In these interfaces, topics need to be pre-
sented to users in an easily interpretable way. A
common way to represent topics is as set of key-
words generated from the n terms with the highest
marginal probabilities. For example, a topic about
the global financial crisis could be represented
by its top 10 most probable terms: FINANCIAL,
BANK, MARKET, GOVERNMENT, MORTGAGE,
BAILOUT, BILLION, STREET, WALL, CRISIS. But
interpreting such lists is not always straightfor-
ward, particularly since background knowledge
may be required (Chang et al., 2009).

Textual labels could assist with the interpre-
tations of topics and researchers have developed
methods to generate these automatically (Mei et
al., 2007; Lau et al., 2010; Lau et al., 2011). For
example, a topic which has keywords SCHOOL,
STUDENT, UNIVERSITY, COLLEGE, TEACHER,
CLASS, EDUCATION, LEARN, HIGH, PROGRAM,

could be labelled as EDUCATION and a suitable la-
bel for the topic shown above would be GLOBAL

FINANCIAL CRISIS. Approaches that make use of
alternative modalities, such as images (Aletras and
Stevenson, 2013), have also been proposed.

Mei et al. (2007) label topics using statistically
significant bigrams identified in a reference collec-
tion. Magatti et al. (2009) introduced an approach
for labelling topics that relied on two hierarchical
knowledge resources labelled by humans, while
Lau et al. (2010) proposed selecting the most rep-
resentative word from a topic as its label. Hulpus
et al. (2013) make use of structured data from DB-
pedia to label topics.

Lau et al. (2011) proposed a method for auto-
matically labelling topics using information from
Wikipedia. A set of candidate labels is gener-
ated from Wikipedia article titles by querying us-
ing topic terms. Additional labels are then gen-
erated by chunk parsing the article titles to iden-
tify n-grams that represent Wikipedia articles as
well. Outlier labels (less relevant to the topic) are
identified and removed. Finally, the top-5 topic
terms are added to the candidate set. The la-
bels are ranked using Support Vector Regression
(SVR) (Vapnik, 1998) and features extracted us-
ing word association measures (i.e. PMI, t-test, χ2

and Dice coefficient), lexical features and search
engine ranking. Lau et al. (2011) report two ver-
sions of their approach, one unsupervised (which
is used as a baseline) and another which is super-
vised. They reported that the supervised version
achieves better performance than a previously re-
ported approach (Mei et al., 2007).

This paper introduces an alternative graph-
based approach which is unsupervised and less
computationally intensive than Lau et al. (2011).
Our method uses topic keywords to form a query.
A graph is generated from the words contained in
the search results and these are then ranked using
the PageRank algorithm (Page et al., 1999; Mihal-
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{‘Description’: ‘Microsoft will accelerate your journey to cloud computing with an

agile and responsive datacenter built from your existing technology investments.’,

‘DisplayUrl’: ‘www.microsoft.com/en-us/server-cloud/datacenter/virtualization.aspx’,

‘ID’: ‘a42b0908-174e-4f25-b59c-70bdf394a9da’,

‘Title’: ‘Microsoft | Server & Cloud | Datacenter | Virtualization ...’,

‘Url’: ‘http://www.microsoft.com/en-us/server-cloud/datacenter/virtualization.aspx’,

... }

Figure 1: Sample of the metadata associated with a search result.

cea and Tarau, 2004). Evaluation on a standard
data set shows that our method consistently out-
performs the best performing previously reported
method, which is supervised (Lau et al., 2011).

2 Methodology

We use the topic keywords to query a search en-
gine. We assume that the search results returned
are relevant to the topic and can be used to identify
and weigh relevant keywords. The most impor-
tant keywords can be used to generate keyphrases
for labelling the topic or weight pre-existing can-
didate labels.

2.1 Retrieving and Processing Text
Information

We use the approach described by Lau et al. (2011)
to generate candidate labels from Wikipedia arti-
cles. The 10 terms with the highest marginal prob-
abilities in the topic are used to query Wikipedia
and the titles of the articles retrieved used as candi-
date labels. Further candidate labels are generated
by processing the titles of these articles to identify
noun chunks and n-grams within the noun chunks
that are themselves the titles of Wikipedia arti-
cles. Outlier labels, identified using a similarity
measure (Grieser et al., 2011), are removed. This
method has been proved to produce labels which
effectively summarise a topic’s main subject.

However, it should be noted that our method is
flexible and could be applied to any set of can-
didate labels. We have experimented with various
approaches to candidate label generation but chose
to report results using the approach described by
Lau et al. (2011) to allow direct comparison of ap-
proaches.

Information obtained from web searches is used
to identify the best labels from the set of candi-
dates. The top n keywords, i.e. those with highest
marginal probability within the topic, are used to

form a query which was submitted to the Bing1

search engine. Textual information included in the
Title field2 of the search results metadata was ex-
tracted. Each title was tokenised using openNLP3

and stop words removed.
Figure 1 shows a sample of the metadata asso-

ciated with a search result for the topic: VMWARE,
SERVER, VIRTUAL, ORACLE, UPDATE, VIRTU-
ALIZATION, APPLICATION, INFRASTRUCTURE,
MANAGEMENT, MICROSOFT.

2.2 Creating a Text Graph
We consider any remaining words in the search
result metadata as nodes, v ∈ V , in a graph
G = (V,E). Each node is connected to its neigh-
bouring words in a context window of ±n words.
In the previous example, the words added to the
graph from the Title of the search result are mi-
crosoft, server, cloud, datacenter and virtualiza-
tion.

We consider both unweighted and weighted
graphs. When the graph is unweighted we assume
that all the edges have a weight e = 1. In addi-
tion, we weight the edges of the graph by comput-
ing the relatedness between two nodes, vi and vj ,
as their normalised Pointwise Mutual Information
(NPMI) (Bouma, 2009). Word co-occurrences are
computed using Wikipedia as a a reference cor-
pus. Pairs of words are connected with edges only
if NPMI(wi, wj) > 0.2 avoiding connections be-
tween words co-occurring by chance and hence in-
troducing noise.

2.3 Identifying Important Terms
Important terms are identified by applying the
PageRank algorithm (Page et al., 1999) in a sim-
ilar way to the approach used by Mihalcea and

1http://www.bing.com/
2We also experimented with using the Description field

but found that this reduced performance.
3http://opennlp.apache.org/
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Tarau (2004) for document keyphrase extraction.
The PageRank score (Pr) over G for a word (vi)
can be computed by the following equation:

Pr(vi) = d ·
∑

vj∈C(vi)

sim(vi, vj)∑
vk∈C(vj)

sim(vj , vk)
Pr(vj)

+ (1− d)v (1)

where C(vi) denotes the set of vertices which are
connected to the vertex vi. d is the damping factor
which is set to the default value of d = 0.85 (Page
et al., 1999). In standard PageRank all elements
of the vector v are the same, 1

N where N is the
number of nodes in the graph.

2.4 Ranking Labels
Given a candidate label L = {w1, ..., wm} con-
taining m keywords, we compute the score of L
by simply adding the PageRank scores of its con-
stituent keywords:

Score(L) =
m∑

i=1

Pr(wi) (2)

The label with the highest score amongst the set
of candidates is selected to represent the topic. We
also experimented with normalised versions of the
score, e.g. mean of the PageRank scores. How-
ever, this has a negative effect on performance
since it favoured short labels of one or two words
which were not sufficiently descriptive of the top-
ics. In addition, we expect that candidate labels
containing words that do not appear in the graph
(with the exception of stop words) are unlikely to
be good labels for the topic. In these cases the
score of the candidate label is set to 0. We also
experimented with removing this restriction but
found that it lowered performance.

3 Experimental Evaluation

3.1 Data
We evaluate our method on the publicly avail-
able data set published by Lau et al. (2011). The
data set consists of 228 topics generated using
text documents from four domains, i.e. blog
posts (BLOGS), books (BOOKS), news articles
(NEWS) and scientific articles from the biomedi-
cal domain (PUBMED). Each topic is represented
by its ten most probable keywords. It is also as-
sociated with candidate labels and human ratings

denoting the appropriateness of a label given the
topic. The full data set consists of approximately
6,000 candidate labels (27 labels per topic).

3.2 Evaluation Metrics
Our evaluation follows the framework proposed
by Lau et al. (2011) using two metrics, i.e. Top-
1 average rating and nDCG, to compare various
labelling methods.

Top-1 average rating is the average human rat-
ing (between 0 and 3) assigned to the top-ranked
label proposed by the system. This provides an in-
dication of the overall quality of the label the sys-
tem judges as the best one.

Normalised discounted cumulative gain
(nDCG) (Järvelin and Kekäläinen, 2002; Croft et
al., 2009) compares the label ranking proposed
by the system to the ranking provided by human
annotators. The discounted cumulative gain
at position p, DCGp, is computed using the
following equation:

DCGp = rel1 +
p∑

i=2

reli
log2(i)

(3)

where reli is the relevance of the label to the topic
in position i. Then nDCG is computed as:

nDCGp =
DCGp

IDCGp
(4)

where IDCGp is the superviseed ranking of the
image labels, in our experiments this is the rank-
ing provided by the scores in the human annotated
data set.

3.3 Model Parameters
Our proposed model requires two parameters to
be set: the context window size when connecting
neighbouring words in the graph and the number
of the search results considered when constructing
the graph.

We experimented with different sizes of context
window, n, between±1 words to the left and right
and all words in the title. The best results were ob-
tained when n = 2 for all of the domains. In addi-
tion, we experimented with varying the number of
search results between 10 and 300. We observed
no noticeable difference in the performance when
the number of search results is equal or greater
than 30 (see below). We choose to report results
obtained using 30 search results for each topic. In-
cluding more results did not improve performance
but required additional processing.
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Domain Model Top-1 Av. Rating nDCG-1 nDCG-3 nDCG-5

BLOGS

Lau et al. (2011)-U 1.84 0.75 0.77 0.79
Lau et al. (2011)-S 1.98 0.81 0.82 0.83
PR 2.05† 0.83 0.84 0.83
PR-NPMI 2.08† 0.84 0.84 0.83
Upper bound 2.45 1.00 1.00 1.00

BOOKS

Lau et al. (2011)-U 1.75 0.77 0.77 0.79
Lau et al. (2011)-S 1.91 0.84 0.81 0.83
PR 1.98† 0.86 0.88 0.87
PR-NPMI 2.01† 0.87 0.88 0.87
Upper bound 2.29 1.00 1.00 1.00

NEWS

Lau et al. (2011)-U 1.96 0.80 0.79 0.78
Lau et al. (2011)-S 2.02 0.82 0.82 0.84
PR 2.04† 0.83 0.81 0.81
PR-NPMI 2.05† 0.83 0.81 0.81
Upper bound 2.45 1.00 1.00 1.00

PUBMED

Lau et al. (2011)-U 1.73 0.75 0.77 0.79
Lau et al. (2011)-S 1.79 0.77 0.82 0.84
PR 1.88†‡ 0.80 0.80 0.80
PR-NPMI 1.90†‡ 0.81 0.80 0.80
Upper bound 2.31 1.00 1.00 1.00

Table 1: Results for Various Approaches to Topic Labelling (†: significant difference (t-test, p < 0.05)
to Lau et al. (2011)-U; ‡: significant difference (p < 0.05) to Lau et al. (2011)-S).

4 Results and Discussion

Results are shown in Table 1. Performance when
PageRank is applied to the unweighted (PR) and
NPMI-weighted graphs (PR-NPMI) (see Section
2.2) is shown. Performance of the best unsuper-
vised (Lau et al. (2011)-U) and supervised (Lau
et al. (2011)-S) methods reported by Lau et al.
(2011) are shown. Lau et al. (2011)-U uses the av-
erage χ2 scores between the topic keywords and
the label keywords while Lau et al. (2011)-S uses
SVR to combine evidence from all features. In
addition, upper bound figures, the maximum pos-
sible value given the scores assigned by the anno-
tators, are also shown.

The results obtained by applying PageRank
over the unweighted graph (2.05, 1.98, 2.04 and
1.88) are consistently better than the supervised
and unsupervised methods reported by Lau et al.
(2011) for the Top-1 Average scores and this im-
provement is observed in all domains. The differ-
ence is significant (t-test, p < 0.05) for the un-
supervised method. A slight improvement in per-

formance is observed when the weighted graph is
used (2.08, 2.01, 2.05 and 1.90). This is expected
since the weighted graph contains additional in-
formation about word relatedness. For example,
the word hardware is more related and, therefore,
closer in the graph to the word virtualization than
to the word investments.

Results from the nDCG metric imply that our
methods provide better rankings of the candidate
labels in the majority of the cases. It is outper-
formed by the best supervised approach in two do-
mains, NEWS and PUBMED, using the nDCG-
3 and nDCG-5 metrics. However, the best label
proposed by our methods is judged to be better
(as shown by the nDCG-1 and Top-1 Av. Rat-
ing scores), demonstrating that it is only the lower
ranked labels in our approach that are not as good
as the supervised approach.

An interesting finding is that, although limited
in length, the textual information in the search re-
sult’s metadata contain enough salient terms rel-
evant to the topic to provide reliable estimates of
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Figure 2: Top-1 Average Rating obtained for different number of search results.

term importance. Consequently, it is not necessary
to measure semantic similarity between topic key-
words and candidate labels as previous approaches
have done. In addition, performance improvement
gained from using the weighted graph is mod-
est, suggesting that the computation of association
scores over a large reference corpus could be omit-
ted if resources are limited.

In Figure 2, we show the scores of Top-1 av-
erage rating obtained in the different domains by
experimenting with the number of search results
used to generate the text graph. The most inter-
esting finding is that performance is stable when
30 or more search results are considered. In addi-
tion, we observe that quality of the topic labels in
the four domains remains stable, and higher than
the supervised method, when the number of search
results used is between 150 and 200. The only
domain in which performance of the supervised
method is sometimes better than the approach pro-
posed here is NEWS. The main reason is that news
topics are more fine grained and the candidate

labels of better quality (Lau et al., 2011) which
has direct impact in good performance of ranking
methods.

5 Conclusion

We described an unsupervised graph-based
method to associate textual labels with automati-
cally generated topics. Our approach uses results
retrieved from a search engine using the topic
keywords as a query. A graph is generated from
the words contained in the search results metadata
and candidate labels ranked using the PageRank
algorithm. Evaluation on a standard data set
shows that our method consistently outperforms
the supervised state-of-the-art method for the task.
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Abstract

In this paper we introduce a semantic role
labeler for Korean, an agglutinative lan-
guage with rich morphology. First, we
create a novel training source by semanti-
cally annotating a Korean corpus contain-
ing fine-grained morphological and syn-
tactic information. We then develop a su-
pervised SRL model by leveraging mor-
phological features of Korean that tend
to correspond with semantic roles. Our
model also employs a variety of latent
morpheme representations induced from a
larger body of unannotated Korean text.
These elements lead to state-of-the-art per-
formance of 81.07% labeled F1, represent-
ing the best SRL performance reported to
date for an agglutinative language.

1 Introduction

Semantic Role Labeling (SRL) is the task of auto-
matically annotating the predicate-argument struc-
ture in a sentence with semantic roles. Ever since
Gildea and Jurafsky (2002), SRL has become an
important technology used in applications requir-
ing semantic interpretation, ranging from infor-
mation extraction (Frank et al., 2007) and ques-
tion answering (Narayanan and Harabagiu, 2004),
to practical problems including textual entailment
(Burchardt et al., 2007) and pictorial communica-
tion systems (Goldberg et al., 2008).

SRL systems in many languages have been
developed as the necessary linguistic resources
become available (Taulé et al., 2008; Xue and
Palmer, 2009; Böhmová et al., 2003; Kawahara et
al., 2002). Seven languages were the subject of the
CoNLL-2009 shared task in syntactic and seman-
tic parsing (Hajič et al., 2009). These languages
can be categorized into three broad morphological
types: fusional (4), analytic (2), and one aggluti-
native language.

Paul   studies   mathematics   with   Jane   at   a   library

Poleun   doseogwaneseo  Jeingwa  suhageull   gongbuhanda

Figure 1: English (SVO) and Korean (SOV) words
alignment. The subject, verb, and object are high-
lighted as red, blue, and green, respectively. Also,
prepositions and suffixes are highlighted as purple.

Björkelund et al. (2009) report an average la-
beled semantic F1-score of 80.80% across these
languages. The highest performance was achieved
for the analytic language group (82.12%), while
the agglutinative language, Japanese, yielded the
lowest performance (76.30%). Agglutinative lan-
guages such as Japanese, Korean, and Turkish are
computationally difficult due to word-form spar-
sity, variable word order, and the challenge of us-
ing rich morphological features.

In this paper, we describe a Korean SRL system
which achieves 81% labeled semantic F1-score.
As far as we know, this is the highest accuracy
obtained for Korean, as well as any agglutinative
language. Figure 1 displays a English/Korean sen-
tence pair, highlighting the SOV word order of Ko-
rean as well as its rich morphological structure.
Two factors proved crucial in the performance of
our SRL system: (i) The analysis of fine-grained
morphological tags specific to Korean, and (ii) the
use of latent stem and morpheme representations
to deal with sparsity. We incorporated both of
these elements in a CRF (Lafferty et al., 2001) role
labeling model.

Besides the contribution of this model and SRL
system, we also report on the creation and avail-
ability of a new semantically annotated Korean
corpus, covering over 8,000 sentences. We used
this corpus to develop, train, and test our Korean
SRL model. In the next section, we describe the
process of corpus creation in more detail.
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2 A Semantically Annotated Korean
Corpus

We annotated predicate-argument structure of
verbs in a corpus from the Electronics and
Telecommunications Research Institute of Korea
(ETRI).1 Our corpus was developed over two
years using a specialized annotation tool (Song et
al., 2012), resulting in more than 8,000 semanti-
cally annotated sentences. As much as possible,
annotations followed the PropBank guidelines for
English (Bonial et al., 2010).

We view our work as building on the efforts of
the Penn Korean PropBank (PKPB).2 Our corpus
is roughly similar in size to the PKPB, and taken
together, the two Korean corpora now total about
half the size of the Penn English PropBank. One
advantage of our corpus is that it is built on top of
the ETRI Korean corpus, which uses a richer Ko-
rean morphological tagging scheme than the Penn
Korean Treebank. Our experiments will show that
these finer-grained tags are crucial for achieving
high SRL accuracy.

All annotations were performed by two people
working in a team. At first, each annotator as-
signs semantic roles independently and then they
discuss to reduce disagreement of their annotation
results. Initially, the disagreement rate between
two annotators was about 14%. After 4 months
of this process, the disagreement rate fell to 4%
through the process of building annotation rules
for Korean. The underlying ETRI syntactically-
annotated corpus contains the dependency tree
structure of sentences with morpho-syntactic tags.
It includes 101,602 multiple-clause sentences with
21.66 words on average.

We encountered two major difficulties during
annotation. First, the existing Korean frame files
from the Penn Korean PropBank include 2,749
verbs, covering only 13.87% of all the verbs in the
ETRI corpus. Secondly, no Korean PropBanking
guidelines have previously been published, lead-
ing to uncertainty in the initial stages of annota-
tion. These uncertainties were gradually resolved
through the iterative process of resolving inter-
annotator disagreements.

Table 1 shows the semantic roles considered in
our annotated corpus. Although these are based on
the general English PropBank guidelines (Bonial
et al., 2010), they also differ in that we used only

1http://voice.etri.re.kr/db/db pop.asp?code=88
2http://catalog.ldc.upenn.edu/LDC2006T03

Roles Definition Rate
ARG0 Agent 10.02%
ARG1 Patient 26.73%

ARG2
Start point /
Benefactive

5.18%

ARG3 Ending point 1.10%
ARGM-ADV Adverbial 1.26%
ARGM-CAU Cause 1.17%
ARGM-CND Condition 0.36%
ARGM-DIR Direction 0.35%
ARGM-DIS Discourse 28.71%
ARGM-EXT Extent 4.50%
ARGM-INS Instrument 1.04%
ARGM-LOC Locative 4.51%
ARGM-MNR Manner 8.72%
ARGM-NEG Negation 0.26%
ARGM-PRD Predication 0.27%
ARGM-PRP Purpose 0.77%
ARGM-TMP Temporal 5.05%

Table 1: Semantic roles in our annotated corpus.

4 numbered arguments from ARG0 to ARG3 in-
stead of 5 numbered arguments. We thus consider
17 semantic roles in total. Four of them are num-
bered roles, describing the essential arguments of
a predicate. The other roles are called modifier
roles that play more of an adjunct role.

We have annotated semantic roles by following
the PropBank annotation guideline (Bonial et al.,
2010) and by using frame files of the Penn Korean
PropBank built by Palmer et al. (2006). The Prop-
Bank and our corpus are not exactly compatible,
because the former is built on constituency-based
parse trees, whereas our corpus uses dependency
parses.

More importantly, the tagsets of these corpora
are not fully compatible. The PKPB uses much
coarser morpho-syntactic tags than the ETRI
corpus. For example, the PCA tag in PKPB used
for a case suffix covers four different functioning
tags used in our corpus. Using coarser suffix
tags can seriously degrade SRL performance, as
we show in Section 6, where we compare the
performance of our model on both the new corpus
and the older PKPB.
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3 Previous Work

Korean SRL research has been limited to domesti-
cally published Korean research on small corpora.
Therefore, the most direct precedent to the present
work is a section in Björkelund et al. (2009) on
Japanese SRL. They build a classifier consisting
of 3 stages: predicate disambiguation, argument
identification, and argument classification.

They use an L2-regularized linear logistic re-
gression model cascaded through these three
stages, achieving F1-score of 80.80% on average
for 7 languages (Catalan, Chinese, Czech, English,
German, Japanese and Spanish). The lowest re-
ported performance is for Japanese, the only ag-
glutinative language in their data set, achieving
F1-score of 76.30%. This result showcases the
computational difficulty of dealing with morpho-
logically rich agglutinative languages. As we dis-
cuss in Section 5, we utilize these same features,
but also add a set of Korean-specific features to
capture aspects of Korean morphology.

Besides these morphological features, we also
employ latent continuous and discrete morpheme
representations induced from a larger body of
unannotated Korean text. As our experiments be-
low show, these features improve performance by
dealing with sparsity issues. Such features have
been useful in a variety of English NLP mod-
els, including chunking, named entity recogni-
tion (Turian et al., 2010), and spoken language un-
derstanding (Anastasakos et al., 2014). Unlike the
English models, we use individual morphemes as
our unit of analysis.

4 Model

For the semantic role task, the input is a sentence
consisting of a sequence of words x = x1, . . . , xn

and the output is a sequence of corresponding se-
mantic tags y = y1, . . . , yn. Each word con-
sists of a stem and some number of suffix mor-
phemes, and the semantic tags are drawn from the
set {NONE, ARG, . . . , ARGM-TMP}. We model
the conditional probability p(y|x) using a CRF
model:

Z(x)−1
x∏

i=1

exp
∑
m

λmfm(yi−1, yi, x, i),

where fm(yi−1, yi, x, i) are the feature functions.
These feature functions include transition features

that identify the tag bigram (yi−1, yi), and emis-
sion features that combine the current semantic tag
(yi) with instantiated feature templates extracted
from the sentence x and its underlying morpho-
logical and dependency analysis. The function
Z is the normalizing function, which ensures that
p(y|x) is a valid probability distribution. We used
100 iteration of averaged perceptron algorithm to
train the CRF.

5 Features

We detail the feature templates used for our ex-
periments in Table 2. These features are catego-
rized as either general features, Korean-specific
features, or latent morpheme representation fea-
tures. Korean-specific features are built upon the
morphological analysis of the suffix agglutination
of the current word xi.

Korean suffixes are traditionally classified into
two groups called Josa and Eomi. Josa is used
to define nominal cases and modify other phrases,
while Eomi is an ending of a verb or an adjective
to define a tense, show an attitude, and connect
or terminate a sentence. Thus, the Eomi and Josa
categorization plays an important role in signaling
semantic roles. Considering the functions of Josa
and Eomi, we expect that numbered roles are rele-
vant to Josa while modifier roles are more closely
related to Eomi. The one exception is adverbial
Josa, making the attached phrase an adverb that
modifies a verb predicate.

For all feature templates, “A-” or “P-” are used
respectively to signify that the feature corresponds
to the argument in question (xi), or rather is de-
rived from the verbal predicate that the argument
depends on.

General features: We use and modify 18 fea-
tures used for Japanese from the prior work of
Björkelund et al. (2009), excluding SENSE, PO-
SITION, and re-ranker features.

• Stem: a stem without any attachment. For
instance, the first word Poleun at the Figure 1
consists of a stem Pol plus Josa eun.

• POS Lv1: the first level (coarse classifi-
cation) of a POS tag such as noun, verb,
adjective, or adverb.
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Feature Description
A-Stem, P-Stem Stem of an argument and a predicate
A-POS Lv1, P-POS Lv1 Coarse-grained POS of A-Stem and P-Stem
A-POS Lv2, P-POS Lv2 Fine-grained POS of A-Stem and P-Stem
A-Case, P-Case Case of A-Stem and P-Stem
A-LeftmostChildStem Stem of the leftmost child of an argument
A-LeftSiblingStem Stem of the left sibling of an argument
A-LeftSiblingPOS Lv1 Coarse-grained POS of A-LeftSiblingStem
A-LeftSiblingPOS Lv2 Fine-grained POS of A-LeftSiblingStem
A-RightSiblingPOS Lv1 Coarse-grained POS of a stem of the right sibling of an argument
A-RightSiblingPOS Lv2 Fine-grained POS of a stem of the right sibling of an argument
P-ParentStem Stem of a parent of a predicate
P-ChildStemSet Set of stems of children of a predicate
P-ChildPOSSet Lv1 Set of coarse POS of P-ChildStemSet
P-ChildCaseSet Set of cases of P-childStemSet
A-JosaExist If 1, Josa exists in an argument, otherwise 0.
A-JosaClass Linguistic classification of Josa
A-JosaLength Number of morphemes consisting of Josa
A-JosaMorphemes Each morpheme consisting of Josa
A-JosaIdenity Josa of an argument
A-EomiExist If 1, Eomi exists in an argument, otherwise 0.
A-EomiClass Lv1 Linguistic classification of Eomi
A-EomiClass Lv2 Another linguistic classification of Eomi
A-EomiLength Number of morphemes consisting of Eomi
A-EomiMorphemes Each morpheme consisting of Eomi
A-EomiIdentity Eomi of an argument
A-StemRepr Stem representation of an argument
A-JosaRepr Josa representation of an argument
A-EomiRepr Eomi representation of an argument

Table 2: Features used in our SRL experiments. Features are grouped as General, Korean-specific, or
Latent Morpheme Representations. For the last group, we employ three different methods to build them:
(i) CCA, (ii) deep learning, and (iii) Brown clustering.

• POS Lv2: the second level (fine classifica-
tion) of a POS tag. If POS Lv1 is noun, ei-
ther a proper noun, common noun, or other
kinds of nouns is the POS Lv2.

• Case: the case type such as SBJ, OBJ, or
COMP.

The above features are also applied to some depen-
dency children, parents, and siblings of arguments
as shown in Table 2.

Korean-specific features: We have 11 different
kinds of features for the Josa (5) and Eomi (6). We
highlight several below:

• A-JosaExist: an indicator feature checking
any Josa whether or not exists in an argument.
It is set to 1 if any Josa exists, otherwise 0.

• A-JosaClass: the linguistic classification of
Josa with a total of 8 classes. These classes
are adverbial, auxiliary, complemental, con-
nective, determinative, objective, subjective,
and vocative.

• A-JosaLength: the number of morphemes
consisting of Josa. At most five morphemes
are combined to consist of one Josa in our
data set.

• A-JosaMorphemes: Each morpheme com-
posing the Josa.

• A-JosaIdentity: The Josa itself.

• A-EomiClass Lv1: the linguistic classifica-
tion of Eomi with a total of 14 classes. These
14 classes are adverbial, determinative, coor-
dinate, exclamatory, future tense, honorific,
imperative, interrogative, modesty, nominal,
normal, past tense, petitionary, and subordi-
nate.

• A-EomiClass Lv2: Another linguistic classi-
fication of Eomi with a total of 4 classes. The
four classes are closing, connection, prefinal,
and transmutation. The EomiClass Lv1 and
Lv2 are combined to display the characteris-
tic of Eomi such as ‘Nominal Transmutation
Eomi’, but not all combinations are possible.
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Corpus Gen Gen+Kor
Gen+Kor+LMR

CCA Deep Brown All
PKPB 64.83% 75.17% 75.51% 75.43% 75.55% 75.54%

Our annotated corpus 66.88% 80.33% 80.88% 80.84% 80.77% 81.07%
PKPB + our annotated corpus 64.86% 78.61% 79.32% 79.44% 78.91% 79.20%

Table 3: Experimental F1-score results on every experiment. Abbreviation on features are Gen: general
features, Kor: Korean specific features, LMR: latent morpheme representation features.

Latent morpheme representation features: To
alleviate the sparsity, a lingering problem in NLP,
we employ three kinds of latent morpheme repre-
sentations induced from a larger body of unsuper-
vised text data. These are (i) linear continuous rep-
resentation through Canonical Correlation Analy-
sis (Dhillon et al., 2012), (ii) non-linear contin-
uous representation through Deep learning (Col-
lobert and Weston, 2008), and (iii) discrete rep-
resentation through Brown Clustering (Tatu and
Moldovan, 2005).

The first two representations are 50 dimensional
continuous vectors for each morpheme, and the
latter is a set of 256 clusters over morphemes.

6 Experiments and Results

We categorized our experiments by the scenarios
below, and all results are summarized in Table 3.
The F1-score results were investigated for each
scenario. We randomly divided our data into 90%
training and 10% test sets for all scenarios.

For latent morpheme representations, we used
the Donga news article corpus.3 The Donga cor-
pus contains 366,636 sentences with 25.09 words
on average. The Domain of this corpus cov-
ers typical news articles such as health, entertain-
ment, technology, politics, world and others. We
ran Kokoma Korean morpheme analyzer4 on each
sentence of the Donga corpus to divide words into
morphemes to build latent morpheme representa-
tions.

1st Scenario: We first tested on general features
in previous work (2nd column in Table 3). We
achieved 64.83% and 66.88% on the PKPB and
our corpus. When the both corpora were com-
bined, we had 64.86%.

2nd Scenario: We then added the Korean-
specific morphological features to signify its ap-

3http://www.donga.com
4http://kkma.snu.ac.kr/

propriateness in this scenario. These features in-
creased greatly performance improvements (3rd
column in Table 3). Although both the PKPB
and our corpus had improvements, the improve-
ments were the most notable on our corpus. This
is because PKPB POS tags might be too coarse.
We achieved 75.17%, 80.33%, and 78.61% on the
PKPB, our corpus, and the combined one, respec-
tively.

3rd Scenario: This scenario is to reveal the ef-
fects of the different latent morpheme represen-
tations (4-6th columns in Table 3). These three
representations are from CCA, deep learning, and
Brown clustering. The results gave evidences that
all representations increased the performance.

4th Scenario: We augmented our model with all
kinds of features (the last column in Table 3). We
achieved our best F1-score of 81.07% over all sce-
narios on our corpus.

7 Conclusion

For Korean SRL, we semantically annotated a
corpus containing detailed morphological annota-
tion. We then developed a supervised model which
leverages Korean-specific features and a variety
of latent morpheme representations to help deal
with a sparsity problem. Our best model achieved
81.07% in F1-score. In the future, we will con-
tinue to build our corpus and look for the way to
use unsupervised learning for SRL to apply to an-
other language which does not have available cor-
pus.

Acknowledgments

We thank Na-Rae Han and Asli Celikyilmaz for
helpful discussion and feedback. This research
was supported by the Basic Science Research Pro-
gram of the Korean National Research Foundation
(NRF), and funded by the Korean Ministry of Ed-
ucation, Science and Technology (2010-0010612).

641



References
Tasos Anastasakos, Young-Bum Kim, and Anoop Deo-

ras. 2014. Task specific continuous word represen-
tations for mono and multi-lingual spoken language
understanding. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing (ICASSP).

Anders Björkelund, Love Hafdell, and Pierre Nugues.
2009. Multilingual semantic role labeling. In Pro-
ceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning: Shared Task,
pages 43–48. Association for Computational Lin-
guistics.
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Abstract

We develop a semantic parsing framework
based on semantic similarity for open do-
main question answering (QA). We focus
on single-relation questions and decom-
pose each question into an entity men-
tion and a relation pattern. Using convo-
lutional neural network models, we mea-
sure the similarity of entity mentions with
entities in the knowledge base (KB) and
the similarity of relation patterns and re-
lations in the KB. We score relational
triples in the KB using these measures
and select the top scoring relational triple
to answer the question. When evaluated
on an open-domain QA task, our method
achieves higher precision across different
recall points compared to the previous ap-
proach, and can improve F1 by 7 points.

1 Introduction

Open-domain question answering (QA) is an im-
portant and yet challenging problem that remains
largely unsolved. In this paper, we focus on an-
swering single-relation factual questions, which
are the most common type of question observed in
various community QA sites (Fader et al., 2013),
as well as in search query logs. We assumed
such questions are answerable by issuing a single-
relation query that consists of the relation and an
argument entity, against a knowledge base (KB).
Example questions of this type include: “Who is
the CEO of Tesla?” and “Who founded Paypal?”

While single-relation questions are easier to
handle than questions with more complex and
multiple relations, such as “When was the child of
the former Secretary of State in Obama’s admin-
istration born?”, single-relation questions are still
far from completely solved. Even in this restricted
domain there are a large number of paraphrases of

the same question. That is to say that the problem
of mapping from a question to a particular relation
and entity in the KB is non-trivial.

In this paper, we propose a semantic parsing
framework tailored to single-relation questions.
At the core of our approach is a novel semantic
similarity model using convolutional neural net-
works. Leveraging the question paraphrase data
mined from the WikiAnswers corpus by Fader et
al. (2013), we train two semantic similarity mod-
els: one links a mention from the question to an
entity in the KB and the other maps a relation pat-
tern to a relation. The answer to the question can
thus be derived by finding the relation–entity triple
r(e1, e2) in the KB and returning the entity not
mentioned in the question. By using a general se-
mantic similarity model to match patterns and re-
lations, as well as mentions and entities, our sys-
tem outperforms the existing rule learning system,
PARALEX (Fader et al., 2013), with higher pre-
cision at all the recall points when answering the
questions in the same test set. The highest achiev-
able F1 score of our system is 0.61, versus 0.54 of
PARALEX.

The rest of the paper is structured as follows.
We first survey related work in Sec. 2, followed by
the problem definition and the high-level descrip-
tion of our approach in Sec. 3. Sec. 4 details our
semantic models and Sec. 5 shows the experimen-
tal results. Finally, Sec. 6 concludes the paper.

2 Related Work

Semantic parsing of questions, which maps nat-
ural language questions to database queries, is
a critical component for KB-supported QA. An
early example of this research is the semantic
parser for answering geography-related questions,
learned using inductive logic programming (Zelle
and Mooney, 1996). Research in this line origi-
nally used small, domain-specific databases, such
as GeoQuery (Tang and Mooney, 2001; Liang et
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al., 2013). Very recently, researchers have started
developing semantic parsers for large, general-
domain knowledge bases like Freebase and DB-
pedia (Cai and Yates, 2013; Berant et al., 2013;
Kwiatkowski et al., 2013). Despite significant
progress, the problem remains challenging. Most
methods have not yet been scaled to large KBs
that can support general open-domain QA. In con-
trast, Fader et al. (2013) proposed the PARALEX

system, which targets answering single-relation
questions using an automatically created knowl-
edge base, ReVerb (Fader et al., 2011). By
applying simple seed templates to the KB and
by leveraging community-authored paraphrases of
questions from WikiAnswers, they successfully
demonstrated a high-quality lexicon of pattern-
matching rules can be learned for this restricted
form of semantic parsing.

The other line of work related to our approach
is continuous representations for semantic simi-
larity, which has a long history and is still an
active research topic. In information retrieval,
TF-IDF vectors (Salton and McGill, 1983), latent
semantic analysis (Deerwester et al., 1990) and
topic models (Blei et al., 2003) take the bag-of-
words approach, which captures well the contex-
tual information for documents, but is often too
coarse-grained to be effective for sentences. In
a separate line of research, deep learning based
techniques have been proposed for semantic un-
derstanding (Mesnil et al., 2013; Huang et al.,
2013; Shen et al., 2014b; Salakhutdinov and Hin-
ton, 2009; Tur et al., 2012). We adapt the work
of (Huang et al., 2013; Shen et al., 2014b) for mea-
suring the semantic distance between a question
and relational triples in the KB as the core compo-
nent of our semantic parsing approach.

3 Problem Definition & Approach

In this paper, we focus on using a knowledge
base to answer single-relation questions. A single-
relation question is defined as a question com-
posed of an entity mention and a binary rela-
tion description, where the answer to this ques-
tion would be an entity that has the relation with
the given entity. An example of a single-relation
question is “When were DVD players invented?”
The entity is dvd-player and the relation is
be-invent-in. The answer can thus be de-
scribed as the following lambda expression:

λx. be-invent-in(dvd-player, x)

Q→ RP ∧M (1)

RP → when were X invented (2)

M → dvd players (3)

when were X invented

→ be-invent-in (4)

dvd players

→ dvd-player (5)

Figure 1: A potential semantic parse of the ques-
tion “When were DVD players invented?”

A knowledge base in this work can be simply
viewed as a collection of binary relation instances
in the form of r(e1, e2), where r is the relation and
e1 and e2 are the first and second entity arguments.

Single-relation questions are perhaps the easiest
form of questions that can directly be answered
by a knowledge base. If the mapping of the re-
lation and entity in the question can be correctly
resolved, then the answer can be derived by a sim-
ple table lookup, assuming that the fact exists in
the KB. However, due to the large number of para-
phrases of the same question, identifying the map-
ping accurately remains a difficult problem.

Our approach in this work can be viewed as a
simple semantic parser tailored to single-relation
questions, powered by advanced semantic similar-
ity models to handle the paraphrase issue. Given a
question, we first separate it into two disjoint parts:
the entity mention and the relation pattern. The
entity mention is a subsequence of consecutive
words in the question, where the relation pattern
is the question where the mention is substituted
by a special symbol. The mapping between the
pattern and the relation in the KB, as well as the
mapping between the mention and the entity are
determined by corresponding semantic similarity
models. The high-level approach can be viewed
as a very simple context-free grammar, which is
shown in Figure 1.

The probability of the rule in (1) is 1 since
we assume the input is a single-relation ques-
tion. For the exact decomposition of the ques-
tion (e.g., (2), (3)), we simply enumerate all com-
binations and assign equal probabilities to them.
The performance of this approach depends mainly
on whether the relation pattern and entity mention
can be resolved correctly (e.g., (4), (5)). To deter-
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Figure 2: The CNNSM maps a variable-length
word sequence to a low-dimensional vector in a
latent semantic space. A word contextual window
size (i.e., the receptive field) of three is used in the
illustration. Convolution over word sequence via
learned matrix Wc is performed implicitly via the
earlier word hashing layer’s mapping with a local
receptive field. The max operation across the se-
quence is applied for each of 500 feature dimen-
sions separately.

mine the probabilities of such mappings, we pro-
pose using a semantic similarity model based on
convolutional neural networks, which is the tech-
nical focus in this paper.

4 Convolutional Neural Network based
Semantic Model

Following (Collobert et al., 2011; Shen et al.,
2014b), we develop a new convolutional neural
network (CNN) based semantic model (CNNSM)
for semantic parsing. The CNNSM first uses a
convolutional layer to project each word within a
context window to a local contextual feature vec-
tor, so that semantically similar word-n-grams are
projected to vectors that are close to each other
in the contextual feature space. Further, since the
overall meaning of a sentence is often determined
by a few key words in the sentence, CNNSM uses
a max pooling layer to extract the most salient lo-
cal features to form a fixed-length global feature
vector. The global feature vector can be then fed
to feed-forward neural network layers to extract
non-linear semantic features. The architecture of
the CNNSM is illustrated in Figure 2. In what fol-
lows, we describe each layer of the CNNSM in
detail, using the annotation illustrated in Figure 2.

In our model, we leverage the word hash-
ing technique proposed in (Huang et al., 2013)
where we first represent a word by a letter-
trigram count vector. For example, given a
word (e.g., cat), after adding word boundary sym-
bols (e.g., #cat#), the word is segmented into a se-
quence of letter-n-grams (e.g., letter-trigrams: #-
c-a, c-a-t, a-t-#). Then, the word is represented
as a count vector of letter-trigrams. For exam-
ple, the letter-trigram representation of “cat” is:

In Figure 2, the word hashing matrix Wf de-
notes the transformation from a word to its letter-
trigram count vector, which requires no learning.
Word hashing not only makes the learning more
scalable by controlling the size of the vocabulary,
but also can effectively handle the OOV issues,
sometimes due to spelling mistakes. Given the
letter-trigram based word representation, we rep-
resent a word-n-gram by concatenating the letter-
trigram vectors of each word, e.g., for the t-th
word-n-gram at the word-n-gram layer, we have:

lt =
[
fT

t−d, · · · , fT
t , · · · , fT

t+d

]T
, t = 1, · · · , T

where ft is the letter-trigram representation of the
t-th word, and n = 2d + 1 is the size of the con-
textual window. The convolution operation can
be viewed as sliding window based feature extrac-
tion. It captures the word-n-gram contextual fea-
tures. Consider the t-th word-n-gram, the convo-
lution matrix projects its letter-trigram representa-
tion vector lt to a contextual feature vector ht. As
shown in Figure 2, ht is computed by

ht = tanh(Wc · lt), t = 1, · · · , T
where Wc is the feature transformation matrix, as
known as the convolution matrix, which are shared
among all word n-grams. The output of the con-
volutional layer is a sequence of local contextual
feature vectors, one for each word (within a con-
textual window). Since many words do not have
significant influence on the semantics of the sen-
tence, we want to retain in the global feature vector
only the salient features from a few key words. For
this purpose, we use a max operation, also known
as max pooling, to force the network to retain only
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the most useful local features produced by the con-
volutional layers. Referring to the max-pooling
layer of Figure 2, we have

v(i) = max
t=1,··· ,T

{ft(i)}, i = 1, · · · ,K

where v(i) is the i-th element of the max pool-
ing layer v, ht(i) is the i-th element of the t-th
local feature vector ht. K is the dimensionality
of the max pooling layer, which is the same as
the dimensionality of the local contextual feature
vectors {ht}. One more non-linear transformation
layer is further applied on top of the global feature
vector v to extract the high-level semantic repre-
sentation, denoted by y. As shown in Figure 2, we
have y = tanh(Ws · v), where v is the global fea-
ture vector after max pooling, Ws is the semantic
projection matrix, and y is the vector representa-
tion of the input query (or document) in latent se-
mantic space. Given a pattern and a relation, we
compute their relevance score by measuring the
cosine similarity between their semantic vectors.
The semantic relevance score between a pattern Q
and a relation R is defined as the cosine score of
their semantic vectors yQ and yR.

We train two CNN semantic models from sets of
pattern–relation and mention–entity pairs, respec-
tively. Following (Huang et al., 2013), for every
pattern, the corresponding relation is treated as a
positive example and 100 randomly selected other
relations are used as negative examples. The set-
ting for the mention–entity model is similar.

The posterior probability of the positive relation
given the pattern is computed based on the cosine
scores using softmax:

P (R+|Q) =
exp(γ · cos(yR+ , yQ))∑
R′ exp(γ · cos(yR′ , yQ))

where γ is a scaling factor set to 5. Model train-
ing is done by maximizing the log-posteriori us-
ing stochastic gradient descent. More detail can
be found in (Shen et al., 2014a).

5 Experiments

In order to provide a fair comparison to previ-
ous work, we experimented with our approach
using the PARALAX dataset (Fader et al., 2013),
which consists of paraphrases of questions mined
from WikiAnswers and answer triples from Re-
Verb. In this section, we briefly introduce the
dataset, describe the system training and evalua-
tion processes and, finally, present our experimen-
tal results.

5.1 Data & Model Training

The PARALEX training data consists of ap-
proximately 1.8 million pairs of questions and
single-relation database queries, such as “When
were DVD players invented?”, paired with
be-invent-in(dvd-player,?). For eval-
uation, the authors further sampled 698 questions
that belong to 37 clusters and hand labeled the an-
swer triples returned by their systems.

To train our two CNN semantic models, we
derived two parallel corpora based on the PAR-
ALEX training data. For relation patterns, we first
scanned the original training corpus to see if there
was an exact surface form match of the entity (e.g.,
dvd-player would map to “DVD player” in the
question). If an exact match was found, then the
pattern would be derived by replacing the mention
in the question with the special symbol. The corre-
sponding relation of this pattern was thus the rela-
tion used in the original database query, along with
the variable argument position (i.e., 1 or 2, indicat-
ing whether the answer entity was the first or sec-
ond argument of the relation). In the end, we de-
rived about 1.2 million pairs of patterns and rela-
tions. We then applied these patterns to all the 1.8
million training questions, which helped discover
160 thousand new mentions that did not have the
exact surface form matches to the entities.

When training the CNNSM for the pattern–
relation similarity measure, we randomly split the
1.2 million pairs of patterns and relations into two
sets: the training set of 1.19 million pairs, and
the validation set of 12 thousand pairs for hyper-
parameter tuning. Data were tokenized by re-
placing hyphens with blank spaces. In the ex-
periment, we used a context window (i.e., the re-
ceptive field) of three words in the convolutional
neural networks. There were 15 thousand unique
letter-trigrams observed in the training set (used
for word hashing). Five hundred neurons were
used in the convolutional layer, the max-pooling
layer and the final semantic layer, respectively.
We used a learning rate of 0.002 and the train-
ing converged after 150 iterations. A similar set-
ting was used for the CNNSM for the mention–
entity model, which was trained on 160 thousand
mention-entity pairs.

5.2 Results

We used the same test questions in the PARALEX

dataset to evaluate whether our system could find
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F1 Precision Recall MAP
CNNSMpm 0.57 0.58 0.57 0.28
CNNSMp 0.54 0.61 0.49 0.20
PARALEX 0.54 0.77 0.42 0.22

Table 1: Performance of two variations of our sys-
tems, compared with the PARALEX system.

the answers from the ReVerb database. Because
our systems might find triples that were not re-
turned by the PARALEX systems, we labeled these
new question–triple pairs ourselves.

Given a question, the system first enumerated
all possible decompositions of the mentions and
patterns, as described earlier. We then computed
the similarity scores between the pattern and all
relations in the KB and retained 150 top-scoring
relation candidates. For each selected relation, the
system then checked all triples in the KB that had
this relation and computed the similarity score be-
tween the mention and corresponding argument
entity. The product of the probabilities of these
two models, which are derived from the cosine
similarity scores using softmax as described in
Sec. 4, was used as the final score of the triple for
ranking the answers. The top answer triple was
used to compute the precision and recall of the sys-
tem when reporting the system performance. By
limiting the systems to output only answer triples
with scores higher than a predefined threshold, we
could control the trade-off between recall and pre-
cision and thus plot the precision–recall curve.

Table 1 shows the performance in F1, preci-
sion, recall and mean average precision of our sys-
tems and PARALEX. We provide two variations
here. CNNSMpm is the full system and consists
of two semantic similarity models for pattern–
relation and mention–entity. The other model,
CNNSMp, only measures the similarity between
the patterns and relations, and maps a mention to
an entity when they have the same surface form.

Since the trade-off between precision and re-
call can be adjusted by varying the threshold, it
is more informative to compare systems on the
precision–recall curves, which are shown in Fig-
ure 3. As we can observe from the figure, the
precision of our CNNSMpm system is consistently
higher than PARALEX across all recall regions.
The CNNSMm system also performs similarly to
CNNSMpm in the high precision regime, but is in-
ferior when recall is higher. This is understandable
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Figure 3: The precision–recall curves of the two
variations of our systems and PARALEX.

since the system does not match mentions with
entities of different surface forms (e.g., “Robert
Hooke” to “Hooke”). Notice that the highest F1

values of them are 0.61 and 0.56, compared to
0.54 of PARALEX. Tuning the thresholds using a
validation set would be needed if there is a metric
(e.g., F1) that specifically needs to be optimized.

6 Conclusions

In this work, we propose a semantic parsing
framework for single-relation questions. Com-
pared to the existing work, our key insight is to
match relation patterns and entity mentions using
a semantic similarity function rather than lexical
rules. Our similarity model is trained using convo-
lutional neural networks with letter-trigrams vec-
tors. This design helps the model go beyond bag-
of-words representations and handles the OOV is-
sue. Our method achieves higher precision on the
QA task than the previous work, PARALEX, con-
sistently at different recall points.

Despite the strong empirical performance, our
system has room for improvement. For in-
stance, due to the variety of entity mentions in
the real world, the parallel corpus derived from
the WikiAnswers data and ReVerb KB may not
contain enough data to train a robust entity link-
ing model. Replacing this component with a
dedicated entity linking system could improve
the performance and also reduce the number of
pattern/mention candidates when processing each
question. In the future, we would like to extend
our method to other more structured KBs, such as
Freebase, and to explore approaches to extend our
system to handle multi-relation questions.
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Abstract

This paper presents experiments with
WordNet semantic classes to improve de-
pendency parsing. We study the effect
of semantic classes in three dependency
parsers, using two types of constituency-
to-dependency conversions of the English
Penn Treebank. Overall, we can say that
the improvements are small and not sig-
nificant using automatic POS tags, con-
trary to previously published results using
gold POS tags (Agirre et al., 2011). In
addition, we explore parser combinations,
showing that the semantically enhanced
parsers yield a small significant gain only
on the more semantically oriented LTH
treebank conversion.

1 Introduction

This work presents a set of experiments to investi-
gate the use of lexical semantic information in de-
pendency parsing of English. Whether semantics
improve parsing is one interesting research topic
both on parsing and lexical semantics. Broadly
speaking, we can classify the methods to incor-
porate semantic information into parsers in two:
systems using static lexical semantic repositories,
such as WordNet or similar ontologies (Agirre et
al., 2008; Agirre et al., 2011; Fujita et al., 2010),
and systems using dynamic semantic clusters au-
tomatically acquired from corpora (Koo et al.,
2008; Suzuki et al., 2009).

Our main objective will be to determine
whether static semantic knowledge can help pars-
ing. We will apply different types of semantic in-
formation to three dependency parsers. Specifi-
cally, we will test the following questions:
• Does semantic information in WordNet help

dependency parsing? Agirre et al. (2011)
found improvements in dependency parsing

using MaltParser on gold POS tags. In this
work, we will investigate the effect of seman-
tic information using predicted POS tags.
• Is the type of semantic information related

to the type of parser? We will test three
different parsers representative of successful
paradigms in dependency parsing.
• How does the semantic information relate to

the style of dependency annotation? Most ex-
periments for English were evaluated on the
Penn2Malt conversion of the constituency-
based Penn Treebank. We will also examine
the LTH conversion, with richer structure and
an extended set of dependency labels.
• How does WordNet compare to automati-

cally obtained information? For the sake of
comparison, we will also perform the experi-
ments using syntactic/semantic clusters auto-
matically acquired from corpora.
• Does parser combination benefit from seman-

tic information? Different parsers can use se-
mantic information in diverse ways. For ex-
ample, while MaltParser can use the semantic
information in local contexts, MST can in-
corporate them in global contexts. We will
run parser combination experiments with and
without semantic information, to determine
whether it is useful in the combined parsers.

After introducing related work in section 2, sec-
tion 3 describes the treebank conversions, parsers
and semantic features. Section 4 presents the re-
sults and section 5 draws the main conclusions.

2 Related work

Broadly speaking, we can classify the attempts to
add external knowledge to a parser in two sets:
using large semantic repositories such as Word-
Net and approaches that use information automat-
ically acquired from corpora. In the first group,
Agirre et al. (2008) trained two state-of-the-art
constituency-based statistical parsers (Charniak,

649



2000; Bikel, 2004) on semantically-enriched in-
put, substituting content words with their seman-
tic classes, trying to overcome the limitations of
lexicalized approaches to parsing (Collins, 2003)
where related words, like scissors and knife, can-
not be generalized. The results showed a signi-
cant improvement, giving the first results over both
WordNet and the Penn Treebank (PTB) to show
that semantics helps parsing. Later, Agirre et al.
(2011) successfully introduced WordNet classes in
a dependency parser, obtaining improvements on
the full PTB using gold POS tags, trying different
combinations of semantic classes. MacKinlay et
al. (2012) investigate the addition of semantic an-
notations in the form of word sense hypernyms, in
HPSG parse ranking, reducing error rate in depen-
dency F-score by 1%, while some methods pro-
duce substantial decreases in performance. Fu-
jita et al. (2010) showed that fully disambiguated
sense-based features smoothed using ontological
information are effective for parse selection.

On the second group, Koo et al. (2008) pre-
sented a semisupervised method for training de-
pendency parsers, introducing features that incor-
porate word clusters automatically acquired from
a large unannotated corpus. The clusters include
strongly semantic associations like {apple, pear}
or {Apple, IBM} and also syntactic clusters like
{of, in}. They demonstrated its effectiveness in
dependency parsing experiments on the PTB and
the Prague Dependency Treebank. Suzuki et al.
(2009), Sagae and Gordon (2009) and Candito
and Seddah (2010) also experiment with the same
cluster method. Recently, Täckström et al. (2012)
tested the incorporation of cluster features from
unlabeled corpora in a multilingual setting, giving
an algorithm for inducing cross-lingual clusters.

3 Experimental Framework

In this section we will briefly describe the PTB-
based datasets (subsection 3.1), followed by the
data-driven parsers used for the experiments (sub-
section 3.2). Finally, we will describe the different
types of semantic representation that were used.

3.1 Treebank conversions

Penn2Malt1 performs a simple and direct conver-
sion from the constituency-based PTB to a depen-
dency treebank. It obtains projective trees and has
been used in several works, which allows us to

1http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html

compare our results with related experiments (Koo
et al., 2008; Suzuki et al., 2009; Koo and Collins,
2010). We extracted dependencies using standard
head rules (Yamada and Matsumoto, 2003), and a
reduced set of 12 general dependency tags.

LTH2 (Johansson and Nugues, 2007) presents
a conversion better suited for semantic process-
ing, with a richer structure and a more fine-grained
set of dependency labels (42 different dependency
labels), including links to handle long-distance
phenomena, giving a 6.17% of nonprojective sen-
tences. The results from parsing the LTH output
are lower than those for Penn2Malt conversions.

3.2 Parsers
We have made use of three parsers representative
of successful paradigms in dependency parsing.

MaltParser (Nivre et al., 2007) is a determinis-
tic transition-based dependency parser that obtains
a dependency tree in linear-time in a single pass
over the input using a stack of partially analyzed
items and the remaining input sequence, by means
of history-based feature models. We added two
features that inspect the semantic feature at the top
of the stack and the next input token.

MST3 represents global, exhaustive graph-
based parsing (McDonald et al., 2005; McDon-
ald et al., 2006) that finds the highest scoring di-
rected spanning tree in a graph. The learning pro-
cedure is global since model parameters are set
relative to classifying the entire dependency graph,
in contrast to the local but richer contexts used
by transition-based parsers. The system can be
trained using first or second order models. The
second order projective algorithm performed best
on both conversions, and we used it in the rest of
the evaluations. We modified the system in or-
der to add semantic features, combining them with
wordforms and POS tags, on the parent and child
nodes of each arc.

ZPar4 (Zhang and Clark, 2008; Zhang and
Nivre, 2011) performs transition-based depen-
dency parsing with a stack of partial analysis
and a queue of remaining inputs. In contrast to
MaltParser (local model and greedy deterministic
search) ZPar applies global discriminative learn-
ing and beam search. We extend the feature set of
ZPar to include semantic features. Each set of se-
mantic information is represented by two atomic

2http://nlp.cs.lth.se/software/treebank converter
3http://mstparser.sourceforge.net
4www.sourceforge.net/projects/zpar
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Base WordNet WordNet Clusters
line SF SS

Malt 88.46 88.49 (+0.03) 88.42 (-0.04) 88.59 (+0.13)
MST 90.55 90.70 (+0.15) 90.47 (-0.08) 90.88 (+0.33)‡
ZPar 91.52 91.65 (+0.13) 91.70 (+0.18)† 91.74 (+0.22)

Table 1: LAS results with several parsing algo-
rithms, Penn2Malt conversion (†: p <0.05, ‡: p
<0.005). In parenthesis, difference with baseline.

feature templates, associated with the top of the
stack and the head of the queue, respectively. ZPar
was directly trained on the Penn2Malt conversion,
while we applied the pseudo-projective transfor-
mation (Nilsson et al., 2008) on LTH, in order to
deal with non-projective arcs.

3.3 Semantic information

Our aim was to experiment with different types of
WordNet-related semantic information. For com-
parison with automatically acquired information,
we will also experiment with bit clusters.

WordNet. We will experiment with the seman-
tic representations used in Agirre et al. (2008) and
Agirre et al. (2011), based on WordNet 2.1. Word-
Net is organized into sets of synonyms, called
synsets (SS). Each synset in turn belongs to a
unique semantic file (SF). There are a total of 45
SFs (1 for adverbs, 3 for adjectives, 15 for verbs,
and 26 for nouns), based on syntactic and seman-
tic categories. For example, noun SFs differen-
tiate nouns denoting acts or actions, and nouns
denoting animals, among others. We experiment
with both full SSs and SFs as instances of fine-
grained and coarse-grained semantic representa-
tion, respectively. As an example, knife in its
tool sense is in the EDGE TOOL USED AS A
CUTTING INSTRUMENT singleton synset, and
also in the ARTIFACT SF along with thousands
of words including cutter. These are the two ex-
tremes of semantic granularity in WordNet. For
each semantic representation, we need to deter-
mine the semantics of each occurrence of a target
word. Agirre et al. (2011) used i) gold-standard
annotations from SemCor, a subset of the PTB, to
give an upper bound performance of the semantic
representation, ii) first sense, where all instances
of a word were tagged with their most frequent
sense, and iii) automatic sense ranking, predicting
the most frequent sense for each word (McCarthy
et al., 2004). As we will make use of the full PTB,
we only have access to the first sense information.

Clusters. Koo et al. (2008) describe a semi-

Base WordNet WordNet Clusters
line SF SS

Malt 84.95 85.12 (+0.17) 85.08 (+0.16) 85.13 (+0.18)
MST 85.06 85.35 (+0.29)‡ 84.99 (-0.07) 86.18 (+1.12)‡
ZPar 89.15 89.33 (+0.18) 89.19 (+0.04) 89.17 (+0.02)

Table 2: LAS results with several parsing algo-
rithms in the LTH conversion (†: p <0.05, ‡: p
<0.005). In parenthesis, difference with baseline.

supervised approach that makes use of cluster fea-
tures induced from unlabeled data, providing sig-
nificant performance improvements for supervised
dependency parsers on the Penn Treebank for En-
glish and the Prague Dependency Treebank for
Czech. The process defines a hierarchical cluster-
ing of the words, which can be represented as a
binary tree where each node is associated to a bit-
string, from the more general (root of the tree) to
the more specific (leaves). Using prefixes of vari-
ous lengths, it can produce clusterings of different
granularities. It can be seen as a representation of
syntactic-semantic information acquired from cor-
pora. They use short strings of 4-6 bits to represent
parts of speech and the full strings for wordforms.

4 Results

In all the experiments we employed a baseline fea-
ture set using word forms and parts of speech, and
an enriched feature set (WordNet or clusters). We
firstly tested the addition of each individual se-
mantic feature to each parser, evaluating its contri-
bution to the parser’s performance. For the combi-
nations, instead of feature-engineering each parser
with the wide array of different possibilities for
features, as in Agirre et al. (2011), we adopted
the simpler approach of combining the outputs of
the individual parsers by voting (Sagae and Lavie,
2006). We will use Labeled Attachment Score
(LAS) as our main evaluation criteria. As in pre-
vious work, we exclude punctuation marks. For
all the tests, we used a perceptron POS-tagger
(Collins, 2002), trained on WSJ sections 2–21, to
assign POS tags automatically to both the training
(using 10-way jackknifing) and test data, obtaining
a POS tagging accuracy of 97.32% on the test data.
We will make use of Bikel’s randomized parsing
evaluation comparator to test the statistical signi-
cance of the results. In all of the experiments the
parsers were trained on sections 2-21 of the PTB
and evaluated on the development set (section 22).
Finally, the best performing system was evaluated
on the test set (section 23).
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Parsers LAS UAS
Best baseline (ZPar) 91.52 92.57

Best single parser (ZPar + Clusters) 91.74 (+0.22) 92.63
Best combination (3 baseline parsers) 91.90 (+0.38) 93.01

Best combination of 3 parsers:
3 baselines + 3 SF extensions 91.93 (+0.41) 92.95
Best combination of 3 parsers:
3 baselines + 3 SS extensions 91.87 (+0.35) 92.92
Best combination of 3 parsers:

3 baselines + 3 cluster extensions 91.90 (+0.38) 92.90

Table 3: Parser combinations on Penn2Malt.

Parsers LAS UAS
Best baseline (ZPar) 89.15 91.81

Best single parser (ZPar + SF) 89.33 (+0.15) 92.01
Best combination (3 baseline parsers) 89.15 (+0.00) 91.81

Best combination of 3 parsers:
3 baselines + 3 SF extensions 89.56 (+0.41)‡ 92.23
Best combination of 3 parsers:
3 baselines + 3 SS extensions 89.43 (+0.28) 93.12
Best combination of 3 parsers:

3 baselines + 3 cluster extensions 89.52 (+0.37)† 92.19

Table 4: Parser combinations on LTH (†: p <0.05,
‡: p <0.005).

4.1 Single Parsers

We run a series of experiments testing each indi-
vidual semantic feature, also trying different learn-
ing configurations for each one. Regarding the
WordNet information, there were 2 different fea-
tures to experiment with (SF and SS). For the bit
clusters, there are different possibilities, depend-
ing on the number of bits used. For Malt and MST,
all the different lengths of bit strings were used.
Given the computational requirements and the pre-
vious results on Malt and MST, we only tested all
bits in ZPar. Tables 1 and 2 show the results.

Penn2Malt. Table 1 shows that the only signifi-
cant increase over the baseline is for ZPar with SS
and for MST with clusters.

LTH. Looking at table 2, we can say that the dif-
ferences in baseline parser performance are accen-
tuated when using the LTH treebank conversion,
as ZPar clearly outperforms the other two parsers
by more than 4 absolute points. We can see that
SF helps all parsers, although it is only significant
for MST. Bit clusters improve significantly MST,
with the highest increase across the table.

Overall, we see that the small improvements
do not confirm the previous results on Penn2Malt,
MaltParser and gold POS tags. We can also con-
clude that automatically acquired clusters are spe-
cially effective with the MST parser in both tree-
bank conversions, which suggests that the type of
semantic information has a direct relation to the
parsing algorithm. Section 4.3 will look at the de-
tails by each knowledge type.

4.2 Combinations

Subsection 4.1 presented the results of the base al-
gorithms and their extensions based on semantic
features. Sagae and Lavie (2006) report improve-
ments over the best single parser when combining
three transition-based models and one graph-based
model. The same technique was also used by the
winning team of the CoNLL 2007 Shared Task
(Hall et al., 2007), combining six transition-based
parsers. We used MaltBlender5, a tool for merging
the output of several dependency parsers, using the
Chu-Liu/Edmonds directed MST algorithm. After
several tests we noticed that weighted voting by
each parser’s labeled accuracy gave good results,
using it in the rest of the experiments. We trained
different types of combination:
• Base algorithms. This set includes the 3 base-

line algorithms, MaltParser, MST, and ZPar.
• Extended parsers, adding semantic informa-

tion to the baselines. We include the three
base algorithms and their semantic exten-
sions (SF, SS, and clusters). It is known (Sur-
deanu and Manning, 2010) that adding more
parsers to an ensemble usually improves ac-
curacy, as long as they add to the diver-
sity (and almost regardless of their accuracy
level). So, for the comparison to be fair, we
will compare ensembles of 3 parsers, taken
from sets of 6 parsers (3 baselines + 3 SF,
SS, and cluster extensions, respectively).

In each experiment, we took the best combina-
tion of individual parsers on the development set
for the final test. Tables 3 and 4 show the results.

Penn2Malt. Table 3 shows that the combina-
tion of the baselines, without any semantic infor-
mation, considerably improves the best baseline.
Adding semantics does not give a noticeable in-
crease with respect to combining the baselines.

LTH (table 4). Combining the 3 baselines does
not give an improvement over the best baseline, as
ZPar clearly outperforms the other parsers. How-
ever, adding the semantic parsers gives an increase
with respect to the best single parser (ZPar + SF),
which is small but significant for SF and clusters.

4.3 Analysis

In this section we analyze the data trying to under-
stand where and how semantic information helps
most. One of the obstacles of automatic parsers
is the presence of incorrect POS tags due to auto-

5http://w3.msi.vxu.se/users/jni/blend/
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LAS on sentences LAS on sentences
POS tags Parser LAS test set without POS errors with POS errors
Gold ZPar 90.45 91.68 89.14
Automatic ZPar 89.15 91.62 86.51
Automatic Best combination of 3 parsers: 89.56 (+0.41) 91.90 (+0.28) 87.06 (+0.55)

3 baselines + 3 SF extensions
Automatic Best combination of 3 parsers: 89.43 (+0.28) 91.95 (+0.33) 86.75 (+0.24)

3 baselines + 3 SS extensions
Automatic Best combination of 3 parsers: 89.52 (+0.37) 91.92 (+0.30) 86.96 (+0.45)

3 baselines + 3 cluster extensions

Table 5: Differences in LAS (LTH) for baseline and extended parsers with sentences having cor-
rect/incorrect POS tags (the parentheses show the difference w.r.t ZPar with automatic POS tags).

matic tagging. For example, ZPar’s LAS score on
the LTH conversion drops from 90.45% with gold
POS tags to 89.12% with automatic POS tags. We
will examine the influence of each type of seman-
tic information on sentences that contain or not
POS errors, and this will clarify whether the incre-
ments obtained when using semantic information
are useful for correcting the negative influence of
POS errors or they are orthogonal and constitute
a source of new information independent of POS
tags. With this objective in mind, we analyzed the
performance on the subset of the test corpus con-
taining the sentences which had POS errors (1,025
sentences and 27,300 tokens) and the subset where
the sentences had (automatically assigned) correct
POS tags (1,391 sentences and 29,386 tokens).

Table 5 presents the results of the best single
parser on the LTH conversion (ZPar) with gold
and automatic POS tags in the first two rows. The
LAS scores are particularized for sentences that
contain or not POS errors. The following three
rows present the enhanced (combined) parsers
that make use of semantic information. As the
combination of the three baseline parsers did not
give any improvement over the best single parser
(ZPar), we can hypothesize that the gain coming
from the parser combinations comes mostly from
the addition of semantic information. Table 5 sug-
gests that the improvements coming from Word-
Net’s semantic file (SF) are unevenly distributed
between the sentences that contain POS errors and
those that do not (an increase of 0.28 for sentences
without POS errors and 0.55 for those with er-
rors). This could mean that a big part of the in-
formation contained in SF helps to alleviate the
errors performed by the automatic POS tagger. On
the other hand, the increments are more evenly
distributed for SS and clusters, and this can be
due to the fact that the semantic information is
orthogonal to the POS, giving similar improve-
ments for sentences that contain or not POS errors.

We independently tested this fact for the individ-
ual parsers. For example, with MST and SF the
gains almost doubled for sentences with incorrect
POS tags (+0.37 with respect to +0.21 for sen-
tences with correct POS tags) while the gains of
adding clusters’ information for sentences without
and with POS errors were similar (0.91 and 1.33,
repectively). This aspect deserves further inves-
tigation, as the improvements seem to be related
to both the type of semantic information and the
parsing algorithm.We did an initial exploration but
it did not give any clear indication of the types of
improvements that could be expected using each
parser and semantic data.

5 Conclusions

This work has tried to shed light on the contribu-
tion of semantic information to dependency pars-
ing. The experiments were thorough, testing two
treebank conversions and three parsing paradigms
on automatically predicted POS tags. Compared
to (Agirre et al., 2011), which used MaltParser on
the LTH conversion and gold POS tags, our results
can be seen as a negative outcome, as the improve-
ments are very small and non-significant in most
of the cases. For parser combination, WordNet
semantic file information does give a small sig-
nificant increment in the more fine-grained LTH
representation. In addition we show that the im-
provement of automatic clusters is also weak. For
the future, we think tdifferent parsers, eitherhat a
more elaborate scheme is needed for word classes,
requiring to explore different levels of generaliza-
tion in the WordNet (or alternative) hierarchies.
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Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 477–
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Abstract

In this paper we extend the cube-pruned
dependency parsing framework of Zhang
et al. (2012; 2013) by forcing inference to
maintain both label and structural ambigu-
ity. The resulting parser achieves state-of-
the-art accuracies, in particular on datasets
with a large set of dependency labels.

1 Introduction

Dependency parsers assign a syntactic depen-
dency tree to an input sentence (Kübler et al.,
2009), as exemplified in Figure 1. Graph-based
dependency parsers parameterize models directly
over substructures of the tree, including single
arcs (McDonald et al., 2005), sibling or grand-
parent arcs (McDonald and Pereira, 2006; Car-
reras, 2007) or higher-order substructures (Koo
and Collins, 2010; Ma and Zhao, 2012). As the
scope of each feature function increases so does
parsing complexity, e.g., o(n5) for fourth-order
dependency parsing (Ma and Zhao, 2012). This
has led to work on approximate inference, typ-
ically via pruning (Bergsma and Cherry, 2010;
Rush and Petrov, 2012; He et al., 2013)

Recently, it has been shown that cube-pruning
(Chiang, 2007) can efficiently introduce higher-
order dependencies in graph-based parsing (Zhang
and McDonald, 2012). Cube-pruned dependency
parsing runs standard bottom-up chart parsing us-
ing the lower-order algorithms. Similar to k-best
inference, each chart cell maintains a beam of k-
best partial dependency structures. Higher-order
features are scored when combining beams during
inference. Cube-pruning is an approximation, as
the highest scoring tree may fall out of the beam
before being fully scored with higher-order fea-
tures. However, Zhang et al. (2013) observe state-
of-the-art results when training accounts for errors
that arise due to such approximations.

John emailed April about one month ago

NSUBJ IOBJ

ADVMOD

QUANTMOD NUM
NPADVMOD

Figure 1: A sample dependency parse.

In this work we extend the cube-pruning frame-
work of Zhang et al. by observing that dependency
parsing has two fundamental sources of ambiguity.
The first, structural ambiguity, pertains to confu-
sions about the unlabeled structure of the tree, e.g.,
the classic prepositional phrase attachment prob-
lem. The second, label ambiguity, pertains to sim-
ple label confusions, e.g., whether a verbal object
is direct or indirect.

Distinctions between arc labels are frequently
fine-grained and easily confused by parsing mod-
els. For example, in the Stanford dependency
label set (De Marneffe et al., 2006), the labels
TMOD (temporal modifier), NPADVMOD (noun-
phrase adverbial modifier), IOBJ (indirect object)
and DOBJ (direct object) can all be noun phrases
that modify verbs to their right. In the context of
cube-pruning, during inference, the system opts to
maintain a large amount of label ambiguity at the
expense of structural ambiguity. Frequently, the
beam stores only label ambiguities and the result-
ing set of trees have identical unlabeled structure.
For example, in Figure 1, the aforementioned la-
bel ambiguity around noun objects to the right of
the verb (DOBJ vs. IOBJ vs. TMP) could lead one
or more of the structural ambiguities falling out of
the beam, especially if the beam is small.

To combat this, we introduce a secondary beam
for each unique unlabeled structure. That is,
we partition the primary (entire) beam into dis-
joint groups according to the identity of unla-
beled structure. By limiting the size of the sec-
ondary beam, we restrict label ambiguity and en-
force structural diversity within the primary beam.
The resulting parser consistently improves on the
state-of-the-art parser of Zhang et al. (2013). In
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(a)

l

=
l

+
l1

(b)

l

=
l1

+
l2

Figure 2: Structures and rules for parsing with the
(Eisner, 1996) algorithm. Solid lines show only
the construction of right-pointing first-order de-
pendencies. l is the predicted arc label. Dashed
lines are the additional sibling modifier signatures
in a generalized algorithm, specifically the previ-
ous modifier in complete chart items.

particular, data sets with large label sets (and thus
a large number of label confusions) typically see
the largest jumps in accuracy. Finally, we show
that the same result cannot be achieved by simply
increasing the size of the beam, but requires ex-
plicit enforcing of beam diversity.

2 Structural Diversity in Cube-Pruning

Our starting point is the cube-pruned dependency
parsing model of Zhang and McDonald (2012). In
that work, as here, inference is simply the Eis-
ner first-order parsing model (Eisner, 1996) shown
in Figure 2. In order to score higher-order fea-
tures, each chart item maintains a list of signa-
tures, which represent subtrees consistent with the
chart item. The stored signatures are the relevant
portions of the subtrees that will be part of higher-
order feature calculations. For example, to score
features over adjacent arcs, we might maintain ad-
ditional signatures, again shown in Figure 2.

The scope of the signature adds asymptotic
complexity to parsing. Even for second-order sib-
lings, there will now be O(n) possible signatures
per chart item. The result is that parsing com-
plexity increases from O(n3) to O(n5). Instead
of storing all signatures, Zhang and McDonald
(2012) store the current k-best in a beam. This re-
sults in approximate inference, as some signatures
may fall out of the beam before higher-order fea-
tures can be scored. This general trick is known as
cube-pruning and is a common approach to deal-
ing with large hypergraph search spaces in ma-
chine translation (Chiang, 2007).

Cube-pruned parsing is analogous to k-best
parsing algorithmically. But there is a fundamen-
tal difference. In k-best parsing, if two subtrees
ta and tb belong to the same chart item, with ta

l
=

0 : 1 : 2 :

+ l1 l2
l1

0 : l1

1 : l2

2 : l3

l
=

0 : 1 : 2 :

+ l1 l2
l1

0 : l1

1 : l2

2 :
l1

Figure 3: Merging procedure in cube pruning. The
bottom shows that enforcing diversity in the k-best
lists can give chance to a good structure at (2, 2).

ranking higher than tb, then an extension of ta
through combing with a subtree tc from another
chart item must also score higher than that of tb.
This property is called the monotonicity property.
Based on it, k-best parsing merges k-best subtrees
in the following way: given two chart items with
k-best lists to be combined, it proceeds on the two
sorted lists monotonically from beginning to end
to generate combinations. Cube pruning follows
the merging procedure despite the loss of mono-
tonicity due to the addition of higher-order feature
functions over the signatures of the subtrees. The
underlying assumption of cube pruning is that the
true k-best results are likely in the cross-product
space of top-ranked component subtrees. Figure 3
shows that the space is the top-left corner of the
grid in the binary branching cases.

As mentioned earlier, the elements in chart item
k-best lists are feature signatures of subtrees. We
make a distinction between labeled signatures and
unlabeled signatures. As feature functions are de-
fined on sub-graphs of the dependency trees, a fea-
ture signature is labeled if and only if feature func-
tions draw information from both the arcs in the
sub-graph and the labels on the arcs. Every la-
beled signature projects to an unlabeled signature
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that ignores the arc labels.
The motivation for introducing unlabeled signa-

tures for labeled parsing is to enforce structural di-
versity. Figure 3 illustrates the idea. In the top
diagram, there is only one unlabeled signature in
one of the two lists. This is likely to happen when
there is label ambiguity so that all three labels have
similar scores. In such cases, alternative tree struc-
tures further down in the list that have the poten-
tial to be scored higher when incorporating higher-
order features, lose this opportunity due to prun-
ing. By contrast, if we introduce structural diver-
sity by limiting the number of label variants, such
alternative structures can come out on top.

More formally, when the feature signatures of
the subtrees include arc labels, the cardinality of
the set of all possible signatures grows by a poly-
nomial of the size of the label set. This factor has a
diluting effect on the diversity of unlabeled signa-
tures within the beam. The larger the label set is,
the greater the chance label ambiguity will dom-
inate the beam. Therefore, we introduce a sec-
ond level of beam specifically for labeled signa-
tures. We call it the secondary beam, relative to
the primary beam, i.e., the entire beam. The sec-
ondary beam limits the number of labeled signa-
tures for each unlabeled signature, a projection of
labeled signature, while the primary beam limits
the total number of labeled signatures. To illus-
trate this, consider an original primary beam of
length b and a secondary beam length of sb. Let
tji represent the ith highest scoring labeled variant
of unlabeled structure j. The table below shows a
specific example of beam configurations for b = 4
for all possible values of sb. The original beam is
the pathological case where all signatures have the
same unlabeled projection. When sb = 1, all sig-
natures in the beam now have a different unlabeled
projection. When sb = 4, the beam reverts to the
original without any structural diversity. Values
between balance structural and label diversity.

beam original b = 4 b = 4 b = 4 b = 4

rank b=4 sb = 1 sb = 2 sb = 3 sb = 4

1 t11 t11 t11 t11 t11

2 t12 t21 t12 t12 t12

3 t13 t31 t21 t13 t13

4 t14 t41 t31 t21 t14

· · · · · · · · · · · · · · · · · · · · · beam cut-off · · · · · · · · · · · · · · · · · · · · ·
5 t21 . . . . . . . . . . . .

6 t31 . . . . . . . . . . . .

7 t22 . . . . . . . . . . . .

8 t32 . . . . . . . . . . . .

9 t41 . . . . . . . . . . . .

To achieve this in cube pruning, deeper explo-
ration in the merging procedure becomes neces-
sary. In this example, originally the merging pro-
cedure stops when t14 has been explored. When
sb = 1, the exploration needs to go further from
rank 4 to 9. When sb = 2, it needs to go from 4
to 6. When sb = 3, only one more step to rank
5 is necessary. The amount of additional compu-
tation depends on the value of sb, the composi-
tion of the incoming k-best lists, and the feature
functions which determine feature signatures. To
account for this we also compare to baselines sys-
tems that simply increase the size of the beam to a
comparable run-time.

In our experiments we found that sb = b/2 is
typically a good choice. As in most parsing sys-
tems, beams are applied consistently during learn-
ing and testing because feature weights will be ad-
justed according to the diversity of the beam.

3 Experiments

We use the cube-pruned dependency parser of
Zhang et al. (2013) as our baseline system. To
make an apples-to-apples comparison, we use the
same online learning algorithm and the same fea-
ture templates. The feature templates include first-
to-third-order labeled features and valency fea-
tures. More details of these features are described
in Zhang and McDonald (2012). For online learn-
ing, we apply the same violation-fixing strategy
(so-called single-node max-violation) on MIRA
and run 8 epochs of training for all experiments.

For English, we conduct experiments on
the commonly-used constituency-to-dependency-
converted Penn Treebank data sets. The first one,
Penn-YM, was created by the Penn2Malt1 soft-
ware. The second one, Penn-S-2.0.5, used the
Stanford dependency framework (De Marneffe et
al., 2006) by applying version 2.0.5 of the Stan-
ford parser. The third one, Penn-S-3.3.0 was con-
verted by version 3.3.0 of the Stanford parser. The
train/dev/test split was standard: sections 2-21 for
training; 22 for validation; and 23 for evaluation.
Automatic POS tags for Penn-YM and Penn-S-
2.0.5 are provided by TurboTagger (Martins et al.,
2013) with an accuracy of 97.3% on section 23.
For Chinese, we use the CTB-5 dependency tree-
bank which was converted from the original con-
stituent treebank by Zhang and Nivre (2011) and
use gold-standard POS tags as is standard.

1http://stp.lingfil.uu.se/∼nivre/research/Penn2Malt.html
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Berkeley Parser TurboParser Cube-pruned w/o diversity Cube-pruned w/ diversity
UAS LAS UAS LAS UAS LAS UAS LAS

PENN-YM - - 93.07 - 93.50 92.41 93.57 92.48
PENN-S-2.0.5 - - 92.82 - 93.59 91.17 93.71 91.37
PENN-S-3.3.0 93.31 91.01 92.20 89.67 92.91 90.52 93.01 90.64
PENN-S-3.3.0-GOLD 93.65 92.05 93.56 91.99 94.32 92.90 94.40 93.02
CTB-5 - - - - 87.78 86.13 87.96 86.34

Table 1: English and Chinese results for cube pruning dependency parsing with the enforcement of
structural diversity. PENN-S and CTB-5 are significant at p < 0.05. Penn-S-2.0.5 TurboParser result is
from Martins et al. (2013). Following Kong and Smith (2014), we trained our models on Penn-S-3.3.0
with gold POS tags and evaluated with both non-gold (Stanford tagger) and gold tags.

Table 1 shows the main results of the paper.
Both the baseline and the new system keep a beam
of size 6 for each chart cell. The difference is
that the new system enforces structural diversity
with the introduction of a secondary beam for la-
bel variants. We choose the secondary beam that
yields the highest LAS on the development data
sets for Penn-YM, Penn-S-2.0.5 and CTB-5. In-
deed we observe larger improvements for the data
sets with larger label sets. Penn-S-2.0.5 has 49 la-
bels and observes a 0.2% absolute improvement in
LAS. Although CTB-5 has a small label set (18),
we do see similar improvements for both UAS and
LAS. There is a slight improvement for Penn-YM
despite the fact that Penn-YM has the most com-
pact label set (12). These results are the highest
known in the literature. For the Penn-S-3.3.0 re-
sults we can see that our model outperforms Tur-
boPaser and is competitive with the Berkeley con-
stituency parser (Petrov et al., 2006). In particu-
lar, if gold tags are assumed, cube-pruning signif-
icantly outperforms Berkeley. This suggests that
joint tagging and parsing should improve perfor-
mance further in the non-gold tag setting, as that
is a differentiating characteristic of constituency
parsers. Table 2 shows the results on the CoNLL
2006/2007 data sets (Buchholz and Marsi, 2006;
Nivre et al., 2007). For simplicity, we set the sec-
ondary beam to 3 for all. We can see that over-
all there is an improvement in accuracy and this is
highly correlated with the size of the label set.

In order to examine the importance of balancing
structural diversity and labeled diversity, we let the
size of the secondary beam vary from one to the
size of the primary beam. In Table 3, we show the
results of all combinations of beam settings of pri-
mary beam sizes 4 and 6 for three data sets: Penn-
YM, Penn-S-2.0.5, and CTB-5 respectively. In the
table, we highlight the best results for each beam
size and data set on the development data. For 5
of the total of 6 comparison groups – three lan-

w/o diversity w/ diversity
Language(labels) UAS LAS UAS LAS

CZECH(82) 88.36 82.16 88.36 82.02
SWEDISH(64) 91.62 85.08 91.85 85.26

PORTUGUESE(55) 92.07 88.30 92.23 88.50
DANISH(53) 91.88 86.95 91.78 86.93

HUNGARIAN(49) 85.85 81.02 86.55 81.79
GREEK(46) 86.14 78.20 86.21 78.45

GERMAN(46) 92.03 89.44 92.01 89.52
CATALAN(42) 94.58 89.05 94.91 89.54

BASQUE(35) 79.59 71.52 80.14 71.94
ARABIC(27) 80.48 69.68 80.56 69.98

TURKISH(26) 76.94 66.80 77.14 67.00
SLOVENE(26) 86.01 77.14 86.27 77.44

DUTCH(26) 83.57 80.29 83.39 80.19
ITALIAN(22) 87.57 83.22 87.38 82.95
SPANISH(21) 87.96 84.95 87.98 84.79

BULGARIAN(19) 94.02 89.87 93.88 89.63
JAPANESE(8) 93.26 91.67 93.16 91.51

AVG 87.76 82.08 87.87 82.20

Table 2: Results for languages from CoNLL
2006/2007 shared tasks. When a language is in
both years, the 2006 set is used. Languages are
sorted by the number of unique arc labels.

guages times two primary beams – the best result
is obtained by choosing a secondary beam size that
is close to one half the size of the primary beam.
Contrasting Table 1 and Table 3, the accuracy im-
provements are consistent across the development
set and the test set for all three data sets.

A reasonable question is whether such improve-
ments could be obtained by simply enlarging the
beam in the baseline parser. The bottom row of
Table 3 shows the parsing results for the three data
sets when the beam is enlarged to 16. On Penn-
S-2.0.5, the baseline with beam 16 is at roughly
the same speed as the highlighted best system with
primary beam 6 and secondary beam 3. On CTB-
5, the beam 16 baseline is 30% slower. Table 3
indicates that simply enlarging the beam – rela-
tive to parsing speed – does not recover the wins
of structural diversity on Penn-S-2.0.5 and CTB-5,
though it does reduce the gap on Penn-S-2.0.5. On
Penn-YM, the beam 16 baseline is slightly better
than the new system, but 90% slower.
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primary secondary PENN-YM PENN-S-2.0.5 CTB-5
beam beam UAS LAS UAS LAS UAS LAS

4

1 93.67 92.64 93.65 91.04 87.53 85.85
2 93.79 92.68 93.77 91.30 87.62 85.96
3 93.80 92.66 93.69 91.23 87.48 85.91
4 93.75 92.63 93.62 91.11 87.68 86.08

6

1 93.65 92.46 93.76 91.15 87.72 86.05
2 93.80 92.69 93.80 91.35 87.61 85.96
3 93.75 92.64 93.99 91.55 87.80 86.18
4 93.82 92.74 93.84 91.40 87.91 86.28
5 93.82 92.71 93.71 91.26 87.75 86.12
6 93.74 92.61 93.70 91.21 87.66 86.05

16 16 93.87 92.75 93.77 91.35 87.59 85.86

Table 3: Varying the degree of diversity by adjusting the secondary beam for labeled variants, with
different primary beams. When the size of the secondary beam is equal to the primary beam, the parser
degenerates to not enforcing structural diversity. In the opposite, when the secondary beam is smaller,
there is more structural diversity and less label diversity. Results are on development sets.

To better understand the behaviour of structural
diversity pruning relative to increasing the beam,
we looked at the unlabeled attachment F-score per
dependency label in the Penn-S-2.0.5 development
set2. Table 4 shows the 10 labels with the largest
increase in attachment scores for structural diver-
sity pruning relative to standard pruning. Impor-
tantly, the biggest wins are primarily for labels in
which unlabeled attachment is lower than average
(93.99, 8 out of 10). Thus, diversity pruning gets
most of its wins on difficult attachment decisions.
Indeed, many of the relations represent clausal
dependencies that are frequently structurally am-
biguous. There are also cases of relatively short
dependencies that can be difficult to attach. For
instance, quantmod dependencies are typically ad-
verbs occurring after verbs that modify quantities
to their right. But these can be confused as ad-
verbial modifiers of the verb to the left. These re-
sults support our hypothesis that label ambiguity
is causing hard attachment decisions to be pruned
and that structural diversity can ameliorate this.

4 Discussion

Keeping multiple beams in approximate search
has been explored in the past. In machine transla-
tion, multiple beams are used to prune translation
hypotheses at different levels of granularity (Zens
and Ney, 2008). However, the focus is improving
the speed of translation decoder rather than im-
proving translation quality through enforcement
of hypothesis diversity. In parsing, Bohnet and
Nivre (2012) and Bohnet et al. (2013) propose a
model for joint morphological analysis, part-of-
speech tagging and dependency parsing using a

2Using eval.pl from Buchholz and Marsi (2006).

w/o diversity w/ diversity
Label large beam small beam diff

quantmod 86.65 88.06 1.41
partmod 83.63 85.02 1.39

xcomp 87.76 88.74 0.98
tmod 89.75 90.72 0.97

appos 88.89 89.84 0.95
nsubjpass 92.53 93.31 0.78

complm 94.50 95.15 0.64
advcl 81.10 81.74 0.63

ccomp 82.64 83.17 0.54
number 96.86 97.39 0.53

Table 4: Unlabeled attachment F-score per de-
pendency relation. The top 10 score increases
for structural diversity pruning (beam 6 and la-
bel beam of 3) over basic pruning (beam 16) are
shown. Only labels with more than 100 instances
in the development data are considered.

left-to-right beam. With a single beam, token level
ambiguities (morphology and tags) dominate and
dependency level ambiguity is suppressed. This is
addressed by essentially keeping two beams. The
first forces every tree to be different at the depen-
dency level and the second stores the remaining
highest scoring options, which can include outputs
that differ only at the token level.

The present work looks at beam diversity in
graph-based dependency parsing, in particular la-
bel versus structural diversity. It was shown that
by keeping a diverse beam significant improve-
ments could be achieved on standard benchmarks,
in particular with respect to difficult attachment
decisions. It is worth pointing out that other
dependency parsing frameworks (e.g., transition-
based parsing (Zhang and Clark, 2008; Zhang and
Nivre, 2011)) could also benefit from modeling
structural diversity in search.
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Abstract

This paper presents the first results on
parsing the Penn Parsed Corpus of Mod-
ern British English (PPCMBE), a million-
word historical treebank with an annota-
tion style similar to that of the Penn Tree-
bank (PTB). We describe key features of
the PPCMBE annotation style that differ
from the PTB, and present some exper-
iments with tree transformations to bet-
ter compare the results to the PTB. First
steps in parser analysis focus on problem-
atic structures created by the parser.

1 Introduction

We present the first parsing results for the
Penn Parsed Corpus of Modern British English
(PPCMBE) (Kroch et al., 2010), showing that it
can be parsed at a few points lower in F-score than
the Penn Treebank (PTB) (Marcus et al., 1999).
We discuss some of the differences in annotation
style and source material that make a direct com-
parison problematic. Some first steps at analysis
of the parsing results indicate aspects of the anno-
tation style that are difficult for the parser, and also
show that the parser is creating structures that are
not present in the training material.

The PPCMBE is a million-word treebank cre-
ated for researching changes in English syntax. It
covers the years 1700-1914 and is the most mod-
ern in the series of treebanks created for histori-
cal research.1 Due to the historical nature of the
PPCMBE, it shares some of the characteristics of
treebanks based on modern unedited text (Bies et
al., 2012), such as spelling variation.

1The other treebanks in the series cover Early Modern En-
glish (Kroch et al., 2004) (1.8 million words), Middle Eng-
lish (Kroch and Taylor, 2000) (1.2 million words), and Early
English Correspondence (Taylor et al., 2006) (2.2 million
words).

The size of the PPCMBE is roughly the same
as the WSJ section of the PTB, and its annotation
style is similar to that of the PTB, but with dif-
ferences, particularly with regard to coordination
and NP structure. However, except for Lin et al.
(2012), we have found no discussion of this corpus
in the literature.2 There is also much additional
material annotated in this style, increasing the im-
portance of analyzing parser performance on this
annotation style.3

2 Corpus description

The PPCMBE4 consists of 101 files, but we leave
aside 7 files that consist of legal material with very
different properties than the rest of the corpus.
The remaining 94 files contain 1,018,736 tokens
(words).

2.1 Part-of-speech tags

The PPCMBE uses a part-of-speech (POS) tag set
containing 248 POS tags, in contrast to the 45 tags
used by the PTB. The more complex tag set is
mainly due to the desire to tag orthographic vari-
ants consistently throughout the series of historical
corpora. For example “gentlemen” and its ortho-
graphic variant “gen’l’men” are tagged with the
complex tag ADJ+NS (adjective and plural noun)
on the grounds that in earlier time periods, the lex-
ical item is spelled and tagged as two orthographic
words (“gentle”/ADJ and “men”/NS).

While only 81 of the 248 tags are “simple” (i.e.,
not associated with lexical merging or splitting),

2Lin et al. (2012) report some results on POS tagging us-
ing their own mapping to different tags, but no parsing results.

3Aside from the corpora listed in fn. 1, there are also
historical corpora of Old English (Taylor et al., 2003), Ice-
landic (Wallenberg et al., 2011), French (Martineau and oth-
ers, 2009), and Portuguese (Galves and Faria, 2010), totaling
4.5 million words.

4We are working with a pre-release copy of the next re-
vision of the official version. Some annotation errors in the
currently available version have been corrected, but the dif-
ferences are relatively minor.
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Type # Tags # Tokens % coverage
Simple 81 1,005,243 98.7%

Complex 167 13,493 1.3%
Total 248 1,018,736 100.0%

Table 1: Distribution of POS tags. Complex tags
indicate lexical merging or splitting.

(1) (a) NP

NP

a Ham

CONJP

and NP

a Hare

(b) NP

NP

a Ham

and NP

a Hare

Figure 1: Coordination in the PPCMBE (1a) and
the PTB (1b).

they cover the vast majority of the words in the
corpus, as summarized in Table 1. Of these 81
tags, some are more specialized than in the PTB,
accounting for the increased number of tags com-
pared to the PTB. For instance, for historical con-
sistency, words like “one” and “else” each have
their own tag.

2.2 Syntactic annotation

As mentioned above, the syntactic annotation
guidelines do not differ radically from those of the
PTB. There are some important differences, how-
ever, which we highlight in the following three
subsections.

2.2.1 Coordination
A coordinating conjunction and conjunct form a
CONJP, as shown in (1a) in Figure 1. (1b) shows
the corresponding annotation in the PTB.

In a conjoined NP, if part of a first conjunct
potentially scopes over two or more conjuncts
(shared pre-modifiers), the first conjunct has no
phrasal node in the PPCMBE, and the label of the

(2) (a) NP

their husbands CONJP

or NX

fathers

(b) NP

their husbands or fathers

Figure 2: (2a) is an example of coordination with
a shared pre-modifier in the PPCMBE, and (2b)
shows the corresponding annotation in the PTB.

(3) (a) NP

The back PP

of this Spider

(b) NP

NP

a teacher

PP

of chemistry

(4) (a) NP

The Spiders CP-REL

which have..

(b) NP

a conviction CP-THT

that..

Figure 3: (3a) shows that a PP is sister to the
noun in the PPCMBE, in contrast to the adjunction
structure in the PTB (3b). (4ab) show that clausal
complements and modifiers of a noun are distin-
guished by function tags, rather than structurally
as in the PTB, which would adjoin the CP in (a),
but not in (b).

subsequent conjuncts becomes NX instead of NP,
as shown in (2a) in Figure 2. The corresponding
PTB annotation is flat, as in (2b).5

2.2.2 Noun Phrase structure
Neither the PPCMBE nor the PTB distinguish be-
tween PP complements and modifiers of nouns.
However, the PPCMBE annotates both types of
dependents as sisters of the noun, while the PTB
adjoins both types. For instance in (3a) in Fig-
ure 3, the modifier PP is a sister to the noun in
the PPCMBE, while in (3b), the complement PP
is adjoined in the PTB.

Clausal complements and modifiers are also
both treated as sisters to the noun in the PPCMBE.
In this case, though, the complement/modifier dis-
tinction is encoded by a function tag. For exam-
ple, in (4a) and (4b), the status of the CPs as mod-
ifier and complement is indicated by their func-
tion tags: REL for relative clause and THT “that”
complement. In the PTB, the distinction would be
encoded structurally; the relative clause would be
adjoined, whereas the “that” complement would
not.

2.2.3 Clausal structure
The major difference in the clausal structure as
compared to the PTB is the absence of a VP level6,
yielding flatter trees than in the PTB. An example
clause is shown in (5) in Figure 4.

5Similar coordination structures exist for categories other
than NP, although NP is by far the most common.

6This is due to the changing headedness of VP in the over-
all series of English historical corpora.
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(5) IP

NP-SBJ

The poor fellow

was shot PP

with NP

three Arrows

Figure 4: An example of clausal structure, without
VP.

(6) (a) NP

NP

The back

PP

of this Spider

(b)NP

NP

The Spiders

CP-REL

which have..

Figure 5: (6a) shows how (3a) is transformed in
the “reduced +NPs” version to include a level of
NP recursion, and (6b) shows the same for (4a).

3 Corpus transformations

We refer to the pre-release version of the corpus
described in Section 2 as the “Release” version,
and experiment with three other corpus versions.

3.1 Reduced
As mentioned earlier, the PPCMBE’s relatively
large POS tag set aims to maximize annotation
consistency across the entire time period covered
by the historical corpora, beginning with Middle
English. Since we are concerned here with pars-
ing just the PPCMBE, we simplified the tag set.

The complex tags are simplified in a fully deter-
ministic way, based on the trees and the tags. For
example, the POS tag for “gentleman”, originally
ADJ+N is changed to N. The P tag is split, so that
it is either left as P, if a preposition, or changed
to CONJS, if a subordinating conjunction. The re-
duced tag set contains 76 tags. We call the version
of the corpus with the reduced tag set the “Re-
duced” version.

3.2 Reduced+NPs
As discussed in Section 2.2.2, noun modifiers are
sisters to the noun, instead of being adjoined, as in
the PTB. As a result, there are fewer NP brackets
in the PPCMBE than there would be if the PTB-
style were followed. To evaluate the effect of the
difference in annotation guidelines on the parsing
score, we added PTB-style NP brackets to the re-
duced corpus described in Section 3.1. For ex-
ample, (3a) in Figure 3 is transformed into (6a)

Section # Files Token count %
Train 81 890,150 87.4%
Val 4 38,670 3.8%
Dev 4 39,527 3.9%
Test 5 50,389 4.9%
Total 94 1,018,736 100.0%

Table 2: Token count and data split for PPCMBE

in Figure 5, and likewise (4a) is transformed into
(6b). However, (4b) remains as it is, because the
following CP in that case is a complement, as in-
dicated by the THT function tag. This is a signif-
icant transformation of the corpus, adding 43,884
NPs to the already-existing 291,422.

3.3 Reduced+NPs+VPs

We carry out a similar transformation to add VP
nodes to the IPs in the Reduced+NPs version,
making them more like the clausal structures in
the PTB. This added 169,877 VP nodes to the cor-
pus (there are 131,671 IP nodes, some of which
contain more than one auxiliary verb).

It is worth emphasizing that the brackets added
in Sections 3.2 and 3.3 add no information, since
they are added automatically. They are added only
to roughly compensate for the difference in anno-
tation styles between the PPCMBE and the PTB.

4 Data split

We split the data into four sections, as shown in
Table 2. The validation section consists of the four
files beginning with “a” or “v” (spanning the years
1711-1860), the development section consists of
the four files beginning with “l” (1753-1866), the
test section consists of the five files beginning with
“f” (1749-1900), and the training section consists
of the remaining 81 files (1712-1913). The data
split sizes used here for the PPCMBE closely ap-
proximate that used for the PTB, as described in
Petrov et al. (2006).7 For this first work, we used
a split that was roughly the same as far as time-
spans across the four sections. In future work, we
will do a more proper cross-validation evaluation.

Table 3 shows the average sentence length and
percentage of sentences of length <= 40 in the
PPCMBE and PTB. The PPCMBE sentences are
a bit longer on average, and fewer are of length
<= 40. However, the match is close enough that

7Sections 2-21 for Training Section 1 for Val, 22 for Dev
and 23 for Test.
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Gold Tags Parser Tags
all <=40 all <=40

Corpus Prec Rec F Prec Rec F Prec Rec F Prec Rec F Tags
1 Rl/Dev 83.7 83.7 83.7 86.3 86.4 86.3 83.8 83.1 83.4 86.2 85.8 86.0 96.9
2 Rd/Dev 84.9 84.5 84.7 86.6 86.7 86.7 84.5 83.7 84.1 86.5 86.2 86.3 96.9
3 Rd/Tst 85.8 85.2 85.5 87.9 87.3 87.6 84.8 83.9 84.3 86.7 85.8 86.2 97.1
4 RdNPs/Dev 87.1 86.3 86.7 88.9 88.5 88.7 86.3 85.1 85.7 88.4 87.6 88.0 96.9
5 RdNPsVPs/Dev 87.2 87.0 87.1 89.5 89.4 89.5 86.3 85.7 86.0 88.6 88.2 88.4 97.0
6 PTB/23 90.3 89.8 90.1 90.9 90.4 90.6 90.0 89.5 89.8 90.6 90.1 90.3 96.9

Table 4: Parsing results with Berkeley Parser. The corpus versions used are Release (Rl), Reduced (Rd),
Reduced+NPs (RdNPs), and Reduced+NPs+VPs (RdNPsVPs). Results are shown for the parser forced
to use the gold POS tags from the corpus, and with the parser supplying its own tags. For the latter case,
the tagging accuracy is shown in the last column.

Corpus Section Avg. len % <= 40
PPCMBE Dev 24.1 85.5

Test 21.2 89.9
PTB Dev 23.6 92.9

Test 23.5 91.3

Table 3: Average sentence length and percentage
of sentences of length <=40 in the PPCMBE and
PTB.

we will report the parsing results for sentences of
length <= 40 and all sentences, as with the PTB.

5 Parsing Experiments

The PPCMBE is a phrase-structure corpus, and so
we parse with the Berkeley parser (Petrov et al.,
2008) and score using the standard evalb program
(Sekine and Collins, 2008). We used the Train and
Val sections for training, with the parser using the
Val section for fine-tuning parameters (Petrov et
al., 2006). Since the Berkeley parser is capable
of doing its own POS tagging, we ran it using the
gold tags or supplying its own tags. Table 4 shows
the results for both modes.8

Consider first the results for the Dev section
with the parser using the gold tags. The score
for all sentences increases from 83.7 for the Re-
lease corpus (row 1) to 84.7 for the Reduced cor-
pus (row 2), reflecting the POS tag simplifications
in the Reduced corpus. The score goes up by a fur-
ther 2.0 to 86.7 (row 2 to 4) for the Reduced+NPs
corpus and up again by 0.4 to 87.1 (row 5) for
the Reduced+NPs+VPs corpus, showing the ef-

8We modified the evalb parameter file to exclude punctu-
ation in PPCMBE, just as for PTB. The results are based on a
single run for each corpus/section. We expect some variance
to occur, and in future work will average results over several
runs of the training/Dev cycle, following Petrov et al. (2006).

fects of the extra NP and VP brackets. We evalu-
ated the Test section on the Reduced corpus (row
3), with a result 0.8 higher than the Dev (85.5 in
row 3 compared to 84.7 in row 2). The score for
sentences of length <= 40 (a larger percentage
of the PPCMBE than the PTB) is 2.4 higher than
the score for all sentences, with both the gold and
parser tags (row 5).

The results with the parser choosing its own
POS tags naturally go down, with the Test section
suffering more. In general, the PPCMBE is af-
fected by the lack of gold tags more than the PTB.

In sum, the parser results show that the
PPCMBE can be parsed at a level approaching that
of the PTB. We are not proposing that the current
version be replaced by the Reduced+NPs+VPs
version, on the grounds that the latter gets the
highest score. Our goal was to determine whether
the parsing results fell in the same general range
as for the PTB by roughly compensating for the
difference in annotation style. The results in Table
4 show that this is the case.

As a final note, the PPCMBE consists of
unedited data spanning more than 200 years, while
the PTB is edited newswire, and so to some extent
there would almost certainly be some difference in
score.

6 Parser Analysis

We are currently developing techniques to better
understand the types of errors is making, which
have already led to interesting results. The parser
is creating some odd structures that violate basic
well-formedness conditions of clauses. Tree (7a)
in Figure 6 is a tree from from the “Reduced” cor-
pus, in which the verb “formed” projects to IP,
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(7) (a) IP-SUB

NP-SBJ

the earth’s crust

had been formed PP

by NP

causes RRC

ADVP-TMP

now

acting

(b) IP

NP

the earth’s crust

had been formed PP

by NP

causes

ADVP

now

acting

(8) (a) VP

would VP

be VP

teaching NP

the doctrine

(b) VP

would VP

be IP

VP

teaching NP

the doctrine

(9) IP

It VP

is IP-INF

VP

to VP

be VP

observed

Figure 6: Examples of issues with parser output

with two auxiliary verbs (“had” and “been”). In
the corresponding parser output (7b), the parser
misses the reduced relative RRC, turning “acting”
into the rightmost verb in the IP. The parser is cre-
ating an IP with two main verbs - an ungrammati-
cal structure that is not attested in the gold.

It might be thought that the parser is having
trouble with the flat-IP annotation style, but the
parser posits incorrect structures that are not at-
tested in the gold even in the Reduced+NPs+VPs
version of the corpus. Tree (8a) shows a fragment
of a gold tree from the corpus, with the VPs ap-
propriately inserted. The parser output (8b) has
an extra IP above “teaching”. The POS tags for
“be” (BE) and “teaching“ (VAG) do not appear in
this configuration at all in the training material. In
general, the parser seems to be getting confused
as to when such an IP should appear. We hypoth-
esized that this is due to confusion with infiniti-
val clauses, which can have an unary-branching IP

over a VP, as in the gold tree (9). We retrained the
parser, directing it to retain the INF function tag
that appears in infinitival clauses as in (9). Over-
all, the evalb score went down slightly, but it did
fix cases such as (8b). We do not yet know why the
overall score went down, but what’s surprising is
one would have thought that IP-INF is recoverable
from the absence of a tensed verb.

Preliminary analysis shows that the CONJP
structures are also difficult for the parser. Since
these are structures that are different than the
PTB9, we were particularly interested in them.
Cases where the CONJP is missing an overt co-
ordinating cord (such as “and”), are particularly
difficult, not surprisingly. These can appear as in-
termediate conjuncts in a string of conjuncts, with
the structure (CONJP word). The shared pre-
modifier structure described in (2a) is also difficult
for the parser.

7 Conclusion

We have presented the first results on parsing the
PPCMBE and discussed some significant annota-
tion style differences from the PTB. Adjusting for
two major differences that are a matter of anno-
tation convention, we showed that the PPCMBE
can be parsed at approximately the same level of
accuracy as the PTB. The first steps in an inves-
tigation of the parser differences show that the
parser is generating structures that violate basic
well-formedness conditions of the annotation.

For future work, we will carry out a more se-
rious analysis of the parser output, trying to more
properly account for the differences in bracketing
structure between the PPCMBE and PTB. There
is also a great deal of data annotated in the style
of the PPCMBE, as indicated in footnotes 1 and
3, and we are interested in how the parser per-
forms on these, especially comparing the results
on the modern English corpora to the older histor-
ical ones, which will have greater issues of ortho-
graphic and tokenization complications.
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Abstract

This paper introduces a new technique for
phrase-structure parser analysis, catego-
rizing possible treebank structures by inte-
grating regular expressions into derivation
trees. We analyze the performance of the
Berkeley parser on OntoNotes WSJ and
the English Web Treebank. This provides
some insight into the evalb scores, and
the problem of domain adaptation with the
web data. We also analyze a “test-on-
train” dataset, showing a wide variance in
how the parser is generalizing from differ-
ent structures in the training material.

1 Introduction

Phrase-structure parsing is usually evaluated using
evalb (Sekine and Collins, 2008), which provides
a score based on matching brackets. While this
metric serves a valuable purpose in pushing parser
research forward, it has limited utility for under-
standing what sorts of errors a parser is making.
This is the case even if the score is broken down
by brackets (NP, VP, etc.), because the brackets
can represent different types of structures. We
would also like to have answers to such questions
as “How does the parser do on non-recursive NPs,
separate from NPs resulting from modification?
On PP attachment?” etc.

Answering such questions is the goal of this
work, which combines two strands of research.
First, inspired by the tradition of Tree Adjoin-
ing Grammar-based research (Joshi and Schabes,
1997; Bangalore and Joshi, 2010), we use a de-
composition of the full trees into “elementary
trees” (henceforth “etrees”), with a derivation tree
that records how the etrees relate to each other,
as in Kulick et al. (2011). In particular, we use
the “spinal” structure approach of (Shen et al.,
2008; Shen and Joshi, 2008), where etrees are con-
strained to be unary-branching.

Second, we use a set of regular expressions
(henceforth “regexes”) that categorize the possible
structures in the treebank. These are best thought
of as an extension of head-finding rules, which not
only find a head but simultaneously identify each
parent/children relation as one of a limited number
of types of structures (right-modification, etc.).

The crucial step is that we integrate these
regexes into the spinal etrees. The derivation trees
provide elements of a dependency analysis, which
allow us to calculate scores for head identification
and attachment for different projections (e.g., PP).
The regexes allow us to also provide scores based
on spans of different construction types. Together
these two aspects break down the evalb brackets
into more meaningful categories, and the simulta-
neous head and span scoring allows us to separate
these aspects in the analysis.

After describing in more detail the basic frame-
work, we show some aspects of the resulting anal-
ysis of the performance of the Berkeley parser
(Petrov et al., 2008) on three datasets: (a)
OntoNotes WSJ sections 2-21 (Weischedel et al.,
2011)1, (b) OntoNotes WSJ section 22, and (c)
the “Answers” section of the English Web Tree-
bank (Bies et al., 2012). We trained the parser on
sections 2-21, and so (a) is “test-on-train”. These
three results together show how the parser is gen-
eralizing from the training data, and what aspects
of the “domain adaptation” problem to the web
material are particularly important.2

2 Framework for analyzing parsing
performance

We first describe the use of the regexes in tree de-
composition, and then give some examples of in-

1We refer only to the WSJ treebank portion of OntoNotes,
which is roughly a subset of the Penn Treebank (Marcus et
al., 1999) with annotation revisions including the addition of
NML nodes.

2We parse (c) while training on (a) to follow the procedure
in Petrov and McDonald (2012)
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corporating these regexes into the derivation trees.

2.1 Use of regular expressions

Decomposing the original phrase-structure tree
into the smaller components requires some
method of determining the “head” of a nonter-
minal, from among its children nodes, similar to
parsing work such as Collins (1999). As described
above, we are also interested in the type of lin-
guistic construction represented by that one-level
structure, each of which instantiates one of a few
types - recursive coordination, simple head-and-
sister, etc. We address both tasks together with the
regexes. In contrast to the sort of head rules in
(Collins, 1999), these refer as little as possible to
specific POS tags. Instead of explicitly listing the
POS tags of possible heads, the heads are in most
cases determined by their location in the structure.

Sample regexes are shown in Figure 1. There
are 49 regexes used.3 Regexes ADJP-t and
ADVP-t in (a) identify their terminal head to
be the rightmost terminal, possibly preceded by
some number of terminals or nonterminals, rely-
ing on a mapping that maps all terminals (except
CC, which is mapped to CONJ) to TAG and all
nonterminals (except CONJP and NML) to NT.
Structures with a CONJ/CONJP/NML child do
not match this rule and are handled by different
regexes, which are all mutually exclusive. In some
cases, we need to search for particular nonterminal
heads, such as with the (b) regexes S-vp and SQ-
vp, which identify the rightmost VP among the
children of a S or SQ as the head. (c) NP-modr
is a regex for a recursive NP with a right modifier.
In this case, the NP on the left is identified as the
head. (d) VP-crd is also a regex for a recursive
structure, in this case for VP coordination, pick-
ing out the leftmost conjunct as the head of the
structure. The regex names roughly describe their
purpose - “mod” for right-modification, “crd” for
coordination, etc. The suffix “-t” is for the simple
non-recursive case in which the head is a terminal.

2.2 Regexes in the derivation trees

The names of these regexes are incorporated into
the etrees themselves, as labels of the nontermi-
nals. This allows an etree to contain information

3Some among the 49 are duplicates, used for different
nonterminals, as with (a) and (b) in Figure 1. We derived
the regexes via an iterative process of inspection of tree de-
composition on dataset (a), together with taking advantage of
the treebanking experience from some of the co-authors.

(a)ADJP-t,ADVP-t:

ˆ(TAG|NT|NML)*(head:TAG) (NT)*$

(b)S-vp, SQ-vp: ˆ([ˆ ]+)*(head:VP)$

(c)NP-modr:

ˆ(head:NP)(SBAR|S|VP|ADJP|PP|ADVP|NP)+$

(d)VP-crd: ˆ(head:VP) (VP)* CONJ VP$

Figure 1: Some sample regexes

such as “this node represents right modification”.
For example, Figure 2 shows the derivation tree

resulting from the decomposition of the tree in
Figure 4. Each structure within a circle is one
etree, and the derivation as a whole indicates how
these etrees are combined. Here we indicate with
arrows that point to the relevant regex. For ex-
ample, the PP-t etree #a6 points to the NP-modr
regex, which consists of the NP-t together with
the PP-t. The nonterminals of the spinal etrees are
the names of the regexes, with the simpler non-
terminal labels trivially derivable from the regex
names.4

The tree in Figure 5 is the parser output corre-
sponding to the gold tree in Figure 4, and in this
case gets the PP-t attachment wrong, while every-
thing else is the same as the gold.5 This is reflected
in the derivation tree in Figure 3, in which the NP-
modr regex is absent, with the NP-t and PP-t etrees
#b5 and #b6 both pointing to the VP-t regex in
#b3. We show in Section 2.3 how this derivation
tree representation is used to score this attachment
error directly, rather than obscuring it as an NP
bracket error as evalb would do.

2.3 Scoring
We decompose both the gold and parser output
trees into derivation trees with spinal etrees, and
score based on the regexes projected by each word.
There is a match for a regex if the corresponding
words in gold/parser files project to that regex, a
precision error if the parser file does but the gold
does not, and a recall error if the gold does but the
parser file does not.

For example, comparing the trees in Figures 4
and 5 via their derivation trees in Figures 2 and
Figures 3, the word “trip” has a match for the regex
NP-t, but a recall error for NP-modr. The word

4We do not have space here to discuss the data structure
in complete detail, but multiple regex names at a node, such a
VP-aux and VP-t at tree a3 in Figure 2, indicate multiple VP
nonterminals.

5We leave function tags aside for future work. The gold
tree is shown without the SBJ function tag.
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Figure 5: Parser output tree

Corpus tokens brackets coverage % evalb
2-21 g 650877 578597 571243 98.7

p 575744 569480 98.9 93.8
22 g 32092 24819 24532 98.8

p 24801 24528 98.9 90.1
Ans g 53960 48492 47348 97.6

p 48750 47423 97.3 80.8

Table 1: Corpus information for gold(g) and
parsed(p) sections of each corpus

“make” has a match for the regexes VP-t, VP-
aux, and S-vp, and so on. Summing such scores
over the corresponding gold/parser trees gives us
F-scores for each regex.

There are two modifications/extensions to these
F-scores that we also use:
(1) For each regex match, we score whether it
matches based on the span as well. For exam-
ple, “make” is a match for VP-t in Figures 2
and 3, and is also a match for the span as well,
since in both derivation trees it includes the words
“make. . .Florida”. It is this matching for span as
well as head that allows us to compare our results
to evalb. We call the match just for the head the “F-
h” score and the match that also includes the span
information the “F-s” score. The F-s score roughly
corresponds to the evalb score. However, the F-

s score is for separate syntactic constructions (in-
cluding also head identification), although we can
also sum it over all the structures, as done later in
Figure 6. The simultaneous F-h and F-s scores let
us identify constructions where the parser has the
head projection correct, but gets the span wrong.
(2) Since the derivation tree is really a depen-
dency tree with more complex nodes (Rambow
and Joshi, 1997; Kulick et al., 2012), we can also
score each regex for attachment.6 For example,
while “to” is a match for PP-t, its attachment is
not, since in Figure 2 it is a child of the “trip” etree
(#a5) and in Figure 3 it is a child of the “make”
etree (#b3). Therefore our analysis results in an
attachment score for every regex.

2.4 Comparison with previous work

This work is in the same basic line of research
as the inter-annotator agreement analysis work in
Kulick et al. (2013). However, that work did
not utilize regexes, and focused on comparing se-
quences of identical strings. The current work
scores on general categories of structures, without

6A regex intermediate in a etree, such as VP-t above, is
considered to have a default null attachment. Also, the at-
tachment score is not relevant for regexes that already express
a recursive structure, such as NP-modr. In Figure 2, NP-t in
etree #a5 is considered as having the attachment to #a3.
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Sections 2-21 (Ontonotes) Section 22 (Ontonotes) Answers (English Web Treebank)
regex %gold F-h F-s att spanR %gold F-h F-s att spanR %gold F-h F-s att spanR
NP-t 30.7 98.9 97.6 96.5 99.6 31.1 98.0 95.8 94.4 99.6 28.5 95.4 91.5 90.9 99.3
VP-t 13.5 98.8 94.5 98.4 95.8 13.4 98.1 91.7 97.3 93.7 16.0 96.7 81.7 96.1 85.4
PP-t 12.2 99.2 91.0 90.5 92.0 12.1 98.7 86.4 86.1 88.2 8.4 96.4 80.5 80.7 84.7
S-vp 12.2 97.9 92.8 96.8 96.3 11.9 96.5 89.1 95.4 95.0 14.2 94.1 72.9 88.0 84.1
NP-modr 8.6 88.4 80.3 - 91.5 8.5 82.9 71.8 - 87.9 4.4 69.0 54.2 - 80.5
VP-aux 5.5 97.9 94.0 - 96.1 5.0 96.5 91.0 - 94.6 6.2 94.4 81.7 - 86.7
SBAR-s 3.7 96.1 91.1 91.8 95.3 3.5 94.3 87.2 86.4 93.5 4.0 84.8 68.2 81.9 81.9
ADVP-t 2.7 95.2 93.3 93.9 98.6 3.0 89.6 84.5 88.0 95.9 4.5 84.0 78.2 80.3 96.8
NML-t 2.3 91.6 90.3 97.6 99.8 2.6 85.6 82.2 93.5 99.8 0.7 42.1 37.7 88.8 100.0
ADJP-t 1.9 94.6 88.4 95.5 94.6 1.8 86.8 77.0 93.6 90.7 2.5 84.7 67.0 88.1 84.2
QP-t 1.0 95.3 93.8 98.3 99.6 1.2 91.0 89.0 97.1 100.0 0.2 57.7 57.7 94.4 100.0
NP-crd 0.8 80.3 73.7 - 92.4 0.6 68.6 58.4 - 86.1 0.5 55.3 47.8 - 88.1
VP-crd 0.4 84.3 82.8 - 98.2 0.4 75.3 73.5 - 97.6 0.8 65.5 58.3 - 89.8
S-crd 0.3 83.7 83.2 - 99.6 0.4 70.9 68.6 - 96.7 0.8 68.5 63.0 - 93.4
SQ-v 0.1 88.3 82.0 93.3 97.8 0.1 66.7 66.7 88.9 100.0 0.9 81.9 72.4 93.4 95.8
FRAG-nt 0.1 49.9 48.6 95.4 97.9 0.1 28.6 28.6 100.0 100.0 0.8 22.7 21.3 96.3 96.3

Table 2: Scores for the most frequent categories of brackets in the three datasets of corpora, as determined
by the regexes. % gold is the frequency of this regex type compared to all the brackets in the gold. F-h
is the score based on matching heads, F-s also incorporates the span information, att is the attachment
accuracy for words that match in F-h, and spanR is the span-right accuracy for words that match in F-h.

the reliance on sequences of individual strings.7

3 Analysis of parsing results

We worked with the three datasets as described
in the introduction. We trained the parser on sec-
tions 2-21 of OntoNotes WSJ, and parsed the three
datasets with the gold tags, since at present we
wish to analyze the parser performance in isola-
tion from Part-of-Speech tagging errors. Table 1
shows the sizes of the three corpora in terms of
tokens and brackets, for both the gold and parsed
versions, with the evalb scores for the parsed ver-
sions. The score is lower for Answers, as also
found by Petrov and McDonald (2012).

To facilitate comparison of our analysis with
evalb, we used corpora versions with the same
bracket deletion (empty yields and most punctua-
tion) as evalb. We ran the gold and parsed versions
through our regex decomposition and derivation
tree creation. Table 1 shows the number and per-
centage of brackets handled by our regexes. The
high coverage (%) reinforces the point that there is
a limited number of core structures in the treebank.
In the results below in Table 2 and Figure 6 we
combine the nonterminals that are not covered by
one of the regexes with the simple non-recursive
regex case for that nonterminal.8

7In future work we will compare our approach to that
of Kummerfeld et al. (2012), who also move beyond evalb
scores in an effort to provide more meaningful error analysis.

8We also combine a few other non-recursive regexes to-
gether with NP-t, such as the special one for possessives.

We present the results in two ways. Table 2 lists
the most frequent categories in the three datasets,
with their percentage of the overall number of
brackets (%gold), their score based just on the
head identification (F-h), their score based on head
identification and (left and right) span (F-s), and
the attachment (att) and span-right (spanR) scores
for those that match based on the head.9

The two graphs in Figure 6 show the cumu-
lative results based on F-h and F-s, respectively.
These show the cumulative score in order of the
frequency of categories. For example, for sections
2-21, the score for NP-t is shown first, with 30.7%
of the brackets, and then together with the VP-t
category, they cover 45.2% of the brackets, etc.10

The benefit of the approach described here is that
now we can see the contribution to the evalb score
of the particular types of constructions, and within
those constructions, how well the parser is doing
at getting the same head projection, but failing or

9The score for the left edge is almost always very high for
every category, and we just list here the right edge score. The
attachment score does not apply to the recursive categories,
as mentioned above.

10The final F-s value is lower than the evalb score - e.g.
92.5 for sections 2-21 (the rightmost point in the graph for
sections 2-21 in the F-s graph in Figure 6) compared to the
93.8 evalb score. Space prevents full explanation, but there
are two reasons for this. One is that there are cases in which
bracket spans match, but the head, as found by our regexes, is
different in the gold and parser trees. The other cases is when
brackets match, and may even have the same head, but their
regex is different. In future work we will provide a full ac-
counting of such cases, but they do not affect the main aspects
of the analysis.

671



F-scores by head identification

cumulative % of all brackets

0 5 10 20 30 40 50 60 70 80 90 100

8
9
.
2

9
1
.
2

9
3
.
2

9
5
.
2

9
7
.
2

9
9
.
0

2-21
1 2 3 4

5
6
7

8
9

10
11

14
13

15
12

22
1 2 3

4

5
6
7

8
9

10
11

14
13

15
12

answers
1

2
4 3 6

8

5
710 1213 14
15

9

11

 1:NP-t     2:VP-t
 3:PP-t     4:S-vp
 5:NP-modr  6:VP-aux
 7:SBAR-s   8:ADVP-t
 9:NML-t   10:ADJP-t
11:QP-t    12:SQ-vp
13:S-crd   14:VP-crd
15:FRAG-nt

F-scores by head identification and span

cumulative % of all backets

0 5 10 20 30 40 50 60 70 80 90 100

7
8
.
0

8
2
.
0

8
6
.
0

9
0
.
0

9
4
.
0

9
7
.
6

2-21
1

2
3 4

5
6
7
8
9

10

11

14
13

15
12

22
1

2

3
4

5
6
7

8
9

10
11

14
13

15
12

answers
1

2

4 3 6
8

5
710 1213 1415 9
11

 1:NP-t     2:VP-t
 3:PP-t     4:S-vp
 5:NP-modr  6:VP-aux
 7:SBAR-s   8:ADVP-t
 9:NML-t   10:ADJP-t
11:QP-t    12:SQ-vp
13:S-crd   14:VP-crd
15:FRAG-nt

Figure 6: Cumulative scores based on F-h (left) and F-s (right). These graphs are both cumulative in
exactly the same way, in that each point represents the total percentage of brackets accounted for so far.
So for the 2-21 line, point 1, meaning the NP non-recursive regex, accounts for 30.7% of the brackets,
point 2, meaning the VP non-recursive regex, accounts for another 13.5%, so 44.2% cumulatively, etc.

not on the spans.

3.1 Analysis and future work

As this is work-in-progress, the analysis is not yet
complete. We highlight a few points here.
(1) The high performance on the OntoNotes WSJ
material is in large part due to the score on the
non-recursive regexes of NP-t, VP-t, S-vp, and the
auxiliaries (points 1, 2, 4, 6 in the graphs). Critical
to this is the fact that the parser does well on deter-
mining the right edge of verbal structures, which
affects the F-s score for VP-t (non-recursive), VP-
aux, and S-vp. The spanR score for VP-t is 95.8
for Sections 2-21 and 93.7 for Section 22.
(2) We wouldn’t expect the test-on-training evalb
score to be 100%, since it has to back off from
the training data, but the results for the different
categories vary widely, with e.g., the NP-modr F-
h score much lower than other frequent regexes.
This variance from the test-on-training dataset car-
ries over almost exactly to Section 22.
(3) The different distribution of structures in
Answers hurts performance. For example, the
mediocre performance of the parser on SQ-vp
barely affects the score with OntoNotes, but has
a larger negative effect with Answers, due to its
increased frequency in the latter.
(4) While the different distribution of construc-

tions is a problem for Answers, more critical is
the poor performance of the parser on determin-
ing the right edge of verbal constructions. This is
only 85.4 for VP-t in Answers, compared to the
OntoNotes results mentioned in (1). Since this af-
fects the F-s scores for VP-t, VP-aux, and S-vp,
the negative effect is large. Preliminary investi-
gation shows that this is due in part to incorrect
PP and SBAR placement (the PP-t and SBAR-s
attachment scores (80.7 and 81.9) are worse for
Answers compared to Section 22 (86.1 and 86.4)),
and coordinated S-clauses with no conjunction.

In sum, there is a wealth of information from
this new type of analysis that we will use in our on-
going work to better understand what the parser is
learning and how it works on different genres.

Acknowledgments

This material is based upon work supported by Na-
tional Science Foundation Grant # BCS-114749
(first, fourth, and sixth authors) and by the Defense
Advanced Research Projects Agency (DARPA)
under Contract No. HR0011-11-C-0145 (first,
second, and third authors). The content does not
necessarily reflect the position or the policy of the
Government, and no official endorsement should
be inferred.

672



References
Srinivas Bangalore and Aravind K. Joshi, editors.

2010. Supertagging: Using Complex Lexical De-
scriptions in Natural Language Processing. MIT
Press.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank. LDC2012T13. Lin-
guistic Data Consortium.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
Department of Computer and Information Sciences,
University of Pennsylvania.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining
grammars. In G. Rozenberg and A. Salomaa, ed-
itors, Handbook of Formal Languages, Volume 3:
Beyond Words, pages 69–124. Springer, New York.

Seth Kulick, Ann Bies, and Justin Mott. 2011. Using
derivation trees for treebank error detection. Asso-
ciation for Computational Linguistics.

Seth Kulick, Ann Bies, and Justin Mott. 2012. Using
supertags and encoded annotation principles for im-
proved dependency to phrase structure conversion.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
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Abstract

Code-switched documents are common
in social media, providing evidence for
polylingual topic models to infer aligned
topics across languages. We present
Code-Switched LDA (csLDA), which in-
fers language specific topic distributions
based on code-switched documents to fa-
cilitate multi-lingual corpus analysis. We
experiment on two code-switching cor-
pora (English-Spanish Twitter data and
English-Chinese Weibo data) and show
that csLDA improves perplexity over
LDA, and learns semantically coherent
aligned topics as judged by human anno-
tators.

1 Introduction

Topic models (Blei et al., 2003) have become stan-
dard tools for analyzing document collections, and
topic analyses are quite common for social media
(Paul and Dredze, 2011; Zhao et al., 2011; Hong
and Davison, 2010; Ramage et al., 2010; Eisen-
stein et al., 2010). Their popularity owes in part to
their data driven nature, allowing them to adapt to
new corpora and languages. In social media espe-
cially, there is a large diversity in terms of both the
topic and language, necessitating the modeling of
multiple languages simultaneously. A good candi-
date for multi-lingual topic analyses are polylin-
gual topic models (Mimno et al., 2009), which
learn topics for multiple languages, creating tuples
of language specific distributions over monolin-
gual vocabularies for each topic. Polylingual topic
models enable cross language analysis by group-
ing documents by topic regardless of language.

Training of polylingual topic models requires
parallel or comparable corpora: document tuples
from multiple languages that discuss the same
topic. While additional non-aligned documents

User 1: ¡Don Samuel es un crack! #VamosMéxico #DaleTri
RT @User4: Arriba! Viva Mexico! Advanced to GOLD.
medal match in “Football”!

User 2: @user1 rodo que tal el nuevo Mountain ?
User 3: @User1 @User4 wow this is something !! Ja ja ja

Football well said

Figure 1: Three users discuss Mexico’s football
team advancing to the Gold medal game in the
2012 Olympics in code-switched Spanish and En-
glish.

can be folded in during training, the “glue” doc-
uments are required to aid in the alignment across
languages. However, the ever changing vocabu-
lary and topics of social media (Eisenstein, 2013)
make finding suitable comparable corpora diffi-
cult. Standard techniques – such as relying on ma-
chine translation parallel corpora or comparable
documents extracted from Wikipedia in different
languages – fail to capture the specific terminol-
ogy of social media. Alternate methods that rely
on bilingual lexicons (Jagarlamudi and Daumé,
2010) similarly fail to adapt to shifting vocabular-
ies. The result: an inability to train polylingual
models on social media.

In this paper, we offer a solution: utilize code-
switched social media to discover correlations
across languages. Social media is filled with ex-
amples of code-switching, where users switch be-
tween two or more languages, both in a conversa-
tion and even a single message (Ling et al., 2013).
This mixture of languages in the same context sug-
gests alignments between words across languages
through the common topics discussed in the con-
text.

We learn from code-switched social media by
extending the polylingual topic model framework
to infer the language of each token and then auto-
matically processing the learned topics to identify
aligned topics. Our model improves both in terms
of perplexity and a human evaluation, and we pro-
vide some example analyses of social media that
rely on our learned topics.
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2 Code-Switching

Code-switched documents has received consider-
able attention in the NLP community. Several
tasks have focused on identification and analysis,
including mining translations in code-switched
documents (Ling et al., 2013), predicting code-
switched points (Solorio and Liu, 2008a), identi-
fying code-switched tokens (Lignos and Marcus,
2013; Yu et al., 2012; Elfardy and Diab, 2012),
adding code-switched support to language mod-
els (Li and Fung, 2012), linguistic processing of
code switched data (Solorio and Liu, 2008b), cor-
pus creation (Li et al., 2012; Diab and Kamboj,
2011), and computational linguistic analyses and
theories of code-switching (Sankofl, 1998; Joshi,
1982).

Code-switching specifically in social media has
also received some recent attention. Lignos and
Marcus (2013) trained a supervised token level
language identification system for Spanish and
English code-switched social media to study code-
switching behaviors. Ling et al. (2013) mined
translation spans for Chinese and English in code-
switched documents to improve a translation sys-
tem, relying on an existing translation model to aid
in the identification and extraction task. In contrast
to this work, we take an unsupervised approach,
relying only on readily available document level
language ID systems to utilize code-switched data.
Additionally, our focus is not on individual mes-
sages, rather we aim to train a model that can be
used to analyze entire corpora.

In this work we consider two types of code-
switched documents: single messages and conver-
sations, and two language pairs: Chinese-English
and Spanish-English. Figure 1 shows an exam-
ple of a code-switched Spanish-English conversa-
tion, in which three users discuss Mexico’s foot-
ball team advancing to the Gold medal game in
the 2012 Summer Olympics. In this conversation,
some tweets are code-switched and some are in a
single language. By collecting the entire conver-
sation into a single document we provide the topic
model with additional content. An example of a
Chinese-English code-switched messages is given
by Ling et al. (2013):

watup Kenny Mayne!! - Kenny Mayne
最近这么样啊!!

Here a user switches between languages in a single
message. We empirically evaluate our model on

both conversations and messages. In the model
presentation we will refer to both as “documents.”

3 csLDA

To train a polylingual topic model on social me-
dia, we make two modifications to the model of
Mimno et al. (2009): add a token specific language
variable, and a process for identifying aligned top-
ics.

First, polylingual topic models require paral-
lel or comparable corpora in which each docu-
ment has an assigned language. In the case of
code-switched social media data, we require a per-
token language variable. However, while docu-
ment level language identification (LID) systems
are common place, very few languages have per-
token LID systems (King and Abney, 2013; Lig-
nos and Marcus, 2013).

To address the lack of available LID systems,
we add a per-token latent language variable to the
polylingual topic model. For documents that are
not code-switched, we observe these variables to
be the output of a document level LID system. In
the case of code-switched documents, these vari-
ables are inferred during model inference.

Second, polylingual topic models assume the
aligned topics are from parallel or comparable cor-
pora, which implicitly assumes that a topics pop-
ularity is balanced across languages. Topics that
show up in one language necessarily show up in
another. However, in the case of social media,
we can make no such assumption. The topics
discussed are influenced by users, time, and lo-
cation, all factors intertwined with choice of lan-
guage. For example, English speakers will more
likely discuss Olympic basketball while Spanish
speakers football. There may be little or no docu-
ments on a given topic in one language, while they
are plentiful in another. In this case, a polylin-
gual topic model, which necessarily infers a topic-
specific word distribution for each topic in each
language, would learn two unrelated word dis-
tributions in two languages for a single topic.
Therefore, naively using the produced topics as
“aligned” across languages is ill-advised.

Our solution is to automatically identify aligned
polylingual topics after learning by examining
a topic’s distribution across code-switched docu-
ments. Our metric relies on distributional proper-
ties of an inferred topic across the entire collec-
tion.
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To summarize, based on the model of Mimno et
al. (2009) we will learn:

• For each topic, a language specific word distri-
bution.

• For each (code-switched) token, a language.

• For each topic, an identification as to whether
the topic captures an alignment across lan-
guages.

The first two goals are achieved by incorporat-
ing new hidden variables in the traditional polylin-
gual topic model. The third goal requires an auto-
mated post-processing step. We call the resulting
model Code-Switched LDA (csLDA). The gener-
ative process is as follows:
• For each topic z ∈ T

• For each language l ∈ L
• Draw word distribution
φlz∼Dir(βl)

• For each document d ∈ D:
• Draw a topic distribution θd ∼ Dir(α)
• Draw a language distribution
ψd∼Dir(γ)
• For each token i ∈ d:
• Draw a topic zi ∼ θd
• Draw a language li ∼ ψd
• Draw a word wi ∼ φlz

For monolingual documents, we fix li to the LID
tag for all tokens. Additionally, we use a single
background distribution for each language to cap-
ture stopwords; a control variable π, which fol-
lows a Dirichlet distribution with prior parameter-
ized by δ, is introduced to decide the choice be-
tween background words and topic words follow-
ing (Chemudugunta et al., 2006)1. We use asym-
metric Dirichlet priors (Wallach et al., 2009), and
let the optimization process learn the hyperparam-
eters. The graphical model is shown in Figure 2.

3.1 Inference
Inference for csLDA follows directly from LDA.
A Gibbs sampler learns the word distributions φlz
for each language and topic. We use a block Gibbs
sampler to jointly sample topic and language vari-
ables for each token. As is customary, we collapse
out φ, θ and ψ. The sampling posterior is:

P (zi, li|w, z−i, l−i, α, β, γ) ∝
(nl,z

wi
)−i + β

nl,z
−i +Wβ

× mz,d
−i + α

md
−i + T α ×

ol,d
−i + γ

od
−i + Lγ (1)

where (nl,zwi
)−i is the number of times the type for

word wi assigned to topic z and language l (ex-
1Omitted from the generative process but shown in Fig. 2.

γ

α

liψd

θd

φlz φlb

β
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Figure 2: The graphical model for csLDA.

cluding current word wi), m
z,d
−i is the number of

tokens assigned to topic z in document d (exclud-
ing current word wi), o

l,d
−i is the number of tokens

assigned to language l in document d (excluding
current word wi), and these variables with super-
scripts or subscripts omitted are totals across all
values for the variable. W is the number of words
in the corpus. All counts omit words assigned
to the background. During sampling, words are
first assigned to the background/topic distribution
and then topic and language are sampled for non-
background words.

We optimize the hyperparameters α, β, γ and δ
by interleaving sampling iterations with a Newton-
Raphson update to obtain the MLE estimate for
the hyperparameters. Taking α as an example, one
step of the Newton-Raphson update is:

αnew = αold −H−1∂L
∂α

(2)

where H is the Hessian matrix and ∂L
∂α is the gra-

dient of the likelihood function with respect to
the optimizing hyperparameter. We interleave 200
sampling iterations with one Newton-Raphson up-
date.

3.2 Selecting Aligned Topics

We next identify learned topics (a set of related
word-distributions) that truly represent an aligned
topic across languages, as opposed to an unrelated
set of distributions for which there is no support-
ing alignment evidence in the corpus. We begin by
measuring how often each topic occurs in code-
switched documents. If a topic never occurs in
a code-switched document, then there can be no
evidence to support alignment across languages.
For the topics that appear at least once in a code-
switched document, we estimate their probability
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in the code-switched documents by a MAP esti-
mate of θ. Topics appearing in at least one code-
switched document with probability greater than
a threshold p are selected as candidates for true
cross-language topics.

4 Data

We used two datasets: a Sina Weibo Chinese-
English corpus (Ling et al., 2013) and a Spanish-
English Twitter corpus.

Weibo Ling et al. (2013) extracted over 1m
Chinese-English parallel segments from Sina
Weibo, which are code-switched messages. We
randomly sampled 29,705 code-switched mes-
sages along with 42,116 Chinese and 42,116 En-
glish messages from the the same time frame. We
used these data for training. We then sampled
an additional 2475 code-switched messages, 4221
English and 4211 Chinese messages as test data.

Olympics We collected tweets from July 27,
2012 to August 12, 2012, and identified 302,775
tweets about the Olympics based on related hash-
tags and keywords (e.g. olympics, #london2012,
etc.) We identified code-switched tweets using
the Chromium Language Detector2. This system
provides the top three possible languages for a
given document with confidence scores; we iden-
tify a tweet as code-switched if two predicted lan-
guages each have confidence greater than 33%.
We then used the tagger of Lignos and Marcus
(2013) to obtain token level LID tags, and only
tweets with tokens in both Spanish and English are
used as code-switched tweets. In total we iden-
tified 822 Spanish-English code-switched tweets.
We further expanded the mined tweets to full con-
versations, yielding 1055 Spanish-English code-
switched documents (including both tweets and
conversations), along with 4007 English and 4421
Spanish tweets composes our data set. We reserve
10% of the data for testing.

5 Experiments

We evaluated csLDA on the two datasets and eval-
uated each model using perplexity on held out data
and human judgements. While our goal is to learn
polylingual topics, we cannot compare to previous
polylingual models since they require comparable
data, which we lack. Instead, we constructed a
baseline from LDA run on the entire dataset (no

2https://code.google.com/p/chromium-compact-language-detector/

language information.) For each model, we mea-
sured the document completion perplexity (Rosen-
Zvi et al., 2004) on the held out data. We ex-
perimented with different numbers of topics (T ).
Since csLDA duplicates topic distributions (T ×L)
we used twice as many topics for LDA.

Figure 3 shows test perplexity for varying T and
perplexity for the best setting of csLDA (T =60)
and LDA (T =120). The table lists both mono-
lingual and code-switched test data; csLDA im-
proves over LDA in almost every case, and across
all values of T . The background distribution (-bg)
has mixed results for LDA, whereas for csLDA
it shows consistent improvement. Table 4 shows
some csLDA topics. While there are some mis-
takes, overall the topics are coherent and aligned.

We use the available per-token LID system
(Lignos and Marcus, 2013) for Spanish/English
to justify csLDA’s ability to infer the hidden lan-
guage variables. We ran csLDA-bg with li set to
the value provided by the LID system for code-
switched documents (csLDA-bg with LID), which
gives csLDA high quality LID labels. While we
see gains for the code-switched data, overall the
results for csLDA-bg and csLDA-bg with LID are
similar, suggesting that the model can operate ef-
fectively even without a supervised per-token LID
system.

5.1 Human Evaluation

We evaluate topic alignment quality through a hu-
man judgements (Chang et al., 2009). For each
aligned topic, we show an annotator the 20 most
frequent words from the foreign language topic
(Chinese or Spanish) with the 20 most frequent
words from the aligned English topic and two ran-
dom English topics. The annotators are asked to
select the most related English topic among the
three; the one with the most votes is considered
the aligned topic. We count how often the model’s
alignments agree.

LDA may learn comparable topics in different
languages but gives no explicit alignments. We
create alignments by classifying each LDA topic
by language using the KL-divergence between the
topic’s words distribution and a word distribution
for the English/foreign language inferred from the
monolingual documents. Language is assigned to
a topic by taking the minimum KL. For Weibo
data, this was not effective since the vocabularies
of each language are highly unbalanced. Instead,
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T =60/120 Olympics Weibo
En Es CS En Cn CS

LDA 11.32 9.44 6.97 29.19 23.06 11.69
LDA-bg 11.35 9.51 6.79 40.87 27.56 10.91
csLDA 8.72 7.94 6.17 18.20 17.31 12.72
csLDA-bg 8.72 7.73 6.04 18.25 17.74 12.46
csLDA-bg 8.73 7.93 4.91 - - -
with LID

Figure 3: Plots show perplexity for different T (Olympics left, Weibo right). Perplexity in the table are
in magnitude of 1× 103.

Football Basketball
English Spanish English Spanish
mexico mucho game españa
brazil argentina basketball baloncesto
soccer méxico year basketball

vs brasil finals bronce
womens ganará gonna china
football tri nba final
mens yahel castillo obama rusia
final delpo lebron española

Social Media Transportation
English Chinese English Chinese
twitter 啊啊啊 car 汽车
bitly 微博 drive 这个

facebook 更新 road 真真
check 下载 line 明年
use 转发 train 自行车
blog 视频 harry 车型
free pm 汽车 奔驰
post 推特 bus 大众

Figure 4: Examples of aligned topics from Olympics (left) and Weibo (right).

we manually labeled the topics by language. We
then pair topics across languages using the cosine
similarity of their co-occurrence statistics in code-
switched documents. Topic pairs with similarity
above t are considered aligned topics. We also
used a threshold p (§3.2) to select aligned topics
in csLDA. To ensure a fair comparison, we select
the same number of aligned topics for LDA and
csLDA.3. We used the best performing setting:
csLDA T =60, LDA T =120, which produced 12
alignments from Olympics and 28 from Weibo.

Using Mechanical Turk we collected multiple
judgements per alignment. For Spanish, we re-
moved workers who disagreed with the majority
more than 50% of the time (83 deletions), leav-
ing 6.5 annotations for each alignment (85.47%
inter-annotator agreement.) For Chinese, since
quality of general Chinese turkers is low (Pavlick
et al., 2014) we invited specific workers and
obtained 9.3 annotations per alignment (78.72%
inter-annotator agreement.) For Olympics, LDA
alignments matched the judgements 25% of the
time, while csLDA matched 50% of the time.
While csLDA found 12 alignments and LDA 29,
the 12 topics evaluated from both models show
that csLDA’s alignments are higher quality. For
the Weibo data, LDA matched judgements 71.4%,
while csLDA matched 75%. Both obtained high

3We used thresholds p = 0.2 and t = 0.0001. We limited
the model with more alignments to match the one with less.

quality alignments – likely due both to the fact
that the code-switched data is curated to find trans-
lations and we hand labeled topic language – but
csLDA found many more alignments: 60 as com-
pared to 28. These results confirm our automated
results: csLDA finds higher quality topics that
span both languages.
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Abstract

Tweets often contain a large proportion of
abbreviations, alternative spellings, novel
words and other non-canonical language.
These features are problematic for stan-
dard language analysis tools and it can
be desirable to convert them to canoni-
cal form. We propose a novel text nor-
malization model based on learning edit
operations from labeled data while incor-
porating features induced from unlabeled
data via character-level neural text embed-
dings. The text embeddings are generated
using an Simple Recurrent Network. We
find that enriching the feature set with text
embeddings substantially lowers word er-
ror rates on an English tweet normaliza-
tion dataset. Our model improves on state-
of-the-art with little training data and with-
out any lexical resources.

1 Introduction

A stream of posts from Twitter contains text writ-
ten in a large variety of languages and writing sys-
tems, in registers ranging from formal to inter-
net slang. Substantial effort has been expended
in recent years to adapt standard NLP process-
ing pipelines to be able to deal with such con-
tent. One approach has been text normaliza-
tion, i.e. transforming tweet text into a more
canonical form which standard NLP tools ex-
pect. A multitude of resources and approaches
have been used to deal with normalization: hand-
crafted and (semi-)automatically induced dictio-
naries, language models, finite state transduc-
ers, machine translation models and combinations
thereof. Methods such as those of Han and Bald-
win (2011), Liu et al. (2011), Gouws et al. (2011)
or Han et al. (2012) are unsupervised but they
typically use many adjustable parameters which

need to be tuned on some annotated data. In this
work we suggest a simple, supervised character-
level string transduction model which easily incor-
porates features automatically learned from large
amounts of unlabeled data and needs only a lim-
ited amount of labeled training data and no lexical
resources.

Our model learns sequences of edit operations
from labeled data using a Conditional Random
Field (Lafferty et al., 2001). Unlabeled data
is incorporated following recent work on using
character-level text embeddings for text segmen-
tation (Chrupała, 2013), and word and sentence
boundary detection (Evang et al., 2013). We
train a recurrent neural network language model
(Mikolov et al., 2010; Mikolov, 2012b) on a large
collection of tweets. When run on new strings, the
activations of the units in the hidden layer at each
position in the string are recorded and used as fea-
tures for training the string transduction model.

The principal contributions of our work are: (i)
we show that a discriminative sequence labeling
model is apt for text normalization and performs
at state-of-the-art levels with small amounts of la-
beled training data; (ii) we show that character-
level neural text embeddings can be used to effec-
tively incorporate information from unlabeled data
into the model and can substantially boost text nor-
malization performance.

2 Methods

Many approaches to text normalization adopt the
noisy channel setting, where the model normaliz-
ing source string s into target canonical form t is
factored into two parts: t̂ = arg maxt P (t)P (s|t).
The error term P (s|t) models how canonical
strings are transformed into variants such as e.g.
misspellings, emphatic lengthenings or abbrevia-
tions. The language model P (t) encodes which
target strings are probable.

We think this decomposition is less appropriate
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Input c w a t
Edit DEL INS(see) NIL INS(h) NIL
Output see w ha t

Table 1: Example edit script.

in the context of text normalization than in appli-
cations from which it was borrowed such as Ma-
chine Translations. This is because it is not obvi-
ous what kind of data can be used to estimate the
language model: there is plentiful text from the
source domain, but little of it is in normalized tar-
get form. There is also much edited text such as
news text, but it comes from a very different do-
main. One of the main advantages of the noisy
channel decomposition is that is makes it easy to
exploit large amounts of unlabeled data in the form
of a language model. This advantage does not hold
for text normalization.

We thus propose an alternative approach where
normalization is modeled directly, and which en-
ables easy incorporation of unlabeled data from
the source domain.

2.1 Learning to transduce strings

Our string transduction model works by learning
the sequence of edits which transform the input
string into the output string. Given a pair of strings
such a sequence of edits (known as the shortest
edit script) can be found using the DIFF algorithm
(Miller and Myers, 1985; Myers, 1986). Our ver-
sion of DIFF uses the following types of edits:
• NIL – no edits,
• DEL – delete character at this position,
• INS(·) – insert specified string before charac-

ter at this position.1

Table 1 shows a shortest edit script for the pair
of strings (c wat, see what).

We use a sequence labeling model to learn to
label input strings with edit scripts. The train-
ing data for the model is generated by comput-
ing shortest edit scripts for pairs of original and
normalized strings. As a sequence labeler we use
Conditional Random Fields (Lafferty et al., 2001).
Once trained the model is used to label new strings
and the predicted edit script is applied to the in-
put string producing the normalized output string.
Given source string s the predicted target string t̂

1The input string is extended with an empty symbol to
account for the cases where an insertion is needed at the end
of the string.

is:
t̂ = arg max

t
P (ses(s, t)|s)

where e = ses(s, t) is the shortest edit script map-
ping s to t. P (e|s) is modeled with a linear-chain
Conditional Random Field.

2.2 Character-level text embeddings
Simple Recurrent Networks (SRNs) were intro-
duced by Elman (1990) as models of temporal, or
sequential, structure in data, including linguistic
data (Elman, 1991). More recently SRNs were
used as language models for speech recognition
and shown to outperform classical n-gram lan-
guage models (Mikolov et al., 2010; Mikolov,
2012b). Another version of recurrent neural nets
has been used to generate plausible text with a
character-level language model (Sutskever et al.,
2011). We use SRNs to induce character-level text
representations from unlabeled Twitter data to use
as features in the string transduction model.

The units in the hidden layer at time t receive
connections from input units at time t and also
from the hidden units at the previous time step
t − 1. The hidden layer predicts the state of the
output units at the next time step t + 1. The input
vector w(t) represents the input element at current
time step, here the current character. The output
vector y(t) represents the predicted probabilities
for the next character. The activation sj of a hid-
den unit j is a function of the current input and the
state of the hidden layer at the previous time step:
t− 1:

sj(t) = σ

(
I∑

i=1

wi(t)Uji +
L∑

l=1

sj(t− 1)Wjl

)

where σ is the sigmoid function and Uji is the
weight between input component i and hidden unit
j, while Wjl is the weight between hidden unit l
at time t − 1 and hidden unit j at time t. The
representation of recent history is stored in a lim-
ited number of recurrently connected hidden units.
This forces the network to make the representation
compressed and abstract rather than just memo-
rize literal history. Chrupała (2013) and Evang
et al. (2013) show that these text embeddings can
be useful as features in textual segmentation tasks.
We use them to bring in information from unla-
beled data into our string transduction model and
then train a character-level SRN language model
on unlabeled tweets. We run the trained model on
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Figure 1: Tweets randomly generated with an SRN

new tweets and record the activation of the hid-
den layer at each position as the model predicts the
next character. These activation vectors form our
text embeddings: they are discretized and used as
input features to the supervised sequence labeler
as described in Section 3.4.

3 Experimental Setup

We limit the size of the string alphabet by always
working with UTF-8 encoded strings, and using
bytes rather than characters as basic units.

3.1 Unlabeled tweets
In order to train our SRN language model we col-
lected a set of tweets using the Twitter sampling
API. We use the raw sample directly without fil-
tering it in any way, relying on the SRN to learn
the structure of the data. The sample consists of
414 million bytes of UTF-8 encoded in a variety
of languages and scripts text. We trained a 400-
hidden-unit SRN, to predict the next byte in the
sequence using backpropagation through time. In-
put bytes were encoded using one-hot representa-
tion. We modified the RNNLM toolkit (Mikolov,
2012a) to record the activations of the hidden layer
and ran it with the default learning rate schedule.
Given that training SRNs on large amounts of text
takes a considerable amount of time we did not
vary the size of the hidden layer. We did try to
filter tweets by language and create specific em-
beddings for English but this had negligible effect
on tweet normalization performance.

The trained SRN language model can be used
to generate random text by sampling the next byte
from its predictive distribution and extending the
string with the result. Figure 1 shows example
strings generated in this way: the network seems
to prefer to output pseudo-tweets written consis-
tently in a single script with words and pseudo-
words mostly from a single language. The gener-
ated byte sequences are valid UTF-8 strings.

In Table 2 in the first column we show the suf-
fix of a string for which the SRN is predicting the
last byte. The rest of each row shows the nearest
neighbors of this string in embedding space, i.e.

should h should d will s will m should a
@justth @neenu @raven @lanae @despic
maybe u maybe y cause i wen i when i

Table 2: Nearest neighbors in embedding space.

strings for which the SRN is activated in a similar
way when predicting its last byte as measured by
cosine similarity.

3.2 Normalization datasets

A difficulty in comparing approaches to tweet nor-
malization is the sparsity of publicly available
datasets. Many authors evaluate on private tweet
collections and/or on the text message corpus of
Choudhury et al. (2007).

For English, Han and Baldwin (2011) created
a small tweet dataset annotated with normalized
variants at the word level. It is hard to inter-
pret the results from Han and Baldwin (2011),
as the evaluation is carried out by assuming that
the words to be normalized are known in ad-
vance: Han et al. (2012) remedy this shortcoming
by evaluating a number of systems without pre-
specifying ill-formed tokens. Another limitation
is that only word-level normalization is covered in
the annotation; e.g. splitting or merging of words
is not allowed. The dataset is also rather small:
549 tweets, which contain 2139 annotated out-
of-vocabulary (OOV) words. Nevertheless, we
use it here for training and evaluating our model.
This dataset does not specify a development/test
split. In order to maximize the size of the training
data while avoiding tuning on test data we use a
split cross-validation setup: we generate 10 cross-
validation folds, and use 5 of them during devel-
opment to evaluate variants of our model. The best
performing configuration is then evaluated on the
remaining 5 cross-validation folds.

3.3 Model versions

The simplest way to normalize tweets with a string
transduction model is to treat whole tweets as in-
put sequences. Many other tweet normalization
methods work in a word-wise fashion: they first
identify OOV words and then replace them with
normalized forms. Consequently, publicly avail-
able normalization datasets are annotated at word
level. We can emulate this setup by training the se-
quence labeler on words, instead of whole tweets.
This approach sacrifices some generality, since
transformations involving multiple words cannot
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be learned. However, word-wise models are more
comparable with previous work. We investigated
the following models:
• OOV-ONLY is trained on individual words and

in-vocabulary (IV) words are discarded for
training, and left unchanged for prediction.2

• ALL-WORDS is trained on all words and al-
lowed to change IV words.
• DOCUMENT is trained on whole tweets.

Model OOV-ONLY exploits the setting when the
task is constrained to only normalize words absent
from a reference dictionary, while DOCUMENT is
the one most generally applicable but does not
benefit from any constraints. To keep model size
within manageable limits we reduced the label set
for models ALL-WORDS and DOCUMENT by re-
placing labels which occur less than twice in the
training data with NIL. For OOV-ONLY we were
able to use the full label set. As our sequence la-
beling model we use the Wapiti implementation
of Conditional Random Fields (Lavergne et al.,
2010) with the L-BFGS optimizer and elastic net
regularization with default settings.

3.4 Features
We run experiments with two feature sets: N-
GRAM and N-GRAM+SRN. N-GRAM are char-
acter n-grams of size 1–3 in a window of
(−2,+2) around the current position. For the N-
GRAM+SRN feature set we augment N-GRAM with
features derived from the activations of the hidden
units as the SRN is trying to predict the current
character. In order to use the activations in the
CRF model we discretize them as follows. For
each of the K = 10 most active units out of
total J = 400 hidden units, we create features
(f(1) . . . f(K)) defined as f(k) = 1 if sj(k) >
0.5 and f(k) = 0 otherwise, where sj(k) returns
the activation of the kth most active unit.

3.5 Evaluation metrics
As our evaluation metric we use word error rate
(WER) which is defined as the Levenshtein edit
distance between the predicted word sequence t̂
and the target word sequence t, normalized by the
total number of words in the target string. A more
generally applicable metric would be character er-
ror rate, but we report WERs to make our results
easily comparable with previous work. Since the

2We used the IV/OOV annotations in the Han et al. (2012)
dataset, which are automatically derived from the aspell dic-
tionary.

Model Features WER (%)
NO-OP 11.7
DOCUMENT NGRAM 6.8
DOCUMENT NGRAM+SRN 5.7
ALL WORDS NGRAM 7.2
ALL WORDS NGRAM+SRN 5.0
OOV-ONLY NGRAM 5.1
OOV-ONLY NGRAM+SRN 4.5

Table 3: WERs on development data.

9 cont continued 5 gon gonna
4 bro brother 4 congrats congratulations
3 yall you 3 pic picture
2 wuz what’s 2 mins minutes
2 juss just 2 fb facebook

Table 4: Improvements from SRN features.

English dataset is pre-tokenized and only covers
word-to-word transformations, this choice has lit-
tle importance here and character error rates show
a similar pattern to word error rates.

4 Results

Table 3 shows the results of our development ex-
periments. NO-OP is a baseline which leaves text
unchanged. As expected the most constrained
model OOV-ONLY outperforms the more generic
models on this dataset. For all model variations,
adding SRN features substantially improves per-
formance: the relative error reductions range from
12% for OOV-ONLY to 30% for ALL-WORDS. Ta-
ble 4 shows the non-unique normalizations made
by the OOV-ONLY model with SRN features which
were missed without them. SRN features seem
to be especially useful for learning long-range,
multi-character edits, e.g. fb for facebook.

Table 5 shows the non-unique normalizations
which were missed by the best model: they are
a mixture of relatively standard variations which
happen to be infrequent in our data, like tonite or
gf, and a few idiosyncratic respellings like uu or
bhee. Our supervised approach makes it easy to
address the first type of failure by simply annotat-
ing additional training examples.

Table 6 presents evaluation results of several ap-
proaches reported in Han et al. (2012) as well as
the model which did best in our development ex-
periments. HB-dict is the Internet slang dictio-
nary from Han and Baldwin (2011). GHM-dict
is the automatically constructed dictionary from
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4 1 one 2 withh with
2 uu you 2 tonite tonight
2 thx thanks 2 thiis this
2 smh somehow 2 outta out
2 n in 2 m am
2 hmwrk homework 2 gf girlfriend
2 fxckin fucking 2 dha the
2 de the 2 d the
2 bhee be 2 bb baby

Table 5: Missed transformations.

Method WER (%)
NO-OP 11.2
HB-dict 6.6
GHM-dict 7.6
S-dict 9.7
Dict-combo 4.9
Dict-combo+HB-norm 7.9
OOV-ONLY NGRAM+SRN (test) 4.8

Table 6: WERs compared to previous work.

Gouws et al. (2011); S-dict is the automatically
constructed dictionary from (Han et al., 2012);
Dict-combo are all the dictionaries combined and
Dict-combo+HB-norm are all dictionaries com-
bined with approach of Han and Baldwin (2011).
The WER reported for OOV-ONLY NGRAM+SRN

is on the test folds only. The score on the full
dataset is a bit better: 4.66%. As can be seen our
approach it the best performing approach overall
and in particular it does much better than all of the
single dictionary-based methods. Only the combi-
nation of all the dictionaries comes close in per-
formance.

5 Related work

In the field of tweet normalization the approach
of Liu et al. (2011, 2012) shows some similarities
to ours: they gather a collection of OOV words
together with their canonical forms from the web
and train a character-level CRF sequence labeler
on the edit sequences computed from these pairs.
They use this as the error model in a noisy-channel
setup combined with a unigram language model.
In addition to character n-gram features they use
phoneme and syllable features, while we rely on
the SRN embeddings to provide generalized rep-
resentations of input strings.

Kaufmann and Kalita (2010) trained a phrase-
based statistical translation model on a parallel

text message corpus and applied it to tweet nor-
malization. In comparison to our first-order linear-
chain CRF, an MT model with reordering is more
flexible but for this reason needs more training
data. It also suffers from language model mis-
match mentioned in Section 2: optimal results
were obtained by using a low weight for the lan-
guage model trained on a balanced text corpus.

Many other approaches to tweet normalization
are more unsupervised in nature (e.g. Han and
Baldwin, 2011; Gouws et al., 2011; Xue et al.,
2011; Han et al., 2012). They still require an-
notated development data for tuning parameters
and a variety of heuristics. Our approach works
well with similar-sized training data, and unlike
unsupervised approaches can easily benefit from
more if it becomes available. Further afield,
our work has connections to research on mor-
phological analysis: for example Chrupała et al.
(2008) use edit scripts to learn lemmatization rules
while Dreyer et al. (2008) propose a discrimina-
tive model for string transductions and apply it
to morphological tasks. While Chrupała (2013)
and Evang et al. (2013) use character-level SRN
text embeddings for learning segmentation, and
recurrent nets themselves have been used for se-
quence transduction (Graves, 2012), to our knowl-
edge neural text embeddings have not been previ-
ously applied to string transduction.

6 Conclusion

Learning sequences of edit operations from exam-
ples while incorporating unlabeled data via neu-
ral text embeddings constitutes a compelling ap-
proach to tweet normalization. Our results are es-
pecially interesting considering that we trained on
only a small annotated data set and did not use
any other manually created resources such as dic-
tionaries. We want to push performance further
by expanding the training data and incorporating
existing lexical resources. It will also be impor-
tant to check how our method generalizes to other
language and datasets (e.g. de Clercq et al., 2013;
Alegria et al., 2013).

The general form of our model can be used
in settings where normalization is not limited to
word-to-word transformations. We are planning
to find or create data with such characteristics and
evaluate our approach under these conditions.
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Abstract
We show how rapidly changing textual
streams such as Twitter can be modelled in
fixed space. Our approach is based upon
a randomised algorithm called Exponen-
tial Reservoir Sampling, unexplored by
this community until now. Using language
models over Twitter and Newswire as a
testbed, our experimental results based on
perplexity support the intuition that re-
cently observed data generally outweighs
that seen in the past, but that at times,
the past can have valuable signals enabling
better modelling of the present.

1 Introduction

Work by Talbot and Osborne (2007), Van Durme
and Lall (2009) and Goyal et al. (2009) consid-
ered the problem of building very large language
models via the use of randomized data structures
known as sketches.1 While efficient, these struc-
tures still scale linearly in the number of items
stored, and do not handle deletions well: if pro-
cessing an unbounded stream of text, with new
words and phrases being regularly added to the
model, then with a fixed amount of space, errors
will only increase over time. This was pointed
out by Levenberg and Osborne (2009), who inves-
tigated an alternate approach employing perfect-
hashing to allow for deletions over time. Their
deletion criterion was task-specific and based on
how a machine translation system queried a lan-
guage model.

∗Corresponding author: miles@inf.ed.ac.uk
1Sketches provide space efficiencies that are measured on

the order of individual bits per item stored, but at the cost
of being lossy: sketches trade off space for error, where the
less space you use, the more likely you will get erroneous
responses to queries.

Here we ask what the appropriate selection
criterion is for streaming data based on a non-
stationary process, when concerned with an in-
trinsic measure such as perplexity. Using Twitter
and newswire, we pursue this via a sampling strat-
egy: we construct models over sentences based on
a sample of previously observed sentences, then
measure perplexity of incoming sentences, all on
a day by day, rolling basis. Three sampling ap-
proaches are considered: A fixed-width sliding
window of most recent content, uniformly at ran-
dom over the stream and a biased sample that
prefers recent history over the past.

We show experimentally that a moving window
is better than uniform sampling, and further that
exponential (biased) sampling is best of all. For
streaming data, recently encountered data is valu-
able, but there is also signal in the previous stream.

Our sampling methods are based on reser-
voir sampling (Vitter, 1985), a popularly known
method in some areas of computer science, but
which has seen little use within computational lin-
guistics.2 Standard reservoir sampling is a method
for maintaining a uniform sample over a dynamic
stream of elements, using constant space. Novel
to this community, we consider a variant owing to
Aggarwal (2006) which provides for an exponen-
tial bias towards recently observed elements. This
exponential reservoir sampling has all of the guar-
antees of standard reservoir sampling, but as we
show, is a better fit for streaming textual data. Our
approach is fully general and can be applied to any
streaming task where we need to model the present
and can only use fixed space.

2Exceptions include work by Van Durme and Lall (2011)
and Van Durme (2012), aimed at different problems than that
explored here.
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2 Background

We address two problems: language changes over
time, and the observation that space is a problem,
even for compact sketches.

Statistical language models often assume either
a local Markov property (when working with ut-
terances, or sentences), or that content is gener-
ated fully i.i.d. (such as in document-level topic
models). However, language shows observable
priming effects, sometimes called triggers, where
the occurrence of a given term decreases the sur-
prisal of some other term later in the same dis-
course (Lau et al., 1993; Church and Gale, 1995;
Beeferman et al., 1997; Church, 2000). Conven-
tional cache and trigger models typically do not
deal with new terms and can be seen as adjusting
the parameters of a fixed model.

Accounting for previously unseen entries in a
language model can be naively simple: as they ap-
pear in new training data, add them to the model!
However in practice we are constrained by avail-
able space: how many unique phrases can we
store, given the target application environment?

Our work is concerned with modeling language
that might change over time, in accordance with
current trending discourse topics, but under a strict
space constraint. With a fixed amount of memory
available, we cannot allow our list of unique words
or phrases to grow over time, even while new top-
ics give rise to novel names of people, places, and
terms of interest. Thus we need an approach that
keeps the size of the model constant, but that is
geared to what is being discussed now, as com-
pared to some time in the past.

3 Reservoir Sampling

3.1 Uniform Reservoir Sampling

The reservoir sampling algorithm (Vitter, 1985) is
the classic method of sampling without replace-
ment from a stream in a single pass when the
length of the stream is of indeterminate or un-
bounded length. Say that the size of the desired
sample is k. The algorithm proceeds by retain-
ing the first k items of the stream and then sam-
pling each subsequent element with probability
f(k, n) = k/n, where n is the length of the stream
so far. (See Algorithm 1.) It is easy to show via in-
duction that, at any time, all the items in the stream
so far have equal probability of appearing in the
reservoir.

The algorithm processes the stream in a single
pass—that is, once it has processed an item in the
stream, it does not revisit that item unless it is
stored in the reservoir. Given this restriction, the
incredible feature of this algorithm is that it is able
to guarantee that the samples in the reservoir are a
uniformly random sample with no unintended bi-
ases even as the stream evolves. This makes it an
excellent candidate for situations when the stream
is continuously being updated and it is computa-
tionally infeasible to store the entire stream or to
make more than a single pass over it. Moreover,
it is an extremely efficient algorithm as it requires
O(1) time (independent of the reservoir size and
stream length) for each item in the stream.

Algorithm 1 Reservoir Sampling Algorithm
Parameters:
k: maximum size of reservoir

1: Initialize an empty reservoir (any container
data type).

2: n := 1
3: for each item in the stream do
4: if n < k then
5: insert current item into the reservoir
6: else
7: with probability f(n, k), eject an ele-

ment of the reservoir chosen uniformly
at random and insert current item into the
reservoir

8: n := n+ 1

3.2 Non-uniform Reservoir Sampling
Here we will consider generalizations of the reser-
voir sampling algorithm in which the sample
items in the reservoir are more biased towards the
present. Put another way, we will continuously
decay the probability that an older item will ap-
pear in the reservoir. Models produced using such
biases put more modelling stress on the present
than models produced using data that is selected
uniformly from the stream. The goal here is to
continuously update the reservoir sample in such
a way that the decay of older items is done consis-
tently while still maintaining the benefits of reser-
voir sampling, including the single pass and mem-
ory/time constraints.

The time-decay scheme we will study in this
paper is exponential bias towards newer items in
the stream. More precisely, we wish for items that
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Figure 1: Different biases for sampling a stream

have age a in the stream to appear with probability

g(a) = c · exp (−a/β),

where a is the age of the item, β is a scale param-
eter indicating how rapidly older items should be
deemphasized, and c is a normalization constant.
To give a sense of what these time-decay proba-
bilities look like, some exponential distributions
are plotted (along with the uniform distribution)
in Figure 1.

Aggarwal (2006) studied this problem and
showed that by altering the sampling probability
(f(n, k) in Algorithm 1) in the reservoir sampling
algorithm, it is possible to achieve different age-
related biases in the sample. In particular, he
showed that by setting the sampling probability to
the constant function f(n, k) = k/β, it is possible
to approximately achieve exponential bias in the
sample with scale parameter β (Aggarwal, 2006).
Aggarwal’s analysis relies on the parameter β be-
ing very large. In the next section we will make
the analysis more precise by omitting any such as-
sumption.

3.3 Analysis
In this section we will derive an expression for the
bias introduced by an arbitrary sampling function
f in Algorithm 1. We will then use this expression
to derive the precise sampling function needed to
achieve exponential decay.3 Careful selection of
f allows us to achieve anything from zero decay
(i.e., uniform sampling of the entire stream) to
exponential decay. Once again, note that since
we are only changing the sampling function, the

3Specifying an arbitrary decay function remains an open
problem.

one-pass, memory- and time-efficient properties
of reservoir sampling are still being preserved.

In the following analysis, we fix n to be the size
of the stream at some fixed time and k to be the
size of the reservoir. We assume that the ith el-
ement of the stream is sampled with probability
f(i, k), for i ≤ n. We can then derive the proba-
bility that an element of age a will still be in the
reservoir as

g(a) = f(n− a, k)
n∏

t=n−a+1

(
1− f(t, k)

k

)
,

since it would have been sampled with probability
f(n− a, k) and had independent chances of being
replaced at times t = n−a+1, . . . , n with proba-
bility f(t, k)/k. For instance, when f(x, k) = k

x ,
the above formula simplifies down to g(a) = k

n
(i.e., the uniform sampling case).

For the exponential case, we fix the sampling
rate to some constant f(n, k) = pk, and we wish
to determine what value to use for pk to achieve
a given exponential decay rate g(a) = ce−a/β ,
where c is the normalization constant (to make g a
probability distribution) and β is the scale param-
eter of the exponential distribution. Substituting
f(n, k) = pk in the above formula and equating
with the decay rate, we get that pk(1 − pk/k)a ≡
ce−a/β , which must hold true for all possible val-
ues of a. After some algebra, we get that when
f(x, k) = pk = k(1 − e−1/β), the probability
that an item with age a is included in the reser-
voir is given by the exponential decay rate g(a) =
pke

−a/β . Note that, for very large values of β, this
probability is approximately equal to pk ≈ k/β
(by using the approximation e−x ≈ 1 − x, when
|x| is close to zero), as given by Aggarwal, but our
formula gives the precise sampling probability and
works even for smaller values of β.

4 Experiments

Our experiments use two streams of data to illus-
trate exponential sampling: Twitter and a more
conventional newswire stream. The Twitter data is
interesting as it is very multilingual, bursty (for ex-
ample, it talks about memes, breaking news, gos-
sip etc) and written by literally millions of differ-
ent people. The newswire stream is a lot more well
behaved and serves as a control.

4.1 Data, Models and Evaluation
We used one month of chronologically ordered
Twitter data and divided it into 31 equal sized
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Stream Interval Total (toks) Test (toks)
Twitter Dec 2013 3282M 105M
Giga 1994 – 2010 635.5M 12M

Table 1: Stream statistics

blocks (roughly corresponding with days). We
also used the AFP portion of the Giga Word corpus
as another source of data that evolves at a slower
pace. This data was divided into 50 equal sized
blocks. Table 1 gives statistics about the data. As
can be seen, the Twitter data is vastly larger than
newswire and arrives at a much faster rate.

We considered the following models. Each one
(apart from the exact model) was trained using the
same amount of data:

• Static. This model was trained using data
from the start of the duration and never var-
ied. It is a baseline.

• Exact. This model was trained using all
available data from the start of the stream and
acts as an upper bound on performance.

• Moving Window. This model used all data
in a fixed-sized window immediately before
the given test point.

• Uniform. Here, we use uniform reservoir
sampling to select the data.

• Exponential. Lastly, we use exponen-
tial reservoir sampling to select the data.
This model is parameterised, indicating how
strongly biased towards the present the sam-
ple will be. The β parameter is a multiplier
over the reservoir length. For example, a β
value of 1.1 with a sample size of 10 means
the value is 11. In general, β always needs to
be bigger than the reservoir size.

We sample over whole sentences (or Tweets)
and not ngrams.4 Using ngrams instead would
give us a finer-grained control over results, but
would come at the expense of greatly complicat-
ing the analysis. This is because we would need to
reason about not just a set of items but a multiset
of items. Note that because the samples are large5,
variations across samples will be small.

4A consequence is that we do not guarantee that each sam-
ple uses exactly the same number of grams. This can be tack-
led by randomly removing sampled sentences.

5Each day consists of approximately four million Tweets
and we evaluate on a whole day.

Day Uniform β value
∞ 1.1 1.3 1.5 2.0

5 619.4 619.4 619.4 619.4 619.4
6 601.0 601.0 603.8 606.6 611.1
7 603.0 599.4 602.7 605.6 612.1
8 614.6 607.7 611.9 614.3 621.6
9 623.3 611.5 615.0 620.0 628.1
10 656.2 643.1 647.2 650.1 658.0
12 646.6 628.9 633.0 636.5 644.6
15 647.7 628.7 630.4 634.5 641.6
20 636.7 605.3 608.4 610.8 618.4
25 631.5 601.9 603.3 604.4 610.0

Table 2: Perplexities for different β values over
Twitter (sample size = five days). Lower is better.

We test the model on unseen data from all of the
next day (or block). Afterwards, we advance to the
next day (block) and repeat, potentially incorpo-
rating the previously seen test data into the current
training data. Evaluation is in terms of perplexity
(which is standard for language modelling).

We used KenLM for building models and eval-
uating them (Heafield, 2011). Each model was
an unpruned trigram, with Kneser-Ney smoothing.
Increasing the language model order would not
change the results. Here the focus is upon which
data is used in a model (that is, which data is added
and which data is removed) and not upon making
it compact or making retraining efficient.

4.2 Varying the β Parameter
Table 2 shows the effect of varying the β param-
eter (using Twitter). The higher the β value, the
more uniform the sampling. As can be seen, per-
formance improves when sampling becomes more
biased. Not shown here, but for Twitter, even
smaller β values produce better results and for
newswire, results degrade. These differences are
small and do not affect any conclusions made here.
In practise, this value would be set using a devel-
opment set and to simplify the rest of the paper, all
other experiments use the same β value (1.1).

4.3 Varying the Amount of Data
Does the amount of data used in a model affect re-
sults? Table 3 shows the results for Twitter when
varying the amount of data in the sample and us-
ing exponential sampling (β = 1.1). In paren-
theses for each result, we show the corresponding
moving window results. As expected, using more
data improves results. We see that for each sample
size, exponential sampling outperforms our mov-
ing window. In the limit, all sampling methods
would produce the same results.
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Day Sample Size (Days)
1 2 3

5 652.5 (661.2) 629.1 (635.8) 624.8 (625.9)
6 635.4 (651.6) 611.6 (620.8) 604.0 (608.7)
7 636.0 (647.3) 611.0 (625.2) 603.7 (612.5)
8 654.8 (672.7) 625.6 (641.6) 614.6 (626.9)
9 653.9 (662.8) 628.3 (643.0) 618.8 (632.2)
10 679.1 (687.8) 654.3 (666.8) 646.6 (659.7)
12 671.1 (681.9) 645.8 (658.6) 633.8 (647.5)
15 677.7 (697.9) 647.4 (668.0) 636.4 (652.6)
20 648.1 (664.6) 621.4 (637.9) 612.2 (627.6)
25 657.5 (687.5) 625.3 (664.4) 613.4 (641.8)

Table 3: Perplexities for different sample sizes
over Twitter. Lower is better.

4.4 Alternative Sampling Strategies

Table 4 compares the two baselines against the two
forms of reservoir sampling. For Twitter, we see
a clear recency effect. The static baseline gets
worse and worse as it recedes from the current
test point. Uniform sampling does better, but it
in turn is beaten by the Moving Window Model.
However, this in turn is beaten by our exponential
reservoir sampling.

Day Static Moving Uniform Exp Exact
5 619.4 619.4 619.4 619.4 619.4
6 664.8 599.7 601.8 601.0 597.6
7 684.4 602.8 603.0 599.3 595.6
8 710.1 612.0 614.6 607.7 603.5
9 727.0 617.9 623.3 613.0 608.7
10 775.6 651.2 656.2 642.0 640.5
12 776.7 639.0 646.6 628.7 627.5
15 777.1 638.3 647.7 626.7 627.3
20 800.9 619.1 636.7 604.9 607.3
25 801.4 621.7 631.5 601.5 597.6

Table 4: Perplexities for differently selected sam-
ples over Twitter (sample size = five days, β =
1.1). Results in bold are the best sampling results.
Lower is better.

4.5 GigaWord

Twitter is a fast moving, rapidly changing multi-
lingual stream and it is not surprising that our ex-
ponential reservoir sampling proves beneficial. Is
it still useful for a more conventional stream that
is drawn from a much smaller population of re-
porters? We repeated our experiments, using the
same rolling training and testing evaluation as be-
fore, but this time using newswire for data.

Table 5 shows the perplexities when using the
Gigaword stream. We see the same general trends,
albeit with less of a difference between exponen-
tial sampling and our moving window. Perplexity
values are all lower than for Twitter.

Block Static Moving Uniform Exp
11 416.5 381.1 382.0 382.0
15 436.7 353.3 357.5 352.8
20 461.8 347.0 354.4 344.6
25 315.6 214.9 222.2 211.3
30 319.1 200.5 213.5 199.5
40 462.5 304.4 313.2 292.9

Table 5: Perplexities for differently selected sam-
ples over Gigaword (sample size = 10 blocks, β =
1.1). Lower is better.

4.6 Why does this work for Twitter?

Although the perplexity results demonstrate that
exponential sampling is on average beneficial, it
is useful to analyse the results in more detail. For
a large stream size (25 days), we built models us-
ing uniform, exponential (β = 1.1) and our moving
window sampling methods. Each approach used
the same amount of data. For the same test set
(four million Tweets), we computed per-Tweet log
likelihoods and looked at the difference between
the model that best explained each tweet and the
second best model (ie the margin). This gives us
an indication of how much a given model better
explains a given Tweet. Analysing the results, we
found that most gains came from short grams and
very few came from entire Tweets being reposted
(or retweeted). This suggests that the Twitter re-
sults follow previously reported observations on
how language can be bursty and not from Twitter-
specific properties.

5 Conclusion

We have introduced exponential reservoir sam-
pling as an elegant way to model a stream of un-
bounded size, yet using fixed space. It naturally al-
lows one to take account of recency effects present
in many natural streams. We expect that our lan-
guage model could improve other Social Media
tasks, for example lexical normalisation (Han and
Baldwin, 2011) or even event detection (Lin et
al., 2011). The approach is fully general and not
just limited to language modelling. Future work
should look at other distributions for sampling and
consider tasks such as machine translation over
Social Media.
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Abstract

We investigate the novel task of online dis-
pute detection and propose a sentiment analy-
sis solution to the problem: we aim to identify
the sequence of sentence-level sentiments ex-
pressed during a discussion and to use them
as features in a classifier that predicts the
DISPUTE/NON-DISPUTE label for the dis-
cussion as a whole. We evaluate dispute de-
tection approaches on a newly created corpus
of Wikipedia Talk page disputes and find that
classifiers that rely on our sentiment tagging
features outperform those that do not. The best
model achieves a very promising F1 score of
0.78 and an accuracy of 0.80.

1 Introduction

As the web has grown in popularity and scope, so
has the promise of collaborative information en-
vironments for the joint creation and exchange of
knowledge (Jones and Rafaeli, 2000; Sack, 2005).
Wikipedia, a wiki-based online encyclopedia, is
arguably the best example: its distributed edit-
ing environment allows readers to collaborate as
content editors and has facilitated the production
of over four billion articles1 of surprisingly high
quality (Giles, 2005) in English alone since its de-
but in 2001.

Existing studies of collaborative knowledge
systems have shown, however, that the quality of
the generated content (e.g. an encyclopedia arti-
cle) is highly correlated with the effectiveness of
the online collaboration (Kittur and Kraut, 2008;
Kraut and Resnick, 2012); fruitful collaboration,
in turn, inevitably requires dealing with the dis-
putes and conflicts that arise (Kittur et al., 2007).
Unfortunately, human monitoring of the often
massive social media and collaboration sites to de-
tect, much less mediate, disputes is not feasible.

1
http://en.wikipedia.org

In this work, we investigate the heretofore novel
task of dispute detection in online discussions.
Previous work in this general area has analyzed
dispute-laden content to discover features corre-
lated with conflicts and disputes (Kittur et al.,
2007). Research focused primarily on cues de-
rived from the edit history of the jointly created
content (e.g. the number of revisions, their tem-
poral density (Kittur et al., 2007; Yasseri et al.,
2012)) and relied on small numbers of manually
selected discussions known to involve disputes. In
contrast, we investigate methods for the automatic
detection, i.e. prediction, of discussions involving
disputes. We are also interested in understanding
whether, and which, linguistic features of the dis-
cussion are important for dispute detection.

Drawing inspiration from studies of human me-
diation of online conflicts (e.g. Billings and Watts
(2010), Kittur et al. (2007), Kraut and Resnick
(2012)), we hypothesize that effective methods
for dispute detection should take into account the
sentiment and opinions expressed by participants
in the collaborative endeavor. As a result, we
propose a sentiment analysis approach for online
dispute detection that identifies the sequence of
sentence-level sentiments (i.e. very negative, neg-
ative, neutral, positive, very positive) expressed
during the discussion and uses them as features
in a classifier that predicts the DISPUTE/NON-
DISPUTE label for the discussion as a whole. Con-
sider, for example, the snippet in Figure 1 from the
Wikipedia Talk page for the article on Philadel-
phia; it discusses the choice of a picture for the
article’s “infobox”. The sequence of almost exclu-
sively negative statements provides evidence of a
dispute in this portion of the discussion.

Unfortunately, sentence-level sentiment tagging
for this domain is challenging in its own right
due to the less formal, often ungrammatical, lan-
guage and the dynamic nature of online conver-
sations. “Really, grow up” (segment 3) should
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1-Emy111: I think everyone is forgetting that my previous image was the
lead image for well over a year! ...
> Massimo: I’m sorry to say so, but it is grossly over processed...
2-Emy111: i’m glad you paid more money for a camera than I did. con-
grats... i appreciate your constructive criticism. thank you.
> Massimo: I just want to have the best picture as a lead for the article ...
3-Emy111: Wow, I am really enjoying this photography debate... [so don’t
make assumptions you know nothing about.]NN [Really, grow up.]N [If you
all want to complain about Photoshop editing, lets all go buy medium for-
mat film cameras, shoot film, and scan it, so no manipulation is possible.]O
[Sound good?]NN
> Massimo: ... I do feel it is a pity, that you turned out to be a sore loser...

Figure 1: From the Wikipedia Talk page for the article
“Philadelphia”. Omitted sentences are indicated by ellipsis.
Names of editors are in bold. The start of each set of related
turns is numbered; “>” is an indicator for the reply structure.

presumably be tagged as a negative sentence as
should the sarcastic sentences “Sounds good?” (in
the same turn) and “congrats” and “thank you”
(in segment 2). We expect that these, and other,
examples will be difficult for the sentence-level
classifier unless the discourse context of each sen-
tence is considered. Previous research on senti-
ment prediction for online discussions, however,
focuses on turn-level predictions (Hahn et al.,
2006; Yin et al., 2012).2 As the first work that
predicts sentence-level sentiment for online dis-
cussions, we investigate isotonic Conditional Ran-
dom Fields (CRFs) (Mao and Lebanon, 2007) for
the sentiment-tagging task as they preserve the ad-
vantages of the popular CRF-based sequential tag-
ging models (Lafferty et al., 2001) while provid-
ing an efficient mechanism for encoding domain
knowledge — in our case, a sentiment lexicon —
through isotonic constraints on model parameters.

We evaluate our dispute detection approach us-
ing a newly created corpus of discussions from
Wikipedia Talk pages (3609 disputes, 3609 non-
disputes).3 We find that classifiers that employ the
learned sentiment features outperform others that
do not. The best model achieves a very promis-
ing F1 score of 0.78 and an accuracy of 0.80 on
the Wikipedia dispute corpus. To the best of our
knowledge, this represents the first computational
approach to automatically identify online disputes
on a dataset of scale.

Additional Related Work. Sentiment analysis
has been utilized as a key enabling technique in
a number of conversation-based applications. Pre-
vious work mainly studies the attitudes in spoken

2A notable exception is Hassan et al. (2010), which identi-
fies sentences containing “attitudes” (e.g. opinions), but does
not distinguish them w.r.t. sentiment. Context information is
also not considered.

3The talk page associated with each article records con-
versations among editors about the article content and allows
editors to discuss the writing process, e.g. planning and orga-
nizing the content.

meetings (Galley et al., 2004; Hahn et al., 2006) or
broadcast conversations (Wang et al., 2011) using
variants of Conditional Random Fields (Lafferty et
al., 2001) and predicts sentiment at the turn-level,
while our predictions are made for each sentence.

2 Data Construction: A Dispute Corpus
We construct the first dispute detection corpus to
date; it consists of dispute and non-dispute discus-
sions from Wikipedia Talk pages.
Step 1: Get Talk Pages of Disputed Articles.
Wikipedia articles are edited by different editors.
If an article is observed to have disputes on its
talk page, editors can assign dispute tags to the
article to flag it for attention. In this research, we
are interested in talk pages whose corresponding
articles are labeled with the following tags:
DISPUTED, TOTALLYDISPUTED, DISPUTED-
SECTION, TOTALLYDISPUTED-SECTION, POV.
The tags indicate that an article is disputed, or the
neutrality of the article is disputed (POV).

We use the 2013-03-04 Wikipedia data dump,
and extract talk pages for articles that are labeled
with dispute tags by checking the revision history.
This results in 19,071 talk pages.
Step 2: Get Discussions with Disputes. Dis-
pute tags can also be added to talk pages them-
selves. Therefore, in addition to the tags men-
tioned above, we also consider the “Request for
Comment” (RFC) tag on talk pages. According to
Wikipedia4, RFC is used to request outside opin-
ions concerning the disputes.

3609 discussions are collected with dispute
tags found in the revision history. We further
classify dispute discussions into three subcate-
gories: CONTROVERSY, REQUEST FOR COM-
MENT (RFC), and RESOLVED based on the tags
found in discussions (see Table 1). The numbers
of discussions for the three types are 42, 3484, and
105, respectively. Note that dispute tags only ap-
pear in a small number of articles and talk pages.
There may exist other discussions with disputes.

Dispute Subcategory Wikipedia Tags on Talk pages
Controversy CONTROVERSIAL, TOTALLYDISPUTED,

DISPUTED, CALM TALK, POV
Request for Comment RFC
Resolved Any tag from above + RESOLVED

Table 1: Subcategory for disputes with corresponding tags.
Note that each discussion in the RESOLVED class has more
than one tag.

Step 3: Get Discussions without Disputes. Like-
wise, we collect non-dispute discussions from

4
http://en.wikipedia.org/wiki/Wikipedia:

Requests_for_comment
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pages that are never tagged with disputes. We con-
sider non-dispute discussions with at least 3 dis-
tinct speakers and 10 turns. 3609 discussions are
randomly selected with this criterion. The average
turn numbers for dispute and non-dispute discus-
sions are 45.03 and 22.95, respectively.

3 Sentence-level Sentiment Prediction

This section describes our sentence-level senti-
ment tagger, from which we construct features for
dispute detection (Section 4).

Consider a discussion comprised of sequential
turns; each turn consists of a sequence of sen-
tences. Our model takes as input the sentences
x = {x1, · · · , xn} from a single turn, and out-
puts the corresponding sequence of sentiment la-
bels y = {y1, · · · , yn}, where yi ∈ O,O =
{NN,N,O,P,PP}. The labels in O represent
very negative (NN), negative (N), neutral (O), pos-
itive (P), and very positive (PP), respectively.

Given that traditional Conditional Random
Fields (CRFs) (Lafferty et al., 2001) ignore the or-
dinal relations among sentiment labels, we choose
isotonic CRFs (Mao and Lebanon, 2007) for
sentence-level sentiment analysis as they can en-
force monotonicity constraints on the parameters
consistent with the ordinal structure and domain
knowledge (e.g. word-level sentiment conveyed
via a lexicon). Concretely, we take a lexiconM =
Mp∪Mn, whereMp andMn are two sets of fea-
tures (usually words) identified as strongly associ-
ated with positive and negative sentiment. Assume
µ〈σ,w〉 encodes the weight between label σ and
feature w, for each feature w ∈ Mp; then the iso-
tonic CRF enforces σ ≤ σ′ ⇒ µ〈σ,w〉 ≤ µ〈σ′,w〉.
For example, when “totally agree” is observed in
training, parameter µ〈PP,totally agree〉 is likely to
increase. Similar constraints are defined onMn.

Our lexicon is built by combining MPQA (Wil-
son et al., 2005), General Inquirer (Stone et al.,
1966), and SentiWordNet (Esuli and Sebastiani,
2006) lexicons. Words with contradictory senti-
ments are removed. We use the features in Table 2
for sentiment prediction.
Syntactic/Semantic Features. We have two ver-
sions of dependency relation features, the origi-
nal form and a form that generalizes a word to its
POS tag, e.g. “nsubj(wrong, you)” is generalized
to “nsubj(ADJ, you)” and “nsubj(wrong, PRP)”.
Discourse Features. We extract the initial uni-
gram, bigram, and trigram of each utterance as dis-

Lexical Features Syntactic/Semantic Features
- unigram/bigram - unigram with POS tag
- number of words all uppercased - dependency relation
- number of words Conversation Features
Discourse Features - quote overlap with target
- initial uni-/bi-/tri-gram - TFIDF similarity with target
- repeated punctuations (remove quote first)
- hedging phrases collected from Sentiment Features
Farkas et al. (2010) - connective + sentiment words
- number of negators - sentiment dependency relation

- sentiment words

Table 2: Features used in sentence-level sentiment predic-
tion. Numerical features are first normalized by standardiza-
tion, then binned into 5 categories.

course features (Hirschberg and Litman, 1993).
Sentiment Features. We gather connectives from
the Penn Discourse TreeBank (Rashmi Prasad and
Webber, 2008) and combine them with any senti-
ment word that precedes or follows it as new fea-
tures. Sentiment dependency relations are the de-
pendency relations that include a sentiment word.
We replace those words with their polarity equiv-
alents. For example, relation “nsubj(wrong, you)”
becomes “nsubj(SentiWordneg, you)”.

4 Online Dispute Detection
4.1 Training A Sentiment Classifier
Dataset. We train the sentiment classifier using
the Authority and Alignment in Wikipedia Discus-
sions (AAWD) corpus (Bender et al., 2011) on a 5-
point scale (i.e. NN, N, O, P, PP). AAWD consists
of 221 English Wikipedia discussions with posi-
tive and negative alignment annotations. Annota-
tors either label each sentence as positive, negative
or neutral, or label the full turn. For instances that
have only a turn-level label, we assume all sen-
tences have the same label as the turn. We further
transform the labels into the five sentiment labels.
Sentences annotated as being a positive alignment
by at least two annotators are treated as very posi-
tive (PP). If a sentence is only selected as positive
by one annotator or obtains the label via turn-level
annotation, it is positive (P). Very negative (NN)
and negative (N) are collected in the same way.
All others are neutral (O). Among all 16,501 sen-
tences in AAWD, 1,930 and 1,102 are labeled as
NN and N. 532 and 99 of them are PP and P. The
other 12,648 are considered neutral.
Evaluation. To evaluate the performance of the
sentiment tagger, we compare to two baselines.
(1) Baseline (Polarity): a sentence is predicted as
positive if it has more positive words than nega-
tive words, or negative if more negative words are
observed. Otherwise, it is neutral. (2) Baseline
(Distance) is extended from (Hassan et al., 2010).
Each sentiment word is associated with the closest
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Pos Neg Neutral
Baseline (Polarity) 22.53 38.61 66.45
Baseline (Distance) 33.75 55.79 88.97
SVM (3-way) 44.62 52.56 80.84
CRF (3-way) 56.28 56.37 89.41
CRF (5-way) 58.39 56.30 90.10
isotonic CRF 68.18 62.53 88.87

Table 3: F1 scores for positive and negative alignment on
Wikipedia Talk pages (AAWD) using 5-fold cross-validation.
In each column, bold entries (if any) are statistically signif-
icantly higher than all the rest. We also compare with an
SVM and linear CRF trained with three classes (3-way). Our
model based on the isotonic CRF produces significantly bet-
ter results than all the other systems.

second person pronoun, and a surface distance is
computed. An SVM classifier (Joachims, 1999) is
trained using features of the sentiment words and
minimum/maximum/average of the distances.

We also compare with two state-of-the-art
methods that are used in sentiment prediction for
conversations: (1) an SVM (RBF kernel) that is
employed for identifying sentiment-bearing sen-
tences (Hassan et al., 2010), and (dis)agreement
detection (Yin et al., 2012) in online debates; (2)
a Linear CRF for (dis)agreement identification in
broadcast conversations (Wang et al., 2011).

We evaluate the systems using standard F1 on
classes of positive, negative, and neutral, where
samples predicted as PP and P are positive align-
ment, and samples tagged as NN and N are neg-
ative alignment. Table 3 describes the main re-
sults on the AAWD dataset: our isotonic CRF
based system significantly outperforms the alter-
natives for positive and negative alignment detec-
tion (paired-t test, p < 0.05).

4.2 Dispute Detection

We model dispute detection as a standard bi-
nary classification task, and investigate four major
types of features as described below.
Lexical Features. We first collect unigram and
bigram features for each discussion.
Topic Features. Articles on specific topics, such
as politics or religions, tend to arouse more dis-
putes. We thus extract the category informa-
tion of the corresponding article for each talk page.
We further utilize unigrams and bigrams of
the category as topic features.
Discussion Features. This type of feature aims
to capture the structure of the discussion. Intu-
itively, the more turns or the more participants
a discussion has, the more likely there is a
dispute. Meanwhile, participants tend to produce
longer utterances when they make arguments.
We choose number of turns, number

of participants, average number of
words in each turn as features. In addi-
tion, the frequency of revisions made during the
discussion has been shown to be good indicator
for controversial articles (Vuong et al., 2008), that
are presumably prone to have disputes. Therefore,
we encode the number of revisions that
happened during the discussion as a feature.
Sentiment Features. This set of features en-
code the sentiment distribution and transition in
the discussion. We train our sentiment tagging
model on the full AAWD dataset, and run it on
the Wikipedia dispute corpus.

Given that consistent negative senti-
ment flow usually indicates an ongoing
dispute, we first extract features from
sentiment distribution in the form
of number/probability of sentiment
per type. We also estimate the sentiment
transition probability P (St → St+1) from
our predictions, where St and St+1 are sentiment
labels for the current sentence and the next. We
then have features as number/portion of
sentiment transitions per type.

Features described above mostly depict the
global sentiment flow in the discussions. We fur-
ther construct a local version of them, since sen-
timent distribution may change as discussion pro-
ceeds. For example, less positive sentiment can be
observed as dispute being escalated. We thus split
each discussion into three equal length stages, and
create sentiment distribution and transition fea-
tures for each stage.

Prec Rec F1 Acc
Baseline (Random) 50.00 50.00 50.00 50.00
Baseline (All dispute) 50.00 100.00 66.67 50.00
Logistic Regression 74.76 72.29 73.50 73.94
SVMLinear 69.81 71.90 70.84 70.41
SVMRBF 77.38 79.14 78.25 80.00

Table 4: Dispute detection results on Wikipedia Talk pages.
The numbers are multiplied by 100. The items in bold are sta-
tistically significantly higher than others in the same column
(paired-t test, p < 0.05). SVM with the RBF kernel achieves
the best performance in precision, F1, and accuracy.

Results and Error Analysis. We experiment with
logistic regression, SVM with linear and RBF ker-
nels, which are effective methods in multiple text
categorization tasks (Joachims, 1999; Zhang and
J. Oles, 2001). We normalize the features by stan-
dardization and conduct a 5-fold cross-validation.
Two baselines are listed: (1) labels are randomly
assigned; (2) all discussions have disputes.

Main results for different classifiers are dis-
played in Table 4. All learning based methods
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Sentiment Flow in Discussion with Unresolved Dispute Sample sentences (sentiment in parentheses)
A: no, I sincerely plead with you... (N) If not, you are just wasting my
time. (NN)
B: I believe Sweet’s proposal... is quite silly. (NN)
C: Tell you what. (NN) If you can get two other editors to agree... I will
shut up and sit down. (NN)
D: But some idiot forging your signature claimed that doing so would
violate. (NN)... Please go have some morning coffee. (O)
E: And I don’t like coffee. (NN) Good luck to you. (NN)
F: Was that all? (NN)... I think that you are in error... (N)
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Sentiment Flow in Discussion with Resolved Dispute A: So far so confusing. (NN)...

B: ... I can not see a rationale for the landrace having its own article...
(N) With Turkish Van being a miserable stub, there’s no such rationale for
forking off a new article... (NN)...
C: I’ve also copied your post immediately above to that article’s talk page
since it is a great “nutshell” summary. (PP)
D: Err.. how can the opposite be true... (N)
E: Thanks for this, though I have to say some of the facts floating around
this discussion are wrong. (P)
F: Great. (PP) Let’s make sure the article is clear on this. (O)

Figure 2: Sentiment flow for a discussion with unresolved dispute about the definition of “white people” (top) and a dis-
cussion with resolved dispute on merging articles about van cat (bottom). The labels {NN,N,O,P,PP} are mapped to
{−2,−1, 0, 1, 2} in sequence. Sentiment values are convolved by Gaussian smoothing kernel, and cubic-spline interpolation is
then conducted. Different speakers are represented by curves of different colors. Dashed vertical lines delimit turns. Represen-
tative sentences are labeled with letters and their sentiment labels are shown on the right. For unresolved dispute (top), we see
that negative sentiment exists throughout the discussion. Whereas, for the resolved dispute (bottom), less negative sentiment is
observed at the end of the discussion; participants also show appreciation after the problem is solved (e.g. E and F in the plot).

Prec Rec F1 Acc
Lexical (Lex) 75.86 34.66 47.58 61.82
Topic (Top) 68.44 71.46 69.92 69.26
Discussion (Dis) 69.73 76.14 72.79 71.54
Sentiment (Sentig+l) 72.54 69.52 71.00 71.60
Top + Dis 68.49 71.79 70.10 69.38
Top + Dis + Sentig 77.39 78.36 77.87 77.74
Top + Dis + Sentig+l 77.38 79.14 78.25 80.00
Lex + Top + Dis + Sentig+l 78.38 75.12 76.71 77.20

Table 5: Dispute detection results with different feature
sets by SVM with RBF kernel. The numbers are multi-
plied by 100. Sentig represents global sentiment features, and
Sentig+l includes both global and local features. The number
in bold is statistically significantly higher than other numbers
in the same column (paired-t test, p < 0.05), and the italic
entry has the highest absolute value.

outperform the two baselines, and among them,
SVM with the RBF kernel achieves the best F1
score and accuracy (0.78 and 0.80). Experimental
results with various combinations of features sets
are displayed in Table 5. As it can be seen, senti-
ment features obtains the best accuracy among the
four types of features. A combination of topic, dis-
cussion, and sentiment features achieves the best
performance on recall, F1, and accuracy. Specif-
ically, the accuracy is significantly higher than all
the other systems (paired-t test, p < 0.05).

After a closer look at the results, we find two
main reasons for incorrect predictions. Firstly,
sentiment prediction errors get propagated into
dispute detection. Due to the limitation of ex-
isting general-purpose lexicons, some opinionated
dialog-specific terms are hard to catch. For exam-
ple, “I told you over and over again...” strongly
suggests a negative sentiment, but no single word
shows negative connotation. Constructing a lexi-
con tuned for conversational text may improve the
performance. Secondly, some dispute discussions
are harder to detect than the others due to differ-

ent dialog structures. For instance, the recalls for
dispute discussions of “controversy”, “RFC”, and
“resolved” are 0.78, 0.79, and 0.86 respectively.
We intend to design models that are able to cap-
ture dialog structures in the future work.
Sentiment Flow Visualization. We visualize the
sentiment flow of two disputed discussions in Fig-
ure 2. The plots reveal persistent negative sen-
timent in unresolved disputes (top). For the re-
solved dispute (bottom), participants show grati-
tude when the problem is settled.

5 Conclusion

We present a sentiment analysis-based approach
to online dispute detection. We create a large-
scale dispute corpus from Wikipedia Talk pages to
study the problem. A sentiment prediction model
based on isotonic CRFs is proposed to output sen-
timent labels at the sentence-level. Experiments
on our dispute corpus also demonstrate that clas-
sifiers trained with sentiment tagging features out-
perform others that do not.
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Abstract

With the proliferation of social media
sites, social streams have proven to con-
tain the most up-to-date information on
current events. Therefore, it is crucial to
extract events from the social streams such
as tweets. However, it is not straight-
forward to adapt the existing event ex-
traction systems since texts in social me-
dia are fragmented and noisy. In this pa-
per we propose a simple and yet effec-
tive Bayesian model, called Latent Event
Model (LEM), to extract structured rep-
resentation of events from social media.
LEM is fully unsupervised and does not
require annotated data for training. We
evaluate LEM on a Twitter corpus. Ex-
perimental results show that the proposed
model achieves 83% in F-measure, and
outperforms the state-of-the-art baseline
by over 7%.

1 Introduction

Event extraction is to automatically identify events
from text with information about what happened,
when, where, to whom, and why. Previous work in
event extraction has focused largely on news ar-
ticles, as the newswire texts have been the best
source of information on current events (Hogen-
boom et al., 2011). Approaches for event ex-
traction include knowledge-based (Piskorski et al.,
2007; Tanev et al., 2008), data-driven (Piskorski
et al., 2008) and a combination of the above two
categories (Grishman et al., 2005). Knowledge-
based approaches often rely on linguistic and lexi-
cographic patterns which represent expert domain
knowledge for particular event types. They lack
the flexibility of porting to new domains since ex-
traction patterns often need to be re-defined. Data-
driven approaches require large annotated data to
train statistical models that approximate linguistic

phenomena. Nevertheless, it is expensive to obtain
annotated data in practice.

With the increasing popularity of social media,
social networking sites such as Twitter have be-
come an important source of event information.
As reported in (Petrovic et al., 2013), even 1% of
the public stream of Twitter contains around 95%
of all the events reported in the newswire. Never-
theless, the social stream data such as Twitter data
pose new challenges. Social media messages are
often short and evolve rapidly over time. As such,
it is not possible to know the event types a priori
and hence violates the use of existing event extrac-
tion approaches.

Approaches to event extraction from Twitter
make use of a graphical model to extract canonical
entertainment events from tweets by aggregating
information across multiple messages (Benson et
al., 2011). In (Liu et al., 2012), social events in-
volving two persons are extracted from multiple
similar tweets using a factor graph by harvesting
the redundancy in tweets. Ritter et al. (2012) pre-
sented a system called TwiCal which extracts an
open-domain calendar of significant events repre-
sented by a 4-tuple set including a named entity,
event phrase, calendar date, and event type from
Twitter.

In our work here, we notice a very important
property in social media data that the same event
could be referenced by high volume messages.
This property allows us resort to statistical mod-
els that can group similar events based on the co-
occurrence patterns of their event elements. Here,
event elements include named entities such as per-
son, company, organization, date/time, location,
and the relations among them. We can treat an
event as a latent variable and model the genera-
tion of an event as a joint distribution of its indi-
vidual event elements. We thus propose a Latent
Event Model (LEM) which can automatically de-
tect events from social media without the use of
labeled data.
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Figure 1: The proposed framework for event extraction from tweets.

Our work is similar to TwiCal in the sense that
we also focus on the extraction of structured repre-
sentation of events from Twitter. However, TwiCal
relies on a supervised sequence labeler trained
on tweets annotated with event mentions for the
identification of event-related phrases. We pro-
pose a simple Bayesian modelling approach which
is able to directly extract event-related keywords
from tweets without supervised learning. Also,
TwiCal uses G2 test to choose an entity y with
the strongest association with a date d to form a
binary tuple 〈y, d〉 to represent an event. On the
contrary, the structured representation of events
can be directly extracted from the output of our
LEM model. We have conducted experiments on
a Twitter corpus and the results show that our pro-
posed approach outperforms TwiCal, the state-of-
the-art open event extraction system, by 7.7% in
F-measure.

2 Methodology

Events extracted in our proposed framework are
represented as a 4-tuple 〈y, d, l, k〉, where y stands
for a non-location named entity, d for a date, l for a
location, and k for an event-related keyword. Each
event mentioned in tweets can be closely depicted
by this representation. It should be noted that for
some events, one or more elements in their corre-
sponding tuples might be absent as their related in-
formation is not available in tweets. As illustrated
in Figure 1, our proposed framework consists of
three main steps, pre-processing, event extraction
based on the LEM model and post-processing.
The details of our proposed framework are de-
scribed below.

2.1 Pre-processing
Tweets are pre-processed by time expression
recognition, named entity recognition, POS tag-
ging and stemming.

Time Expression Recognition. Twitter users
might represent the same date in various forms.

For example, “tomorrow”, “next Monday”, “ Au-
gust 23th” in tweets might all refer to the same
day, depending on the date that users wrote the
tweets. To resolve the ambiguity of the time ex-
pressions, SUTime1 (Chang and Manning, 2012)
is employed, which takes text and a reference date
as input and outputs a more accurate date which
the time expression refers to.

Named Entity Recognition. Named entity
recognition (NER) is a crucial step since the
results would directly impact the final extracted
4-tuple 〈y, d, l, k〉. It is not easy to accurately
identify named entities in the Twitter data since
tweets contain a lot of misspellings and abbrevi-
ations. However, it is often observed that events
mentioned in tweets are also reported in news
articles in the same period (Petrovic et al., 2013).
Therefore, named entities mentioned in tweets are
likely to appear in news articles as well. We thus
perform named entity recognition in the following
way. First, a traditional NER tool such as the
Stanford Named Entity Recognizer2 is used to
identify named entities from the news articles
crawled from BBC and CNN during the same
period that the tweets were published. The recog-
nised named entities from news are then used to
build a dictionary. Named entities from tweets
are extracted by looking up the dictionary through
fuzzy matching. We have also used a named
entity tagger trained specifically on the Twitter
data3 (Ritter et al., 2011) to directly extract named
entities from tweets. However, as will be shown
in Section 3 that using our constructed dictionary
for named entity extraction gives better results.
We distinguish between location entities, denoted
as l, and non-location entities such as person or
organization, denoted as y.

1http://nlp.stanford.edu/software/
sutime.shtml

2http://nlp.stanford.edu/software/
CRF-NER.shtml

3http://github.com/aritter/twitter-nlp
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Finally, we use a POS tagger4 trained on
tweets (Gimpel et al., 2011) to perform POS tag-
ging on the tweets data and apart from the pre-
viously recognised named entities, only words
tagged with nouns, verbs or adjectives are kept.
These remaining words are subsequently stemmed
and words occurred less than 3 times are filtered.

After the pre-processing step, non-location enti-
ties y, locations l, dates d and candidate keywords
of the tweets are collected as the input to the LEM
model for event extraction.

2.2 Event Extraction using the Latent Event
Model (LEM)

We propose an unsupervised latent variable model,
called the Latent Event Model (LEM), to extract
events from tweets. The graphical model of LEM
is shown in Figure 2.

M
N

y d l k

e

E

Figure 2: Laten Event Model (LEM).

In this model, we assume that each tweet mes-
sage m ∈ {1..M} is assigned to one event in-
stance e, while e is modeled as a joint distribution
over the named entities y, the date/time d when
the event occurred, the location l where the event
occurred and the event-related keywords k. This
assumption essentially encourages events that in-
volve the same named entities, occur at the same
time and in the same location and have similar
keyword to be assigned with the same event.

The generative process of LEM is shown below.

• Draw the event distribution πe ∼
Dirichlet(α)

• For each event e ∈ {1..E}, draw multino-
mial distributions θe ∼ Dirichlet(β),ϕe ∼
Dirichlet(γ),ψe ∼ Dirichlet(η),ωe ∼
Dirichlet(λ).

4http://www.ark.cs.cmu.edu/TweetNLP

• For each tweet w

– Choose an event e ∼ Multinomial(π),
– For each named entity occur in tweet
w, choose a named entity y ∼
Multinomial(θe),

– For each date occur in tweet w, choose
a date d ∼ Multinomial(ϕe),

– For each location occur in tweet w,
choose a location l ∼ Multinomial(ψe),

– For other words in tweet w, choose a
word k ∼ Multinomial(ωe).

We use Collapsed Gibbs Sampling (Griffiths
and Steyvers, 2004) to infer the parameters of the
model and the latent class assignments for events,
given observed data D and the total likelihood.
Gibbs sampling allows us repeatedly sample from
a Markov chain whose stationary distribution is
the posterior of em from the distribution over that
variable given the current values of all other vari-
ables and the data. Such samples can be used to
empirically estimate the target distribution. Let-
ting the subscript −m denote a quantity that ex-
cludes data from mth tweet , the conditional pos-
terior for em is:

P (em = t|e−m,y,d, l,z,Λ) ∝ n−m
t + α

M + Eα
×

Y∏
y=1

∏n
(m)
t,y

b=1 (nt,y − b+ β)∏n
(m)
t

b=1 (nt − b+ Y β)

×
D∏

d=1

∏n
(m)
t,d

b=1 (nt,d − b+ γ)∏n
(m)
t

b=1 (nt − b+Dγ)

×
L∏

l=1

∏n
(m)
t,l

b=1 (nt,l − b+ η)∏n
(m)
t

b=1 (nt − b+ Lη)

×
V∏

k=1

∏n
(m)
t,k

b=1 (nt,k − b+ λ)∏n
(m)
t

b=1 (nt − b+ V λ)

where nt is the number of tweets that have been
assigned to the event t; M is the total number of
tweets, nt,y is the number of times named entity y
has been associated with event t; nt,d is the num-
ber of times dates d has been associated with event
t; nt,l is the number of times locations l has been
assigned with event t; nt,k is the number of times
keyword k has associated with event t, counts with
(m) notation denote the counts relating to tweet
m only. Y,D,L, V are the total numbers of dis-
tinct named entities, dates, locations, and words
appeared in the whole Twitter corpus respectively.
E is the total number of events which needs to be
set.

Once the class assignments for all events are
known, we can easily estimate the model param-
eters {π,θ,ϕ,ψ,ω}. We set the hyperparame-
ters α = β = γ = η = λ = 0.5 and run Gibbs
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sampler for 10,000 iterations and stop the iteration
once the log-likelihood of the training data con-
verges under the learned model. Finally we select
an entity, a date, a location, and the top 2 keywords
of the highest probability of every event to form a
4-tuple as the representation of that event.

2.3 Post-processing

To improve the precision of event extraction, we
remove the least confident event element from the
4-tuples using the following rule. If P (element)
is less than 1

ξP (S), where P (S) is the sum of
probabilities of the other three elements and ξ is a
threshold value and is set to 5 empirically, the ele-
ment will be removed from the extracted results.

3 Experiments

In this section, we first describe the Twitter corpus
used in our experiments and then present how we
build a baseline based on the previously proposed
TwiCal system (Ritter et al., 2012), the state-of-
the-art open event extraction system on tweets. Fi-
nally, we present our experimental results.

3.1 Dataset

We use the First Story Detection (FSD)
dataset (Petrovic et al., 2013) in our experi-
ment. It consists of 2,499 tweets which are
manually annotated with the corresponding event
instances resulting in a total of 27 events. The
tweets were published between 7th July and 12th
September 2011. These events cover a range of
categories, from celebrity news to accidents, and
from natural disasters to science discoveries. It
should be noted here that some event elements
such as location is not always available in the
tweets. Automatically inferring geolocation of the
tweets is a challenging task and will be considered
in our future work. For the tweets without time
expressions, we used the tweets’ publication dates
as a default. The number of tweets for each event
ranges from 2 to around 1000. We believe that in
reality, events which are mentioned in very few
tweets are less likely to be significant. Therefore,
the dataset was filtered by removing the events
which are mentioned in less than 10 tweets. This
results in a final dataset containing 2468 tweets
annotated with 21 events.

3.2 Baseline construction

The baseline we chose is TwiCal (Ritter et al.,
2012). The events extracted in the baseline are

represented as a 3-tuple 〈y, d, k〉5, where y stands
for a non-location named entity, d for a date and
k for an event phrase. We re-implemented the
system and evaluate the performance of the base-
line on the correctness of the exacted three ele-
ments excluding the location element. In the base-
line approach, the tuple 〈y, d, k〉 are extracted in
the following ways. Firstly, a named entity rec-
ognizer (Ritter et al., 2011) is employed to iden-
tify named entities. The TempEx (Mani and Wil-
son, 2000) is used to resolve temporal expressions.
For each date, the baseline approach chose the en-
tity y with the strongest association with the date
and form the binary tuple 〈y, d〉 to represent an
event. An event phrase extractor trained on an-
notated tweets is required to extract event-related
phrases. Due to the difficulties of re-implementing
the sequence labeler without knowing the actual
features set and the annotated training data, we as-
sume all the event-related phrases are identified
correctly and simply use the event trigger words
annotated in the FSD corpus as k to form the event
3-tuples. It is worth noting that the F-measure re-
ported for the event phrase extraction is only 64%
in the baseline approach (Ritter et al., 2012).

3.3 Evaluation Metric
To evaluate the performance of the propose ap-
proach, we use precison, recall, and F −
measure as in general information extraction sys-
tems (Makhoul et al., 1999). For the 4-tuple
〈y, d, l, k〉, the precision is calculated based on the
following criteria:

1. Do the entity y, location l and date d that we
have extracted refer to the same event?

2. Are the keywords k in accord with the event
that other extracted elements y, l, d refer to
and are they informative enough to tell us
what happened?

If the extracted representation does not contain
keywords, its precision is calculated by check-
ing the criteria 1. If the extracted representation
contains keywords, its precision is calculated by
checking both criteria 1 and 2.

3.4 Experimental Results
The number of events, E, in the LEM model
is set to 25. The performance of the proposed

5TwiCal also groups event instances into event types such
as ”Sport” or ”Politics” using LinkLDA which is not consid-
ered here.
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Method Tuple Evaluated Precision Recall F-measure
Baseline 〈y, d, k〉 75% 76.19% 75.59%
Proposed 〈y, d, l〉 96% 80.95% 87.83%
Proposed 〈y, d, l, k〉 92% 76.19% 83.35%

Table 1: Comparison of the performance of event
extraction on the FSD dataset.

Method Tuple Evaluated Precision Recall F-measure
TW-NER 〈y, d, l〉 88% 76.19% 80.35%
TW-NER 〈y, d, l, k〉 84% 76.19% 79.90%
NW-NER 〈y, d, l〉 96% 80.95% 87.83%
NW-NER 〈y, d, l, k〉 92% 76.19% 83.35%

Table 2: Comparison of the performance of event
extraction using different NER method.

framework is presented in Table 1. The base-
line re-implemented here can only output 3-tuples
〈y, d, k〉 and we simply use the gold standard event
trigger words to assign to k. Still, we observe
that compared to the baseline approach, the per-
formance of our proposed framework evaluated on
the 4-tuple achieves nearly 17% improvement on
precision. The overall improvement on F-measure
is around 7.76%.

3.5 Impact of Named Entity Recognition

We experimented with two approaches for named
entity recognition (NER) in preprocessing. One
is to use the NER tool trained specifically on the
Twitter data (Ritter et al., 2011), denoted as “TW-
NER” in Table 2. The other uses the traditional
Stanford NER to extract named entities from news
articles published in the same period and then
perform fuzzy matching to identify named enti-
ties from tweets. The latter method is denoted
as “NW-NER” in Table 2. It can be observed
from Table 2 that by using NW-NER, the per-
formance of event extraction system is improved
significantly by 7.5% and 3% respectively on F-
measure when evaluated on 3-tuples (without key-
words) or 4-tuples (with keywords).

3.6 Impact of the Number of Events E

We need to set the number of events E in the
LEM model. Figure 3 shows the performance of
event extraction versus different value of E. It can
be observed that the performance of the proposed
framework improves with the increase of the value
ofE until it reaches 25, which is close to the actual
number of events in our data. If further increasing
E, we notice more balanced precision/recall val-
ues and a relatively stable F-measure. This shows
that our LEM model is less sensitive to the num-

ber of events E so long as E is set to a relatively
larger value.
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Figure 3: The performance of the proposed frame-
work with different number of events E.

4 Conclusions and Future Work

In this paper we have proposed an unsupervised
Bayesian model, called the Latent Event Model
(LEM), to extract the structured representation of
events from social media data. Instead of em-
ploying labeled corpora for training, the proposed
model only requires the identification of named
entities, locations and time expressions. After that,
the model can automatically extract events which
involving a named entity at certain time, location,
and with event-related keywords based on the co-
occurrence patterns of the event elements. Our
proposed model has been evaluated on the FSD
corpus. Experimental results show our proposed
framework outperforms the state-of-the-art base-
line by over 7% in F-measure. In future work,
we plan to investigate inferring geolocations au-
tomatically from tweets. We also intend to study
a better method to infer date more accurately from
tweets and explore efficient ranking strategies to
rank evens extracted for a better presentation of
results.
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Abstract

Internet users are keen on creating differ-
ent kinds of morphs to avoid censorship,
express strong sentiment or humor. For
example, in Chinese social media, users
often use the entity morph “方便面 (In-
stant Noodles)” to refer to “周永康 (Zhou
Yongkang)” because it shares one char-
acter “康 (Kang)” with the well-known
brand of instant noodles “康师傅 (Master
Kang)”. We developed a wide variety of
novel approaches to automatically encode
proper and interesting morphs, which can
effectively pass decoding tests 1.

1 Introduction

One of the most innovative linguistic forms in so-
cial media is Information Morph (Huang et al.,
2013). Morph is a special case of alias to hide the
original objects (e.g., sensitive entities and events)
for different purposes, including avoiding censor-
ship (Bamman et al., 2012; Chen et al., 2013),
expressing strong sentiment, emotion or sarcasm,
and making descriptions more vivid. Morphs are
widely used in Chinese social media. Here is an
example morphs: “由于瓜爹的事情，方便面与
天线摊牌. (Because of Gua Dad’s issue, Instant
Noodles faces down with Antenna.)”, where

• “瓜爹 (Gua Dad)” refers to “薄熙来 (Bo Xilai)”
because it shares one character “瓜 (Gua)” with
“薄瓜瓜 (Bo Guagua)” who is the son of “薄熙
来 (Bo Xilai)”;
• “方便面 (Instant Noodles)” refers to “周永康

(Zhou Yongkang)” because it shares one char-
acter “康 (kang)” with the well-known instant
noodles brand “康师傅 (Master Kang)”;
1The morphing data set is available for research purposes:

http://nlp.cs.rpi.edu/data/morphencoding.tar.gz

• “天线 (Antenna)” refers to “温家宝 (Wen Ji-
abao)” because it shares one character “宝
(baby)” with the famous children’s television
series “天线宝宝 (Teletubbies)”;

In contrast with covert or subliminal chan-
nels studied extensively in cryptography and se-
curity, Morphing provides confidentiality against
a weaker adversary which has to make a real time
or near real time decision whether or not to block
a morph within a time interval t. It will take longer
than the duration t for a morph decoder to decide
which encoding method is used and exactly how it
is used; otherwise adversary can create a codebook
and decode the morphs with a simple look up.
We note that there are other distinct characteristics
of morphs that make them different from crypto-
graphic constructs: (1) Morphing can be consid-
ered as a way of using natural language to com-
municate confidential information without encryp-
tion. Most morphs are encoded based on seman-
tic meaning and background knowledge instead
of lexical changes, so they are closer to Jargon.
(2) There can be multiple morphs for an entity.
(3) The Shannon’s Maxim “the enemy knows the
system” does not always hold. There is no com-
mon code-book or secret key between the sender
and the receiver of a morph. (4) Social networks
play an important role in creating morphs. One
main purpose of encoding morphs is to dissemi-
nate them widely so they can become part of the
new Internet language. Therefore morphs should
be interesting, fun, intuitive and easy to remem-
ber. (5) Morphs rapidly evolve over time, as some
morphs are discovered and blocked by censorship
and newly created morphs emerge.

We propose a brand new and challenging re-
search problem - can we automatically encode
morphs for any given entity to help users commu-
nicate in an appropriate and fun way?

706



2 Approaches

2.1 Motivation from Human Approaches

Let’s start from taking a close look at human’s
intentions and general methods to create morphs
from a social cognitive perspective. In Table 1
and Table 2, we summarize 548 randomly selected
morphs into different categories. In this paper we
automate the first seven human approaches, with-
out investigating the most challenging Method 8,
which requires deep mining of rich background
and tracking all events involving the entities.

2.2 M1: Phonetic Substitution

Given an entity name e, we obtain its pho-
netic transcription pinyin(e). Similarly, for each
unique term t extracted from Tsinghua Weibo
dataset (Zhang et al., 2013) with one billion
tweets from 1.8 million users from 8/28/2012 to
9/29/2012, we obtain pinyin(t). According to the
Chinese phonetic transcription articulation man-
ner 2, the pairs (b, p), (d, t), (g,k), (z,c), (zh,ch),
( j,q), (sh,r), (x,h), (l,n), (c,ch), (s,sh) and (z,zh)
are mutually transformable.

If a part of pinyin(e) and pinyin(t) are identi-
cal or their initials are transformable, we substi-
tute the part of e with t to form a new morph.
For example, we can substitute the characters of
“比尔 盖茨 (Bill Gates) [Bi Er Gai Ci]” with
“鼻耳 (Nose and ear) [Bi Er]” and “盖子 (Lid)
[Gai Zi]” to form new morph “鼻耳 盖子 (Nose
and ear Lid) [Bi Er Gai Zi]”. We rank the candi-
dates based on the following two criteria: (1) If the
morph includes more negative words (based on a
gazetteer including 11,729 negative words derived
from HowNet (Dong and Dong, 1999), it’s more
humorous (Valitutti et al., 2013). (2) If the morph
includes rarer terms with low frequency, it is more
interesting (Petrovic and Matthews, 2013).

2.3 M2: Spelling Decomposition

Chinese characters are ideograms, hieroglyphs
and mostly picture-based. It allows us to natu-
rally construct a virtually infinite range of combi-
nations from a finite set of basic units - radicals (Li
and Zhou, 2007). Some of these radicals them-
selves are also characters. For a given entity name
e = c1...cn, if any character ck can be decomposed
into two radicals c1

k and c2
k which are both char-

acters or can be converted into characters based
on their pictograms (e.g., the radical “艹” can be

2http://en.wikipedia.org/wiki/Pinyin#Initials and finals

converted into“草” (grass) ), we create a morph by
replacing ck with c1

kc2
k in e. Here we use a charac-

ter to radical mapping table that includes 191 rad-
icals (59 of them are characters) and 1328 com-
mon characters. For example, we create a morph
“人呆罗 (Person Dumb Luo)” for “保罗 (Paul)”
by decomposing “保 (Pau-)” into “人 (Person)”
and “呆 (Dull)”. A natural alternative is to com-
posing two chracter radicals in an entity name to
form a morph. However, very few Chinese names
include two characters with single radicals.

2.4 M3: Nickname Generation
We propose a simple method to create morphs by
duplicating the last character of an entity’s first
name. For example, we create a morph “幂幂
(Mimi)” to refer to “杨幂 (Yang Mi)”.

2.5 M4: Translation and Transliteration
Given an entity e, we search its English translation
EN(e) based on 94,015 name translation pairs (Ji
et al., 2009). Then, if any name component in
EN(e) is a common English word, we search for
its Chinese translation based on a 94,966 word
translation pairs (Zens and Ney, 2004), and use the
Chinese translation to replace the corresponding
characters in e. For example, we create a morph
“拉里 鸟儿 (Larry bird)” for “拉里 伯德 (Larry
Bird)” by replacing the last name “伯德 (Bird)”
with its Chinese translation “鸟儿 (bird)”.

2.6 M5: Semantic Interpretation
For each character ck in the first name of a given
entity name e, we search its semantic interpreta-
tion sentence from the Xinhua Chinese character
dictionary including 20,894 entries 3. If a word
in the sentence contains ck, we append the word
with the last name of e to form a new morph. Sim-
ilarly to M1, we prefer positive, negative or rare
words. For example, we create a morph “薄胡来
(Bo Mess)” for “薄熙来 (Bo Xi Lai)” because the
semantic interpretation sentence for “来 (Lai)” in-
cludes a negative word “胡来 (Mess)”.

2.7 M6: Historical Figure Mapping
We collect a set of 38 famous historical figures
including politicians, emperors, poets, generals,
ministers and scholars from a website. For a given
entity name e, we rank these candidates by ap-
plying the resolution approach as described in our
previous work (Huang et al., 2013) to measure the
similarity between an entity and a historic figure

3http://xh.5156edu.com/
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Category Frequency
Distribution

Examples
Entity Morph Comment

(1) Avoid censorship 6.56% 薄熙来 (Bo Xi-
lai)

B书记 (B Secre-
tary)

“B” is the first letter of “Bo” and “Secretary” is
the entity’s title.

(2) Express strong
sentiment, sarcasm,
emotion

15.77% 王勇平 (Wang
Yongping)

奇 迹 哥 (Miracle
Brother)

Sarcasm on the entity’s public speech: “It’s a mir-
acle that the girl survived (from the 2011 train col-
lision)”.

(3) Be humorous or
make descriptions
more vivid

25.91% 杨幂 (Yang Mi) 嫩牛五方 (Tender
Beef Pentagon)

The entity’s face shape looks like the shape of fa-
mous KFC food “Tender Beef Pentagon”.

Mixture 25.32% 卡 扎 菲
(Gaddafi)

疯鸭上校 (Crazy
Duck Colonel)

Sarcasm on Colonel Gaddafi’s violence.

Others 23.44% 蒋介石 (Chi-
ang Kai-shek)

花生米 (Peanut) Joseph Stilwell, a US general in China during
World War II, called Chiang Kai-shek “花生米
(Peanut)” in his diary because of his stubbornness.

Table 1: Morph Examples Categorized based on Human Intentions

No. Category Frequency
Distribution

Example
Entity Morph Comment

M1 Phonetic Sub-
stitution

12.77% 萨 科 齐
(Sarkozy)

傻客气 (Silly Po-
lite)

The entity’s phonetic transcript “Sa Ke Qi” is
similar to the morph’s “Sha Ke Qi”.

M2 Spelling De-
composition

0.73% 胡锦涛 (Hu
Jintao)

古月 (Old Moon) The entity’s last name is decomposed into the
morph “古月 (Old Moon)”?

M3 Nickname Gen-
eration

12.41% 江泽民 (Jiang
Zemin)

老江 (Old Jiang) The morph is a conventional name for old people
with last name “Jiang”.

M4 Translation &
Transliteration

3.28% 布什 (Bush) 树丛 (shrub) The morph is the Chinese translation of “bush”.

M5 Semantic Inter-
pretation

20.26% 金日成 (Kim
Il Sung)

金太阳 (Kim Sun) The character “日” in the entity name means “太
阳 (Sun)”.

M6 Historical Fig-
ure Mapping

3.83% 薄熙来 (Bo
Xilai)

平西王 (Conquer
West King)

The entity shares characteristics and political ex-
periences similar to the morph.

M7 Characteristics
Modeling

20.62% 金日成 (Kim
Il Sung)

金胖子 (Kim Fat) “胖子 (Fat)” describes “金日成 (Kim Il
Sung)”’s appearance.

M8

Reputation and
public perception 26.09% 奥 巴 马

(Obama)
观海 (Staring at
the sea)

Barack Obama received a calligraphy “观海听
涛 (Staring at sea and listening to surf)” as a
present when he visited China.

马景涛 (Ma
Jingtao)

咆哮教主 (Roar
Bishop)

In the films Ma Jingtao starred, he always used
exaggerated roaring to express various emotions.

马英九 (Ma
Yingjiu)

马不统 (Ma Se-
cession)

The morph derives from Ma Yingjiu’s political
position on cross-strait relations.

Table 2: Morph Examples Categorized based on Human Generation Methods

based on their semantic contexts. For example,
this approach generates a morph “太祖 (the First
Emperor)” for “毛泽东 (Mao Zedong)” who is the
first chairman of P. R. China and “高祖 (the Sec-
ond Emperor )” for “邓小平 (Deng Xiaoping )”
who succeeded Mao.

2.8 M7: Characteristics Modeling

Finally, we propose a novel approach to auto-
matically generate an entity’s characteristics using
Google word2vec model (Mikolov et al., 2013).
To make the vocabulary model as general as pos-
sible, we use all of the following large corpora
that we have access to: Tsinghua Weibo dataset,
Chinese Gigaword fifth edition 4 which includes
10 million news documents, TAC-KBP 2009-2013
Source Corpora (McNamee and Dang, 2009; Ji et

4http://catalog.ldc.upenn.edu/LDC2011T13

al., 2010; Ji et al., 2011; Ji and Grishman, 2011)
which include 3 million news and web documents,
and DARPA BOLT program’s discussion forum
corpora with 300k threads. Given an entity e, we
compute the semantic relationship between e and
each word from these corpora. We then rank the
words by: (1) cosine similarity, (2) the same cri-
teria as in section 2.6. Finally we append the top
ranking word to the entity’s last name to obtain
a new morph. Using this method, we are able
to generate many vivid morphs such as “姚 奇才
(Yao Wizard)” for “姚明 (Yao Ming)”.

3 Experiments

3.1 Data

We collected 1,553,347 tweets from Chinese Sina
Weibo from May 1 to June 30, 2013. We extracted
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187 human created morphs based on M1-M7 for
55 person entities. Our approach generated 382
new morphs in total.

3.2 Human Evaluation

We randomly asked 9 Chinese native speakers
who regularly access Chinese social media and are
not involved in this work to conduct evaluation in-
dependently. We designed the following three cri-
teria based on Table 1:

• Perceivability: Who does this morph refer to?
(i) Pretty sure, (ii) Not sure, and (iii) No clues.
• Funniness: How interesting is the morph? (i)

Funny, (ii) Somewhat funny, and (iii) Not funny.
• Appropriateness: Does the morph describe the

target entity appropriately? (i) Make sense, (ii)
Make a little sense, and (iii) Make no sense.

The three choices of each criteria account for
100% (i), 50% (ii) and 0% (iii) satisfaction rate,
respectively. If the assessor correctly predicts the
target entity with the Perceivability measure, (s)he
is asked to continue to answer the Funniness and
Appropriateness questions; otherwise the Funni-
ness and Appropriateness scores are 0. The hu-
man evaluation results are shown in Table 4. The
Fleiss’s kappa coefficient among all the human as-
sessors is 0.147 indicating slight agreement.

From Table 4 we can see that overall the sys-
tem achieves 66% of the human performance
with comparable stability as human. In partic-
ular, Method 4 based on translation and translit-
eration generates much more perceivable morphs
than human because the system may search in a
larger vocabulary. Interestingly, similar encour-
aging results - system outperforms human - have
been observed by previous back-transliteration
work (Knight and Graehl, 1998).

It’s also interesting to see that human assessors
can only comprehend 76% of the human generated
morphs because of the following reasons: (1) the
morph is newly generated or it does not describe
the characteristics of the target entity well; and (2)
the target entity itself is not well known to human
assessors who do not keep close track of news top-
ics. In fact only 64 human generated morphs and
72 system generated morphs are perceivable by all
human assessors.

For Method 2, the human created morphs are
assessed as much more and funny than the sys-
tem generated ones because human creators use
this approach only if: (1). the radicals still reflect

the meaning of the character (e.g., “愁 (worry)”
is decomposed into two radicals “心秋 (heart au-
tumn)” instead of three “禾火心” (grain fire heart)
because people tend to feel sad when the leaves
fall in the autumn), (2). the morph reflects some
characteristics of the entity (e.g., “江泽民 (Jiang
Zemin)” has a morph “水工泽民 (Water Engi-
neer Zemin)” because he gave many instructions
on water conservancy construction); or (3). The
morph becomes very vivid and funny (e.g., the
morph “木子月月鸟 (Muji Yue Yue Bird)” for
“李鹏” is assessed as very funny because “木
子(Muji)” looks like a Japanese name, “月月(Yue
Yue)” can also refer to a famous chubby woman,
and “鸟人 (bird man)” is a bad word referring to
bad people); or (4). The morph expresses strong
sentiment or sarcasm; or (5) The morph is the
name of another entity (e.g., the morph “古月(Gu
Yue)” for “胡锦涛(Hu Jintao)” is also the name
of a famous actor who often acts as Mao Zedong).
The automatic approach didn’t explore these intel-
ligent constraints and thus produced more boring
morph. Moreover, sometimes human creators fur-
ther exploit traditional Chinese characters, gener-
alize or modify the decomposition results.

Table 3 presents some good (with average score
above 80%) and bad (with average score below
20%) examples.

Good Examples
Entity Morph Method
本拉登 (Osama bin
Laden)

笨拉灯 (The silly turn-
ing off light)

M1

蒋介石 (Chiang Kai-
shek)

草将介石 (Grass Gen-
eral Jie Shi)

M2

比尔盖茨 (Bill Gates) 票子盖茨 (Bill Gates) M4
Bad Examples

Entity Morph Method
科比 (Kobe) 胳膊 (Arm) M1
梅 德 韦 杰 夫
(Medvedev)

梅德育 (Mei Virtue) M5

林书豪 (Jeremy Lin) 老子 (Lao Tze) M6

Table 3: System Generated Morph Examples

To understand whether users would adopt sys-
tem generated morphs for their social media com-
munication, we also ask the assessors to recite
the morphs that they remember after the survey.
Among all the morphs that they remember cor-
rectly, 20.4% are system generated morphs, which
is encouraging.

3.3 Automatic Evaluation
Another important goal of morph encoding is to
avoid censorship and freely communicate about
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Human System Human System Human System Human System Human System Human System Human System Human System
# of morphs 17 124 4 21 10 54 9 28 64 87 9 18 74 50 187 382

Perceivability 75 76 95 86 94 81 61 71 87 59 66 5 77 34 76 67
Funniness 78 49 92 43 44 41 70 47 70 35 74 28 79 44 76 46

Appropriateness 71 51 89 59 81 43 75 49 76 36 78 18 82 38 79 43
Average 75 59 92 57 73 55 69 56 78 43 73 17 79 39 77 52

Standard Deviation 12.29 21.81 7.32 11.89 13.2 9.2 17.13 20.3 18.83 17.54 10.01 21.23 15.18 15.99 15.99 18.14

h s
2568 58984
214.3 2969
1742 4571
2641 11539
22692 26766
901.8 8113
17052 12784
47812 1E+05
255.7 329.1

2568 58984 214.3 2969 1742 4571 2641 11539 22692 26766 901.8 8113 17052 12784

M6 M7 OverallM1 M2 M3 M4 M5

Table 4: Human Evaluation Satisfaction Rate (%)

certain entities. To evaluate how well the new
morphs can pass censorship, we simulate the cen-
sorship using an automatic morph decoder con-
sisted of a morph candidate identification system
based on Support Vector Machines incorporating
anomaly analysis and our morph resolution sys-
tem (Huang et al., 2013). We use each system gen-
erated morph to replace its corresponding human-
created morphs in Weibo tweets and obtain a new
“morphed” data set. The morph decoder is then
applied to it. We define discovery rate as the per-
centage of morphs identified by the decoder, and
the ranking accuracy Acc@k to evaluate the reso-
lution performance. We conduct this decoding ex-
periment on 247 system generated and 151 human
generated perceivable morphs with perceivability
scores > 70% from human evaluation.

Figure 1 shows that in general the decoder
achieves lower discovery rate on system gener-
ated morphs than human generated ones, because
the identification component in the decoder was
trained based on human morph related features.
This result is promising because it demonstrates
that the system generated morphs contain new and
unique characteristics which are unknown to the
decoder. In contrast, from Figure 2 we can see
that system generated morphs can be more easily
resolved into the right target entities than human
generated ones which are more implicit.
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Figure 1: Discovery Rate (%)

4 Related Work

Some recent work attempted to map between Chi-
nese formal words and informal words (Xia et al.,
2005; Xia and Wong, 2006; Xia et al., 2006; Li

Figure 2: Resolution Acc@K Accuracy (%)

and Yarowsky, 2008; Wang et al., 2013; Wang and
Kan, 2013). We incorporated the pronunciation,
lexical and semantic similarity measurements pro-
posed in these approaches. Some of our basic se-
lection criteria are also similar to the constraints
used in previous work on generating humors (Val-
itutti et al., 2013; Petrovic and Matthews, 2013).

5 Conclusions and Future Work

This paper proposed a new problem of encoding
entity morphs and developed a wide variety of
novel automatic approaches. In the future we will
focus on improving the language-independent ap-
proaches based on historical figure mapping and
culture and reputation modeling. In addition, we
plan to extend our approaches to other types of in-
formation including sensitive events, satires and
metaphors so that we can generate fable stories.
We are also interested in tracking morphs over
time to study the evolution of Internet language.
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Abstract 

We report the first steps of a novel 

investigation into how a grammar induction 

algorithm can be modified and used to 

identify salient information structures in a 

corpus. The information structures are to be 

used as representations of semantic content 

for text mining purposes.  We modify the 

learning regime of the ADIOS algorithm 

(Solan et al., 2005) so that text is presented as 

increasingly large snippets around key terms, 
and instances of selected structures are 

substituted with common identifiers in the 

input for subsequent iterations. The technique 

is applied to 1.4m blog posts about climate 

change which mention diverse topics and 

reflect multiple perspectives and different 

points of view. Observation of the resulting 

information structures suggests that they 

could be useful as representations of semantic 

content. Preliminary analysis shows that our 

modifications had a beneficial effect for 
inducing more useful structures. 

1 Introduction 

There is an obvious need for text mining 

techniques to deal with large volumes of very 

diverse material, especially since the advent of 
social media and user-generated content which 

includes dynamic discussions of wide-ranging 

and controversial topics. 
In order to be portable across domains, text 

genres and languages, current techniques tend to 

treat texts as bags of words when analyzing 

semantic content, e.g. for keyword-based 
retrieval, summarization with word clouds, and 

topic modelling. Such techniques capture the 

general “aboutness” of texts, but they do little to 
elucidate the actual statements that are made 

about key terms in the material. More structured 

and deeper semantic representations can be 

generated by information extraction systems for 

relatively restricted text genres and domains, but 
even then they are costly to port. 

We see one particular area of application in 

elucidating the semantic content of social media 
debates about controversial topics, like climate 

change, both for casual users, and for social 

scientists studying online discourses. The 
complex, diverse and dynamic nature of the text 

content in such material presents a significant 

challenge for elucidating semantics. On the one 

hand, keywords alone will not convey what is 
said about important concepts, nor different 

points of view. On the other hand, modelling the 

semantics for information extraction purposes 
does not seem feasible given the breadth and 

diversity of the material.  

Thus, we are motivated to develop a portable 
technique that generates representations of 

semantic content that are richer than keywords, 

and that can be applied to broad domains. 

Specifically, we seek to extract important 
information structures from an unannotated 

corpus comprising texts of the same genre and 

relating to the same domain.  
Rather than using language-specific or 

domain-specific resources, we assume that 

important information structures in such a corpus 

will be reflected by patterning in the surface 
form of texts, such that they can be identified 

automatically through a distributional analysis 

(Section 2). Our approach is to induce 
information structures from an unannotated 

corpus by modifying and applying the ADIOS 

grammar induction algorithm (Solan et al., 
2005): the modifications serve to focus the 

algorithm on what is typically written about key-

terms (Section 3). To date we have implemented 

the approach to process 1.4m English-language 
blog posts about climate change: proper 

evaluation is ongoing but we are able to show 
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examples of the semantic representations 

generated, discuss how they elucidate semantic 

content, and suggest how they might be used for 

various NLP tasks (Section 4). In closing, we 
make tentative conclusions and describe ongoing 

work (Section 5). 

2 Background 

Harris (1954; 1988) demonstrated how linguistic 

units and structures can be identified (manually) 

through a distributional analysis of partially 
aligned sentential contexts. His work suggests 

that it should be possible to induce syntactic 

descriptions from samples of unannotated text.  
An early attempt to apply this thinking to 

computational linguistics was made by Lamb 

(1961) who described procedures for identifying 
“H-groups” and “V-groups”. An H-group is a 

horizontal grouping of items (words and groups) 

that tend to appear sequentially, cf. a syntagmatic 

linguistic unit. A V-group is a vertical grouping 
of items that occur in similar linguistic contexts 

in a corpus, cf. a paradigmatic linguistic unit. As 

a toy example, take the H-group ‘(the (woman 
| man) went to the (pub | shop | 

park))’, with V-groups ‘(woman | man)’ 

and ‘(pub | shop | park)’. 

In more recent times, Harris’ insights have 

become a cornerstone for some of the work in 
the field of grammatical inference, where 

researchers attempt to induce grammatical 

structures from raw text, e.g. ADIOS (Solan et 
al., 2005). In this field the emphasis is on 

generating complete grammatical descriptions 

for text corpora in order to understand the 
processes of language learning, rather than text 

mining; see D’Ulizia et al. (2011) for a review.  

The unsupervised ADIOS algorithm 

recursively induces hierarchically structured 
patterns from sequential data, e.g. sequences of 

words in unannotated text, using statistical 

information in the sequential data. Each 
sequence (sentence) is loaded onto a directed 

pseudograph with one vertex for each vocabulary 

item: this means that partially aligned sequences 
share sub-paths across the graph.  

In each iteration, the most significant pattern 

is identified with a statistical criterion that favors 

frequent sequences that occur in a variety of 
contexts. Then, the algorithm looks for possible 

equivalence classes within the context of the 

pattern, i.e. it identifies positions in the pattern 
that could be filled by different items and forms 

an equivalence class with those items. At the end 

of the iteration, the new pattern and equivalence 

class become vocabulary items in the graph, so 

that they can become part of further patterns and 

equivalence classes, and hence hierarchical 
structures are formed. For us, the terms “pattern” 

and “equivalence class” equate to the previously 

mentioned “H-group” and “V-group”: we prefer 
the simplicity and literalness of these terms and 

use them henceforth. 

3 Approach 

For text mining purposes we do not see the need 

to induce a complete grammar for the corpus that 

we are mining. Rather, we are struck by Harris’ 
further observation that the linguistic structures 

derived from a distributional analysis may reflect 

information structures, especially in the 
“sublanguages” of specialist domains (Harris, 

1988). Thus, we propose to use a grammar 

induction algorithm to identify the most salient 

information structures in a corpus and take these 
as representations of important semantic content. 

ADIOS has been evaluated on an interesting 

range of text corpora, and other kinds of 
sequential data. However, to the best of our 

knowledge, it has not been shown to successfully 

process a corpus with the scale and diversity of 

material that we envisage, e.g. 1.4m blog posts 
relating to climate change. This, along with our 

objective of identifying salient information 

structures rather than a complete grammatical 
description, led us to modify the learning regime 

to ADIOS. In the rest of this section we explain 

the modifications: please see 4.2.1 for a detailed 
description of how they were implemented. 

To address the large scale and complexity of 

language use in social media, we modify the way 

in which text is presented to ADIOS by focusing 
separately on text around key terms of interest, 

rather than processing all sentences en masse. 

Our thinking here is in part influenced by the 
theory of local grammar (Gross, 1997), i.e. the 

idea that language is best described with word 

classes that are specific to local contexts, rather 
than general across the language.  

Firstly, for each key term, we present only text 

snippets that contain that term: we expect there 

to be more salient patterning in snippets around a 
single key term because of repetition in the kinds 

of things written about it. Secondly, blog posts 

contain long and complex sentences so we 
process the clause containing a key term, and 

ignore the rest of the sentence. Thirdly, since we 

expect the key term to form more significant 
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units with words in its close proximity, we 

present the clauses in increasingly large snippets 

around the key term. 

A further modification targets the most 
frequent and meaningful structures. After each 

iteration in which H-groups and V-groups are 

induced, the most frequent H-groups are filtered 
to remove any containing large V-groups which 

are likely to be more semantically nebulous. 

Instances of the selected H-groups are replaced 
with common identifiers in the input file so that 

patterning around them is more explicit in 

subsequent iterations. 

4 Implementation 

Here we report our first attempt to apply 

grammar induction to text mining. We chose to 
work with a corpus of blogs relating to climate 

change because they provide a challenging 

scenario with complex semantics, in which 

diverse topics – causes, effects, solutions, etc. –   
are discussed from multiple perspectives – 

scientific, political, personal, etc. – and with 

different beliefs (section 4.1).  
We describe how we modified the learning 

regime of the ADIOS algorithm in order to 

induce H-groups and V-groups from an 

unannotated corpus (4.2.1). At this stage in our 
work, our focus is on observing the kinds of 

information structures that can be identified in 

this way, and in considering their potential 
applications as representations of semantic 

content (4.2.2). We also analyzed how results 

were affected by our modifications, i.e. the use 
of incrementally bigger snippets rather than 

complete clauses, and the iterative selection and 

substitution of frequent H-groups (4.2.3). 

4.1 Input data 

We used a corpus of about 1.4m unannotated 
English-language blog posts from 3,000 blogs 

related to climate change (Salway et al., 2013). 

Based on the relative frequency of words 
compared with a general language corpus, and 

the use of n-grams, we identified a set of domain 

key terms, e.g. ‘climate change’, ‘greenhouse 

gases’, ‘carbon tax’, ‘sea levels’. From these we 
selected 17, with a mix of high (10,000’s), 

medium (1,000’s) and low (100’s) frequencies. 

For each key term we crudely extracted every 
clause it occurred in by taking a clause to be a 

sequence of words between punctuation. Pre-

processing involved conversion to lower case, 
joining the words of key terms to make single 

items, e.g. ‘greenhouse_gases’, and substituting 

‘dddd’ with ‘YEAR’, and other digit sequences 

with ‘NUMBER’: these changes all serve to 

make patterning more explicit.  
Then, from the clauses for each key term, 

snippets of varying sizes were created. A snippet 

file for a key term is defined by (min-max) 
where there must be at least min words to one 

side of the key term, and no more than max 

words either side. Sets of snippet files were 
created for three different increment values: i = 2 

(0-2, 3-4, 5-6, 7-8, 9-10, 11-12); i = 3 (0-3, 4-6, 

7-9, 10-12); and, i = 4 (0-4, 5-8, 9-12). 

4.2 Modifying the ADIOS learning regime 

4.2.1 Method 

In Section 3 we explained the rationale for our 
modifications to the ADIOS learning regime. 

They are detailed in steps 1 and 3-5 below. 

 
For one key term and one increment value: 

 

(1) INITIALIZE. Set the current input file to be 

the first snippet file for the key term and 
increment value, i.e. the smallest snippets. 

(2) INDUCE CANDIDATE H-GROUPS AND V-
GROUPS. Run the ADIOS algorithm over the 

current input file with default parameter 

values, except E=0.9 (cf. Solan et al. 2005). 

(3) SELECTION. Filter the 5 most frequent H-

groups to keep those that meet the following 

criterion: if the H-group contains a V-group 
then the V-group must contain < 6 elements. 

If none of the 5 most frequent H-groups 

remain then go to (5). 

(4) SUBSTITUTION.  For each selected H-group, 

replace all instances of it in the current input 
file with a common identifier. Iterate 10 

times from (2). 

(5) TRANSITION. Until the final snippet file is 

reached, set the current input file to be the 

next largest snippet file and substitute 

identifiers for the instances of all H-groups 
selected so far. Go to (2). 

This process was executed for 17 key terms, with 
three increment values (i = 2, 3, 4). For further 

comparison, for each key term it was executed 

with complete clauses (ten iterations with 
selection and substitution) and with complete 

clauses (one iteration). 
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1. (((to (combat|fight))| (to (battle|slow|minimise|mitigate|tackle))) 

climate_change) 

2. (climate_change (summit|adaptation|talks|meetings|convention))  

3. (((greenhouse gases)|emissions|gases|(carbon emissions)|pollution) blamed 

((for|to) global_warming)) 

4. ((cause|causes) (of global_warming)) 

5. ((dangers|signs|effect|consequences|perils) (of global_warming)) 

6. (to (confuse|mislead|educate) the public) // from global_warming snippets 

7. ((anthropogenic|manmade|(man made)) global_warming)  

8. ((would|should|to|must) (control|reduce|regulate|regulating|release) 

greenhouse_gases) 

9. ((source|emitter|emitters|producers) of greenhouse_gases) 

10. (the (effects|impact) ((under|of) ((a|its|the) carbon_tax))) 

11. (a (modest|$_NUMBER a tonne|global|simple) carbon_tax) 

12. ((will|would|to) (push|raise|elevate) (sea_levels (around|by))) 

13. (((due to)|(caused by)) ((climate change)|(global warming))) //from 
sea_levels snippets 

14. ((((the|global|some|sophisticated|complex) climate_models) 
(hint|show|indicate) that) 

Table 1. A small selection of H-groups induced from snippets for a variety of key terms (in bold). 
 

 

4.2.2 Results and potential applications 

Table 1 presents a small selection of 14 H-groups 
that were induced from snippets with various key 

terms and increment values. Here, H-groups and 

V-groups are bracketed and nested. The elements 
of H-groups are separated by white space and the 

elements of V-groups are separated by ‘|’. Recall 

that the induction process selects frequent H-
groups which, based on our assumptions, should 

reflect important semantic content.  

This output would benefit from some post-

processing, which is part of ongoing work. For 
example, in 1 there are two V-groups containing 

verbs that would be more elegantly expressed as 

a single V-group. There are also H-groups in 
which not all V-group alternatives make sense 

with the rest of the containing H-group due to 

over-generalization, e.g. ‘to’ in ‘…blamed 

((for|to) global warming)’ in 3. Despite 

these issues, some interesting and potentially 

useful structures are induced. 

 Some H-groups, we assume those resulting 

from the most stylized use of language in blogs, 
could perhaps be taken as the basis for 

information extraction templates, e.g. 11 where 

‘$_NUMBER’ is a slot for different amounts of 

tax, and 12 which captures various ways in 

which predictions about the amount of sea level 
rise can be written.  

Other H-groups highlight some of the things 

typically written about key terms by grouping 
together different expressions of canonical 

statements, e.g. 3, 8 and 13. These could be used 

as a basis for summarizing the most important 
points of a topic, i.e. by taking 10,000’s 

sentences and reducing them to 10’s H-groups. 

For broad topics it is desirable to perform 
finer-grained text classification and retrieval. The 

induction of H-groups such as 4 and 5 helps to 

identify different facets of a topic. In this case, 
the H-groups flag the causes of global warming 

and the effects of global warming as sub-topics, 

and show different ways in which they may be 

expressed. 
The alternation in V-groups contained by H-

groups may reflect different beliefs and opinions 

which could be used for text classification and 
opinion mining. In 14, the V-group 

‘hint|show|indicate’ reflects different 

degrees of confidence that bloggers have in 

climate models. In 6, the alternatives in 

‘confuse|mislead|educate’ reflect 

positive and negative views about public 

communication in the climate debate. 

Semantically related terms, such as those 
captured in 1 and 5, have very different 

connotations and as such reflect different beliefs: 

consider the difference between someone writing 

about the ‘effect of global warming’ and 

the ‘perils of global warming’. In other 

cases, alternation reflects different ways to say 

the same thing, e.g. the more or less synonymous 
terms that are captured in 2, 7 and 9 which would 

be useful for query expansion. 
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Key Term Clauses Number of different H-groups and total instances 

i=2 i=3 i=4 clauses-10 clauses-1 

climate change 48241 198 47000 105 52745 86 57799 8 31611 698 123531 

global warming  27582 191 25998 155 30001 104 31850 40 32315 397 57388 

greenhouse gases 20345 174 30148 136 34009 94 33846 28 25213 552 65167 

carbon tax 7751 106 6727 84 8341 80 9859 36 11393 128 14988 

sea levels 6448 138 8322 121 10246 118 11020 55 12090 240 16752 

climate models 6276 98 5041 91 6020 74 6399 26 6061 142 11058 

emissions trading scheme 2989 86 2243 65 3802 68 3140 50 7680 96 8118 

Table 2. Numbers of different H-groups and total instances generated from different input data. 

 

4.2.3 The effects of our modifications 

The numbers of H-groups generated by different 
executions of the induction process for each key 

term are shown in Table 2, i.e. three executions 

using snippets with different values of i, and two 
executions using clauses for comparison (cf. 

4.2.1). The 10 omitted key terms (less than 1,000 

clauses each) generated less than 25 H-groups 

for each value of i.  
The high frequencies for clauses-1 are because 

no selection of H-groups took place, i.e. we 

simply take the normal ADIOS output. Based on 
our own inspections, some potentially useful H-

groups were found in this output but, compared 

with other outputs, it was more common to see 

H-groups with large and semantically nebulous 
V-groups. This observation supports the iterative 

selection and substitution of H-groups with a 

limit on the size of V-groups. We also looked at 
the average number of V-groups in H-groups for 

each execution, as a way to compare the amount 

of structure in H-groups. This number was 
consistently lowest in results for clauses-1 which 

further supports our modifications. 

A few potentially useful H-groups were 

observed in results for clauses-10, for which 
selection and substitution were applied. However 

the low numbers of different H-groups compared 

with all values of i suggests that it is better to use 
snippets as input rather than clauses. 

The way in which the ratio of different H-

groups and total instances varies for values of i 
suggests that starting with larger snippets (i=4) 

results in fewer H-groups but that these will 

capture more instances, i.e. they are more 

general. Whilst the H-groups for clauses-10 have 
many instances these tend not to capture useful 

patterning, i.e. they tended to describe 

combinations of key terms and function words.  

5 Closing Remarks 

At this stage in the research any conclusions 

must be tentative. However, it seems to us that 

the use of grammar induction to elucidate 
semantic content for text mining purposes shows 

promise. The H-groups shown in Table 1 provide 

richer semantic descriptions of the domain than 
keywords do, and we noted potential applications 

for high-level summarization of a whole corpus, 

the creation of information extraction templates 

and finer-grained text classification and retrieval. 
Importantly, the technique for generating H-

groups would not require adaptation for use on a 

different corpus. The analysis in 4.2.3 suggests 
that the modifications that we made to the 

ADIOS learning regime had a beneficial effect.  

Without a thorough evaluation we cannot 
make strong claims. In particular, we have little 

sense of the technique’s recall, i.e. we do not 

know what information structures it missed. That 

said, it might be argued that since we expect the 
technique to be consistent in identifying 

patterning in the surface form of texts then its 

success will depend on the extent to which key 
terms are written about in consistent ways. This 

will of course vary between text genres and 

domains. Work has started on another corpus 

with more restricted language use and richer 
structuring was induced (Salway et al. 2014). 

In other ongoing work we are looking more 

into the effects of the various parameters of 
ADIOS, and the necessity for our modifications. 

We are also seeking a deeper understanding of 

how the statistical information exploited by 
ADIOS relates to that which is captured by n-

gram language models to describe sequences of 

words (cf. H-groups), and by established 

techniques to form semantic classes based on 
shared linguistic contexts (cf. V-groups). 
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Abstract 

One fundamental problem of distant supervi-

sion is the noisy training corpus problem. In 

this paper, we propose a new distant supervi-

sion method, called Semantic Consistency, 

which can identify reliable instances from 

noisy instances by inspecting whether an in-

stance is located in a semantically consistent 

region. Specifically, we propose a semantic 

consistency model, which first models the lo-

cal subspace around an instance as a sparse 

linear combination of training instances, then 

estimate the semantic consistency by exploit-

ing the characteristics of the local subspace. 

Experimental results verified the effectiveness 

of our method. 

1 Introduction 

Relation extraction aims to identify and categorize 

relations between pairs of entities in text. Due to 

the time-consuming annotation process, one criti-

cal challenge of relation extraction is the lack of 

training data. To address this limitation, a promis-

ing approach is distant supervision (DS), which 

can automatically gather labeled data by heuristi-

cally aligning entities in text with those in a 

knowledge base (Mintz et al., 2009). The under-

lying assumption of distant supervision is that 

every sentence that mentions two entities is likely 

to express their relation in a knowledge base. 

Relation Instance Label 

S1: Jobs was the founder of Apple Founder-of, CEO-of 

S2: Jobs joins Apple Founder-of, CEO-of 

Figure 1. Labeled instances by distant supervi-

sion, using relations CEO-of(Steve Jobs, Apple 

Inc.) and Founder-of(Steve Jobs, Apple Inc.) 

The distant supervision assumption, unfortu-

nately, can often fail and result in a noisy training 

corpus. For example, in Figure 1 DS assumption 

will wrongly label S1 as a CEO-of instance and S2 

as instance of Founder-of and CEO-of. The noisy 

training corpus in turn will lead to noisy extrac-

tions that hurt extraction accuracy (Riedel et al., 

2010). 

 

Figure 2. The regions the two instances in Figure 

1 located, where: 1) S1 locates in a semantically 

consistent region; and 2) S2 locates in a semanti-

cally inconsistent region 

To resolve the noisy training corpus problem, 

this paper proposes a new distant supervision 

method, called Semantic Consistency, which can 

effectively identify reliable instances from noisy 

instances by inspecting whether an instance is lo-

cated in a semantically consistent region. Figure 2 

shows two intuitive examples. We can see that, 

semantic consistency is an effective way to iden-

tify reliable instances. For example, in Figure 2 S1 

is highly likely a reliable Founder-of instance be-

cause its neighbors are highly semantically con-

sistent, i.e., most of them express the same rela-

tion type – Founder-of. On contrast S2 is highly 

likely a noisy instance because its neighbors are 

semantically inconsistent, i.e., they have a diverse 

relation types. The problem now is how to model 

the semantic consistency around an instance. 

To model the semantic consistency, this paper 

proposes a local subspace based method. Specifi-

cally, given sufficient training instances, our 

method first models each relation type as a linear 

subspace spanned by its training instances. Then, 

the local subspace around an instance is modeled 

and characterized by seeking the sparsest linear 

combination of training instances which can re-

construct the instance. Finally, we estimate the se-

mantic consistency of an instance by exploiting 

the characteristics of its local subspace. 

+

+

+

+

+
×

××

×
×

S2
× S1 ×

+:  CEO-of

×:  Founder-of

+

×

+

×
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   :  CTO-of
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This paper is organized as follows. Section 2 

reviews related work. Section 3 describes the pro-

posed method. Section 4 presents the experiments. 

Finally Section 5 concludes this paper. 

2 Related Work 

This section briefly reviews the related work. Cra-

ven and Kumlien (1999), Wu et al. (2007) and 

Mintz et al.(2009) were several pioneer work of 

distant supervision. One main problem of DS as-

sumption is that it often will lead to false positives 

in training data. To resolve this problem, Bunescu 

and Mooney (2007), Riedel et al. (2010) and Yao 

et al. (2010) relaxed the DS assumption to the at-

least-one assumption and employed multi-in-

stance learning techniques to identify wrongly la-

beled instances. Takamatsu et al. (2012) proposed 

a generative model to eliminate noisy instances. 

Another research issue of distant supervision is 

that a pair of entities may participate in more than 

one relation. To resolve this problem, Hoffmann 

et al. (2010) proposed a method which can com-

bine a sentence-level model with a corpus-level 

model to resolve the multi-label problem. 

Surdeanu et al. (2012) proposed a multi-instance 

multi-label learning approach which can jointly 

model all instances of an entity pair and all their 

labels. Several other research issues also have 

been addressed. Xu et al. (2013), Min et al. (2013) 

and Zhang et al. (2013) try to resolve the false 

negative problem raised by the incomplete 

knowledge base problem. Hoffmann et al. (2010) 

and Zhang et al. (2010) try to improve the extrac-

tion precision by learning a dynamic lexicon. 

3 The Semantic Consistency Model for 

Relation Extraction 

In this section, we describe our semantic con-

sistency model for relation extraction. We first 

model the subspaces of all relation types in the 

original feature space, then model and character-

ize the local subspace around an instance, finally 

estimate the semantic consistency of an instance 

and exploit it for relation extraction. 

3.1 Testing Instance as a Linear Combina-

tion of Training Instances 

In this paper, we assume that there exist k distinct 

relation types of interest and each relation type is 

represented with an integer index from 1 to k. For 

ith relation type, we assume that totally ni training 

instances Vi = fvi;1;vi;2; :::;vi;ni
gVi = fvi;1;vi;2; :::;vi;ni
g  have been 

collected using DS assumption. And each instance 

is represented as a weighted feature vector, such 

as the features used in (Mintz, 2009) or (Surdeanu 

et al., 2012), with each feature is TFIDF weighted 

by taking each instance as an individual document. 

To model the subspace of ith relation type in 

the original feature space, a variety of models 

have been proposed to discover the underlying 

patterns of Vi. In this paper, we make a simple and 

effective assumption that the instances of a single 

relation type can be represented as the linear 

combination of other instances of the same rela-

tion type. This assumption is well motived in rela-

tion extraction, because although there is nearly 

unlimited ways to express a specific relation, in 

many cases basic principles of economy of ex-

pression and/or conventions of genre will ensure 

that certain systematic ways will be used to ex-

press a specific relation (Wang et al., 2012). For 

example, as shown in (Hearst, 1992), the IS-A re-

lation is usually expressed using several regular 

patterns, such as “such NP as {NP ,}* {(or | and)} 

NP” and “NP {, NP}* {,} or other NP”. 

Based on the above assumption, we hold many 

instances for each relation type and directly use 

these instances to model the subspace of a relation 

type. Specifically, we represent an instance y of 

ith type as the linear combination of training in-

stances associated with ith type: 

y = ®i;1vi;1 + ®i;2vi;2 + ::: ++®i;ni
vi;ni

y = ®i;1vi;1 + ®i;2vi;2 + ::: ++®i;ni
vi;ni

   (1) 

for some scalars , with j = 1, 2, …,ni. For ex-

ample, we can represent the CEO-of instance 

“Jobs was the CEO of Apple” as the following lin-

ear combination of CEO-of instances: 

 0.8: Steve Ballmer is the CEO of Microsoft 

 0.2: Rometty was served as the CEO of IBM 

For simplicity, we arrange the given ni training in-

stances of ith relation type as columns of a matrix 

Ai = [vi;1;vi;2; :::;vi;ni
]Ai = [vi;1;vi;2; :::;vi;ni
], then we can write the 

matrix form of Formula 1 as: 

y = Aixiy = Aixi                          (2) 

where xi = [®i;1; :::; ®i;ni
]xi = [®i;1; :::; ®i;ni
] is the coefficient vec-

tor. In this way, the subspace of a relation type is 

the linear subspace spanned by its training in-

stances, and if we can find a valid xi, we can ex-

plain y as a valid instance of ith relation type. 

3.2 Local Subspace Modeling 

via Sparse Representation 

Based on the above model, the local subspace of 

an instance is modeled as the linear combination 

of training instances which can reconstruct the in-

stance. Specifically, to model the local subspace, 

we first concatenate the n training instances of all 

k relation types: 

A = [A1;A2; :::; Ak]A = [A1;A2; :::; Ak] 
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Then the local subspace around y is modeled by 

seeking the solution of the following formula: 

y = Axy = Ax                          (3) 

However, because of the redundancy of train-

ing instances, Formula 3 usually has more than 

one solution. In this paper, following the idea in 

(Wright et al., 2009) for robust face recognition, 

we use the sparsest solution (i.e., how to recon-

struct an instance using minimal training in-

stances), which have been shown is both discrimi-

nant and robust to noisiness. Concretely, we seek 

the sparse linear combination of training instances 

to reconstruct y by solving: 

(l1) : x¤ = arg min kxk1 s.t. kAx¡yk2 · "(l1) : x¤ = arg min kxk1 s.t. kAx¡yk2 · "  (4) 

where x= [®1;1; :::;®1;n1
; :::;®i;1; ®i;2; :::;®i;ni

; :::]x= [®1;1; :::;®1;n1
; :::;®i;1; ®i;2; :::;®i;ni

; :::] 

is a coefficient vector which identifies the span-

ning instances of y’s local subspace, i.e., the in-

stances whose 𝛼𝑖,𝑗 ≠ 0 . In practice, the training 

corpus may be too large to direct solve Formula 4. 

Therefore, this paper uses the K-Nearest-Neigh-

bors (KNN) of y (1000 nearest neighbors in this 

paper) to construct the training instance matrix A 

for each y, and KNN can be searched very effi-

ciently using specialized algorithms such as the 

LSH functions in (Andoni & Indyk, 2006). 

Through the above semantic decomposition, 

we can see that, the entries of x can encode the 

underlying semantic information of instance y. 

For ith relation type, let  be a new vector 

whose only nonzero entries are the entries in x that 

are associated with ith relation type, then we can 

compute the semantic component corresponding 

to ith relation type as . In this way a 

testing instance y will be decomposed into k se-

mantic components, with each component corre-

sponds to one relation type (with an additional 

noise component ): 

y = y1 + :::+yi + :::+yk + ²y = y1 + :::+yi + :::+yk + ²        (5) 
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Figure 3. The semantic decomposition of the two 

instances in Figure 1 

Figure 3 shows an example of semantic decom-

position. We can see that, the semantic decompo-

sition can effectively summarize the semantic 

consistency information of y’s local subspace: if 

the instances around an instance have diverse re-

lation types (S2 for example), its information will 

be scattered on many different semantic compo-

nents. On contrast if the instances around an in-

stance have consistent relation types (S1 for ex-

ample), most of its information will concentrate 

on the corresponding relation type. 

3.3 Semantic Consistency based 

Relation Extraction 

This section describes how to estimate and exploit 

the semantic consistency for relation extraction. 

Specifically, given y’s semantic decomposition: 
y = y1 + :::+yi + :::+yk + ²y = y1 + :::+yi + :::+yk + ² 

we observe that if instance y locates at a semantic 

consistent region, then all its information will con-

centrate on a specific component yi, with all other 

components equal to zero vector 0. However, 

modeling errors, expression ambiguity and noisy 

features will lead to small nonzero components. 

Based on the above discussion, we define the se-

mantic consistency of an instance as the semantic 

concentration degree of its decomposition: 

Definition 1(Semantic Consistency). For an in-

stance y, its semantic consistency with ith relation 

type is: 

Consistency(y; i) =
kyik2

P
i kyik2 + k²k2

Consistency(y; i) =
kyik2

P
i kyik2 + k²k2

 

where Consistency(y, i)  and will be 1.0 if 

all information of y is consistent with ith relation 

type; on contrast it will be 0 if no information in y 

is consistent with ith relation type. 

Semantic Consistency based Relation Ex-

traction. To get accurate extractions, we deter-

mine the relation type of y based on both: 1) How 

much information in y is related to ith type; and 2) 

its semantic consistency score with ith type, i.e., 

whether y is a reliable instance of ith type. 

To measure how much information in y is re-

lated to ith relation type, we compute the propor-

tion of common information between y and yi: 

sim(y;yi) =
y ¢ yi

y ¢ y
sim(y;yi) =

y ¢ yi

y ¢ y
                    (6) 

Then the likelihood for a testing instance y ex-

pressing ith relation type is scored by summariz-

ing both its information and semantic consistency: 
rel(y; i) = sim(y;yi)£Consistency(y; i)rel(y; i) = sim(y;yi)£Consistency(y; i) 

and y will be classified into ith relation type if its 

likelihood is larger than a threshold: 

rel(y; i) ¸ ¿irel(y; i) ¸ ¿i                      (7) 

where  is a relation type specific threshold 

learned from training dataset. 

Founder-of CEO-of 

Founder-of noise 

CTO-of 
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Multi-Instance Evidence Combination. It is 

often that an entity pair will match more than one 

sentence. To exploit such redundancy for more 

confident extraction, this paper first combines the 

evidence from different instances by combing 

their underlying components. That is, given the 

matched m instances Y={y1, y2, …, ym} for an en-

tity pair (e1, e2), we first decompose each instance 

as yj = y
j
1 + ::: + y

j
k + ²yj = y

j
1 + ::: + y

j
k + ² , then the entity-pair 

level decomposition y = y1 + :::+yk + ²y = y1 + :::+yk + ² is ob-

tained by summarizing semantic components of 

different instances: yi =
P

1·j·m y
j
iyi =

P
1·j·m y

j
i . Finally, the 

likelihood of an entity pair expressing ith relation 

type is scored as: 

rel(Y; i) = sim(y;yi)Consistency(y; i)log(m+1)rel(Y; i) = sim(y;yi)Consistency(y; i)log(m+1) 

where  is a score used to encourage 

extractions with more matching instances. 

3.4 One further Issue for Distant Supervi-

sion: Training Instance Selection 

The above model further provides new insights 

into one issue for distant supervision: training in-

stance selection. In this paper, we select informa-

tive training instances by seeking a most compact 

subset of instances which can span the whole sub-

space of a relation type. That is, all instances of 

ith type can be represented as a linear combination 

of these selected instances. 

However, finding the optimal subset of training 

instances is difficult, as there exist 2N possible so-

lutions for a relation type with N training instances. 

Therefore, this paper proposes an approximate 

training instance selection algorithm as follows: 

1) Computing the centroid of ith relation type as                
vi =

P
1·j·ni

vi;jvi =
P

1·j·ni
vi;j 

2) Finding the set of training instances which 

can most compactly span the centroid by 

solving: 

(l1) : xi = arg min kxk1 s.t. kAix¡ vik2 · "(l1) : xi = arg min kxk1 s.t. kAix¡ vik2 · " 

3) Ranking all training instances according to 

their absolute coefficient weight value ; 

4) Selecting top p percent ranked instances as 

final training instances. 

The above training instance selection has two 

benefits. First, it will select informative instances 

and remove redundant instances: an informative 

instance will receive a high  value because 

many other instances can be represented using it; 

and if two instances are redundant, the sparse so-

lution will only retain one of them. Second, most 

of the wrongly labeled training instances will be 

filtered, because these instances are usually not 

regular expressions of ith type, so they appear 

only a few times and will receive a small . 

4 Experiments 

In this section, we assess the performance of our 

method and compare it with other methods. 

Dataset. We assess our method using the KBP 

dataset developed by Surdeanu et al. (2012). The 

KBP is constructed by aligning the relations from 

a subset of English Wikipedia infoboxes against a 

document collection that merges two distinct 

sources: (1) a 1.5 million documents collection 

provided by the KBP shared task(Ji et al., 2010; Ji 

et al., 2011); and (2) a complete snapshot of the 

June 2010 version of Wikipedia. Totally 183,062 

training relations and 3,334 testing relations are 

collected. For tuning and testing, we used the 

same partition as Surdeanu et al. (2012): 40 que-

ries for development and 160 queries for formal 

evaluation. In this paper, each instance in KBP is 

represented as a feature vector using the features 

as the same as in (Surdeanu et al., 2012). 

Baselines. We compare our method with four 

baselines as follows: 

 Mintz++. This is a traditional DS assump-

tion based model proposed by Mintz et al.(2009).  

 Hoffmann. This is an at-least-one as-

sumption based multi-instance learning method 

proposed by Hoffmann et al. (2011). 

 MIML. This is a multi-instance multi-la-

bel model proposed by Surdeanu et al. (2012).  

 KNN. This is a classical K-Nearest-

Neighbor classifier baseline. Specifically, given 

an entity pair, we first classify each matching in-

stance using the labels of its 5 (tuned on training 

corpus) nearest neighbors with cosine similarity, 

then all matching instances’ classification results 

are added together. 

Evaluation. We use the same evaluation set-

tings as Surdeanu et al. (2012). That is, we use the 

official KBP scorer with two changes: (a) relation 

mentions are evaluated regardless of their support 

document; and (b) we score only on the subset of 

gold relations that have at least one mention in 

matched sentences. For evaluation, we use 

Mintz++, Hoffmann, and MIML implementation 

from Stanford’s MIMLRE package (Surdeanu et 

al., 2012) and implement KNN by ourselves. 

4.1 Experimental Results 

4.1.1 Overall Results 

We conduct experiments using all baselines and 

our semantic consistency based method. For our 
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method, we use top 10% weighted training in-

stances. All features occur less than 5 times are 

filtered. All l1-minimization problems in this pa-

per are solved using the augmented Lagrange 

multiplier algorithm (Yang et al., 2010), which 

has been proven is accurate, efficient, and robust. 

To select the classification threshold  for ith re-

lation type, we use the value which can achieve 

the best F-measure on training dataset (with an ad-

ditional restriction that precision should > 10%). 

 
Figure 4. Precision/recall curves in KBP dataset 

System Precision Recall F1 

Mintz++ 0.260 0.250 0.255 

Hoffmann 0.306 0.198 0.241 

MIML 0.249 0.314 0.278 

KNN 0.261 0.295 0.277 

Our method 0.286 0.342 0.311 

Table 1.  The best F1-measures in KBP dataset 

Figure 4 shows the precision/recall curves of 

different systems, and Table 1 shows their best 

F1-measures. From these results, we can see that: 

1) The semantic consistency based method 

can achieve robust and competitive performance: 

in KBP dataset, our method correspondingly 

achieves 5.6%, 7%, 3.3% and 3.4% F1 improve-

ments over the Mintz++, Hoffmann, MIML and 

KNN baselines. We believe this verifies that the 

semantic consistency around an instance is an ef-

fective way to identify reliable instances. 

2) From Figure 4 we can see that our method 

achieves a consistent improvement on the high-re-

call region of the KBP curves (when recall > 0.1). 

We believe this is because by modeling the se-

mantic consistency using the local subspace 

around each testing instance, our method can bet-

ter solve the classification of long tail instances 

which are not expressed using salient patterns. 

3) The local subspace around an instance 

can be effectively modeled as a linear subspace 

spanned by training instances. From Table 1 we 

can see that both our method and KNN baseline 

(where the local subspace is spanned using its k 

nearest neighbors) achieve competitive perfor-

mance: even the simple KNN baseline can achieve 

a competitive performance (0.277 in F1). This re-

sult shows: a) the effectiveness of instance-based 

subspace modeling; and b) by partitioning sub-

space into many local subspaces, the subspace 

model is more adaptive and robust to model prior. 

4) The sparse representation is an effective 

way to model the local subspace using training in-

stances. Compared with KNN baseline, our 

method can achieve a 3.4% F1 improvement. We 

believe this is because: (1) the discriminative na-

ture of sparse representation as shown in (Wright 

et al., 2009); and (2) the sparse representation 

globally seeks the combination of training in-

stances to characterize the local subspace, on con-

trast KNN uses only its nearest neighbor in the 

training data, which is more easily affected by 

noisy training instances(e.g., false positives). 

4.1.2 Training Instance Selection Results 

To demonstrate the effect of training instance se-

lection, Table 2 reports our method’s performance 

using different proportions of training instances. 

Proportion 5% 10% 20% 100% 

Best F1 0.282 0.311 0.305 0.280 

Table 2. The best F1-measures using different 

proportions of top weighted training instances 

From Table 2, we can see that: ① Our training in-

stance selection algorithm is effective: our method 

can achieve performance improvement using only 

top weighted instances. ② The training instances 

are highly redundant: using only 10% weighted 

instances can achieve a competitive performance. 

5 Conclusion and Future Work 

This paper proposes a semantic consistency 

method, which can identify reliable instances 

from noisy instances for distant supervised rela-

tion extraction. For future work, we want to de-

sign a more effective instance selection algorithm 

and embed it into our extraction framework. 
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Abstract

We quantify the lexical subjectivity of ad-
jectives using a corpus-based method, and
show for the first time that it correlates
with noun concreteness in large corpora.
These cognitive dimensions together influ-
ence how word meanings combine, and
we exploit this fact to achieve performance
improvements on the semantic classifica-
tion of adjective-noun pairs.

1 Introduction

Concreteness, the degree to which language has
a perceptible physical referent, and subjectivity,
the extent to which linguistic meaning depends on
the perspective of the speaker, are well established
cognitive and linguistic notions. Recent results
suggest that they could also be useful knowledge
for natural language processing systems that aim
to extract and represent the meaning of language.

Insight into concreteness can help systems to
classify adjective-noun pairs according to their se-
mantics. In the non-literal expressions kill the pro-
cess or black comedy, a verb or adjective that oc-
curs with a concrete argument in literal phrases
takes an abstract argument. Turney et al. (2011)
present a supervised model that exploits this effect
to correctly classify 79% of adjective-noun pairs
as having literal or non-literal meaning.

Subjectivity analysis has already proved highly
applicable to a range of NLP applications, includ-
ing sentiment analysis, information extraction and
text categorization (Pang and Lee, 2004; Riloff
and Wiebe, 2003). For such applications, subjec-
tivity is analyzed at the phrasal or document level.
However, recent work has highlighted the applica-
tion of subjectivity analysis to lexical semantics,
for instance to the tasks of disambiguating words
according to their usage or sense (Wiebe and Mi-
halcea, 2006; Banea et al., 2014).

The importance of concreteness to NLP systems
is likely to grow with the emergence of multi-
modal semantic models (Bruni et al., 2012; Roller
and Schulte im Walde, 2013). Such models, which
learn representations from both linguistic and per-
ceptual input, outperform text-only models on a
range of evaluations. However, while multi-modal
models acquire richer representations of concrete
concepts, their ability to represent abstract con-
cepts can be weaker than text-only models (Hill et
al., 2013). A principled treatment of concreteness
is thus likely to be important if the multi-modal
approach is to prove effective on a wider range of
concepts. In a similar vein, interest in subjectiv-
ity analysis is set to grow with interest in extract-
ing sentiment and opinion from the web and social
media (Benson et al., 2011). Moreover, given that
humans seem to exploit both concreteness (Paivio,
1990) and subjectivity (Canestrelli et al., 2013)
clues when processing language, it is likely that
the same clues should benefit computational mod-
els aiming to replicate human-level performance
in this area.

In this paper, we show how concreteness and
subjectivity can be applied together to produce
performance improvements on two classification
problems: distinguishing literal and non-literal
adjective-noun pairs (Turney et al., 2011), and
classifying the modification type exhibited by
such pairs (Boleda et al., 2012). We describe an
unsupervised corpus-based method to quantify ad-
jective subjectivity, and show that it effectively
predicts the labels of a hand-coded subjectivity
lexicon. Further, we show for the first time that
adjective subjectivity correlates with noun con-
creteness in large corpora. In addition, we anal-
yse the effect of noun concreteness and adjective
subjectivity on meaning combination, illustrating
how the interaction of these dimensions enables
the accurate classification of adjective-noun pairs
according to their semantics. We conclude by dis-
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cussing other potential applications of concrete-
ness and subjectivity to NLP.

2 Dimensions of meaning

Concreteness A large and growing body of em-
pirical evidence indicates clear differences be-
tween concrete concepts, such as donut or hot-
dog and abstract concepts, such as guilt or obesity.
Concrete words are more easily learned, remem-
bered and processed than abstract words (Paivio,
1991), while differences in brain activity (Binder
et al., 2005) and cognitive representation (Hill et
al., 2013) have also been observed. In linguistic
conctructions, concreteness appears to influence
compound and phrasal semantics (Traugott, 1985;
Bowdle and Gentner, 2005; Turney et al., 2011).
Together with the practical applications outlined in
Section 1, these facts indicate the potential value
of concreteness for models aiming to replicate hu-
man performance in language processing tasks.

While automatic methods have been proposed
for the quantification of lexical concreteness, they
each rely on dictionaries or similar hand-coded
resources (Kwong, 2008; Turney et al., 2011).
We instead extract scores from a recently released
dataset of lexical concepts rated on a 1-5 scale for
concreteness by 20 annotators in a crowdsourcing
experiment (Brysbaert et al., 2013).1

Subjectivity Subjectivity is the degree to which
language is interpretable independently of the
speaker’s perspective (Langacker, 2002). For ex-
ample, the utterance he sits across the table is
more subjective than he sits opposite Sam as its
truth depends on the speaker’s position. Language
may also be subjective because it conveys evalua-
tions or opinions (Mihalcea et al., 2007).

Computational applications of subjectivity, in-
cluding sentiment analysis and information ex-
traction, have focused largely on phrase or doc-
ument meaning.2 In contrast, here we present six
corpus-based features designed to quantify the lex-
ical subjectivity of adjectives. The features Com-
parability and Modifiability are identified as pre-
dictors of subjectivity by Wiebe (2000). The re-
mainder are motivated by corpus studies and/or
observations from the theoretical literature.3

1Available at http://crr.ugent.be/archives/1330.
2See e.g. (Wiebe and Riloff, 2011).
3Several of the features here were applied by Hill (2012),

to the task of ordering multiple-modifier strings.

Adverbiability: Quirk et al. (1985) theorizes that
subjective adjectives tend to develop derived ad-
verbial forms, whereas more objective adjectives
do not. We thus define adverbiability as the fre-
quency of derived adverbial forms relative to the
frequency of their base form, e.g.∑

hotly∑
hot+

∑
hotly

Comparability: Wiebe (2000) oberve that grad-
able are more likely to be subjective. Following
Wiebe, we note that the existence of comparative
forms for an adjective are indicative of gradabil-
ity. We thus define comparability as the frequency
of comparative or superlative forms relative to the
frequency of the base form, e.g.∑

hotter +
∑
hottest∑

hot+
∑
hotter +

∑
hottest

LeftTendency: Adamson (2000) proposes that
more subjective adjectives typically occur furthest
from the noun in multiple-modifier strings such as
(hot crossed buns). We consequently extract the
LeftTendency of our adjectives, defined as the fre-
quency of occurrence as the leftmost of two ad-
jectives as a proportion of the overall frequency of
occurrence in multiple-modifier strings.

Modifiability: Another characteristic of gradable
adjectives noted by Wiebe (2000) is that they ad-
mit degree modifiers (very/quite delicious). We
therefore extract the relative frequency of occur-
rence with one of a hand-coded list of English de-
gree modifiers.

Predicativity: Bolinger (1967) proposed that sub-
jective adjectives occur in predicative construc-
tions (the cake is sweet), rather than attribu-
tive constructions (the German capital) more fre-
quently than objective adjectives. We therefore ex-
tract the relative frequency of occurrence in such
constructions.

Non-nominality: Many adjectives also function
as nouns (sweet cake vs. (boiled sweet). Un-
like nouns, many adjectives are inherently subjec-
tive, and the number of adjectives in texts corre-
lates with human judgements of their subjectivity
(Hatzivassiloglou and Wiebe, 2000). We there-
fore extract the frequency with which concepts are
tagged as adjectives relative to as nouns, on the
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assumption that ‘pure’ adjectives are on average
more subjective than nominal-style adjectives.

Concreteness meets Subjectivity Demonstra-
ble commonalities in how different people per-
ceive the physical world suggest that concrete lan-
guage may be more objective than abstract lan-
guage (Langacker, 1997). Intuitively, adjectives
ascribing physical properties (wooden shed) are
more objective than those conveying abstract traits
(suspicious man). Indeed, in certain cases the
original, apparently objective, senses of polyse-
mous adjectives are not modifiable (very wooden
shed?), while their more abstract sense extensions
are (very wooden personality).

Motivated by these observations, in the follow-
ing sections we test two hypotheses. (1) Subjec-
tive / objective adjectives are more likely to mod-
ify abstract / concrete nouns respectively. (2) Sub-
jectivity and concreteness can predict aspects of
how adjective and noun concepts combine.

3 Analysis

In addressing (1), we extracted the 2,000 highest-
frequency nouns from the Brysbaert et al. (2013)
concreteness dataset. We denote by CONC(n)
the mean concreteness rating for noun n. For the
24,908 adjectives that occur in some adjective-
noun pair with one of these nouns in the British
National Corpus (BNC) (Leech et al., 1994), we
extracted subjectivity features from the Google
Books Corpus (Goldberg and Orwant, 2013).
Since each of the six features takes values on [0, 1],
we define the overall subjectivity of an adjective a
with feature vector sa = [sa

1 . . . s
a
6] as

SUBJ(a) =
6∑

i=1

sa
i .

To verify the quality of our subjectivity features,
we measured their performance as predictors in a
logistic regression classifying the 3,250 adjectives
labelled as subjective or not in the Wilson et al.
(2005) lexicon.4 The combination of all features
produced an overall classifiction accuracy of 79%.
The performance of individual features as predic-
tors in isolation is shown in Figure 1 (top).

We first tested the relationship between con-
creteness and subjectivity with a correlation anal-
ysis over noun concepts. For each noun n we de-

4Available at http://mpqa.cs.pitt.edu/
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Figure 1: Top: Performance of features in
predicting subjectivity labels from the Wilson
et al. (2005) lexicon. Bottom: Concreteness-
subjectivity correlation in adj-noun pairs.

a SUBJ(a) n CONC(n)
flashy 1.98 umbrella 5
honest 1.63 flask 5
good 1.59 automobile 5
Siberian 6.9× 10−4 virtue 1.49
interglacial 6.3× 10−4 pride 1.46
Soviet 1.9× 10−4 hope 1.18

Table 1: The most and least subjective adjectives
and most and least concrete nouns in our data.

fined its subjectivity profile as the mean of the sub-
jectivity vectors of its modifying adjectives

SUBJpfl(n) =
1
|An|

∑
a∈An

sa

where the bag An contains an adjective a for each
occurrence of the pair (a, n) in the BNC. As hy-
pothesized, CONC(n) was a significant predictor
of the magnitude of the subjectivity profile (Pear-
son r = −0.421, p < 0.01). This effect is illus-
trated in Figure 1 (bottom).

To explore the relationship between concrete-
ness, subjectivity and meaning, we plotted the
20,000 highest frequency (a, n) pairs in the BNC
in the CONC-SUBJ semantic space (Figure 2,
top). In addition, to examine the effect of con-
creteness alone on adjective-noun semantics, we
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(a, n) ∆ (a, n) ∆
white hope 4.61 mature attitude 4.05
fresh hope 4.34 injured pride 4.03
male pride 4.28 black mood 3.99
wild hope 4.06 white spirit 3.93

Table 2: The eight pairs with highest ∆ =
ExpCONC(a)− CONC(n) in our data.

defined a new adjective feature

ExpCONC(a) =
1
|Na|

∑
n∈Na

CONC(n)

where the bag Na contains noun n for each occur-
rence of the pair (a, n) in the BNC. Figure 2 (bot-
tom) illustrates the the CONC-ExpCONC space.

In both spaces, the extremities reflect particular
meaning combination types. Pairs in the bottom-
left region of the CONC-SUBJ space (objective
adjectives with abstract nouns, such as green pol-
itics) seem to exhibit a non-literal, or at least non
prototypical modification type. In contrast, for
pairs in the objective+concrete corner, the adjec-
tives appear to perform a classifying or categoriz-
ing function (baptist minister).

In the CONC-ExpCONC space, on the diag-
onal, where noun-concreteness is ‘as expected’,
pairings appear to combine literally. Away from
the diagonal, meaning composition is less pre-
dictable. In the top-left, where ExpCONC is
greater than CONC, the combinations are almost
all non-literal, as shown in Table 2.

In this section we have outlined a set of corpus
features that, taken together, enable effective ap-
proximation of adjective subjectivity. The results
of our analyses also demonstrate a clear interac-
tion between subjectivity and concreteness scores
for nouns attributed by human raters. Specifi-
cally, objective adjectives are more likely to mod-
ify concrete nouns and subjective adjectives are
more likely to modify abstract nouns. Qualita-
tive investigations further suggest the interaction
between these dimensions to be useful in the se-
mantic characterization of adjective-noun pairs, a
proposition we test formally in the next section.

4 Evaluation

We evaluate the potential of our adjective subjec-
tivity features, together with noun concreteness,
to predict adjective-noun semantics, based on two
existing classification tasks.
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Figure 2: Adjective-noun pairs in two semantic
spaces. Selected pairs are labelled for illustration,
italics indicate non-literal meaning combinations.

4.1 Non-literal Composition Task

To evaluate their model of lexical concreteness,
Turney et al. (2011) developed a list of 100 com-
mon adjective-noun pairs classified as either deno-
tative (used literally) or connotative (non-literal)
by five annotators. Using an identical supervised
learning procedure to Turney et al. (logistic re-
gression with 10-fold cross-validation), we test
whether our lexical representations based on sub-
jectivity and concreteness convey sufficient infor-
mation to perform the same classification.

4.2 Modification-type Classification

Boleda et al. (2012) introduce a set of 370
adjective-noun pairs grouped into modification
types by human judges. Because a red car is
both a car and red, the pair is classed as intersec-
tive, whereas dark humour, which is not literally
dark, is classed as subsective. To create a distinct
but analogous binary categorization problem to the
composition task, we filtered out pairs not unani-
mously allocated to either class. We again aim to
classify the remaining 211 intersective and 93 sub-
sective pairs with a logistic regression.
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Feature type Composition Modification
Baseline 55.0 69.4
Concreteness 83.0 72.7
Subjectivity 64.0 70.4
Combined 85.0 75.0
Turney et al. 79.0 -

Table 3: Prediction accuracy (%) of models with
different features on the two tasks. The baseline
method allocates all test pairs to the majority class.

4.3 Results
Models were trained with concreteness features
(CONC and ExpCONC), subjectivity features
(SUBJ and SUBJpfl) and the combination of both
types (Combined). The performance of each
model is presented in Table 3, along with a base-
line score reflecting the strategy of allocating all
pairs to the largest class.

On the non-literal composition task, the con-
creteness (83.0) and combined (85.0) models out-
perform that of Turney et al. (79.0). The concrete-
ness model performance represents further confir-
mation of the link between concreteness and com-
position. The improvement of this model over
Turney et al. (2011) is perhaps to be expected,
since our model exploits the wide scope of the
new Brysbaert et al. (2013) crowdsourced data
whereas Turney et al. infer concreteness scores
from a smaller training set. Notably, our combined
model improves on the concreteness-only model,
confirming that the interaction of concreteness and
subjectivity provides additional information perti-
nent to meaning composition.

The modification-type task has no performance
benchmark since Boleda et al. (2012) do not use
their data for classification. Although all models
improve on the majority-class baseline, the com-
bined model was again most effective. Additive
improvement over the baseline in each case was
lower than for the composition task, which may
reflect the greater subtlety inherent in the sub-
sective/intersective classification. Indeed, inter-
annotator agreement for this goldstandard (Co-
hen’s κ = 0.87) was lower than for the composi-
tion task (0.95), implying a less cognitively salient
distinction.

5 Conclusion

We have shown that objective adjectives are most
likely to modify concrete nouns, and that non-

literal combinations can emerge when this princi-
ple is violated (Section 3). Indeed, the occurrence
of an adjective with a more abstract noun than
those it typically modifies is a strikingly consistent
indicator of metaphoricity (Table 2). In addition,
we showed that both concreteness and subjectivity
improve the automatic classification of adjective-
noun pairs according to compositionality or mod-
ification type (Section 4). Importantly, a classifier
with both subjectivity and concreteness features
outperforms concreteness-only classifiers, includ-
ing those proposed in previous work.

The results underline the relevance of both sub-
jectivity and concreteness to lexical and phrasal
semantics, and their application to language pro-
cessing tasks. We hypothesize that concreteness
and subjectivity are fundamental to human lan-
guage processing because language is precisely
the conveyance of information about the world
from one party to another. In decoding this sig-
nal, it is clearly informative to understand to what
extent the information refers directly to the world,
and also to what extent it reports a fact versus an
opinion. We believe these dimensions will ulti-
mately prove essential for computational systems
aiming to replicate human performance in inter-
preting language. As the results suggest, they may
be particularly important for capturing the intrica-
cies of semantic composition and thus extending
representations beyond the lexeme.

Of course, two dimensions alone are not suf-
ficient to reflect all of the subtleties of adjective
and noun semantics. For instance, our model clas-
sifies white spirit, a transparent cleaning product,
as non-literal, since the lexical concreteness score
does not allow for strong noun polysemy. Further,
it makes no allowance for wider sentential context,
which can be an important clue to modification
type in such cases.

We aim to address these limitations in future
work by integrating subjectivity and concreteness
with conventially acquired semantic representa-
tions, and, ultimately, models that integrate input
corresponding to the perceptual modalities.
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Abstract

Distant supervision usually utilizes only
unlabeled data and existing knowledge
bases to learn relation extraction models.
However, in some cases a small amount
of human labeled data is available. In this
paper, we demonstrate how a state-of-the-
art multi-instance multi-label model can
be modified to make use of these reli-
able sentence-level labels in addition to
the relation-level distant supervision from
a database. Experiments show that our ap-
proach achieves a statistically significant
increase of 13.5% in F-score and 37% in
area under the precision recall curve.

1 Introduction
Relation extraction is the task of tagging semantic
relations between pairs of entities from free text.
Recently, distant supervision has emerged as an
important technique for relation extraction and has
attracted increasing attention because of its effec-
tive use of readily available databases (Mintz et
al., 2009; Bunescu and Mooney, 2007; Snyder and
Barzilay, 2007; Wu and Weld, 2007). It automat-
ically labels its own training data by heuristically
aligning a knowledge base of facts with an unla-
beled corpus. The intuition is that any sentence
which mentions a pair of entities (e1 and e2) that
participate in a relation, r, is likely to express the
fact r(e1,e2) and thus forms a positive training ex-
ample of r.

One of most crucial problems in distant super-
vision is the inherent errors in the automatically
generated training data (Roth et al., 2013). Ta-
ble 1 illustrates this problem with a toy exam-
ple. Sophisticated multi-instance learning algo-
rithms (Riedel et al., 2010; Hoffmann et al., 2011;

∗ Most of the work was done when this author was at
New York University

Surdeanu et al., 2012) have been proposed to ad-
dress the issue by loosening the distant supervision
assumption. These approaches consider all men-
tions of the same pair (e1,e2) and assume that at-
least-one mention actually expresses the relation.
On top of that, researchers further improved per-
formance by explicitly adding preprocessing steps
(Takamatsu et al., 2012; Xu et al., 2013) or addi-
tional layers inside the model (Ritter et al., 2013;
Min et al., 2013) to reduce the effect of training
noise.

True Positive ... to get information out of captured
al-Qaida leader Abu Zubaydah.

False Positive ...Abu Zubaydah and former Taliban
leader Jalaluddin Haqqani ...

False Negative ...Abu Zubaydah is one of Osama bin
Laden’s senior operational planners...

Table 1: Classic errors in the training data gener-
ated by a toy knowledge base of only one entry
personTitle(Abu Zubaydah, leader).

However, the potential of these previously pro-
posed approaches is limited by the inevitable
gap between the relation-level knowledge and the
instance-level extraction task. In this paper, we
present the first effective approach, Guided DS
(distant supervision), to incorporate labeled data
into distant supervision for extracting relations
from sentences. In contrast to simply taking the
union of the hand-labeled data and the corpus la-
beled by distant supervision as in the previous
work by Zhang et al. (2012), we generalize the
labeled data through feature selection and model
this additional information directly in the latent
variable approaches. Aside from previous semi-
supervised work that employs labeled and unla-
beled data (Yarowsky, 2013; Blum and Mitchell,
1998; Collins and Singer, 2011; Nigam, 2001, and
others), this is a learning scheme that combines
unlabeled text and two training sources whose
quantity and quality are radically different (Liang
et al., 2009).

To demonstrate the effectiveness of our pro-
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Guideline g = {gi|i = 1, 2, 3}: Relation r(g)
types of entities, dependency path, span word (optional)
person person, nsubj →← dobj, married personSpouse
person organization, nsubj →← prep of , became personMemberOf
organization organization, nsubj →← prep of , company organizationSubsidiaries
person person, poss→← appos, sister personSiblings
person person, poss→← appos, father personParents
person title,← nn personTitle
organization person, prep of → appos→ organizationTopMembersEmployees
person cause, nsubj →← prep of personCauseOfDeath
person number,← appos personAge
person date, nsubjpass→← prep on← num personDateOfBirth

Table 2: Some examples from the final set G of extracted guidelines.

posed approach, we extend MIML (Surdeanu et
al., 2012), a state-of-the-art distant supervision
model and show a significant improvement of
13.5% in F-score on the relation extraction bench-
mark TAC-KBP (Ji and Grishman, 2011) dataset.
While prior work employed tens of thousands of
human labeled examples (Zhang et al., 2012) and
only got a 6.5% increase in F-score over a logistic
regression baseline, our approach uses much less
labeled data (about 1/8) but achieves much higher
improvement on performance over stronger base-
lines.

2 The Challenge

Simply taking the union of the hand-labeled data
and the corpus labeled by distant supervision is not
effective since hand-labeled data will be swamped
by a larger amount of distantly labeled data. An
effective approach must recognize that the hand-
labeled data is more reliable than the automatically
labeled data and so must take precedence in cases
of conflict. Conflicts cannot be limited to those
cases where all the features in two examples are
the same; this would almost never occur, because
of the dozens of features used by a typical relation
extractor (Zhou et al., 2005). Instead we propose
to perform feature selection to generalize human
labeled data into training guidelines, and integrate
them into latent variable model.

2.1 Guidelines

The sparse nature of feature space dilutes the dis-
criminative capability of useful features. Given
the small amount of hand-labeled data, it is im-
portant to identify a small set of features that are
general enough while being capable of predicting
quite accurately the type of relation that may hold
between two entities.

We experimentally tested alternative feature
sets by building supervised Maximum Entropy
(MaxEnt) models using the hand-labeled data (Ta-
ble 3), and selected an effective combination of
three features from the full feature set used by Sur-
deanu et al., (2011):

• the semantic types of the two arguments (e.g.
person, organization, location, date, title, ...)
• the sequence of dependency relations along the

path connecting the heads of the two arguments
in the dependency tree.
• a word in the sentence between the two argu-

ments

These three features are strong indicators of the
type of relation between two entities. In some
cases the semantic types of the arguments alone
narrows the possibilities to one or two relation
types. For example, entity types such as person
and title often implies the relation personTitle.
Some lexical items are clear indicators of partic-
ular relations, such as “brother” and “sister” for a
sibling relationship

We extract guidelines from hand-labeled data.
Each guideline g={gi|i=1,2,3} consists of a pair
of semantic types, a dependency path, and option-
ally a span word and is associated with a partic-
ular relation r(g). We keep only those guidelines

Model Precision Recall F-score
MaxEntall 18.6 6.3 9.4
MaxEnttwo 24.13 10.75 14.87
MaxEntthree 40.27 12.40 18.97

Table 3: Performance of a MaxEnt, trained on
hand-labeled data using all features (Surdeanu et
al., 2011) vs using a subset of two (types of en-
tities, dependency path), or three (adding a span
word) features, and evaluated on the test set.
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which make the correct prediction for all and at
least k=3 examples in the training corpus (thresh-
old 3 was obtained by running experiments on the
development dataset). Table 2 shows some exam-
ples in the final set G of extracted guidelines.

3 Guided DS
Our goal is to jointly model human-labeled ground
truth and structured data from a knowledge base
in distant supervision. To do this, we extend the
MIML model (Surdeanu et al., 2012) by adding a
new layer as shown in Figure 1.

The input to the model consists of (1) distantly
supervised data, represented as a list of n bags1

with a vector yi of binary gold-standard labels, ei-
ther Positive(P ) or Negative(N) for each rela-
tion r∈R; (2) generalized human-labeled ground
truth, represented as a set G of feature conjunc-
tions g={gi|i=1,2,3} associated with a unique re-
lation r(g). Given a bag of sentences, xi, which
mention an ith entity pair (e1, e2), our goal is to
correctly predict which relation is mentioned in
each sentence, orNR if none of the relations under
consideration are mentioned. The vector zi con-
tains the latent mention-level classifications for the
ith entity pair. We introduce a set of latent vari-
ables hi which model human ground truth for each
mention in the ith bag and take precedence over
the current model assignment zi.

G

|R|

|xi|
n

zi

hi

yi

xi9>>=
>>;

{relation
level

mention
level

Figure 1: Plate diagram of Guided DS

Let i, j be the index in the bag and the men-
tion level, respectively. We model mention-
level extraction p(zij |xij ;wz), human relabel-
ing hij(xij , zij) and multi-label aggregation
p(yr

i |hi;wy). We define:
• yr

i ∈{P,N} : r holds for the ith bag or not.
• xij is the feature representation of the jth rela-

tion mention in the ith bag. We use the same set
of features as in Surdeanu et al. (2012).
1A bag is a set of mentions sharing same entity pair.

• zij∈R ∪ NR: a latent variable that denotes the
relation of the jth mention in the ith bag
• hij ∈R ∪NR: a latent variable that denotes the

refined relation of the mention xij

We define relabeled relations hij as following:

hij(xij , zij)=
{
r(g), if ∃!g∈G s.t.g={gk}⊆{xij}
zij , otherwise

Thus, relation r(g) is assigned to hij iff there
exists a unique guideline g ∈ G, such that the
feature vector xij contains all constituents of g,
i.e. entity types, a dependency path and maybe a
span word, if g has one. We use mention relation
zij inferred by the model only in case no such a
guideline exists or there is more than one match-
ing guideline. We also define:
• wz is the weight vector for the multi-class rela-

tion mention-level classifier2

• wr
y is the weight vector for the rth binary top-

level aggregation classifier (from mention labels
to bag-level prediction). We use wy to represent
w1

y,w
2
y, . . . ,w

|R|
y .

Our approach is aimed at improving the mention-
level classifier, while keeping the multi-instance
multi-label framework to allow for joint modeling.

4 Training
We use a hard expectation maximization algorithm
to train the model. Our objective function is to
maximize log-likelihood of the data:

LL(wy,wz) =
n∑

i=1

log p(yi|xi,wy,wz,G)

=
n∑

i=1

log
∑
hi

p(yi,hi|xi,wy,wz,G)

=
n∑

i=1

log
∑
hi

|hi|∏
j=1

p(hij |xij ,wz,G)
∏

r∈Pi∪Ni

p(yr
i |hi,wr

y)

where the last equality is due to conditional
independence. Because of the non-convexity
of LL(wy,wz) we approximate and maximize
the joint log-probability p(yi,hi|xi,wy,wz,G) for
each entity pair in the database:

log p(yi,hi|xi,wy,wz,G)

=
|hi|∑
j=1

log p(hij |xij ,wz,G)+
∑

r∈Pi∪Ni

log p(yr
i |hi,wr

y).

2All classifiers are implemented using L2-regularized lo-
gistic regression with Stanford CoreNLP package.
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Iteration 1 2 3 4 5 6 7 8
(a) Corrected relations: 2052 718 648 596 505 545 557 535
(b) Retrieved relations: 10219 860 676 670 621 599 594 592
Total relabelings 12271 1578 1324 1264 1226 1144 1153 1127

Table 4: Number of relabelings for each training iteration of Guided DS: (a) relabelings due to cor-
rected relations, e.g. personChildren→ personSiblings (b) relabelings due to retrieved relations, e.g.
notRelated(NR)→personTitle

Algorithm 1 : Guided DS training

1: Phase 1: build set G of guidelines
2: Phase 2: EM training
3: for iteration = 1, . . . , T do
4: for i = 1, . . . , n do
5: for j = 1, . . . , |xi| do
6: z∗ij= argmaxzij

p(zij |xi,yi,wz,wy)

7: h∗ij=
{
r(g), if ∃!g∈G :{gk}⊆{xij}
zij
∗ , otherwise

8: update hi with h∗ij
9: end for

10: end for
11: w∗z=argmaxw

∑n
i=1

∑|xi|
j=1log p(hij |xij ,w)

12: for r ∈ R do
13: wr∗

y =argmaxw

∑
1≤i≤n s.t. r∈Pi∪Ni

log p(yr
i |hi,w)

14: end for
15: end for
16: return wz,wy

The pseudocode is presented as algorithm 1.

The following approximation is used for infer-
ence at step 6:
p(zij |xi,yi,wz,wy) ∝ p(yi, zij |xi,wy,wz)

≈ p(zij |xij ,wz)p(yi|h′i,wy)

= p(zij |xij ,wz)
∏

r∈Pi∪Ni

p(yr
i |h′i,wr

y),

where h′i contains previously inferred and
maybe further relabeled mention labels for group
i (steps 5-10), with the exception of component j
whose label is replaced by zij . In the M-step (lines
12-15) we optimize model parameters wz,wy,
given the current assignment of mention-level la-
bels hi.

Experiments show that Guided DS efficiently
learns new model, resulting in a drastically de-
creasing number of needed relabelings for further
iterations (Table 4). At the inference step we first
classify all mentions:

z∗ij = argmaxz∈R∪NR p(z|xij ,wz)

Then final relation labels for ith entity tuple are

obtained via the top-level classifiers:
yr∗

i = argmaxy∈{P,N} p(y|z∗i ,wr
y)

5 Experiments

5.1 Data

We use the KBP (Ji and Grishman, 2011) dataset3

which is preprocessed by Surdeanu et al. (2011)
using the Stanford parser4 (Klein and Manning,
2003). This dataset is generated by mapping
Wikipedia infoboxes into a large unlabeled corpus
that consists of 1.5M documents from KBP source
corpus and a complete snapshot of Wikipedia.

The KBP 2010 and 2011 data includes 200
query named entities with the relations they are
involved in. We used 40 queries as development
set and the rest 160 queries (3334 entity pairs that
express a relation) as the test set. The official KBP
evaluation is performed by pooling the system re-
sponses and manually reviewing each response,
producing a hand-checked assessment data. We
used KBP 2012 assessment data to generate guide-
lines since queries from different years do not
overlap. It contains about 2500 labeled sentences
of 41 relations, which is less than 0.09% of the
size of the distantly labeled dataset of 2M sen-
tences. The final set G consists of 99 guidelines
(section 2.1).

5.2 Models

We implement Guided DS on top of the MIML
(Surdeanu et al., 2012) code base5. Training
MIML on a simple fusion of distantly-labeled
and human-labeled datasets does not improve the
maximum F-score since this hand-labeled data is
swamped by a much larger amount of distant-
supervised data of much lower quality. Upsam-
pling the labeled data did not improve the perfor-
mance either. We experimented with different up-
sampling ratios and report best results using ratio
1:1 in Figure 2.

3Available from Linguistic Data Consortium (LDC) at
http://projects.ldc.upenn.edu/kbp/data.

4http://nlp.stanford.edu/software/lex-parser.shtml
5Available at http://nlp.stanford.edu/software/mimlre.shtml.
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Figure 2: Performance of Guided DS on KBP task compared to a) baselines: MaxEnt, DS+upsampling,
Semi-MIML (Min et al., 2013) b) state-of-art models: Mintz++ (Mintz et al., 2009), MultiR (Hoffmann
et al., 2011), MIML (Surdeanu et al., 2012)

Our baselines: 1) MaxEnt is a supervised maxi-
mum entropy baseline trained on a human-labeled
data; 2) DS+upsampling is an upsampling ex-
periment, where MIML was trained on a mix of
a distantly-labeled and human-labeled data; 3)
Semi-MIML is a recent semi-supervised exten-
sion. We also compare Guided DS with three
state-of-the-art models: 1) MultiR and 2) MIML
are two distant supervision models that support
multi-instance learning and overlapping relations;
3) Mintz++ is a single-instance learning algorithm
for distant supervision. The difference between
Guided DS and all other systems is significant
with p-value less than 0.05 according to a paired
t-test assuming a normal distribution.

5.3 Results

We scored our model against all 41 relations and
thus replicated the actual KBP evaluation. Figure
2 shows that our model consistently outperforms
all six algorithms at almost all recall levels and im-
proves the maximum F -score by more than 13.5%
relative to MIML (from 28.35% to 32.19%) as well
as increases the area under precision-recall curve
by more than 37% (from 11.74 to 16.1). Also,
Guided DS improves the overall recall by more
than 9% absolute (from 30.9% to 39.93%) at a
comparable level of precision (24.35% for MIML
vs 23.64% for Guided DS), while increases the
running time of MIML by only 3%. Thus, our
approach outperforms state-of-the-art model for
relation extraction using much less labeled data
that was used by Zhang et al., (2012) to outper-

form logistic regression baseline. Performance
of Guided DS also compares favorably with best
scored hand-coded systems for a similar task such
as Sun et al., (2011) system for KBP 2011, which
reports an F-score of 25.7%.

6 Conclusions and Future Work
We show that relation extractors trained with dis-
tant supervision can benefit significantly from a
small number of human labeled examples. We
propose a strategy to generate and select guide-
lines so that they are more generalized forms of
labeled instances. We show how to incorporate
these guidelines into an existing state-of-art model
for relation extraction. Our approach significantly
improves performance in practice and thus opens
up many opportunities for further research in RE
where only a very limited amount of labeled train-
ing data is available.
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Abstract

We investigate recognizing implied
predicate-argument relationships which
are not explicitly expressed in syntactic
structure. While prior works addressed
such relationships as an extension to se-
mantic role labeling, our work investigates
them in the context of textual inference
scenarios. Such scenarios provide prior
information, which substantially eases
the task. We provide a large and freely
available evaluation dataset for our task
setting, and propose methods to cope with
it, while obtaining promising results in
empirical evaluations.

1 Motivation and Task

This paper addresses a typical sub-task in tex-
tual inference scenarios, of recognizing implied
predicate-argument relationships which are not
expressed explicitly through syntactic structure.
Consider the following example:

(i)

The crucial role Vioxx plays in Merck’s port-
folio was apparent last week when Merck’s
shares plunged 27 percent to 33 dollars after the
withdrawal announcement.

While a human reader understands that the
withdrawal refers to Vioxx, and hence an im-
plied predicate-argument relationship holds be-
tween them, this relationship is not expressed in
the syntactic structure, and will be missed by syn-
tactic parsers or standard semantic role labelers.

This paper targets such types of implied rela-
tionships in textual inference scenarios. Partic-
ularly, we investigate the setting of Recognizing
Textual Entailment (RTE) as a typical scenario of
textual inference. We suggest, however, that the
same challenge, as well as the solutions proposed
in our work, are applicable, with proper adap-
tations, to other textual-inference scenarios, like

Question Answering, and Information Extraction
(see Section 6).

An RTE problem instance is composed of two
text fragments, termed Text and Hypothesis, as in-
put. The task is to recognize whether a human
reading the Text would infer that the Hypothesis
is most likely true (Dagan et al., 2006). For our
problem, consider a positive Text Hypothesis pair,
where the Text is example (i) above and the Hy-
pothesis is:

(ii) Merck withdrew Vioxx.

A common approach for recognizing textual en-
tailment is to verify that all the textual elements
of the Hypothesis are covered, or aligned, by el-
ements of the Text. These elements typically in-
clude lexical terms as well as relationships be-
tween them. In our example, the Hypothesis lexi-
cal terms (“Merck”, “withdrew” and “Vioxx”) are
indeed covered by the Text. Yet, the predicate-
argument relationships (e.g., “withdrawal-Vioxx”)
are not expressed in the text explicitly. In such
a case, an RTE system has to verify that the
predicate-argument relationships which are ex-
plicitly expressed in the Hypothesis, are implied
from the Text discourse. Such cases are quite fre-
quent (∼17%) in the settings of our dataset, de-
scribed in Section 3.

Consequently, we define the task of recognizing
implied predicate-argument relationships, with il-
lustrating examples in Table 1, as follows. The
input includes a Text and a Hypothesis. Two terms
in the Hypothesis, predicate and argument, are
marked, where a predicate-argument relationship
between them is explicit in the Hypothesis syntac-
tic structure. Two terms in the Text, candidate-
predicate and candidate-argument, aligned to the
Hypothesis predicate and argument, are marked
as well. However, no predicate-argument rela-
tionship between them is expressed syntactically.
The task is to recognize whether the predicate-
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# Hypothesis Text Y/N
1 Merck [withdrew]pred [Vioxx]arg

from the market.
The crucial role [Vioxx]cand-arg plays in Merck’s
portfolio was apparent last week when Merck’s
shares plunged 27 percent to 33 dollars after the
[withdrawal]cand-pred announcement.

Y

2 Barbara Cummings heard the tale
of a woman who was coming
to Crawford to [join]pred Cindy
Sheehans [protest]arg.

Sheehan’s [protest]cand-arg is misguided and is hurting
troop morale. . . .
Sheehan never wanted Casey to [join]cand-pred the mil-
itary.

N

3 Casey Sheehan was [killed]pred in
[Iraq]arg.

5 days after he arrived in [Iraq]cand-arg last year, Casey
Sheehan was [killed]cand-pred.

Y

4 Hurricane Rita [threatened]pred
[New Orleans]arg.

Hurricane Rita was upgraded from a tropical storm as
it [threatened]cand-pred the southeastern United States,
forcing an alert in southern Florida and scuttling plans
to repopulate [New Orleans]cand-arg after Hurricane
Katrina turned it into a ghost city 3 weeks earlier.

Y

5 Alberto Gonzales defends
[renewal]pred of the [Patriot
Act]arg to Congress.

A senior official defended the [Patriot Act]cand-arg . . .
. . . President Bush has urged Congress to
[renew]cand-pred the law . . .

Y

6 The [train]arg [crash]pred injured
nearly 200 people.

At least 10 people were killed . . . in the [crash]cand-pred
. . .
Alvarez is accused of . . . causing the derailment of one
[train]cand-arg . . .

Y

Table 1: Example task instances from our dataset. The last column specifies the Yes/No annotation,
indicating whether the sought predicate-argument relationship is implied in the Text. For illustration, a
dashed line indicates an explicit argument that is related to the candidate argument through some kind of
discourse reference. Pred, arg and cand abbreviate predicate, argument and candidate respectively.

argument relationship, as expressed in the Hypoth-
esis, holds implicitly also in the Text.

To address this task, we provide a large and
freely available annotated dataset, and propose
methods for coping with it. A related task, de-
scribed in the next section, deals with such implied
predicate-argument relationships as an extension
to Semantic Role Labeling. While the results re-
ported so far on that annotation task were rela-
tively low, we suggest that the task itself may be
more complicated than what is actually required
in textual inference scenarios. On the other hand,
the results obtained for our task, which does fit
textual inference scenarios, are promising, and en-
courage utilizing algorithms for this task in actual
inference systems.

2 Prior Work

The most notable work targeting implied
predicate-argument relationships is the 2010
SemEval task of Linking Events and Their Par-
ticipants in Discourse (Ruppenhofer et al., 2009).

This task extends Semantic Role Labeling to cases
in which a core argument of a predicate is missing
in the syntactic structure but a filler for the
corresponding semantic role appears elsewhere
and can be inferred from discourse. For example,
in the following sentence the semantic role goal is
unfilled:

(iii) He arrived (0Goal ) at 8pm.

Yet, we can expect to find an implied filler for
goal elsewhere in the document.

The SemEval task, termed henceforth as Im-
plied SRL, involves three major sub-tasks. First,
for each predicate, the unfilled roles, termed Null
Instantiations (NI), should be detected. Second,
each NI should be classified as Definite NI (DNI),
meaning that the role filler must exist in the dis-
course, or Indefinite NI otherwise. Third, the DNI
fillers should be found (DNI linking).

Later works that followed the SemEval chal-
lenge include (Silberer and Frank, 2012) and
(Roth and Frank, 2013), which proposed auto-
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matic dataset generation methods and features
which capture discourse phenomena. Their high-
est result was 12% F1-score. Another work is the
probabilistic model of Laparra and Rigau (2012),
which is trained by properties captured not only
from implicit arguments but also from explicit
ones, resulting in 19% F1-score. Another notable
work is (Gerber and Chai, 2012), which was lim-
ited to ten carefully selected nominal predicates.

2.1 Annotations vs. Recognition

Comparing to the implied SRL task, our task may
better fit the needs of textual inference. First, some
relatively complex steps of the implied SRL task
are avoided in our setting, while on the other hand
it covers more relevant cases.

More concretely, in textual inference the can-
didate predicate and argument are typically iden-
tified, as they are aligned by the RTE system to
a predicate and an argument of the Hypothesis.
Thus, the only remaining challenge is to verify
that the sought relationship is implied in the text.
Therefore, the sub-tasks of identifying and classi-
fying DNIs can be avoided.

On the other hand, in some cases the candi-
date argument is not a DNI, but is still required
in textual inference. One type of such cases are
non-core arguments, which cannot be Definite NIs.
However, textual inference deals with non-core ar-
guments as well (see example 3 in Table 1).

Another case is when an implied predicate-
argument relationship holds even though the cor-
responding role is already filled by another argu-
ment, hence not an NI. Consider example 4 of Ta-
ble 1. While the object of “threatened” is filled (in
the Text) by “southeastern United States”, a hu-
man reader also infers the “threatened-New Or-
leans” relationship. Such cases might follow a
meronymy relation between the filler (“southeast-
ern United States”) and the candidate argument
(“New Orleans”), or certain types of discourse (co-
)references (e.g., example 5 in Table 1), or some
other linguistic phenomena. Either way, they are
crucial for textual inference, while not being NIs.

3 Dataset

This section describes a semi-automatic method
for extracting candidate instances of implied
predicate-argument relationship from an RTE
dataset. This extraction process directly follows
our task formalization. Given a Text Hypothe-

sis pair, we locate a predicate-argument relation-
ship in the Hypothesis, where both the predicate
and the argument appear also in the Text, while
the relationship between them is not expressed in
its syntactic structure. This process is performed
automatically, based on syntactic parsing (see be-
low). Then, a human reader annotates each in-
stance as “Yes” – meaning that the implied rela-
tionship indeed holds in the Text, or “No” other-
wise. Example instances, constructed by this pro-
cess, are shown in Table 1.

In this work we used lemma-level lexical
matching, as well as nominalization matching, to
align the Text predicates and arguments to the Hy-
pothesis. We note that more advanced match-
ing, e.g., by utilizing knowledge resources (like
WordNet), can be performed as well. To identify
explicit predicate-argument relationships we uti-
lized dependency parsing by the Easy-First parser
(Goldberg and Elhadad, 2010). Nominalization
matching (e.g., example 1 of Table 1) was per-
formed with Nomlex (Macleod et al., 1998).

By applying this method on the RTE-6 dataset
(Bentivogli et al., 2010), we constructed a
dataset of 4022 instances, where 2271 (56%)
are annotated as positive instances, and 1751
as negative ones. This dataset is significantly
larger than prior datasets for the implied SRL
task. To calculate inter-annotator agreement, the
first author also annotated 185 randomly-selected
instances. We have reached high agreement score
of 0.80 Kappa. The dataset is freely available at
www.cs.biu.ac.il/˜nlp/resources/
downloads/implied-relationships.

4 Recognition Algorithm

We defined 15 features, summarized in Table 2,
which capture local and discourse phenomena.
These features do not depend on manually built
resources, and hence are portable to resource-poor
languages. Some features were proposed in prior
works, and are marked by G&C (Gerber and Chai,
2012) or S&F (Silberer and Frank, 2012). Our best
results were obtained with the Random Forests
learning algorithm (Breiman, 2001). The first two
features are described in the next subsection, while
the others are explained in the table itself.

4.1 Statistical discourse features

Statistical features in prior works mostly cap-
ture general properties of the predicate and the
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# Category Feature Prev. work
1 co-occurring predicate (explained in subsection 4.1) New
2

statistical
discourse co-occurring argument (explained in subsection 4.1) New

3 co-reference: whether an explicit argument of p co-refers with a. New
4 last known location: If the NE of a is “location”, and it is the last

location mentioned before p in the document.
New

5 argument prominence: The frequency of the lemma of a in a two-
sentence windows of p, relative to all entities in that window.

S&F

6

local
discourse

predicate frequency in document: The frequency of p in the docu-
ment, relative to all predicates appear in the document.

G&C

7 statistical argument frequency: The Unigram-model likelihood of a
in English documents, calculated from a large corpus.

New

8 definite NP: Whether a is a definite NP G&C
9 indefinite NP: Whether a is an indefinite NP G&C
10 quantified predicate: Whether p is quantified (i.e., by expressions

like “every . . . ”, “a good deal of . . . ”, etc.)
G&C

11

local
candidate
properties

NE mismatch: Whether a is a named entity but the corresponding
argument in the hypothesis is not, or vice versa.

New

12 predicate-argument frequency: The likelihood of a to be an argu-
ment of p (formally: Pr(a|p)) in a large corpus.

similar feature
in G&C

13 sentence distance: The distance between p and a in sentences. G&C, S&F
14 mention distance: The distance between p and a in entity-mentions. S&F
15

predicate-
argument
relatedness

shared head-predicate: Whether p and a are themselves arguments
of another predicate.

G&C

Table 2: Algorithmic features. p and a denote the candidate predicate and argument respectively.

argument, like selectional preferences, lexical
similarities, etc. On the contrary, our statis-
tical features follow the intuition that explicit
predicate-argument relationships in the discourse
provide plausible indication that an implied
relationship holds as well. In our experiments
we collected the statistics from Reuters corpus
RCV1 (trec.nist.gov/data/reuters/
reuters.html), which contains more than
806,000 documents.

We defined two features: Co-occurring predi-
cate and Co-occurring argument. Let p and a be
the candidate predicate and the argument in the
text. While they are not connected syntactically,
each of them often has an explicit relationships
with other terms in the text, that might support the
sought (implied) relationship between a and p.

More concretely, a is often an explicit argument
of another predicate p′. For example, example 6 in
Table 1 includes the explicit relationship “derail-
ment of train”, which might indicate the implied
relationship “crash of train”. Hence p=“crash”,
a=“train” and p′=“derailment”. The Co-occurring
predicate feature estimates the probability that a

document would contain a as an argument of p,
given that a appears elsewhere in that document
as an argument of p′, based on explicit predicate-
argument relationships in a large corpus.

Similarly, the Co-occurring argument feature
captures cases where p has another explicit argu-
ment, a′. This is exemplified in example 5 of
Table 1, where p=“renew”, a=“Patriot Act” and
a′=“law”. Accordingly, the feature quantifies the
probability that a document including the relation-
ship p-a′ would also include the relationship p-a.

More details about these features can be found
in the first author’s Ph.D. thesis at www.cs.biu.
ac.il/˜nlp/publications/theses/

5 Results

We tested our method in a cross-validation setting,
and obtained high result as shown in the first row
of Table 3. Since our task and dataset are novel,
there is no direct baseline with which we can com-
pare this result. As a reference point we mention
the majority class proportion, and also report a
configuration in which only features adopted from
prior works (G&C and S&F) are utilized. This
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Configuration Accuracy % ∆ %
Full algorithm 81.0 –
Union of prior work 78.0 3.0
Major category (all true) 56.5 24.5

Ablation tests
no statistical discourse 79.9 1.1
no local discourse 79.3 1.7
no local candidate properties 79.2 1.8
no predicate-argument relatedness 79.7 1.3

Table 3: Accuracy of our method, followed by
baselines and ablation tests.

Configuration (input) Recall Precision F1 %
Explicit only 44.6 44.3 44.4
Human annotations 50.9 43.4 46.8
Algorithm recognition 48.5 42.3 45.2

Table 4: RTE-6 Experiment

comparison shows that the contribution of our new
features (3%) is meaningful, which is also statis-
tically significant with p < 0.01 using Bootstrap
Resampling test (Koehn, 2004). The high results
show that this task is feasible, and its solutions
can be adopted as a component in textual infer-
ence systems. The positive contribution of each
feature category is shown in ablation tests.

An additional experiment tests the contribution
of recognizing implied predicate-argument rela-
tionships for overall RTE, specifically on the RTE-
6 dataset. For the scope of this experiment we de-
veloped a simple RTE system, which uses the F1
optimized logistic regression classifier of Jansche
(2005) with two features: lexical coverage and
predicate-argument relationships coverage. We
ran three configurations for the second feature,
where in the first only syntactically expressed re-
lationships are used, in the second all the implied
relationships, as detected by a human annotator,
are added, and in the third only the implied rela-
tionships detected by our algorithm are added.

The results, presented in Table 4, first demon-
strate the full potential of the implied relation-
ship recognition task to improve textual entail-
ment recognition (Human annotation vs. Explicit
only). One third of this potential improvement is
achieved by our algorithm1. Note that all these re-
sults are higher than the median result in the RTE-
6 challenge (36.14%). While the delta in the F1
score is small in absolute terms, such magnitudes

1Following the relatively modest size of the RTE dataset,
the Algorithm vs. Explicit result is not statistically significant
(p ' 0.1). However, the Human annotation vs. Explicit
result is statistically significant with p < 0.01.

are typical in RTE for most resources and tools
(see (Bentivogli et al., 2010)).

6 Discussion and Conclusions

We formulated the task of recognizing implied
predicate-argument relationships within textual in-
ference scenarios. We compared this task to the
labeling task of SemEval 2010, where no prior in-
formation about candidate arguments in the text is
available. We point out that in textual inference
scenarios the candidate predicate and argument
are given by the Hypothesis, while the challenge
is only to verify that a predicate-argument rela-
tionship between these candidates is implied from
the given Text. Accordingly, some complex steps
necessitated in the SemEval task can be avoided,
while additional relevant cases are covered.

Moreover, we have shown that this simpler task
is more feasibly solvable, where our 15 features
achieved more than 80% accuracy.

While our dataset and algorithm were presented
in the context of RTE, the same challenge and
methods are applicable to other textual inference
tasks as well. Consider, for example, the Ques-
tion Answering (QA) task. Typically QA sys-
tems detect a candidate predicate that matches the
question’s predicate. Similarly, candidate argu-
ments, which match either the expected answer
type or other arguments in the question are de-
tected too. Consequently, our methods which ex-
ploit the availability of the candidate predicate and
argument can be adapted to this scenario as well.

Similarly, a typical approach for Event Extrac-
tion (a sub task of Information Extraction) is to
start by applying an entity extractor, which identi-
fies argument candidates. Accordingly, candidate
predicate and arguments are detected in this sce-
nario too, while the remaining challenge is to as-
sess the likelihood that a predicate-argument rela-
tionship holds between them.

Following this observation, we propose future
work of applying our methods to other tasks. An
additional direction for future work is to further
develop new methods for our task, possibly by
incorporating SRL resources and/or linguistically
oriented rules, in order to improve the results we
achieved so far.

Acknowledgments

This work was partially supported by the EC-
funded project EXCITEMENT (FP7ICT-287923).

743



References
Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Trang

Dang, and Danilo Giampiccolo. 2010. The sixth
pascal recognizing textual entailment challenge. In
Proccidings of TAC.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1).

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classifi-
cation, and Recognising Tectual Entailment, pages
177–190.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The stanford typed dependencies rep-
resentation. In proceedings of COLING 2008 Work-
shop on Cross-framework and Cross-domain Parser
Evaluation.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of ACL.

Matthew Gerber and Joyce Y. Chai. 2012. Seman-
tic role labeling of implicit arguments for nominal
predicates. Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of NAACL.

Aria Haghighi and Dan Klein. 2009. Simple coref-
erence resolution with rich syntactic and semantic
features. In Proceedings of EMNLP.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explorations, 11(1).

Martin Jansche. 2005. Maximum expected f-measure
training of logistic regression models. In Proceed-
ings of EMNLP.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP.

Egoitz Laparra and German Rigau. 2012. Exploiting
explicit annotations and semantic types for implicit
argument resolution. In Proceedings of IEEE-ICSC.

Catherine Macleod, Ralph Grishman, Adam Meyers,
Leslie Barrett, and Ruth Reeves. 1998. Nomlex: A
lexicon of nominalizations. In Proceedings of EU-
RALEX.

Michael Roth and Anette Frank. 2013. Automatically
identifying implicit arguments to improve argument
linking and coherence modeling. In Proceedings of
*SEM.

Josef Ruppenhofer, Caroline Sporleder, Roser
Morante, Collin Baker, and Martha Palmer. 2009.
Semeval-2010 task 10: Linking events and their
participants in discourse. In The NAACL-HLT
2009 Workshop on Semantic Evaluations: Recent
Achievements and Future Directions (SEW-09).

Josef Ruppenhofer, Caroline Sporleder, Roser
Morante, Collin Baker, and Martha Palmer. 2010.
Semeval-2010 task 10: Linking events and their
participants in discourse. In Proceedings of the 5th
International Workshop on Semantic Evaluation.

Carina Silberer and Anette Frank. 2012. Casting im-
plicit role linking as an anaphora resolution task. In
Proceedings of *SEM.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of NAACL.

744



Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 745–751,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Measuring metaphoricity

Jonathan Dunn
Department of Computer Science / Illinois Institute of Technology

jonathan.edwin.dunn@gmail.com

Abstract

This paper presents the first
computationally-derived scalar mea-
surement of metaphoricity. Each input
sentence is given a value between 0
and 1 which represents how metaphoric
that sentence is. This measure achieves
a correlation of 0.450 (Pearson’s R, p
<0.01) with an experimental measure of
metaphoricity involving human partici-
pants. While far from perfect, this scalar
measure of metaphoricity allows different
thresholds for metaphoricity so that
metaphor identification can be fitted for
specific tasks and datasets. When reduced
to a binary classification evaluation using
the VU Amsterdam Metaphor Corpus,
the system achieves an F-Measure of
0.608, slightly lower than the comparable
binary classification system’s 0.638 and
competitive with existing approaches.

1 Introduction

Metaphor is a cognitive phenomenon (Lakoff &
Johnson, 1980, 1999) which has a significant im-
pact on human reasoning abilities (Casasanto &
Jasmin, 2012; Johansson Falk & Gibbs, 2012)
and which, as a result, commonly appears in lan-
guage in the form of metaphoric expressions (e.g.,
Deignan, 2005). The most comprehensive non-
computational study of metaphoric expressions in
large corpora (Steen, et al., 2010) found that up
to 18.5% of words in the British National Cor-
pus were used metaphorically. This means that
metaphorically used words not only have very dif-
ferent interpretations than literally used words, but
they are also common enough to pose a significant
challenge for computational linguistics.

Starting with Wilks (1978), the problem of
metaphor has been approached as an identifica-

tion task: first identify or detect metaphoric ex-
pressions and then (1) prevent them from inter-
fering with computational treatments of literal ex-
pressions and (2) use them to gain additional in-
sight about a text (e.g., Carbonell, 1980; Neuman
& Nave, 2009). The identification or detection
task has been approached as a binary classification
problem: for a given unit of language (e.g., word,
phrase, sentence) decide whether it is metaphoric
or non-metaphoric. Wilks (1978) used selectional
restrictions for this purpose; Mason (2004) used
hand-crafted knowledge resources to detect sim-
ilar selectional mismatches; another approach is
to detect selectional mismatches using statistically
created resources (e.g., Shutova, et al. 2013;
Shutova & Sun, 2013). A second general approach
to the binary classification problem has been to use
mismatches in properties like abstractness (Gandy,
et al., 2013; Assaf, et al., 2013; Tsvetkov, et al.,
2013; Turney, et al., 2011), semantic similarity
(Li & Sporleder, 2010; Sporleder & Li, 2010),
and domain membership (Dunn, 2013a, 2013b) to
identify metaphoric units of language. A third ap-
proach has been to use forms of topic modelling
to identify linguistic units which represent both a
metaphoric topic and a literal topic (Strzalkowski,
2013; Bracewell, et al, 2013; Mohler, et al., 2013).

The single constant across all of these ap-
proaches is that the task is viewed as a binary clas-
sification problem of distinguishing metaphoric
language from non-metaphoric language. This
binary distinction assumes a clear boundary be-
tween the two; in other words, it assumes that
metaphoricity is a discrete property. However,
three strands of theoretical research show that
metaphoricity is not a discrete property. First,
psycholinguistic studies of metaphor processing
show that there is no difference between the pro-
cessing of metaphoric and non-metaphoric lan-
guage (Coulson & Matlock, 2001; Gibbs, 2002;
Evans, 2010). The most plausible interpretation
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of this psycholinguistic evidence is that most lin-
guistic units fall somewhere between metaphoric
and literal, so that metaphoricity is a scalar value
which influences processing gradually (and is dif-
ficult to uncover because of related factors like
salience; Giora, 2002). Second, linguistic stud-
ies of metaphor have found that the metaphoric-
ity of a linguistic unit can be predicted given
certain factors (Dunn, 2011, 2013c). Third, the
high frequency of metaphorically used language
implies that it is hard to set a boundary beyond
which a word is used metaphorically. In other
words, it seems clear that 18.5% of the BNC is not
highly metaphoric, but rather is the sort of slightly
metaphoric language that speakers are not con-
sciously aware of because it is used so frequently.

This paper introduces a system for produc-
ing a scalar measurement of metaphoricity which
places sentences anywhere between 0 (literal) and
1 (highly metaphoric). The goal is to produce a
computationally derived measurement that mod-
els the gradient nature of metaphoricity, with the
result that metaphors which are clearly and con-
sciously seen as metaphors score closer to 1 and
metaphors which are not realized by speakers to
be metaphoric score further from 1. This scalar
measurement approach has two advantages: (1) it
adheres more closely to the current theoretical un-
derstanding of metaphor, thus being more cogni-
tively accurate; (2) it allows applications to control
the threshold of metaphoricity when identifying
metaphor, thus allowing the treatment of metaphor
to be optimized for a given task.

2 Measuring Gradient Metaphoricity

An experiment was conducted to set a standard for
evaluating scalar measurements of metaphoricity.
A corpus of 60 sentences of varying metaphoric-
ity, drawn equally from four top-level domains
(PHYSICAL, MENTAL, SOCIAL, and ABSTRACT),
was created using the Corpus of Contemporary
American English. Each domain was represented
by five verbs and each verb by three sentences:
one literal, one slightly metaphoric, and one very
metaphoric (as judged by the author).

The selection of various domains, verbs, and
hypothesized metaphoricity levels helps to control
for other factors, like abstractness, which might be
only indirectly related to metaphoricity. It also en-
sures that the experiment covers a wide-range of
metaphors. It should be noted that the purpose

of the experiment is not to (1) test a three-way
distinction between metaphoricity levels (which is
simply used to ensure a representative selection
of metaphors) or (2) test the author’s intuitions
of metaphoricity. Rather, the purpose is to have
a representative selection of metaphors rated for
metaphoricity against which to test scalar mea-
surements of metaphoricity.

Three survey tasks were used. The first
tested speakers’ ability to consistently separate
metaphoric and non-metaphoric sentences. Partic-
ipants were given a sentence and asked to iden-
tify it as “Literal” or “Metaphoric.” The second
task tested speakers’ ability to consistently label
a given sentence as “Not Metaphoric”, “Slightly
Metaphoric”, and “Very Metaphoric.” The addi-
tional label was added in order to provide partic-
ipants with a middle ground between metaphoric
and literal. The third task tested speakers’ ability
to consistently rank three sentences according to
their metaphoricity. In order to ensure comparabil-
ity, each set of three sentences contained a literal, a
slightly metaphoric, and a very metaphoric use of
a single verb (e.g., three uses of “butcher”). The
purpose of this task was to allow participants to
directly compare different uses of the same verb.

The surveys were conducted using the Mechan-
icalTurk platform. Each participant took a particu-
lar survey only once and the sentences to be rated
were drawn randomly from the corpus. Partici-
pants were given eight questions for the identifica-
tion and labeling tasks and four questions for the
ranking task. This was done in order to keep the
survey short and prevent participants from losing
interest. All participants were asked if they had at-
tended a primary or elementary school conducted
in English in order to ensure consistent language
ability. Further, a test question was positioned part
way through the survey to ensure that participants
read the prompts correctly. Only answers valid ac-
cording to these two tests are considered in the fol-
lowing results. Each task had 100 unique partici-
pants who gave valid answers, for a total of 300
participants. Participants did not see any domain
information for the sentence prompts.

For the first task, the binary identification task,
the metaphoricity of a sentence was computed by
taking the percentage of participants who iden-
tified it as metaphoric. Thus, if all participants
agreed that a sentence was metaphoric, then it re-
ceives a 1, while if half of the participants agreed,
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then it receives a 0.5. The idea here is that high
metaphoricity is consciously available to partici-
pants, so that the more agreement there is about
metaphor the more the participants are aware of
the sentence’s metaphoricity and thus the higher
its metaphoricity value should be. The results of
this first experiment are summarized in Table 1
with the mean, standard deviation, and range of
the metaphoricity measurements. The results are
strong on the low end of the scale, with every
domain having sentences with either 0 values or
close to 0 values. The high end is more problem-
atic, with the highest values in each domain be-
ing below 0.9. This is a result of not having per-
fect agreement across all participants. However,
in spite of this, the measure makes a good distinc-
tion between utterances. For example, it assigns
the metaphoricity value of 0.833 to the sentence
in (1), but a metaphoricity value of only 0.153 to
the sentence in (2). This reflects a distinction in
metaphoricity, although the extreme top and bot-
tom of the scale are problematic.

(1) “A lady on high heels clacked along, the type
my mother says invests all of her brainpower in her
looks.”

(2) “The banks and the corporations in America
today have lots of money that they can invest right
now.”

Domain Mean Std. Dev. Range
Abstract 0.373 0.282 0.065–0.833
Mental 0.289 0.278 0.000–0.888
Physical 0.417 0.331 0.000–0.846
Social 0.389 0.351 0.000–0.812
All 0.367 0.316 0.000–0.888

Table 1: Metaphoricity by identification.

The second experiment asks participants to
label metaphoricity, this time including a dis-
tinction between slightly metaphoric and highly
metaphoric sentences. The purpose of this is not
to test a three-way distinction in metaphoricity
values, but rather to improve the scale by mov-
ing intermediate sentences out of the Literal or
Metaphoric categories. The metaphoricity values
for this experiment were calculated in the same
way: the percentage of participants who rated a
sentence as highly metaphoric. Thus, this mea-
surement also is based on the idea that more
participants will be consciously aware of highly
metaphoric sentences, with a third category avail-

able to allow an extra distinction to be made. This
measurement, summarized in Table 2, is more ac-
curate at the lower end of the scale, with many
sentences receiving a 0 because participants were
able to choose a category other than metaphoric.
At the same time, the values tend to be further
from 1 at the upper end of the scale. The sentence
in (2) above, for example, received a 0; however,
the sentence in (1) above received only a 0.571,
which, while high given the range of values, is still
far from 1. Thus, while the measurement makes
distinctions at the top of the scale, it does not ap-
proach 1.

Domain Mean Std. Dev. Range
Abstract 0.170 0.165 0.000–0.571
Mental 0.096 0.119 0.000–0.455
Physical 0.220 0.248 0.000–0.778
Social 0.258 0.281 0.000–0.769
All 0.186 0.222 0.000–0.778

Table 2: Metaphoricity by labelling.

The third task gathered ordering information by
presenting participants with three sentences, all of
which contained the same main verb. The par-
ticipants were asked to order the sentences from
the least metaphoric to the most metaphoric. The
purpose of this experiment was to give partici-
pants context in the form of other uses of a given
verb against which to make their judgments. The
metaphoricity value was computed by taking the
percentage of participants who identified a sen-
tence as the most metaphoric of the three given
sentences. This measurement, shown in Table 3,
has similar averages across domains, unlike the
previous measurements. It tends to be better than
the previous measures on the upper bound, likely
because of the contextual comparison it allows.
However, because sentences with the same main
verb were forced into a three-way ordering, par-
ticipants could not, for example, label two of the
sentences as equally metaphoric. Thus, it is possi-
ble that some of this advantage on the upper bound
is a result of the task itself.

Given these three experiments for measuring
the metaphoricity of sentences, Table 4 shows the
correlations between each measure using Pear-
son’s R. Each correlation is significant at the 0.01
level (2-tailed). The highest correlation is between
the first and second tasks, at 0.819. The lowest
is between the first and third (which differ in the
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Domain Mean Std. Dev. Range
Abstract 0.333 0.211 0.056–0.773
Mental 0.331 0.175 0.071–0.632
Physical 0.331 0.235 0.050–0.941
Social 0.327 0.280 0.050–0.783
All 0.331 0.227 0.050–0.941

Table 3: Metaphoricity by ordering.

number of distinctions allowed) at 0.699. How-
ever, this is still a high correlation.

Task Identify Label Order
Identify – 0.819 0.699
Label 0.819 – 0.702
Order 0.699 0.702 –

Table 4: Correlation between measurements.

This section has put forward a robust series of
scalar measurements of metaphoricity. Each ex-
periment had 100 participants and operationalized
the task of rating metaphoricity in different ways
across a representative section of domains, verbs,
and metaphoricity levels. The resulting highly cor-
related measures show that we have a good stan-
dard of metaphoricity against which to evaluate
computational models which produce scalar mea-
surements of metaphoricity. The next section in-
troduces such a system.

3 Description of the System

We approach the problem by starting with an exist-
ing binary identification system and converting it
to a scalar system. In principle any of the property-
based systems listed above could be converted in
this way. We have chosen to start with the do-
main interaction system (Dunn, 2013a, 2013b),
which performed competitively in an evaluation
with other systems (Dunn, 2013b). The original
system uses the properties of domain-membership
and event-status of concepts to identify metaphors
at the sentence-level using a logistic regression
classifier. The scalar version of the system will
have to evaluate the features in a different way.

The first step is to increase the robustness of the
system’s representation of sentences by adding ad-
ditional properties. We split the original system’s
domain membership feature into two: the domain
of a word’s referent and the domain of a word’s
sense. The idea is to capture cases like MINISTER,

in which a physical object (a human) is defined by
its social role (being a minister). The event-status
property is unchanged.

Several additional properties are added; these
properties were not used in the original system.
First, animacy-status allows a distinction to be
made between inanimate objects like rocks and
stones and animate or human objects. Second,
the fact-status property allows a distinction to be
made between objects which exist as such in-
dependently of humans (e.g., rocks and stones)
and those which exist to some degree dependent
on human consciousness (e.g., laws and ideas).
Third, the function-status property allows a dis-
tinction to be made between objects which en-
code a function (e.g., a screwdriver is specifically
an object meant to turn screws) and those which
do not encode a function (e.g., rocks are simply
objects). A finer distinction within the function-
status property distinguishes social functions (e.g.,
laws) from physical-use functions (e.g., screw-
drivers).

Following the original system, these properties
are taken from a knowledge-base and used to cre-
ate feature vectors. The text is first processed us-
ing Apache OpenNLP for tokenization, named en-
tity recognition, and part of speech tagging. Mor-
pha (Minnen, et al., 2001) is used for lemmati-
zation. At this point word sense disambiguation
is performed using SenseRelate (Pedersen & Kol-
hatkar, 2009), mapping the lexical words to the
corresponding WordNet senses. These WordNet
senses are first mapped to SynSets and then to con-
cepts in the SUMO ontology, using existing map-
pings (Niles & Pease, 2001, 2003).

Thus, each sentence is represented by the SUMO

concepts which it contains and each concept is
represented by its six concept properties. The fea-
tures used are computed as follows: First, the rela-
tive frequency of each value of each concept prop-
erty in the sentence is determined; Second, the
number of instances of the most common value for
each property is determined, as well as the number
of instances of all other values (both relativized to
the number of concepts present in the sentence).
Third, the number of types of values for each con-
cept property is determined, relative to the number
of possible types. This gives a total of 41 features
for each sentence.

These features were computed for each of
the sentences used in the experiments and then
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the correlation between the features and the
metaphoricity measurements were computed us-
ing Pearson’s R. Those features which had a sig-
nificant positive relationship with the experimen-
tal results, shown in Table 5, were added to-
gether to create a rough computational measure of
metaphoricity and then converted so that they fall
between 0 and 1. The resulting computationally-
derived measure correlates significantly with each
of the experiments: 0.450, 0.416, and 0.337.

Properties Values
Domain of the Referent Mental
Domain of the Referent Other / Concepts
Event-Status State
Animacy-Status Undetermined
Animacy-Status Other / Concepts
Fact-Status Physical
Function-Status None
Domain of the Referent Types / Possible
Event-Status Types / Possible
Animacy-Status Types / Possible
Function-Status (negative) Types / Possible

Table 5: Predictive features.

4 Evaluation

A scalar measurement of metaphoricity allows
the threshold for metaphor in metaphor identifi-
cation tasks to be fitted for specific purposes and
datasets. The scalar system was evaluated on the
VU Amsterdam Metaphor Corpus (Steen, et al.,
2010) which consists of 200,000 words from the
British National Corpus divided into four gen-
res (academic, news, fiction, and spoken; per-
formance on the spoken genre was not evaluated
for this task because it consists of many short
fragmentary utterances) and manually annotated
for metaphor by five raters. Previous evaluations
using this corpus (Dunn, 2013b) concluded that
prepositions annotated as metaphoric in the cor-
pus should not be considered metaphoric for com-
putational purposes. Thus, metaphorically used
prepositions have been untagged as metaphoric.
Further, we have also untagged the ambiguously
metaphoric sentences. Sentences with an insuffi-
ciently robust conceptual representation were re-
moved (e.g., fragments). The evaluation dataset
thus consists of 6,893 sentences, distributed as
shown in Table 6.

For the purposes of this evaluation, the thresh-

Subset Literal Metaphor Total
Academic 759 1,550 2,309
Fiction 1,215 1,389 2,604
News 366 1,614 1,980
Total 2,340 4,553 6,893

Table 6: Size of evaluation dataset in sentences.

old for metaphor was set independently for each
genre and tied to the number of sentences con-
taining metaphorically used words, as rated by
the annotators of the corpus. Thus, for the num-
ber x of metaphors in the genre, the x sentences
with the top metaphoricity values were identified
as metaphoric. This illustrates the flexibility of
such a scalar approach to metaphor identification.
The baseline results are taken from a binary classi-
fication evaluation of the corpus using the full set
of 41 features produced by the system and eval-
uated using the logistic regression algorithm with
100-fold cross-validation.

System Subset Prec. Recall F-Meas.
Scalar Acad. 0.578 0.686 0.578
Binary Acad. 0.649 0.682 0.623
Scalar News 0.712 0.822 0.712
Binary News 0.750 0.812 0.748
Scalar Fict. 0.554 0.582 0.554
Binary Fict. 0.632 0.633 0.630
Scalar All 0.608 0.703 0.608
Binary All 0.663 0.685 0.638

Table 7: Evaluation results.

The binary classification system, with access to
the full range of features, out-performs the scalar
measurement in most cases. It is important to note,
however, that the binary classification system re-
quires labelled training data and is restricted to a
single threshold of metaphoricity, in this case the
threshold embedded in the corpus by the raters.
The scalar system, however, was trained only on
the experimental data and was not influenced by
the evaluation corpus (except, of course, that it
had access to the number of metaphoric sentences
in the dataset, which is a parameter and not part
of the model itself). Further, it can be applied
to any English text without the need for labelled
training data. Thus, the scalar approach performs
competitively on a binary task (0.608 vs. 0.638
F-Measure) but can also produce scalar identifica-
tions, which binary systems cannot produce.
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Abstract

Unsupervised word segmentation (UWS)
can provide domain-adaptive segmenta-
tion for statistical machine translation
(SMT) without annotated data, and bilin-
gual UWS can even optimize segmenta-
tion for alignment. Monolingual UWS ap-
proaches of explicitly modeling the proba-
bilities of words through Dirichlet process
(DP) models or Pitman-Yor process (PYP)
models have achieved high accuracy, but
their bilingual counterparts have only been
carried out on small corpora such as ba-
sic travel expression corpus (BTEC) due to
the computational complexity. This paper
proposes an efficient unified PYP-based
monolingual and bilingual UWS method.
Experimental results show that the pro-
posed method is comparable to super-
vised segmenters on the in-domain NIST
OpenMT corpus, and yields a 0.96 BLEU
relative increase on NTCIR PatentMT cor-
pus which is out-of-domain.

1 Introduction

Many languages, especially Asian languages such
as Chinese, Japanese and Myanmar, have no ex-
plicit word boundaries, thus word segmentation
(WS), that is, segmenting the continuous texts of
these languages into isolated words, is a prerequi-
site for many natural language processing applica-
tions including SMT.

Though supervised-learning approaches which
involve training segmenters on manually seg-
mented corpora are widely used (Chang et al.,
2008), yet the criteria for manually annotat-
ing words are arbitrary, and the available anno-
tated corpora are limited in both quantity and
genre variety. For example, in machine transla-
tion, there are various parallel corpora such as

BTEC for tourism-related dialogues (Paul, 2008)
and PatentMT in the patent domain (Goto et
al., 2011)1, but researchers working on Chinese-
related tasks often use the Stanford Chinese seg-
menter (Tseng et al., 2005) which is trained on a
small amount of annotated news text.

In contrast, UWS, spurred by the findings that
infants are able to use statistical cues to determine
word boundaries (Saffran et al., 1996), relies on
statistical criteria instead of manually crafted stan-
dards. UWS learns from unsegmented raw text,
which are available in large quantities, and thus
it has the potential to provide more accurate and
adaptive segmentation than supervised approaches
with less development effort being required.

The approaches of explicitly modeling the
probability of words(Brent, 1999; Venkataraman,
2001; Goldwater et al., 2006; Goldwater et al.,
2009; Mochihashi et al., 2009) significantly out-
performed a heuristic approach (Zhao and Kit,
2008) on the monolingual Chinese SIGHAN-MSR
corpus (Emerson, 2005), which inspired the work
of this paper.

However, bilingual approaches that model word
probabilities suffer from computational complex-
ity. Xu et al. (2008) proposed a bilingual method
by adding alignment into the generative model, but
was only able to test it on small-scale BTEC data.
Nguyen et al. (2010) used the local best alignment
to increase the speed of the Gibbs sampling in
training but the impact on accuracy was not ex-
plored.

This paper is dedicated to bilingual UWS on
large-scale corpora to support SMT. To this end,
we model bilingual UWS under a similar frame-
work with monolingual UWS in order to improve
efficiency, and replace Gibbs sampling with ex-
pectation maximization (EM) in training.

We aware that variational bayes (VB) may be
used for speeding up the training of DP-based

1http://ntcir.nii.ac.jp/PatentMT
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or PYP-based bilingual UWS. However, VB re-
quires formulating them expectations of(m−1)-
dimensional marginal distributions, wherem is
the number of hidden variables. For UWS, the
hidden variables are indicators that identify sub-
strings of sentences in the corpus as words. These
variables are large in number and it is not clear
how to apply VB to UWS, and as far the authors
aware there is no previous work related to the ap-
plication of VB to monolingual UWS. Therefore,
we have not explored VB methods in this paper,
but we do show that our method is superior to the
existing methods.

The contributions of this paper include,

• state-of-the-art accuracy in monolingual
UWS;

• the first bilingual UWS method practical for
large corpora;

• improvement of BLEU scores compared
to supervised Stanford Chinese word seg-
menter.

2 Methods

This section describes our unified monolingual
and bilingual UWS scheme. Table 1 lists the main
notation. The setF is chosen to represent an un-
segmented foreign language sentence (a sequence
of characters), because an unsegmented sentence
can be seen as the set of all possible segmentations
of the sentence denotedF , i.e. F ∈ F .

Notation Meaning
F an unsegmented foreign sentence
Fk′

k unsegmented substring of the un-
derlying string ofF from k to k′

F a segmented foreign sentence
fj thej-th foreign word
M monolingual segmentation model
PM(x) probability ofx being a word ac-

cording toM
E a tokenized English sentence
ei thei-th English word
(F ,E) a bilingual sentence pair
B bilingual segmentation model
PB(x|ei) probability ofx being a word ac-

cording toB givenei

Table 1: Main Notation.

Monolingual and bilingual WS can be formu-
lated as follows, respectively,

F̂ (F) = argmax
F∈F

P (F |F ,M), (1)

F̂ (F , E) = argmax
F∈F

∑
a

P (F, a|F , E,B), (2)

wherea is an alignment betweenF andE. The
English sentenceE is used in the generation of a
segmented sentenceF .

UWS learns models by maximizing the likeli-
hood of the unsegmented corpus, formulated as,

M̂ = argmax
M

∏
F∈F

( ∑
F∈F

P (F |M)
)
, (3)

B̂ = argmax
B

∏
(F ,E)∈B

( ∑
F∈F

∑
a

P (F, a|F , E,B)
)
.

(4)

Our method of learningM andB proceeds in a
similar manner to the EM algorithm. The follow-
ing two operations are performed iteratively for
each sentence (pair).

• Exclude the previous expected counts of the
current sentence (pair) from the model, and
then derive the current sentence in all pos-
sible ways, calculating the new expected
counts for the words (see Section 2.1), that
is, we calculate the expected probabilities of
theFk′

k being words given the data excluding
F , i.e. EF/{F}(P (Fk′

k |F)) = P (Fk′
k |F ,M)

in a similar manner to the marginalization in
the Gibbs sampling process which we are re-
placing;

• Update the respective modelM orB accord-
ing to these expectations (see Section2.2).

2.1 Expectation

2.1.1 Monolingual Expectation

P (Fk′
k |F ,M) is the marginal probability of all

the possibleF ∈ F that containFk′
k as a word,

which can be calculated efficiently through dy-
namic programming (the process is similar to the
foreward-backward algorithm in training a hidden
Markov model (HMM) (Rabiner, 1989)):

Pa(k) =
U∑

u=1

Pa(k − u)PM(Fk
k−u)

Pb(k′) =
U∑

u=1

Pb(k′ + u)PM(Fk′+u
k′ )

P (Fk′
k |F ,M) = Pa(k)PM(Fk′

k )Pb(k′), (5)
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whereU is the predefined maximum length of for-
eign language words,Pa(k) and Pb(k′) are the
forward and backward probabilities, respectively.
This section uses a unigram model for description
convenience, but the method can be extended to
n-gram models.

2.1.2 Bilingual Expectation

P (Fk′
k |F , E,B) is the marginal probability of all

the possibleF ∈ F that containFk′
k as a word and

are aligned withE, formulated as:

P (Fk′
k |F , E,B) =

∑
F∈F
Fk′

k ∈F

∑
a

P (F, a|E,B)

≈
∑
F∈F

Fjk
=Fk′

k

∑
a

J∏
j=1

P (aj |j, I, J)PB(fj |eaj )

=
∑
F∈F

fjk
=Fk′

k

J∏
j=1

∑
a

P (aj |j, I, J)PB(fj |eaj ),

(6)

whereJ andI are the number of foreign and En-
glish words, respectively, andaj is the position of
the English word that is aligned tofj in the align-
menta. For the alignment we employ an approx-
imation to IBM model 2 (Brown et al., 1993; Och
and Ney, 2003) described below.

We define the conditional probability offj

given the corresponding English sentenceE and
the modelB as:

PB(fj |E) =
∑

a

P (aj |j, I, J)PB(fj |eaj ) (7)

Then, the previous dynamic programming
method can be extended to the bilingual expecta-
tion

Pa(k|E) =
U∑

u=1

Pa(k − u|E)PB(Fk
k−u|E)

Pb(k′|E) =
U∑

u=1

Pb(k′ + u|E)PB(Fk′+u
k′ |E)

P (F k′
k |F , E,B) = Pa(k|E)PB(Fk′

k |E)Pb(k′|E).
(8)

Eq. 7 can be rewritten (as in IBM model 2):

PB(fj |E) =
I∑

i=1

P ∗(i|j, I, J)PB(fj |ei) (9)

P ∗(i|j, I, J) =
∑

a:aj=i

P (aj |, j, I, J)

In order to maintain both speed and accuracy, the
following window function is adopted

P ∗(i|j, I, J) ≈ P ∗(i|k, I, K) =
e−|i−kI/K|/σ |i− kI/K| 6 δb/2
λφ ei is empty word
0 otherwise

(10)

whereK is the number of characters inF , and
thek-th character is the start of the wordfj , since
j andJ are unknown during the computation of
dynamic programming.δb is the window size,λφ

is the prior probability of an empty English word,
andσ ensures all the items sum to 1.

2.2 Maximization

Inspired by (Teh, 2006; Mochihashi et al., 2009;
Neubig et al., 2010; Teh and Jordan, 2010), we
employ a Pitman-Yor process model to build the
segmentation modelM or B. The monolingual
modelM is

PM(fj) =

max
(
n(fj)− d, 0

)
+ (θ + d · nM)G0(fj)∑

f ′
j
n(f ′j) + θ

nM =
∣∣{fj |n(fj) > d}∣∣, (11)

wherefj is a foreign language word, andn(fj) is
the observed counts offj , θ is named the strength
parameter,G0(fj) is named the base distribution
of fj , andd is the discount.

The bilingual model is

PB(fj |ei) =

max
(
n(fj , ei)− d, 0

)
+ (θ + d · nei)G0(fj |ei)∑

f ′
j
n(f ′j , ei) + θ

nei =
∣∣{x |n(x, ei) > d}∣∣. (12)

In Eqs. 11 and 12,

n(fj) =
∑
F∈F

P (fj |F ,M) (13)

n(fj , ei) =∑
(F ,E)∈B

P (fj |F , E,B)
P ∗(i|j, I, J)PB(fj |ei)∑I

i′=1 P ∗(i′|j, I, J)PB(fj |ei′)
.

(14)
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3 Complexity Analysis

The computational complexity of our method is
linear in the number of iterations, the size of the
corpus, and the complexity of calculating the ex-
pectations on each sentence or sentence pair. In
practical applications, the size of the corpus is
fixed, and we found empirically that the number
of iterations required by the proposed method for
convergence is usually small (less than five itera-
tions). We now look in more detail at the complex-
ity of the expectation calculation in monolingual
and bilingual models.

The monolingual expectation is calculated ac-
cording to Eq. 5; the complexity is linear in the
length of sentences and the square of the prede-
fined maximum length of words. Thus its overall
complexity is

O
unigram
monoling = O(Ni |F|KU2), (15)

whereNi is the number of iterations,K is the av-
erage number of characters per sentence, andU is
the predefined maximum length of words.

For the monolingual bigram model, the number
of states in the HMM isU times more than that
of the monolingual unigram model, as the states at
specific position ofF are not only related to the
length of the current word, but also related to the
length of the word before it. Thus its complexity
is U2 times the unigram model’s complexity:

O
bigram
monoling = O(Ni |F|KU4). (16)

The bilingual expectation is given by Eq. 8,
whose complexity is the same as the monolingual
case. However, the complexity of calculating the
transition probability, in Eqs. 9 and 10, isO(δb).
Thus its overall complexity is:

O
unigram
biling = O(Ni |F|KU2δb). (17)

4 Experiments

In this section, the proposed method is first val-
idated on monolingual segmentation tasks, and
then evaluated in the context of SMT to study
whether the translation quality, measured by
BLEU, can be improved.

4.1 Experimental Settings

4.1.1 Experimental Corpora

Two monolingual corpora and two bilingual cor-
pora are used (Table 2). CHILDES (MacWhin-
ney and Snow, 1985) is the most common test

Corpus Type # Sentences # Characters
CHILDES Mono. 9,790 95,809
SIGHAN-MSR Mono. 90,903 4,234,824
OpenMT06 Biling. 437,004 19,692,605
PatentMT9 Biling. 1,004,000 63,130,757

Table 2: Experimental Corpora

corpus for UWS methods. The SIGHAN-MSR
corpus (Emerson, 2005) consists of manually seg-
mented simplified Chinese news text, released in
the SIGHAN bakeoff 2005 shared tasks.

The first bilingual corpus: OpenMT06 was used
in the NIST open machine translation 2006 Eval-
uation 2. We removed the United Nations cor-
pus and the traditional Chinese data sets from the
constraint training resources. The data sets of
NIST Eval 2002 to 2005 were used as the develop-
ment for MERT tuning (Och, 2003). This data set
mainly consists of news text3. PatentMT9 is from
the shared task of NTCIR-9 patent machine trans-
lation . The training set consists of 1 million par-
allel sentences extracted from patent documents,
and the development set and test set both consist
of 2000 sentences.

4.1.2 Performance Measurement and
Baseline Methods

For the monolingual tasks, the F1 score against
the gold annotation is adopted to measure the ac-
curacy. The results reported in related papers are
listed for comparison.

For the bilingual tasks, the publicly available
system of Moses (Koehn et al., 2007) with default
settings is employed to perform machine transla-
tion, and BLEU (Papineni et al., 2002) was used
to evaluate the quality. Character-based segmen-
tation, LDC segmenter and Stanford Chinese seg-
menters were used as the baseline methods.

4.1.3 Parameter settings

The parameters are tuned on held-out data sets.
The maximum length of foreign language words
is set to 4. For the PYP model, the base distri-
bution adopts the formula in (Chung and Gildea,
2009), and the strength parameter is set to1.0, and
the discount is set to1.0× 10−6.

For bilingual segmentation,the size of the align-
ment window is set to6; the probabilityλφ of for-
eign language words being generated by an empty

2http://www.itl.nist.gov/iad/mig/
/tests/mt/2006/

3It also contains a small number of web blogs
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Method Accuracy Time
CHILD. MSR CHILD. MSR

NPY(bigram)a 0.750 0.802 17 m –
NPY(trigram)a 0.757 0.807 – –
HDP(bigram)b 0.723 – 10 h –
Fitnessc – 0.667 – –
Prop.(unigram) 0.729 0.804 3 s 50 s
Prop.(bigram) 0.774 0.806 15 s 2530 s
a by (Mochihashi et al.,2009);
b by (Goldwater et al.,2009);
c by (Zhao and Kit, 2008).

Table 3: Results on Monolingual Corpora.

English word, was set to0.3.
The training was started from assuming that

there was no previous segmentations on each sen-
tence (pair), and the number of iterations was
fixed. It was set to 3 for the monolingual unigram
model, and 2 for the bilingual unigram model,
which provided slightly higher BLEU scores on
the development set than the other settings. The
monolingual bigram model, however, was slower
to converge, so we started it from the segmenta-
tions of the unigram model, and using 10 itera-
tions.

4.2 Monolingual Segmentation Results

In monolingual segmentation, the proposed meth-
ods with both unigram and bigram models were
tested. Experimental results show that they are
competitive to state-of-the-art baselines in both ac-
curacy and speed (Table 3). Note that the com-
parison of speed is only for reference because the
times are obtained from their respective papers.

4.3 Bilingual Segmentation Results

Table 4 presents the BLEU scores for Moses using
different segmentation methods. Each experiment
was performed three times. The proposed method
with monolingual bigram model performed poorly
on the Chinese monolingual segmentation task;
thus, it was not tested. We intended to test (Mochi-
hashi et al., 2009), but found it impracticable on
large-scale corpora.

The experimental results show that the proposed
UWS methods are comparable to the Stanford seg-
menters on the OpenMT06 corpus, while achieves
a 0.96 BLEU increase on the PatentMT9 corpus.
This is because this corpus is out-of-domain for
the supervised segmenters. The CTB and PKU
Stanford segmenter were both trained on anno-
tated news text, which was the major domain of
OpenMT06.

Method BLEU
OpenMT06 PatentMT9

Character 29.50± 0.03 28.36± 0.09
LDC 31.33± 0.10 30.22± 0.14
Stanford(CTB) 31.68 ± 0.25 30.77± 0.13
Stanford(PKU) 31.54± 0.13 30.86± 0.04
Prop.(mono.) 31.47± 0.18 31.62± 0.06
Prop.(biling.) 31.61± 0.14 31.73 ± 0.05

Table 4: Results on Bilingual Corpora.

Method Time
OpenMT06 PatentMT9

Prop.(mono.) 28 m 1 h 01 m
Prop.(biling.) 2 h 25 m 5 h 02 m

Table 5: Time Costs on Bilingual Corpora.

Table 5 presents the run times of the proposed
methods on the bilingual corpora. The program
is single threaded and implemented in C++. The
time cost of the bilingual models is about 5 times
that of the monolingual model, which is consistent
with the complexity analysis in Section 3.

5 Conclusion

This paper is devoted to large-scale Chinese UWS
for SMT. An efficient unified monolingual and
bilingual UWS method is proposed and applied to
large-scale bilingual corpora.

Complexity analysis shows that our method is
capable of scaling to large-scale corpora. This was
verified by experiments on a corpus of 1-million
sentence pairs on which traditional MCMC ap-
proaches would struggle (Xu et al., 2008).

The proposed method does not require any
annotated data, but the SMT system with it
can achieve comparable performance compared
to state-of-the-art supervised word segmenters
trained on precious annotated data. Moreover,
the proposed method yields 0.96 BLEU improve-
ment relative to supervised word segmenters on
an out-of-domain corpus. Thus, we believe that
the proposed method would benefit SMT related to
low-resource languages where annotated data are
scare, and would also find application in domains
that differ too greatly from the domains on which
supervised word segmenters were trained.

In future research, we plan to improve the bilin-
gual UWS through applying VB and integrating
more accurate alignment models such as HMM
models and IBM model 4.
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Abstract

This paper addresses the problem of EM-
based decipherment for large vocabular-
ies. Here, decipherment is essentially
a tagging problem: Every cipher token
is tagged with some plaintext type. As
with other tagging problems, this one can
be treated as a Hidden Markov Model
(HMM), only here, the vocabularies are
large, so the usual O(NV 2) exact EM ap-
proach is infeasible. When faced with
this situation, many people turn to sam-
pling. However, we propose to use a type
of approximate EM and show that it works
well. The basic idea is to collect fractional
counts only over a small subset of links
in the forward-backward lattice. The sub-
set is different for each iteration of EM.
One option is to use beam search to do the
subsetting. The second method restricts
the successor words that are looked at, for
each hypothesis. It does this by consulting
pre-computed tables of likely n-grams and
likely substitutions.

1 Introduction

The decipherment of probabilistic substitution ci-
phers (ciphers in which each plaintext token can
be substituted by any cipher token, following a
distribution p(f |e), cf. Table 2) can be seen as
an important step towards decipherment for MT.
This problem has not been studied explicitly be-
fore. Scaling to larger vocabularies for proba-
bilistic substitution ciphers decipherment is a dif-
ficult problem: The algorithms for 1:1 or homo-
phonic substitution ciphers are not applicable, and
standard algorithms like EM training become in-
tractable when vocabulary sizes go beyond a few
hundred words. In this paper we present an effi-

cient EM based training procedure for probabilis-
tic substitution ciphers which provides high deci-
pherment accuracies while having low computa-
tional requirements. The proposed approach al-
lows using high order n-gram language models,
and is scalable to large vocabulary sizes. We show
improvements in decipherment accuracy in a va-
riety of experiments (including MT) while being
computationally more efficient than previous pub-
lished work on EM-based decipherment.

2 Related Work

Several methods exist for deciphering 1:1 substi-
tution ciphers: Ravi and Knight (2008) solve 1:1
substitution ciphers by formulating the decipher-
ment problem as an integer linear program. Cor-
lett and Penn (2010) solve the same problem us-
ing A∗ search. Nuhn et al. (2013) present a beam
search approach that scales to large vocabulary
and high order language models. Even though be-
ing successful, these algorithms are not applicable
to probabilistic substitution ciphers, or any of its
extensions as they occur in decipherment for ma-
chine translation.

EM training for probabilistic ciphers was first
covered in Ravi and Knight (2011). Nuhn et al.
(2012) have given an approximation to exact EM
training using context vectors, allowing to train-
ing models even for larger vocabulary sizes. Ravi
(2013) report results on the OPUS subtitle corpus
using an elaborate hash sampling technique, based
on n-gram language models and context vectors,
that is computationally very efficient.

Conventional beam search is a well studied
topic: Huang et al. (1992) present beam search for
automatic speech recognition, using fine-grained
pruning procedures. Similarly, Young and Young
(1994) present an HMM toolkit, including pruned
forward-backward EM training. Pal et al. (2006)
use beam search for training of CRFs.
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Method Publications Complexity

EM Full (Knight et al., 2006), (Ravi and Knight, 2011) O(NV n)
EM Fixed Candidates (Nuhn et al., 2012) O(N)
EM Beam This Work O(NV )
EM Lookahead This Work O(N)

Table 1: Different approximations to exact EM training for decipherment. N is the cipher sequence
length, V the size of the target vocabulary, and n the order of the language model.

The main contribution of this work is the pre-
selection beam search that—to the best of our
knowledge—was not known in literature before,
and serves as an important step to applying EM
training to the large vocabulary decipherment
problem. Table 1 gives an overview of the EM
based methods. More details are given in Sec-
tion 3.2.

3 Probabilistic Substitution Ciphers

We define probabilistic substitutions ciphers us-
ing the following generative story for ciphertext
sequences fN

1 :

1. Stochastically generate a plaintext sequence
eN1 according to a bigram1 language model.

2. For each plaintext token en choose a substi-
tution fn with probability P (fn|en, ϑ).

This generative story corresponds to the model

p(eN1 , f
N
1 , ϑ) = p(eN1 ) · p(fN

1 |eN1 , ϑ) , (1)

with the zero-order membership model

p(fN
1 |eN1 , ϑ) =

N∏
n=1

plex(fn|en, ϑ) (2)

with parameters p(f |e, ϑ) ≡ ϑf |e and normaliza-
tion constraints ∀e∑f ϑf |e = 1, and first-order
plaintext sequence model

P (eN1 ) =
N∏

n=1

pLM (en|en−1) . (3)

Thus, the probabilistic substitution cipher can be
seen as a Hidden Markov Model. Table 2 gives an
overview over the model. We want to find those
parameters ϑ that maximize the marginal distribu-
tion p(fN

1 |ϑ):

ϑ = arg max
ϑ′

∑
[eN

1 ]

p(fN
1 , e

N
1 |ϑ′)

 (4)

1This can be generalized to n-gram language models.

After we obtained the parameters ϑ we
can obtain eN1 as the Viterbi decoding
arg maxeN

1

{
p(eN1 |fN

1 , ϑ)
}

.

3.1 Exact EM training
In the decipherment setting, we are given the ob-
served ciphertext fN

1 and the model p(fN
1 |eN1 , ϑ)

that explains how the observed ciphertext has been
generated given a latent plaintext eN1 . Marginaliz-
ing the unknown eN1 , we would like to obtain the
maximum likelihood estimate of ϑ as specified in
Equation 4. We iteratively compute the maximum
likelihood estimate by applying the EM algorithm
(Dempster et al., 1977):

ϑ̃f |e =

∑
n:fn=f

pn(e|fN
1 , ϑ)∑

f

∑
n:fn=f

pn(e|fN
1 , ϑ)

(5)

with

pn(e|fN
1 , ϑ) =

∑
[eN

1 :en=e]

p(eN1 |fN
1 , ϑ) (6)

being the posterior probability of observing the
plaintext symbol e at position n given the cipher-
text sequence fN

1 and the current parameters ϑ.
pn(e|fN

1 , ϑ) can be efficiently computed using the
forward-backward algorithm.

3.2 Approximations to EM-Training
The computational complexity of EM training
stems from the sum

∑
[eN

1 :en=e] contained in the
posterior pn(e|fN

1 , ϑ). However, we can approx-
imate this sum (and hope that the EM training
procedure is still working) by only evaluating the
dominating terms, i.e. we only evaluate the sum
for sequences eN1 that have the largest contribu-
tions to

∑
[eN

1 :en=e]. Note that due to this approxi-
mation, the new parameter estimates in Equation 5
can become zero. This is a critical issue, since
pairs (e, f) with p(f |e) = 0 cannot recover from
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Sequence of cipher tokens : fN
1 = f1, . . . , fN

Sequence of plaintext tokens : eN1 = e1, . . . , eN
Joint probability : p(fN

1 , e
N
1 |ϑ) = p(eN1 ) · p(fN

1 |eN1 , ϑ)

Language model : p(eN1 ) =
N∏

n=1
pLM (en|en−1)

Membership probabilities : p(fN
1 |eN1 , ϑ) =

N∏
n=1

plex(fn|en, ϑ)

Paramater Set : ϑ = {ϑf |e}, p(f |e, ϑ) = ϑf |e
Normalization : ∀e :

∑
f

ϑf |e = 1

Probability of cipher sequence : p(fN
1 |ϑ) =

∑
[eN

1 ]

p(fN
1 , e

N
1 |ϑ)

Table 2: Definition of the probabilistic substitution cipher model. In contrast to simple or homophonic
substitution ciphers, each plaintext token can be substituted by multiple cipher text tokens. The parameter
ϑf |e represents the probability of substituting token e with token f .

acquiring zero probability in some early iteration.
In order to allow the lexicon to recover from these
zeros, we use a smoothed lexicon ˆplex(f |e) =
λplex(f |e) + (1 − λ)/|Vf | with λ = 0.9 when
conducting the E-Step.

3.2.1 Beam Search
Instead of evaluating the sum for terms with the
exact largest contributions, we restrict ourselves to
terms that are likely to have a large contribution to
the sum, dropping any guarantees about the actual
contribution of these terms.

Beam search is a well known algorithm related
to this idea: We build up sequences ec1 with grow-
ing cardinality c. For each cardinality, only a set
of the B most promising hypotheses is kept. Then
for each active hypothesis of cardinality c, all pos-
sible extensions with substitutions fc+1 → ec+1

are explored. Then in turn only the best B out of
the resulting B · Ve many hypotheses are kept and
the algorithm continues with the next cardinality.
Reaching the full cardinality N , the algorithm ex-
plored B ·N · Ve many hypotheses, resulting in a
complexity of O(BNVe).

Even though EM training using beam search
works well, it still suffers from exploring all Ve

possible extensions for each active hypothesis, and
thus scaling linearly with the vocabulary size. Due
to that, standard beam search EM training is too
slow to be used in the decipherment setting.

3.2.2 Preselection Search
Instead of evaluating all substitutions fc+1 →
ec+1 ∈ Ve, this algorithm only expands a fixed
number of candidates: For a hypothesis ending in

a language model state σ, we only look at BLM

many successor words ec+1 with the highest LM
probability pLM (ec+1|σ) and at Blex many suc-
cessor words ec+1 with the highest lexical prob-
ability plex(fc+1|ec+1). Altogether, for each hy-
pothesis we only look at (BLM +Blex) many suc-
cessor states. Then, just like in the standard beam
search approach, we prune all explored new hy-
potheses and continue with the pruned set of B
many hypotheses. Thus, for a cipher of length N
we only explore N · B · (BLM + Blex) many hy-
potheses.2

Intuitively speaking, our approach solves the
EM training problem for decipherment using large
vocabularies by focusing only on those substitu-
tions that either seem likely due to the language
model (”What word is likely to follow the cur-
rent partial decipherment?”) or due to the lexicon
model (”Based on my knowledge about the cur-
rent cipher token, what is the most likely substitu-
tion?”).

In order to efficiently find the maximizing e for
pLM (e|σ) and plex(f |e), we build a lookup ta-
ble that contains for each language model state σ
the BLM best successor words e, and a separate
lookup table that contains for each source word f
the Blex highest scoring tokens e. The language
model lookup table remains constant during all it-
erations, while the lexicon lookup table needs to
be updated between each iteration.

Note that the size of the LM lookup table scales
linearly with the number of language model states.
Thus the memory requirements for the lookup ta-

2We always use B = 100, Blex = 5, and BLM = 50.
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Figure 1: Illustration of the search space explored by full search, beam search, and preselection search.
Full search keeps all possible hypotheses at cardinality c and explores all possible substitutions at (c+1).
Beam search only keeps the B most promising hypotheses and then selects the best new hypotheses for
cardinality (c+ 1) from all possible substitutions. Preselection search keeps only the B best hypotheses
for every cardinality c and only looks at the (Blex + BLM ) most promising substitutions for cardinality
(c+ 1) based on the current lexicon (Blex dashed lines) and language model (BLM solid lines).

Name Lang. Sent. Words Voc.

VERBMOBIL English 27,862 294,902 3,723

OPUS
Spanish 13,181 39,185 562

English 19,770 61,835 411

Table 3: Statistics of the copora used in this pa-
per: The VERBMOBIL corpus is used to conduct
experiments on simple substitution ciphers, while
the OPUS corpus is used in our Machine Transla-
tion experiments.

ble do not form a practical problem of our ap-
proach. Figure 1 illustrates full search, beam
search, and our proposed method.

4 Experimental Evaluation

We first show experiments for data in which the
underlying model is an actual 1:1 substitution ci-
pher. In this case, we report the word accuracy
of the final decipherment. We then show experi-
ments for a simple machine translation task. Here
we report translation quality in BLEU. The cor-
pora used in this paper are shown in Table 3.

4.1 Simple Substitution Ciphers
In this set of experiments, we compare the exact
EM training to the approximations presented in
this paper. We use the English side of the German-
English VERBMOBIL corpus (Wahlster, 2000) to
construct a word substitution cipher, by substitut-
ing every word type with a unique number. In or-
der to have a non-parallel setup, we train language

Vocab LM Method Acc.[%] Time[h]

200 2 exact 97.19 224.88
200 2 beam 98.87 9.04
200 2 presel. 98.50 4.14

500 2 beam 92.12 24.27
500 2 presel. 92.16 4.70

3 661 3 beam 91.16 302.81
3 661 3 presel. 90.92 19.68

3 661 4 presel. 92.14 23.72

Table 4: Results for simple substitution ciphers
based on the VERBMOBIL corpus using exact,
beam, and preselection EM. Exact EM is not
tractable for vocabulary sizes above 200.

models of order 2, 3 and 4 on the first half of the
corpus and use the second half as ciphertext. Ta-
ble 4 shows the results of our experiments.

Since exact EM is not tractable for vocabulary
sizes beyond 200 words, we train word classes on
the whole corpus and map the words to classes
(consistent along the first and second half of the
corpus). By doing this, we create new simple sub-
stitution ciphers with smaller vocabularies of size
200 and 500. For the smallest setup, we can di-
rectly compare all three EM variants. We also in-
clude experiments on the original corpus with vo-
cabulary size of 3661. When comparing exact EM
training with beam- and preselection EM training,
the first thing we notice is that it takes about 20
times longer to run the exact EM training than
training with beam EM, and about 50 times longer
than the preselection EM training. Interestingly,
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Model Method BLEU [%] Runtime

2-gram Exact EM(Ravi and Knight, 2011) 15.3 850.0h
whole segment lm Exact EM(Ravi and Knight, 2011) 19.3 850.0h

2-gram Preselection EM (This work) 15.7 1.8h
3-gram Preselection EM (This work) 19.5 1.9h

Table 5: Comparison of MT performance (BLEU scores) and efficiency (running time in CPU hours) on
the Spanish/English OPUS corpus using only non-parallel corpora for training.

the accuracy of the approximations to exact EM
training is better than that of the exact EM train-
ing. Even though this needs further investigation,
it is clear that the pruned versions of EM training
find sparser distributions plex(f |e): This is desir-
able in this set of experiments, and could be the
reason for improved performance.

For larger vocabularies, exact EM training is not
tractable anymore. We thus constrain ourselves to
running experiments with beam and preselection
EM training only. Here we can see that the runtime
of the preselection search is roughly the same as
when running on a smaller vocabulary, while the
beam search runtime scales almost linearly with
the vocabulary size. For the full vocabulary of
3661 words, preselection EM using a 4-gram LM
needs less than 7% of the time of beam EM with a
3-gram LM and performs by 1% better in symbol
accuracy.

To summarize: Beam search EM is an or-
der of magnitude faster than exact EM training
while even increasing decipherment accuracy. Our
new preselection search method is in turn or-
ders of magnitudes faster than beam search EM
while even being able to outperform exact EM and
beam EM by using higher order language mod-
els. We were thus able to scale the EM deci-
pherment to larger vocabularies of several thou-
sand words. The runtime behavior is also consis-
tent with the computational complexity discussed
in Section 3.2.

4.2 Machine Translation

We show that our algorithm is directly applicable
to the decipherment problem for machine transla-
tion. We use the same simplified translation model
as presented by Ravi and Knight (2011). Because
this translation model allows insertions and dele-
tions, hypotheses of different cardinalities coex-
ist during search. We extend our search approach
such that pruning is done for each cardinality sep-

arately. Other than that, we use the same pres-
election search procedure as used for the simple
substitution cipher task.

We run experiments on the opus corpus as pre-
sented in (Tiedemann, 2009). Table 5 shows pre-
viously published results using EM together with
the results of our new method:

(Ravi and Knight, 2011) is the only publication
that reports results using exact EM training and
only n-gram language models on the target side:
It has an estimated runtime of 850h. All other
published results (using EM training and Bayesian
inference) use context vectors as an additional
source of information: This might be an explana-
tion why Nuhn et al. (2012) and Ravi (2013) are
able to outperform exact EM training as reported
by Ravi and Knight (2011). (Ravi, 2013) reports
the most efficient method so far: It only consumes
about 3h of computation time. However, as men-
tioned before, those results are not directly compa-
rable to our work, since they use additional context
information on the target side.

Our algorithm clearly outperforms the exact
EM training in run time, and even slighlty im-
proves performance in BLEU. Similar to the sim-
ple substitution case, the improved performance
might be caused by inferring a sparser distribution
plex(f |e). However, this requires further investi-
gation.

5 Conclusion

We have shown a conceptually consistent and easy
to implement EM based training method for deci-
pherment that outperforms exact and beam search
EM training for simple substitution ciphers and
decipherment for machine translation, while re-
ducing training time to a fraction of exact and
beam EM. We also point out that the preselection
method presented in this paper is not restricted to
word based translation models and can also be ap-
plied to phrase based translation models.
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Abstract

We introduce XMEANT—a new cross-lingual
version of the semantic frame based MT
evaluation metric MEANT—which can cor-
relate even more closely with human ade-
quacy judgments than monolingual MEANT
and eliminates the need for expensive hu-
man references. Previous work established
that MEANT reflects translation adequacy
with state-of-the-art accuracy, and optimiz-
ing MT systems against MEANT robustly im-
proves translation quality. However, to go
beyond tuning weights in the loglinear SMT
model, a cross-lingual objective function that
can deeply integrate semantic frame crite-
ria into the MT training pipeline is needed.
We show that cross-lingual XMEANT out-
performs monolingual MEANT by (1) replac-
ing the monolingual context vector model in
MEANT with simple translation probabilities,
and (2) incorporating bracketing ITG con-
straints.

1 Introduction

We show that XMEANT, a new cross-lingual ver-
sion of MEANT (Lo et al., 2012), correlates with
human judgment even more closely than MEANT
for evaluating MT adequacy via semantic frames,
despite discarding the need for expensive human
reference translations. XMEANT is obtained by
(1) using simple lexical translation probabilities,
instead of the monolingual context vector model
used in MEANT for computing the semantic role
fillers similarities, and (2) incorporating bracket-
ing ITG constrains for word alignment within the
semantic role fillers. We conjecture that the rea-
son that XMEANT correlates more closely with
human adequacy judgement than MEANT is that
on the one hand, the semantic structure of the
MT output is closer to that of the input sentence

than that of the reference translation, and on the
other hand, the BITG constraints the word align-
ment more accurately than the heuristic bag-of-
word aggregation used in MEANT. Our results
suggest that MT translation adequacy is more ac-
curately evaluated via the cross-lingual semantic
frame similarities of the input and the MT output
which may obviate the need for expensive human
reference translations.

The MEANT family of metrics (Lo and Wu,
2011a, 2012; Lo et al., 2012) adopt the princi-
ple that a good translation is one where a human
can successfully understand the central meaning
of the foreign sentence as captured by the basic
event structure: “who did what to whom, when,
where and why” (Pradhan et al., 2004). MEANT
measures similarity between the MT output and
the reference translations by comparing the simi-
larities between the semantic frame structures of
output and reference translations. It is well estab-
lished that the MEANT family of metrics corre-
lates better with human adequacy judgments than
commonly used MT evaluation metrics (Lo and
Wu, 2011a, 2012; Lo et al., 2012; Lo and Wu,
2013b; Macháček and Bojar, 2013). In addition,
the translation adequacy across different genres
(ranging from formal news to informal web fo-
rum and public speech) and different languages
(English and Chinese) is improved by replacing
BLEU or TER with MEANT during parameter
tuning (Lo et al., 2013a; Lo and Wu, 2013a; Lo
et al., 2013b).

In order to continue driving MT towards better
translation adequacy by deeply integrating seman-
tic frame criteria into the MT training pipeline, it is
necessary to have a cross-lingual semantic objec-
tive function that assesses the semantic frame sim-
ilarities of input and output sentences. We there-
fore propose XMEANT, a cross-lingual MT evalu-
ation metric, that modifies MEANT using (1) sim-
ple translation probabilities (in our experiments,
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from quick IBM-1 training), to replace the mono-
lingual context vector model in MEANT, and (2)
constraints from BITGs (bracketing ITGs). We
show that XMEANT assesses MT adequacy more
accurately than MEANT (as measured by correla-
tion with human adequacy judgement) without the
need for expensive human reference translations in
the output language.

2 Related Work

2.1 MT evaluation metrics

Surface-form oriented metrics such as BLEU (Pa-
pineni et al., 2002), NIST (Doddington, 2002),
METEOR (Banerjee and Lavie, 2005), CDER
(Leusch et al., 2006), WER (Nießen et al., 2000),
and TER (Snover et al., 2006) do not correctly re-
flect the meaning similarities of the input sentence.
In fact, a number of large scale meta-evaluations
(Callison-Burch et al., 2006; Koehn and Monz,
2006) report cases where BLEU strongly dis-
agrees with human judgments of translation ade-
quacy.

This has caused a recent surge of work to de-
velop better ways to automatically measure MT
adequacy. Owczarzak et al. (2007a,b) improved
correlation with human fluency judgments by us-
ing LFG to extend the approach of evaluating syn-
tactic dependency structure similarity proposed by
Liu and Gildea (2005), but did not achieve higher
correlation with human adequacy judgments than
metrics like METEOR. TINE (Rios et al., 2011) is
a recall-oriented metric which aims to preserve the
basic event structure but it performs comparably
to BLEU and worse than METEOR on correlation
with human adequacy judgments. ULC (Giménez
and Màrquez, 2007, 2008) incorporates several
semantic features and shows improved correla-
tion with human judgement on translation quality
(Callison-Burch et al., 2007, 2008) but no work
has been done towards tuning an SMT system us-
ing a pure form of ULC perhaps due to its expen-
sive run time. Similarly, SPEDE (Wang and Man-
ning, 2012) predicts the edit sequence for match-
ing the MT output to the reference via an inte-
grated probabilistic FSM and PDA model. Sagan
(Castillo and Estrella, 2012) is a semantic textual
similarity metric based on a complex textual en-
tailment pipeline. These aggregated metrics re-
quire sophisticated feature extraction steps, con-
tain several dozens of parameters to tune, and em-
ploy expensive linguistic resources like WordNet

Figure 1: Monolingual MEANT algorithm.

or paraphrase tables; the expensive training, tun-
ing, and/or running time makes them hard to in-
corporate into the MT development cycle.

2.2 The MEANT family of metrics
MEANT (Lo et al., 2012), which is the weighted f-
score over the matched semantic role labels of the
automatically aligned semantic frames and role
fillers, that outperforms BLEU, NIST, METEOR,
WER, CDER and TER in correlation with human
adequacy judgments. MEANT is easily portable
to other languages, requiring only an automatic se-
mantic parser and a large monolingual corpus in
the output language for identifying the semantic
structures and the lexical similarity between the
semantic role fillers of the reference and transla-
tion.

Figure 1 shows the algorithm and equations for
computing MEANT. q0

i,j and q1
i,j are the argument

of type j in frame i in MT and REF respectively.
w0

i and w1
i are the weights for frame i in MT/REF

respectively. These weights estimate the degree of
contribution of each frame to the overall meaning
of the sentence. wpred and wj are the weights of
the lexical similarities of the predicates and role
fillers of the arguments of type j of all frame be-
tween the reference translations and the MT out-
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Figure 2: Examples of automatic shallow semantic parses. The input is parsed by a Chinese automatic
shallow semantic parser. The reference and MT output are parsed by an English automatic shallow
semantic parser. There are no semantic frames for MT3 since the system decided to drop the predicate.

put. There is a total of 12 weights for the set
of semantic role labels in MEANT as defined in
Lo and Wu (2011b). For MEANT, they are de-
termined using supervised estimation via a sim-
ple grid search to optimize the correlation with
human adequacy judgments (Lo and Wu, 2011a).
For UMEANT (Lo and Wu, 2012), they are es-
timated in an unsupervised manner using relative
frequency of each semantic role label in the refer-
ences and thus UMEANT is useful when human
judgments on adequacy of the development set are
unavailable.

si,pred and si,j are the lexical similarities based
on a context vector model of the predicates and
role fillers of the arguments of type j between the
reference translations and the MT output. Lo et al.
(2012) and Tumuluru et al. (2012) described how
the lexical and phrasal similarities of the semantic
role fillers are computed. A subsequent variant of
the aggregation function inspired by Mihalcea et
al. (2006) that normalizes phrasal similarities ac-
cording to the phrase length more accurately was
used in more recent work (Lo et al., 2013a; Lo
and Wu, 2013a; Lo et al., 2013b). In this paper,
we employ a newer version of MEANT that uses
f-score to aggregate individual token similarities
into the composite phrasal similarities of seman-
tic role fillers, as our experiments indicate this is
more accurate than the previously used aggrega-
tion functions.

Recent studies (Lo et al., 2013a; Lo and Wu,
2013a; Lo et al., 2013b) show that tuning MT sys-

tems against MEANT produces more robustly ad-
equate translations than the common practice of
tuning against BLEU or TER across different data
genres, such as formal newswire text, informal
web forum text and informal public speech.

2.3 MT quality estimation
Evaluating cross-lingual MT quality is similar to
the work of MT quality estimation (QE). Broadly
speaking, there are two different approaches to
QE: surface-based and feature-based.

Token-based QE models, such as those in Gan-
drabur et al. (2006) and Ueffing and Ney (2005)
fail to assess the overall MT quality because trans-
lation goodness is not a compositional property. In
contrast, Blatz et al. (2004) introduced a sentence-
level QE system where an arbitrary threshold is
used to classify the MT output as good or bad.
The fundamental problem of this approach is that
it defines QE as a binary classification task rather
than attempting to measure the degree of goodness
of the MT output. To address this problem, Quirk
(2004) related the sentence-level correctness of the
QE model to human judgment and achieved a high
correlation with human judgement for a small an-
notated corpus; however, the proposed model does
not scale well to larger data sets.

Feature-based QE models (Xiong et al., 2010;
He et al., 2011; Ma et al., 2011; Specia, 2011;
Avramidis, 2012; Mehdad et al., 2012; Almaghout
and Specia, 2013; Avramidis and Popović, 2013;
Shah et al., 2013) throw a wide range of linguis-
tic and non-linguistic features into machine learn-
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Figure 3: Cross-lingual XMEANT algorithm.

ing algorithms for predicting MT quality. Al-
though the feature-based QE system of Avramidis
and Popović (2013) slightly outperformed ME-
TEOR on correlation with human adequacy judg-
ment, these “black box” approaches typically lack
representational transparency, require expensive
running time, and/or must be discriminatively re-
trained for each language and text type.

3 XMEANT: a cross-lingual MEANT

Like MEANT, XMEANT aims to evaluate how
well MT preserves the core semantics, while
maintaining full representational transparency.
But whereas MEANT measures lexical similar-
ity using a monolingual context vector model,
XMEANT instead substitutes simple cross-lingual
lexical translation probabilities.

XMEANT differs only minimally from
MEANT, as underlined in figure 3. The same
weights obtained by optimizing MEANT against
human adequacy judgement were used for
XMEANT. The weights can also be estimated in
unsupervised fashion using the relative frequency
of each semantic role label in the foreign input, as
in UMEANT.

To aggregate individual lexical translation prob-
abilities into phrasal similarities between cross-
lingual semantic role fillers, we compared two nat-
ural approaches to generalizing MEANT’s method
of comparing semantic parses, as described below.

3.1 Applying MEANT’s f-score within
semantic role fillers

The first natural approach is to extend MEANT’s
f-score based method of aggregating semantic
parse accuracy, so as to also apply to aggregat-

ing lexical translation probabilities within seman-
tic role filler phrases. However, since we are miss-
ing structure information within the flat role filler
phrases, we can no longer assume an injective
mapping for aligning the tokens of the role fillers
between the foreign input and the MT output. We
therefore relax the assumption and thus for cross-
lingual phrasal precision/recall, we align each to-
ken of the role fillers in the output/input string
to the token of the role fillers in the input/output
string that has the maximum lexical translation
probability. The precise definition of the cross-
lingual phrasal similarities is as follows:

ei,pred ≡ the output side of the pred of aligned frame i

fi,pred ≡ the input side of the pred of aligned frame i

ei,j ≡ the output side of the ARG j of aligned frame i

fi,j ≡ the input side of the ARG j of aligned frame i

p(e, f) =
√

t (e|f) t (f |e)

prece,f =

∑
e∈e max

f∈f
p(e, f)

|e|

rece,f =

∑
f∈f max

e∈e
p(e, f)

|f|

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

si,j =
2 · precei,j ,fi,j

· recei,j ,fi,j

precei,j ,fi,j
+ recei,j ,fi,j

where the joint probability p is defined as the har-
monized the two directions of the translation table
t trained using IBM model 1 (Brown et al., 1993).
prece,f is the precision and rece,f is the recall of
the phrasal similarities of the role fillers. si,pred

and si,j are the f-scores of the phrasal similarities
of the predicates and role fillers of the arguments
of type j between the input and the MT output.

3.2 Applying MEANT’s ITG bias within
semantic role fillers

The second natural approach is to extend
MEANT’s ITG bias on compositional reorder-
ing, so as to also apply to aggregating lexical
translation probabilities within semantic role filler
phrases. Addanki et al. (2012) showed empiri-
cally that cross-lingual semantic role reordering of
the kind that MEANT is based upon is fully cov-
ered within ITG constraints. In Wu et al. (2014),
we extend ITG constraints into aligning the tokens
within the semantic role fillers within monolingual
MEANT, thus replacing its previous monolingual
phrasal aggregation heuristic. Here we borrow the
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idea for the cross-lingual case, using the length-
normalized inside probability at the root of a BITG
biparse (Wu, 1997; Zens and Ney, 2003; Saers and
Wu, 2009) as follows:

G ≡ ⟨{A} ,W0,W1,R, A⟩
R ≡ {A → [AA] , A → ⟨AA⟩, A → e/f}

p ([AA] |A) = p (⟨AA⟩|A) = 0.25

p (e/f |A) =
1

2

√
t (e|f) t (f |e)

si,pred =
1

1− ln
(

P
(
A ∗⇒ei,pred/fi,pred|G

))
max(|ei,pred|,|fi,pred|)

si,j =
1

1− ln
(

P
(
A ∗⇒ei,j/fi,j |G

))
max(|ei,j |,|fi,j |)

where G is a bracketing ITG, whose only nonter-
minal is A, and where R is a set of transduction
rules where e ∈ W0 ∪ {ϵ} is an output token
(or the null token), and f ∈ W1 ∪ {ϵ} is an in-
put token (or the null token). The rule probabil-
ity function p is defined using fixed probabilities
for the structural rules, and a translation table t
trained using IBM model 1 in both directions. To
calculate the inside probability of a pair of seg-
ments, P

(
A ∗⇒ e/f|G

)
, we use the algorithm de-

scribed in Saers et al. (2009). si,pred and si,j are
the length normalized BITG parsing probabilities
of the predicates and role fillers of the arguments
of type j between the input and the MT output.

4 Results

Table 1 shows that for human adequacy judgments
at the sentence level, the f-score based XMEANT
(1) correlates significantly more closely than other
commonly used monolingual automatic MT eval-
uation metrics, and (2) even correlates nearly as
well as monolingual MEANT. This suggests that
the semantic structure of the MT output is indeed
closer to that of the input sentence than that of the
reference translation.

Furthermore, the ITG-based XMEANT (1) sig-
nificantly outperforms MEANT, and (2) is an au-
tomatic metric that is nearly as accurate as the
HMEANT human subjective version. This indi-
cates that BITG constraints indeed provide a more
robust token alignment compared to the heuris-
tics previously employed in MEANT. It is also
consistent with results observed while estimating
word alignment probabilities, where BITG con-
straints outperformed alignments from GIZA++
(Saers and Wu, 2009).

Table 1: Sentence-level correlation with HAJ
(GALE phase 2.5 evaluation data)

Metric Kendall
HMEANT 0.53
XMEANT (BITG) 0.51
MEANT (f-score) 0.48
XMEANT (f-score) 0.46
MEANT (2013) 0.46
NIST 0.29
BLEU/METEOR/TER/PER 0.20
CDER 0.12
WER 0.10

5 Conclusion

We have presented XMEANT, a new cross-lingual
variant of MEANT, that correlates even more
closely with human translation adequacy judg-
ments than MEANT, without the expensive human
references. This is (1) accomplished by replacing
monolingual MEANT’s context vector model with
simple translation probabilities when computing
similarities of semantic role fillers, and (2) fur-
ther improved by incorporating BITG constraints
for aligning the tokens in semantic role fillers.
While monolingual MEANT alone accurately re-
flects adequacy via semantic frames and optimiz-
ing SMT against MEANT improves translation,
the new cross-lingual XMEANT semantic objec-
tive function moves closer toward deep integration
of semantics into the MT training pipeline.

The phrasal similarity scoring has only been
minimally adapted to cross-lingual semantic role
fillers in this first study of XMEANT. We expect
further improvements to XMEANT, but these first
results already demonstrate XMEANT’s potential
to drive research progress toward semantic SMT.
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Abstract

In this paper we study the use of sentence-
level dialect identification in optimizing
machine translation system selection when
translating mixed dialect input. We test
our approach on Arabic, a prototypical
diglossic language; and we optimize the
combination of four different machine
translation systems. Our best result im-
proves over the best single MT system
baseline by 1.0% BLEU and over a strong
system selection baseline by 0.6% BLEU
on a blind test set.

1 Introduction

A language can be described as a set of dialects,
among which one "standard variety" has a spe-
cial representative status.1 Despite being increas-
ingly ubiquitous in informal written genres such
as social media, most non-standard dialects are
resource-poor compared to their standard variety.
For statistical machine translation (MT), which re-
lies on the existence of parallel data, translating
from non-standard dialects is a challenge. In this
paper we study the use of sentence-level dialect
identification together with various linguistic fea-
tures in optimizing the selection of outputs of four
different MT systems on input text that includes a
mix of dialects.

We test our approach on Arabic, a prototypi-
cal diglossic language (Ferguson, 1959) where the
standard form of the language, Modern Standard
Arabic (MSA) and the regional dialects (DA) live
side-by-side and are closely related. MSA is the
language used in education, scripted speech and
official settings while DA is the primarily spoken

1This paper presents work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) contract No.
HR0011-12-C-0014. Any opinions, findings and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of DARPA.

native vernacular. We consider two DAs: Egyp-
tian and Levantine Arabic in addition to MSA. Our
best system selection approach improves over our
best baseline single MT system by 1.0% absolute
BLEU point on a blind test set.

2 Related Work

Arabic Dialect Machine Translation. Two ap-
proaches have emerged to alleviate the problem
of DA-English parallel data scarcity: using MSA
as a bridge language (Sawaf, 2010; Salloum and
Habash, 2011; Salloum and Habash, 2013; Sajjad
et al., 2013), and using crowd sourcing to acquire
parallel data (Zbib et al., 2012). Sawaf (2010)
and Salloum and Habash (2013) used hybrid so-
lutions that combine rule-based algorithms and re-
sources such as lexicons and morphological ana-
lyzers with statistical models to map DA to MSA
before using MSA-to-English MT systems. Zbib
et al. (2012) obtained a 1.5M word parallel corpus
of DA-English using crowd sourcing. Applied on
a DA test set, a system trained on their 1.5M word
corpus outperformed a system that added 150M
words of MSA-English data, as well as outper-
forming a system with oracle DA-to-MSA pivot.

In this paper we use four MT systems that trans-
late from DA to English in different ways. Similar
to Zbib et al. (2012), we use DA-English, MSA-
English and DA+MSA-English systems. Our DA-
English data includes the 1.5M words created by
Zbib et al. (2012). Our fourth MT system uses
ELISSA, the DA-to-MSA MT tool by Salloum and
Habash (2013), to produce an MSA pivot.

Dialect Identification. There has been a num-
ber of efforts on dialect identification (Biadsy et
al., 2009; Zaidan and Callison-Burch, 2011; Ak-
bacak et al., 2011; Elfardy et al., 2013; Elfardy
and Diab, 2013). Elfardy et al. (2013) performed
token-level dialect ID by casting the problem as
a code-switching problem and treating MSA and
Egyptian as two different languages. They later
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used features from their token-level system to train
a classifier that performs sentence-level dialect ID
(Elfardy and Diab, 2013). In this paper, we use
AIDA, the system of Elfardy and Diab (2013), to
provide a variety of dialect ID features to train
classifiers that select, for a given sentence, the MT
system that produces the best translation.

System Selection and Combination in Machine
Translation. The most popular approach to MT
system combination involves building confusion
networks from the outputs of different MT sys-
tems and decoding them to generate new transla-
tions (Rosti et al., 2007; Karakos et al., 2008; He
et al., 2008; Xu et al., 2011). Other researchers
explored the idea of re-ranking the n-best output
of MT systems using different types of syntactic
models (Och et al., 2004; Hasan et al., 2006; Ma
and McKeown, 2013). While most researchers
use target language features in training their re-
rankers, others considered source language fea-
tures (Ma and McKeown, 2013).

Most MT system combination work uses MT
systems employing different techniques to train on
the same data. However, in this paper, we use the
same MT algorithms for training, tuning, and test-
ing, but vary the training data, specifically in terms
of the degree of source language dialectness. Our
approach runs a classifier trained only on source
language features to decide which system should
translate each sentence in the test set, which means
that each sentence goes through one MT system
only. Since we do not combine the output of the
MT systems on the phrase level, we call our ap-
proach "system selection" to avoid confusion.

3 Machine Translation Experiments

In this section, we present our MT experimental
setup and the four baseline systems we built, and
we evaluate their performance and the potential of
their combination. In the next section we present
and evaluate the system selection approach.

MT Tools and Settings. We use the open-source
Moses toolkit (Koehn et al., 2007) to build four
Arabic-English phrase-based statistical machine
translation systems (SMT). Our systems use a
standard phrase-based architecture. The parallel
corpora are word-aligned using GIZA++ (Och and
Ney, 2003). The language model for our systems
is trained on English Gigaword (Graff and Cieri,
2003). We use SRILM Toolkit (Stolcke, 2002)
to build a 5-gram language model with modified

Kneser-Ney smoothing. Feature weights are tuned
to maximize BLEU on tuning sets using Mini-
mum Error Rate Training (Och, 2003). Results
are presented in terms of BLEU (Papineni et al.,
2002). All evaluation results are case insensi-
tive. The English data is tokenized using simple
punctuation-based rules. The MSA portion of the
Arabic side is segmented according to the Arabic
Treebank (ATB) tokenization scheme (Maamouri
et al., 2004; Sadat and Habash, 2006) using the
MADA+TOKAN morphological analyzer and tok-
enizer v3.1 (Roth et al., 2008), while the DA por-
tion is ATB-tokenized with MADA-ARZ (Habash
et al., 2013). The Arabic text is also Alif/Ya nor-
malized. For more details on processing Arabic,
see (Habash, 2010).

MT Train/Tune/Test Data. We have two par-
allel corpora. The first is a DA-English corpus
of 5M tokenized words of Egyptian (∼3.5M)
and Levantine (∼1.5M). This corpus is part of
BOLT data. The second is an MSA-English cor-
pus of 57M tokenized words obtained from sev-
eral LDC corpora (10 times the size of the DA-
English data). We work with eight standard MT
test sets: three MSA sets from NIST MTEval with
four references (MT06, MT08, and MT09), four
Egyptian sets from LDC BOLT data with two ref-
erences (EgyDevV1, EgyDevV2, EgyDevV3, and
EgyTestV2), and one Levantine set from BBN
(Zbib et al., 2012) with one reference which we
split into LevDev and LevTest. We used MT08
and EgyDevV3 to tune SMT systems while we di-
vided the remaining sets among classifier training
data (5,562 sentences), dev (1,802 sentences) and
blind test (1,804 sentences) sets to ensure each of
these new sets has a variety of dialects and genres
(weblog and newswire).

MT Systems. We build four MT systems.
(1) DA-Only. This system is trained on the DA-

English data and tuned on EgyDevV3.
(2) MSA-Only. This system is trained on the

MSA-English data and tuned on MT08.
(3) DA+MSA. This system is trained on the

combination of both corpora (resulting in 62M to-
kenized2 words on the Arabic side) and tuned on

2Since the DA+MSA system is intended for DA data and
DA morphology, as far as tokenization is concerned, is more
complex, we tokenized the training data with dialect aware-
ness (DA with MADA-ARZ and MSA with MADA) since
MADA-ARZ does a lot better than MADA on DA (Habash
et al., 2013). Tuning and Test data, however, are tokenized
by MADA-ARZ since we do not assume any knowledge of
the dialect of a test sentence.
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EgyDevV3.
(4) MSA-Pivot. This MSA-pivoting system

uses Salloum and Habash (2013)’s DA-MSA MT
system followed by an Arabic-English SMT sys-
tem which is trained on both corpora augmented
with the DA-English where the DA side is prepro-
cessed with the same DA-MSA MT system then
tokenized with MADA-ARZ. The result is 67M
tokenized words on the Arabic side. EgyDevV3
was similarly preprocessed with the DA-MSA MT
system and MADA-ARZ and used for tuning the
system parameters. Test sets are similarly prepro-
cessed before decoding with the SMT system.

Baseline MT System Results. We report the re-
sults of our dev set on the four MT systems we
built in Table 1. The MSA-Pivot system produces
the best singleton result among all systems. All
differences in BLEU scores between the four sys-
tems are statistically significant above the 95%
level. Statistical significance is computed using
paired bootstrap re-sampling (Koehn, 2004).

System Training Data (TD) BLEU
Name DA-En MSA-En DAT -En TD Size

1. DA-Only 5M 5M 26.6
2. MSA-Only 57M 57M 32.7
3. DA+MSA 5M 57M 62M 33.6
4. MSA-Pivot 5M 57M 5M 67M 33.9
Oracle System Selection 39.3

Table 1: Results from the baseline MT systems and their or-
acle system selection. The training data west used in different
MT systems are also indicated. DAT (in the fourth column)
is the DA part of the 5M word DA-En parallel data processed
with the DA-MSA MT system.

Oracle System Selection. We also report in Ta-
ble 1 an oracle system selection where we pick, for
each sentence, the English translation that yields
the best BLEU score. This oracle indicates that
the upper bound for improvement achievable from
system selection is 5.4% BLEU. Excluding dif-
ferent systems from the combination lowered the
overall score between 0.9% and 1.8%, suggesting
the systems are indeed complementary.

4 MT System Selection

The approach we take in this paper benefits from
the techniques and conclusions of previous papers
in that we build different MT systems similar to
those discussed above but instead of trying to find
which one is the best, we try to leverage the use
of all of them by automatically deciding what sen-
tences should go to which system. Our hypothesis

is that these systems complement each other in in-
teresting ways where the combination of their se-
lections could lead to better overall performance
stipulating that our approach could benefit from
the strengths while avoiding the weaknesses of
each individual system.

4.1 Dialect ID Binary Classification
For baseline system selection, we use the clas-
sification decision of Elfardy and Diab (2013)’s
sentence-level dialect identification system to de-
cide on the target MT system. Since the deci-
sion is binary (DA or MSA) and we have four MT
systems, we considered all possible configurations
and determined empirically that the best configu-
ration is to select MSA-Only for the MSA tag and
MSA-Pivot for the DA tag. We do not report other
configuration results due to space restrictions.

4.2 Feature-based Four-Class Classification
For our main approach, we train a four-class clas-
sifier to predict the target MT system to select
for each sentence using only source-language fea-
tures. We experimented with different classifiers
in the Weka Data Mining Tool (Hall et al., 2009)
for training and testing our system selection ap-
proach. The best performing classifier was Naive
Bayes (with Weka’s default settings).

Training Data Class Labels. We run the
5,562 sentences of the classification training
data through our four MT systems and produce
sentence-level BLEU scores (with length penalty).
We pick the name of the MT system with the high-
est BLEU score as the class label for that sen-
tence. When there is a tie in BLEU scores, we pick
the system label that yields better overall BLEU
scores from the systems tied.

Training Data Source-Language Features.
We use two sources of features extracted from
untokenized sentences to train our four-class
classifiers: basic and extended features.

A. Basic Features
These are the same set of features that were used
by the dialect ID tool together with the class label
generated by this tool.

i. Token-Level Features. These features rely on
language models, MSA and Egyptian morphologi-
cal analyzers and a Highly Dialectal Egyptian lex-
icon to decide whether each word is MSA, Egyp-
tian, Both, or Out of Vocabulary.

ii. Perplexity Features. These are two features
that measure the perplexity of a sentence against
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two language models: MSA and Egyptian.
iii. Meta Features. Features that do not di-

rectly relate to the dialectalness of words in the
given sentence but rather estimate how informal
the sentence is and include: percentage of to-
kens, punctuation, and Latin words, number of to-
kens, average word length, whether the sentence
has any words that have word-lengthening effects
or not, whether the sentence has any diacritized
words or not, whether the sentence has emoticons
or not, whether the sentence has consecutive re-
peated punctuation or not, whether the sentence
has a question mark or not, and whether the sen-
tence has an exclamation mark or not.

iv. The Dialect-Class Feature. We run the sen-
tence through the Dialect ID binary classifier and
we use the predicted class label (DA or MSA) as a
feature in our system. Since the Dialect ID system
was trained on a different data set, we think its de-
cision may provide additional information to our
classifiers.

B. Extended Features
We add features extracted from two sources.

i. MSA-Pivoting Features. Salloum and Habash
(2013) DA-MSA MT system produces interme-
diate files used for diagnosis or debugging pur-
poses. We exploit one file in which the sys-
tem identifies (or, "selects") dialectal words and
phrases that need to be translated to MSA. We ex-
tract confidence indicating features. These fea-
tures are: sentence length (in words), percent-
age of selected words and phrases, number of se-
lected words, number of selected phrases, num-
ber of words morphologically selected as dialec-
tal by a mainly Levantine morphological analyzer,
number of words selected as dialectal by the tool’s
DA-MSA lexicons, number of OOV words against
the MSA-Pivot system training data, number of
words in the sentences that appeared less than 5
times in the training data, number of words in the
sentences that appeared between 5 and 10 times
in the training data, number of words in the sen-
tences that appeared between 10 and 15 times
in the training data, number of words that have
spelling errors and corrected by this tool (e.g.,
word-lengthening), number of punctuation marks,
and number of words that are written in Latin
script.

ii. MT Training Data Source-Side LM Perplex-
ity Features. The second set of features uses per-
plexity against language models built from the
source-side of the training data of each of the four

baseline systems. These four features may tell the
classifier which system is more suitable to trans-
late a given sentence.

4.3 System Selection Evaluation
Development Set. The first part of Table 2 re-
peats the best baseline system and the four-system
oracle combination from Table 1 for convenience.
The third row shows the result of running our sys-
tem selection baseline that uses the Dialect ID bi-
nary decision on the Dev set sentences to decide
on the target MT system. It improves over the best
single system baseline (MSA-Pivot) by a statisti-
cally significant 0.5% BLEU. Crucially, we should
note that this is a deterministic process.

System BLEU Diff.
Best Single MT System Baseline 33.9 0.0
Oracle 39.3 5.4
Dialect ID Binary Selection Baseline 34.4 0.5
Four-Class Classification
Basic Features 35.1 1.2
Extended Features 34.8 0.9
Basic + Extended Features 35.2 1.3

Table 2: Results of baselines and system selection systems
on the Dev set in terms of BLEU. The best single MT system
baseline is MSA-Pivot.

The second part of Table 2 shows the results of
our four-class Naive Bayes classifiers trained on
the classification training data we created. The
first column shows the source of sentence level
features employed. As mentioned earlier, we use
the Basic features alone, the Extended features
alone, and then their combination. The classifier
that uses both feature sources simultaneously as
feature vectors is our best performer. It improves
over our best baseline single MT system by 1.3%
BLEU and over the Dialect ID Binary Classifica-
tion system selection baseline by 0.8% BLEU. Im-
provements are statistically significant.

System BLEU Diff.
DA-Only 26.6
MSA-Only 30.7
DA+MSA 32.4
MSA-Pivot 32.5
Four-System Oracle Combination 38.0 5.5
Best Dialect ID Binary Classifier 32.9 0.4
Best Classifier: Basic + Extended Features 33.5 1.0

Table 3: Results of baselines and system selection systems
on the Blind test set in terms of BLEU.

Blind Test Set. Table 3 shows the results on our
Blind Test set. The first part of the table shows
the results of our four baseline MT systems. The
systems have the same rank as on the Dev set and
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System All Dialect MSA
DA-Only 26.6 19.3 33.2
MSA-Only 32.7 14.7 50.0
DA+MSA 33.6 19.4 46.3
MSA-Pivot 33.9 19.6 46.4
Four-System Oracle Combination 39.3 24.4 52.1
Best Performing Classifier 35.2 19.8 50.0

Table 4: Dialect breakdown of performance on the Dev set
for our best performing classifier against our four baselines
and their oracle combination. Our classifier does not know
of these subsets, it runs on the set as a whole; therefore, we
repeat its results in the second column for convenience.

MSA-Pivot is also the best performer. The differ-
ences in BLEU are statistically significant. The
second part shows the four-system oracle combi-
nation which shows a 5.5% BLEU upper bound
on improvements. The third part shows the re-
sults of the Dialect ID Binary Classification which
improves by 0.4% BLEU. The last row shows
the four-class classifier results which improves by
1.0% BLEU over the best single MT system base-
line and by 0.6% BLEU over the Dialect ID Bi-
nary Classification. Results on the Blind Test set
are consistent with the Dev set results.

5 Discussion and Error Analysis

DA versus MSA Performance. In Table 4, col-
umn All illustrates the results over the entire Dev
set, while columns DA and MSA show system
performance on the DA and MSA subsets of the
Dev set, respectively. The best single baseline MT
system for DA is MSA-Pivot has a large room for
improvement given the oracle upper bound (4.8%
BLEU absolute). However, our best system selec-
tion approach improves over MSA-Pivot by a small
margin of 0.2% BLEU absolute only, albeit a sta-
tistically significant improvement. The MSA col-
umn oracle shows a smaller improvement of 2.1%
BLEU absolute over the best single MSA-Only MT
system. Furthermore, when translating MSA with
our best system selection performer we get the
same results as the best baseline MT system for
MSA even though our system does not know the
dialect of the sentences a priori. If we consider the
breakdown of the performance in our best overall
(33.9% BLEU) single baseline MT system (MSA-
Pivot), we observe that the performance on MSA
is about 3.6% absolute BLEU points below our
best results; this suggests that most of the system
selection gain over the best single baseline is on
MSA selection.

Manual Error Analysis. We performed manual
error analysis on a Dev set sample of 250 sen-

tences distributed among the different dialects and
genres. Our best performing classifier selected the
best system in 48% of the DA cases and 52% of
the MSA cases. We did a detailed manual error
analysis for the cases where the classifier failed to
predict the best MT system. The sources of errors
we found cover 89% of the cases. In 21% of the
error cases, our classifier predicted a better trans-
lation than the one considered gold by BLEU due
to BLEU bias, e.g., severe sentence-level length
penalty due to an extra punctuation in a short sen-
tence. Also, 3% of errors are due to bad refer-
ences, e.g., a dialectal sentence in an MSA set that
the human translators did not understand.

A group of error sources resulted from MSA
sentences classified correctly as MSA-Only; how-
ever, one of the other three systems produced bet-
ter translations for two reasons. First, since the
MSA training data is from an older time span than
the DA data, 10% of errors are due to MSA sen-
tences that use recent terminology (e.g., Egyp-
tian revolution 2011: places, politicians, etc.)
that appear in the DA training data. Also, web
writing styles in MSA sentences such as blog
style (e.g., rhetorical questions), blog punctuation
marks (e.g., "..", "???!!"), and formal MSA forum
greetings resulted in 23%, 16%, and 6% of the
cases, respectively.

Finally, in 10% of the cases our classifier is con-
fused by a code-switched sentence, e.g., a dialec-
tal proverb in an MSA sentence or a weak MSA
literal translation of dialectal words and phrases.
Some of these cases may be solved by adding
more features to our classifier, e.g., blog style writ-
ing features, while others need a radical change to
our technique such as word and phrase level di-
alect identification for MT system combination of
code-switched sentences.

6 Conclusion and Future Work

We presented a sentence-level classification ap-
proach for MT system selection for diglossic lan-
guages. We got a 1.0% BLEU improvement over
the best baseline single MT system. In the future
we plan to add more training data to see the effect
on the accuracy of system selection. We plan to
give different weights to different training exam-
ples based on the drop in BLEU score the exam-
ple can cause if classified incorrectly. We also plan
to explore confusion-network combination and re-
ranking techniques based on target language fea-
tures.
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Abstract

In this paper, we propose a novel deriva-
tion structure prediction (DSP) model
for SMT using recursive neural network
(RNN). Within the model, two steps are
involved: (1) phrase-pair vector represen-
tation, to learn vector representations for
phrase pairs; (2) derivation structure pre-
diction, to generate a bilingual RNN that
aims to distinguish good derivation struc-
tures from bad ones. Final experimental
results show that our DSP model can sig-
nificantly improve the translation quality.

1 Introduction

Derivation structure is important for SMT decod-
ing, especially for the translation model based
on nested structures of languages, such as BTG
(bracket transduction grammar) model (Wu, 1997;
Xiong et al., 2006), hierarchical phrase-based
model (Chiang, 2007), and syntax-based model
(Galley et al., 2006; Marcu et al., 2006; Liu et
al., 2006; Huang et al., 2006; Zhang et al., 2008;
Zhang et al., 2011; Zhai et al., 2013). In general,
derivation structure refers to the tuple that records
the used translation rules and their compositions
during decoding, just as Figure 1 shows.

Intuitively, a good derivation structure usually
yields a good translation, while bad derivations al-
ways result in bad translations. For example in
Figure 1, (a) and (b) are two different derivations
for Chinese sentence “Ù� � â9 Þ1 
 ¬
!”. Comparing the two derivations, (a) is more
reasonable and yields a better translation. How-
ever, (b) wrongly translates phrase “� â9” to
“and Sharon” and combines it with [Ù�;Bush]
incorrectly, leading to a bad translation.

To explore the derivation structure’s potential
on yielding good translations, in this paper, we
propose a novel derivation structure prediction
(DSP) model for SMT decoding.

(a) (b)

布什

Bush

举行了 会谈

held a talk

与 沙龙

with Sharon

举行 了 会谈

held a talk

与 沙龙

with Sharon

布什

Bush

举行 了 会谈

held a talk

与 沙龙
with Sharon

布什

Bush

Bush and

与 沙龙

Sharon

布什

布什

Bush

举行了 会谈

held a talk

与 沙龙

and Sharon

与 沙龙

and Sharon

举行 了 会谈

held a talk

Figure 1: Two different derivation structures of
BTG translation model. In the structure, leaf
nodes denote the used translation rules. For each
node, the first line is the source string, while the
second line is its corresponding translation.

The proposed DSP model is built on recur-
sive neural network (RNN). Within the model,
two steps are involved: (1) phrase-pair vector
representation, to learn vector representations for
phrase pairs; (2) derivation structure prediction,
to build a bilingual RNN that aims to distinguish
good derivation structures from bad ones. Ex-
tensive experiments show that the proposed DSP
model significantly improves the translation qual-
ity, and thus verify the effectiveness of derivation
structure on indicating good translations.

We make the following contributions in this
work:

• We propose a novel RNN-based model to do
derivation structure prediction for SMT de-
coding. To our best knowledge, this is the
first work on this issue in SMT community;
• In current work, RNN has only been verified

to be useful on monolingual structure learn-
ing (Socher et al., 2011a; Socher et al., 2013).
We go a step further, and design a bilingual
RNN to represent the derivation structure;
• To train the RNN-based DSP model, we pro-

pose a max-margin objective that prefers gold
derivations yielded by forced decoding to
n-best derivations generated by the conven-
tional BTG translation model.
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2 The DSP Model

The basic idea of DSP model is to represent the
derivation structure by RNN (Figure 2). Here, we
build the DSP model for BTG translation model,
which is naturally compatible with RNN. We be-
lieve that the DSP model is also beneficial to other
translation models. We leave them as our future
work.

2.1 Phrase-Pair Vector Representation
Phrase pairs, i.e., the used translation rules, are the
leaf nodes of derivation structure. Hence, to repre-
sent the derivation structure by RNN, we need first
to represent the phrase pairs. To do this, we use
two unsupervised recursive autoencoders (RAE)
(Socher et al., 2011b), one for the source phrase
and the other for the target phrase. We call the unit
of the two RAEs the Leaf Node Network (LNN).

Using n-dimension word embedding, RAE can
learn a n-dimension vector for any phrase. Mean-
while, RAE will build a binary tree for the phrase,
as Figure 2 (in box) shows, and compute a re-
construction error to evaluate the vector. We use
E(Tph) to denote the reconstruction error given by
RAE, where ph is the phrase and Tph is the corre-
sponding binary tree. In RAE, higher error corre-
sponds to worse vector. More details can be found
in (Socher et al., 2011b).

Given a phrase pair (sp, tp), we can use LNN
to generate two n-dimension vectors, representing
sp and tp respectively. Then, we concatenate the
two vectors directly, and get a vector r ∈ R2n to
represent phrase pair (sp, tp) (shown in Figure
2). The vector r is evaluated by combining the
reconstruction error on both sides:

E(Tsp, Ttp) =
1
2

[E(Tsp) + E(Ttp) · Ns

Nt
] (1)

where Tsp and Ttp are the binary trees for sp and
tp. Ns and Nt denote the number of nodes in Tsp
and Ttp. Note that in order to unify the errors on
the two sides, we use ratio Ns/Nt to eliminate the
influence of phrase length.

Then, according to Equation (1), we compute
an LNN score to evaluate the vector of all phrase
pairs, i.e., leaf nodes, in derivation d:

LNN(d) = −
∑

(sp,tp)
E(Tsp, Ttp) (2)

where (sp, tp) is the used phrase pair in derivation
d. Obviously, the derivation with better phrase-
pair representations will get a higher LNN score.

布什

与 沙龙 with Sharon

举行 了 会谈 held a talk

Bush

Figure 2: Illustration of DSP model, based on the
derivation structure in Figure 1(a).

The LNN score will serve as part of the DSP
model for predicting good derivation structures.

2.2 Derivation Structure Prediction

Using the vector representations of phrase pairs,
we then build a Derivation Structure Network
(DSN) for prediction (Figure 2).

In DSN, the derivation structure is repre-
sented by repeatedly applying unit neural net-
work (UNN, Figure 3) at each non-leaf node. The
UNN receives two node vectors r1 ∈ R2n and
r2 ∈ R2n as input, and induces a vector p ∈ R2n

to represent the parent node.

r1 r2

p

score

Figure 3: The unit neural network used in DSN.

For example, in Figure 2, node [� â9; with
Sharon] serves as the first child with vector r1,
and node [Þ1
¬!; held a talk] as the second
child with vector r2. The parent node vector p,
representing [� â9 Þ1 
 ¬!; held a talk
with Sharon], is computed by merging r1 and r2:

p = f(WUNN [r1; r2] + bUNN ) (3)

where [r1; r2] ∈ R4n×1 is the concatenation of r1
and r2, WUNN ∈ R2n×4n and bUNN ∈ R2n×1 are
the network’s parameter weight matrix and bias
term respectively. We use tanh(·) as function f .

Then, we compute a local score using a simple
inner product with a row vector W score

UNN ∈ R1×2n:

s(p) = W score
UNN · p (4)

The score measures how well the two child nodes
r1 and r2 are merged into the parent node p.

As we all know, in BTG derivations, we have
two different ways to merge translation candi-
dates, monotone or inverted, meaning that we
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merge two candidates in a monotone or inverted
order. We believe that different merging or-
der (monotone or inverted) needs different UNN.
Hence, we keep two different ones in DSN, one for
monotone order (with parameter Wmono, bmono,
and W score

mono), and the other for inverted (with pa-
rameter Winv, binv, and W score

inv ). The idea is that
the merging order of the two candidates will de-
termine which UNN will be used to generate their
parent’s vector and compute the score in Equa-
tion (4). Using a set of gold derivations, we can
train the network so that correct order will receive
a high score by Equation (4) and incorrect one will
receive a low score.

Thus, when we merge the candidates of two ad-
jacent spans during BTG-based decoding, the lo-
cal score in Equation (4) is useful in two aspects:
(1) for the same merging order, it evaluates how
well the two candidates are merged; (2) for the dif-
ferent order, it compares the candidates generated
by monotone order and inverted order.

Further, to assess the entire derivation structure,
we apply UNN to each node recursively, until the
root node. The final score utilized for derivation
structure prediction is the sum of all local scores:

DSN(d) =
∑

p
s(p) (5)

where d denotes the derivation structure and p is
the non-leaf node in d. Obviously, by this score,
we can easily assess different derivations. Good
derivations will get higher scores while bad ones
will get lower scores.

Li et al. (2013) presented a network to predict
how to merge translation candidates, in monotone
or inverted order. Our DSN differs from Li’s work
in two points. For one thing, DSN can not only
predict how to merge candidates, but also evaluate
whether two candidates should be merged. For an-
other, DSN focuses on the entire derivation struc-
ture, rather than only the two candidates for merg-
ing. Therefore, the translation decoder will pursue
good derivation structures via DSN. Actually, Li’s
work can be easily integrated into our work. We
leave it as our future work.

3 Training

In this section, we present the method of training
the DSP model. The parameters involved in this
process include: word embedding, parameters of
the two unsupervised RAEs in LNN, and parame-
ters in DSN.

3.1 Max-Margin Framework
In DSP model, our goal is to assign higher scores
to gold derivations, and lower scores to bad ones.
To reach this goal, we adopt a max-margin frame-
work (Socher et al., 2010; Socher et al., 2011a;
Socher et al., 2013) for training.

Specifically, suppose we have a training data
like (ui,G(ui),A(ui)), where ui is the input
source sentence, G(ui) is the gold derivation set
containing all gold derivations of ui1, and A(ui)
is the possible derivation set that contains all
possible derivations of ui. We want to minimize
the following regularized risk function:

J(θ) =
1
N

N∑
i=1

Ri(θ) +
λ

2
‖ θ ‖2, where

Ri(θ) = max
d̂∈A(ui)

(
s
(
θ, ui, d̂

)
+ ∆

(
d̂,G(ui)

))
− max
d∈G(ui)

(
s
(
θ, ui, d

))
(6)

Here, θ is the model parameter. s(θ, ui, d) is the
DSP score for sentence ui’s derivation d. It is
computed by summing LNN score (Equation (2))
and DSN score (Equation (5)):

s(θ, u, d) = LNNθ(d) +DSNθ(d) (7)

∆(d̂,G(ui)) is the structure loss margin, which
penalizes derivation d̂ more if it deviates more
from gold derivations. It is formulated as:

∆
(
d̂,G(ui)

)
=
∑
π∈d̂

αsδ{π 6∈ G(ui)}+ αtDist(y(d̂), ref) (8)

The margin includes two parts. For the first part,
π is the source span in derivation d̂, δ {·} is an
indicator function. We use the first part to count
the number of source spans in derivation d̂, but
not in gold derivations. The second part is for
target side. Dist(y(d̂), ref) computes the edit-
distance between the translation result y(d̂) de-
fined by derivation d̂ and the reference translation
ref . Obviously, this margin can effectively esti-
mate the difference between derivation d̂ and gold
derivations, both on source side and target side.
Note that αs and αt are only two hyperparameters
for scaling. They are independent of each other,
and we set αs = 0.1 and αt = 0.1 respectively.

1We investigate the general case here and suppose that
one sentence could have several different gold derivations.In
the experiment, we only use one gold derivation for simple
implementation.
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3.2 Learning

As the risk function, Equation (6) is not differ-
entiable. We train the model via the subgradient
method (Ratliff et al., 2007; Socher et al., 2013).
For parameter θ, the subgriadient of J(θ) is:

∂J

∂θ
=

1
N

∑
i

∂s(θ, ui, d̂m)
∂θ

− ∂s(θ, ui, dm)
∂θ

+λθ

where d̂m is the derivation with the highest DSP
score, and dm denotes the gold derivation with the
highest DSP score. We adopt the diagonal vari-
ant of AdaGrad (Duchi et al., 2011; Socher et al.,
2013) to minimize the risk function for training.

3.3 Training Instances Collection

In order to train the model, we need to collect the
gold derivation set G(ui) and possible derivation
set A(ui) for input sentence ui.

For G(ui) , we define it by force decoding
derivation (FDD). Basically, FDD refers to the
derivation that produces the exact reference trans-
lation (single reference in our training data). For
example, since “Bush held a talk with Sharon” is
the reference of test sentence “Ù� � â9 Þ
1
¬!”, then Figure 1(a) is one of the FDDs.
As FDD can produce reference translation, we be-
lieve that FDD is of high quality, and take them as
gold derivations for training.

For A(ui), it should contain all possible deriva-
tions of ui. However, it is too difficult to obtain
all derivations. Thus, we use n-best derivations of
SMT decoding to simulate the complete derivation
space, and take them as the derivations in A(ui).

4 Integrating the DSP Model into SMT

To integrate the DSP model into decoding, we take
it (named DSP feature) as one of the features in the
log-linear framework of SMT. During decoding,
the DSP feature is distributed to each node in the
derivation structure. For the leaf node, the score
in Equation (2), i.e., LNN score, serves as the fea-
ture. For the non-leaf node, Equation (4) plays
the role. In order to give positive feature value to
the log-linear framework (for logarithm), we nor-
malize the DSP scores to [0,1] during decoding.
Due to the length limit, we ignore the specific nor-
malization methods here. We just preform some
simple transformations (such as adding a constant,
computing reciprocal), and convert the scores pro-
portionally to [0,1] at last.

5 Experiments

5.1 Experimental Setup

To verify the effectiveness of our DSP model, we
perform experiments on Chinese-to-English trans-
lation. The training data contains about 2.1M sen-
tence pairs with about 27.7M Chinese words and
31.9M English words2. We train a 5-gram lan-
guage model by the Xinhua portion of Gigaword
corpus and the English part of the training data.
We obtain word alignment by GIZA++, and adopt
the grow-diag-final-and strategy to generate the
symmetric alignment. We use NIST MT 2003 data
as the development set, and NIST MT04-083 as
the test set. We use MERT (Och, 2004) to tune pa-
rameters. The translation quality is evaluated by
case-insensitive BLEU-4 (Papineni et al., 2002).
The statistical significance test is performed by
the re-sampling approach (Koehn, 2004). The
baseline system is our in-house BTG system (Wu,
1997; Xiong et al., 2006; Zhang and Zong, 2009).

To train the DSP model, we first use Word2Vec4

toolkit to pre-train the word embedding on large-
scale monolingual data. The used monolingual
data contains about 1.06B words for Chinese and
1.12B words for English. The dimensionality of
our vectors is 50. The detiled training process is
as follows:

(1) Using the BTG system to perform force de-
coding on FBIS part of the bilingual training data5,
and collect the sentences succeeded in force de-
coding (86,902 sentences in total)6. We then col-
lect the corresponding force decoding derivations
as gold derivations. Here, we only use the best
force decoding derivation for simple implementa-
tion. In future, we will try to use multiple force
decoding derivations for training.

(2) Collecting the bilingual phrases in the leaf
nodes of gold derivations. We train LNN by these
phrases via L-BFGS algorithm. Finally, we get
351,448 source phrases to train the source side
RAE and 370,948 target phrases to train the tar-
get side RAE.

2LDC category number : LDC2000T50, LDC2002E18,
LDC2003E07, LDC2004T07, LDC2005T06, LDC2002L27,
LDC2005T10 and LDC2005T34.

3For MT06 and MT08, we only use the part of news data.
4https://code.google.com/p/word2vec/
5Here we only use the high quality corpus FBIS to guar-

antee the quality of force decoding derivation.
6Many sentence pairs fail in forced decoding due to many

reasons, such as reordering limit, noisy alignment, and phrase
length limit (Yu et al., 2013).
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(3) Decoding the 86902 sentences by the BTG
system to get n-best translations and correspond-
ing derivations. The n-best derivations are used to
simulate the entire derivation space. We retain at
most 200-best derivations for each sentence.

(4) Leveraging force decoding derivations and
n-best derivations to train the DSP model. Note
that all parameters, including word embedding and
parameters in LNN and DSN, are tuned together in
this step. It takes about 15 hours to train the entire
network using a 16-core, 2.9 GHz Xeon machine.

5.2 Experimental Results
We compare baseline BTG system and the DSP-
augmented BTG system in this section. The final
translation results are shown in Table 1.

After integrating the DSP model into BTG sys-
tem, we get significant improvement on all test
sets, about 1.0 BLEU points over BTG system on
average. This comparison strongly demonstrates
that our DSP model is useful and will be a good
complement to current translation models.

Systems BLEU(%)
MT04 MT05 MT06 MT08 Aver

BTG 36.91 34.69 33.83 27.17 33.15
BTG+DSP 37.41 35.77 35.08 28.42 34.17

Table 1: Final translation results. Bold numbers
denote that the result is significantly better than
baseline BTG system (p < 0.05). Column “Aver”
gives the average BLEU points of the 4 test sets.

To have a better intuition for the effectiveness
of our DSP model, we give a case study in Figure
4. It depicts two derivations built by BTG system
and BTG+DSP system respectively.

From Figure 4(b), we can see that BTG system
yields a bad translation due to the bad derivation
structure. In the figure, BTG system makes three
mistakes. It attaches candidates [¤Ò; achieve-
ments], [¤ �� �; has reached] and [#\·;
singapore] to the big candidate [ØU���n
¤�,; cannot be regarded as a natural]. Conse-
quently, the noun phrase “#\· ¤ �� � ¤
Ò” is translated separately, rather than as a whole,
leading to a bad translation.

Differently, the DSP model is designed for pre-
dicting good derivations. In Figure 4(c), the used
translation rules are actually similar to Figure 4(b).
However, under a better guidance to build good
derivation structure, BTG+DSP system generates
a much better translation result than BTG system.

(c) an example derivation structure generated by the DSP+BTG system 

 所  达到  的
 has reached

成就
achievements

不  能  被  当作
cannot be regarded as a

理所当然  
natural 

不  能  被  当作 理所当然 
cannot be regarded as a natural 

成就  不  能  被  当作 理所当然 
achievements cannot be regarded as a natural 

 所  达到  的  成就  不  能  被  当作 理所当然 
has reached achievements cannot be regarded as a natural 

新加坡  所  达到  的  成就  不  能  被  当作 理所当然 
singapore has reached  achievements cannot be regarded as a natural 

新加坡
singapore

 所  达到  的
attained by

不  能  被  当作
cannot be regarded as a

理所当然 

natural

不  能  被  当作 理所当然
cannot be regarded as a natural

新加坡  所  达到  的  成就  不  能  被  当作 理所当然 
the achievements attained by singapore cannot be regarded as a natural

新加坡
singapore

新加坡 所 达到 的
attained by singapore

成就
the achievements

新加坡 所 达到 的 成就
the achievements attained by singapore

(b) an example derivation structure generated by BTG system

新加坡
xinjiapo

 所  达到  的
suo dadao de

成就
chengjiu

不  能  被  当作
bu neng bei dangzuo 

理所当然  
lisuodangran 

singapore reached the achievements  cannot be taken for granted 

(a) the example test sentence and its corresponding reference.

Figure 4: Different derivation structures.

6 Conclusion

In this paper, we explored the method of derivation
structure prediction for SMT. To fulfill this task,
we have made several major efforts as follows:

(1) We propose a novel derivation structure pre-
diction model based on RNN, including two close
and interactive parts: LNN and DSN.

(2) We extend monolingual RNN to bilingual
RNN to represent the derivation structure.

(3) We train LNN and DSN by derivations from
force decoding. In this way, the DSP model learns
a preference to good derivation structures.

Experimental results show that the proposed
DSP model improves the translation performance
significantly. By this, we verify the effectiveness
of derivation structure on indicating good trans-
lations. We believe that our work will shed new
lights to SMT decoding.
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Abstract

Large-scale discriminative training has be-
come promising for statistical machine
translation by leveraging the huge train-
ing corpus; for example the recent effort
in phrase-based MT (Yu et al., 2013) sig-
nificantly outperforms mainstream meth-
ods that only train on small tuning sets.
However, phrase-based MT suffers from
limited reorderings, and thus its training
can only utilize a small portion of the bi-
text due to the distortion limit. To address
this problem, we extend Yu et al. (2013)
to syntax-based MT by generalizing their
latent variable “violation-fixing” percep-
tron from graphs to hypergraphs. Exper-
iments confirm that our method leads to
up to +1.2 BLEU improvement over main-
stream methods such as MERT and PRO.

1 Introduction

Many natural language processing problems in-
cluding part-of-speech tagging (Collins, 2002),
parsing (McDonald et al., 2005), and event extrac-
tion (Li et al., 2013) have enjoyed great success us-
ing large-scale discriminative training algorithms.
However, a similar success on machine translation
has been elusive, where the mainstream methods
still tune on small datasets.

What makes large-scale MT training so hard
then? After numerous attempts by various re-
searchers (Liang et al., 2006; Watanabe et al.,
2007; Arun and Koehn, 2007; Blunsom et al.,
2008; Chiang et al., 2008; Flanigan et al., 2013;
Green et al., 2013), the recent work of Yu et al.
(2013) finally reveals a major reason: it is the vast
amount of (inevitable) search errors in MT decod-
ing that astray learning. To alleviate this prob-
lem, their work adopts the theoretically-motivated
framework of violation-fixing perceptron (Huang
et al., 2012) tailed for inexact search, yielding
great results on phrase-based MT (outperforming

Collins (02) inexact−→
search

Huang et al. (12) latent−→
variable

Yu et al. (13)

↓ hypergraph ↓
Zhang et al. (13) −→

variable
this work

Figure 1: Relationship with previous work.

small-scale MERT/PRO by a large margin for the
first time). However, the underlying phrase-based
model suffers from limited distortion and thus can
only employ a small portion (about 1/3 in their Ch-
En experiments) of the bitext in training.

To better utilize the large training set, we
propose to generalize from phrase-based MT to
syntax-based MT, in particular the hierarchical
phrase-based translation model (HIERO) (Chiang,
2005), in order to exploit sentence pairs beyond
the expressive capacity of phrase-based MT.

The key challenge here is to extend the latent
variable violation-fixing perceptron of Yu et al.
(2013) to handle tree-structured derivations and
translation hypergraphs. Luckily, Zhang et al.
(2013) have recently generalized the underlying
violation-fixing perceptron of Huang et al. (2012)
from graphs to hypergraphs for bottom-up parsing,
which resembles syntax-based decoding. We just
need to further extend it to handle latent variables.
We make the following contributions:

1. We generalize the latent variable violation-
fixing perceptron framework to inexact
search over hypergraphs, which subsumes
previous algorithms for PBMT and bottom-
up parsing as special cases (see Fig. 1).

2. We show that syntax-based MT, with its bet-
ter handling of long-distance reordering, can
exploit a larger portion of the training set,
which facilitates sparse lexicalized features.

3. Experiments show that our training algo-
rithm outperforms mainstream tuning meth-
ods (which optimize on small devsets) by
+1.2 BLEU over MERT and PRO on FBIS.
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id rule

r0 S→ 〈X 1 ,X 1 〉
r1 S→ 〈S 1 X 2 ,S 1 X 2 〉
r2 X→ 〈Bùshı́,Bush〉
r3 X→ 〈Shālóng,Sharon〉
r4 X→ 〈huı̀tán, talks〉

r5
X→ 〈yǔ X 1 jǔxı́ng X 2 ,

held X 2 with X 1 〉
r6 X→ 〈yǔ Shālóng, with Sharon〉

r7
X→ 〈X 1 jǔxı́ng X 2 ,

X 1 held X 2 〉

S[0:5]

X[1:5]

X[4:5]

huı̀tán 5jǔxı́ng 4

X[2:3]

Shālóng 3

|

yǔ 2

S[0:1]

X[0:1]

0 Bùshı́ 1

S

X

X

Sharon 5with 4

X

talks 3held 2

S

X

0 Bush 1

S[0:5]

X[1:5]

X[4:5]

huı̀tán 5jǔxı́ng 4

X[1:3]

Shālóng 3yǔ 2

S[0:1]

X[0:1]

0 Bùshı́ 1

S

X

X

talks 5held 4

X

Sharon 3with 2

S

X

0 Bush 1

(a) HIERO rules (b) gold derivation (c) Viterbi derivation

Figure 2: An example of HIERO translation.

X[0:1] X[2:3] X[4:5]

X[1:5]

X[1:3]

S[0:1]

S[0:5]

Figure 3: A −LM hypergraph with two deriva-
tions: the gold derivation (Fig. 2b) in solid lines,
and the Viterbi derivation (Fig. 2c) in dashed lines.

2 Review: Syntax-based MT Decoding

For clarity reasons we will describe HIERO decod-
ing as a two-pass process, first without a language
model, and then integrating the LM. This section
mostly follows Huang and Chiang (2007).

In the first, −LM phase, the decoder parses the
source sentence using the source projection of the
synchronous grammar (see Fig. 2 (a) for an ex-
ample), producing a−LM hypergraph where each
node has a signature N[i:j], where N is the nonter-
minal type (either X or S in HIERO) and [i : j] is
the span, and each hyperedge e is an application
of the translation rule r(e) (see Figure 3).

To incorporate the language model, each node
also needs to remember its target side boundary
words. Thus a −LM node N[i:j] is split into mul-
tiple +LM nodes of signature Na?b

[i:j], where a and
b are the boundary words. For example, with a bi-
gram LM, Xheld?Sharon

[1:5] is a node whose translation
starts with “held” and ends with “Sharon”.

More formally, the whole decoding process can
be cast as a deductive system. Take the partial
translation of “held talks with Sharon” in Figure 2

(b) for example, the deduction is

XSharon?Sharon
[2:3] : s1 Xtalks?talks

[4:5] : s2

Xheld?Sharon
[1:5] : s1 + s2 + s(r5) + λ

r5,

where s(r5) is the score of rule r5, and the LM
combo score λ is log Plm(talks | held)Plm(with |
talks)Plm(Sharon | with).

3 Violation-Fixing Perceptron for HIERO

As mentioned in Section 1, the key to the success
of Yu et al. (2013) is the adoption of violation-
fixing perceptron of Huang et al. (2012) which
is tailored for vastly inexact search. The general
idea is to update somewhere in the middle of the
search (where search error happens) rather than at
the very end (standard update is often invalid). To
adapt it to MT where many derivations can output
the same translation (i.e., spurious ambiguity), Yu
et al. (2013) extends it to handle latent variables
which correspond to phrase-based derivations. On
the other hand, Zhang et al. (2013) has generalized
Huang et al. (2012) from graphs to hypergraphs
for bottom-up parsing, which resembles HIERO

decoding. So we just need to combine the two
generalizing directions (latent variable and hyper-
graph, see Fig. 1).

3.1 Latent Variable Hypergraph Search
The key difference between bottom-up parsing
and MT decoding is that in parsing the gold tree
for each input sentence is unique, while in MT
many derivations can generate the same reference
translation. In other words, the gold derivation to
update towards is a latent variable.
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Here we formally define the latent variable
“max-violation” perceptron over a hypergraph for
MT training. For a given sentence pair 〈x, y〉, we
denote H(x) as the decoding hypergraph of HI-
ERO without any pruning. We say D ∈ H(x) if
D is a full derivation of decoding x, and D can be
derived from the hypergraph. Let good(x, y) be
the set of y-good derivations for 〈x, y〉:

good(x, y) ∆= {D ∈ H(x) | e(D) = y},
where e(D) is the translation from derivation D.
We then define the set of y-good partial derivations
that cover x[i:j] with root N[i:j] as

goodN[i:j]
(x, y) ∆= {d ∈ D | D ∈ good(x, y),

root(d) = N[i:j]}
We further denote the real decoding hypergraph

with beam-pruning and cube-pruning as H ′(x).
The set of y-bad derivations is defined as

badN[i:j]
(x, y) ∆= {d ∈ D | D ∈ H ′(x, y),

root(d) = N[i:j], d 6∈ goodN[i:j]
(x, y)}.

Note that the y-good derivations are defined over
the unpruned whole decoding hypergraph, while
the y-bad derivations are defined over the real de-
coding hypergraph with pruning.

The max-violation method performs the update
where the model score difference between the
incorrect Viterbi partial derivation and the best
y-good partial derivation is maximal, by penaliz-
ing the incorrect Viterbi partial derivation and re-
warding the y-good partial derivation.

More formally, we first find the Viterbi partial
derivation d− and the best y-good partial deriva-
tion d+ for each N[i:j] group in the pruned +LM
hypergraph:

d+
N[i:j]

(x, y) ∆= argmax
d∈goodN[i:j]

(x,y)
w ·Φ(x, d),

d−N[i:j]
(x, y) ∆= argmax

d∈badN[i:j]
(x,y)

w ·Φ(x, d),

where Φ(x, d) is the feature vector for derivation
d. Then it finds the group N∗[i∗:j∗] with the max-
imal score difference between the Viterbi deriva-
tion and the best y-good derivation:

N∗[i∗:j∗]
∆= argmax

N[i:j]

w ·∆Φ(x, d+
N[i:j]

(x, y), d−N[i:j]
(x, y)),

and update as follows:

w← w + ∆Φ(x, d+
N∗

[i∗:j∗]
(x, y), d−N∗

[i∗:j∗]
(x, y)),

where ∆Φ(x, d, d′) ∆= Φ(x, d)−Φ(x, d′).

3.2 Forced Decoding for HIERO

We now describe how to find the gold derivations.1

Such derivations can be generated in way similar
to Yu et al. (2013) by using a language model tai-
lored for forced decoding:

Pforced (q | p) =

{
1 if q = p+ 1
0 otherwise

,

where p and q are the indices of the boundary
words in the reference translation. The +LM node
now has signature Np?q

[i:j], where p and q are the in-
dexes of the boundary words. If a boundary word
does not occur in the reference, its index is set to
∞ so that its language model score will always be
−∞; if a boundary word occurs more than once in
the reference, its −LM node is split into multiple
+LM nodes, one for each such index.2

We have a similar deductive system for forced
decoding. For the previous example, rule r5 in
Figure 2 (a) is rewritten as

X→ 〈yǔ X 1 jǔxı́ng X 2 , 1 X 2 4 X 1 〉,

where 1 and 4 are the indexes for reference words
“held” and “with” respectively. The deduction for
X[1:5] in Figure 2 (b) is

X5?5
[2:3] : s1 X2?3

[4:5] : s2

X1?5
[1:5] : s(r5) + λ+ s1 + s2

r5,

where λ = log
∏

i∈{1,3,4} Pforced (i+ 1 | i) = 0.

4 Experiments

Following Yu et al. (2013), we call our max-
violation method MAXFORCE. Our implemen-
tation is mostly in Python on top of the cdec
system (Dyer et al., 2010) via the pycdec in-
terface (Chahuneau et al., 2012). In addition, we
use minibatch parallelization of (Zhao and Huang,

1We only consider single reference in this paper.
2Our formulation of index-based language model fixes a

bug in the word-based LM of Yu et al. (2013) when a sub-
string appears more than once in the reference (e.g. “the
man...the man...”); thanks to Dan Gildea for pointing it out.
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2013) to speedup perceptron training. We evalu-
ate MAXFORCE for HIERO over two CH-EN cor-
pora, IWSLT09 and FBIS, and compare the per-
formance with vanilla n-best MERT (Och, 2003)
from Moses (Koehn et al., 2007), Hypergraph
MERT (Kumar et al., 2009), and PRO (Hopkins
and May, 2011) from cdec.

4.1 Features Design
We use all the 18 dense features from cdec, in-
cluding language model, direct translation prob-
ability p(e|f), lexical translation probabilities
pl(e|f) and pl(f |e), length penalty, counts for the
source and target sides in the training corpus, and
flags for the glue rules and pass-through rules.

For sparse features we use Word-Edges fea-
tures (Charniak and Johnson, 2005; Huang, 2008)
which are shown to be extremely effective in
both parsing and phrase-based MT (Yu et al.,
2013). We find that even simple Word-Edges
features boost the performance significantly, and
adding complex Word-Edges features from Yu et
al. (2013) brings limited improvement and slows
down the decoding. So in the following experi-
ments we only use Word-Edges features consisting
of combinations of English and Chinese words,
and Chinese characters, and do not use word clus-
ters nor word types. For simplicity and efficiency
reasons, we also exclude all non-local features.

4.2 Datasets and Preprocessing
Our first corpus, IWSLT09, contains ∼30k
short sentences collected from spoken language.
IWSLT04 is used as development set in MAX-
FORCE training, and as tuning set for n-best
MERT, Hypergraph MERT, and PRO. IWSLT05
is used as test set. Both IWSLT04 and IWSLT05
contain 16 references.We mainly use this corpus
to investigate the properties of MAXFORCE.

The second corpus, FBIS, contains ∼240k sen-
tences. NIST06 newswire is used as development
set for MAXFORCE training, and as tuning set
for all other tuning methods. NIST08 newswire
is used as test set. Both NIST06 newswire
and NIST08 newswire contain 4 references. We
mainly use this corpus to demonstrate the perfor-
mance of MAXFORCE in large-scale training.

For both corpora, we do standard tokeniza-
tion, alignment and rule extraction using the cdec
tools. In rule extraction, we remove all 1-count
rules but keep the rules mapping from one Chi-
nese word to one English word to help balancing

sent. words
phrase-based MT 32% 12%

HIERO 35% 30%
HIERO (all rules) 65% 55%

Table 1: Reachability comparison (on FBIS) be-
tween phrase-based MT reported in Yu et al.
(2013) (without 1-count rules) and HIERO (with
and without 1-count rules).
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Figure 4: Reachability vs. sent. length on FBIS.
See text below for “loose” and “tight”.

between overfitting and coverage. We use a tri-
gram language model trained from the target sides
of the two corpora respectively.

4.3 Forced Decoding Reachability

We first report the forced decoding reachability for
HIERO on FBIS in Table 1. With the full rule set,
65% sentences and 55% words of the whole cor-
pus are forced decodable in HIERO. After pruning
1-count rules, our forced decoding covers signif-
icantly more words than phrase-based MT in Yu
et al. (2013). Furthermore, in phrase-based MT,
most decodable sentences are very short, while
in HIERO the lengths of decodable sentences are
more evenly distributed.

However, in the following experiments, due to
efficiency considerations, we use the “tight” rule
extraction in cdec that is more strict than the
standard “loose” rule extraction, which generates
a reduced rule set and, thus, a reduced reachabil-
ity. We show the reachability distributions of both
tight and loose rule extraction in Figure 4.

4.4 Evaluation on IWSLT

For IWSLT, we first compare the performance
from various update methods in Figure 5. The
max-violation method is more than 15 BLEU

788



 30

 35

 40

 45

 2  4  6  8  10  12  14  16  18  20

B
L
E

U
 o

n
 d

e
v

iteration

Max-Violation
local update

skip
standard update

Figure 5: Comparison of various update methods.

 42

 43

 44

 45

 46

 47

 2  4  6  8  10  12  14  16  18  20

B
L
E

U
 o

n
 d

e
v

iteration

sparse features

dense features

Hypergraph MERT

PRO

n-best MERT

Figure 6: Sparse features (Word-Edges) contribute
∼2 BLEU points, outperforming PRO and MERT.

points better than the standard perceptron (also
known as “bold-update” in Liang et al. (2006))
which updates at the root of the derivation tree.3,4

This can be explained by the fact that in train-
ing ∼58% of the standard updates are invalid (i.e.,
they do not fix any violation). We also use the
“skip” strategy of Zhang et al. (2013) which up-
dates at the root of the derivation only when it fixes
a search error, avoiding all invalid updates. This
achieves ∼10 BLEU better than the standard up-
date, but is still more than ∼5 BLEU worse than
Max-Violation update. Finally we also try the
“local-update” method from Liang et al. (2006)
which updates towards the derivation with the best
Bleu+1 in the root group S[0:|x|]. This method is
about 2 BLEU points worse than max-violation.

We further investigate the contribution of sparse
features in Figure 6. On the development set,
max-violation update without Word-Edges fea-
tures achieves BLEU similar to n-best MERT and

3We find that while MAXFORCE generates translations of
length ratio close to 1 during training, the length ratios on
dev/test sets are significantly lower, due to OOVs. So we
run a binary search for the length penalty weight after each
training iteration to tune the length ratio to ∼0.97 on dev set.

4 We report BLEU with averaged reference lengths.

algorithm # feats dev test
n-best MERT 18 44.9 47.9

Hypergraph MERT 18 46.6 50.7
PRO 18 45.0 49.5

local update perc. 443K 45.6 49.1
MAXFORCE 529K 47.4 51.5

Table 2: BLEU scores (with 16 references) of var-
ious training algorithms on IWSLT09.

algorithm # feats dev test
Hypergraph MERT 18 27.3 23.0

PRO 18 26.4 22.7
MAXFORCE 4.5M 27.7 23.9

Table 3: BLEU scores (with 4 references) of vari-
ous training algorithms on FBIS.

PRO, but lower than Hypergraph MERT. Adding
simple Word-Edges features improves BLEU by
∼2 points, outperforming the very strong Hyper-
graph MERT baseline by∼1 point. See Table 2 for
details. The results of n-best MERT, Hypergraph
MERT, and PRO are averages from 3 runs.

4.5 Evaluation on FBIS
Table 3 shows BLEU scores of Hypergraph MERT,
PRO, and MAXFORCE on FBIS. MAXFORCE ac-
tives 4.5M features, and achieves +1.2 BLEU over
PRO and +0.9 BLEU over Hypergraph MERT. The
training time (on 32 cores) for Hypergraph MERT

and PRO is about 30 min. on the dev set, and is
about 5 hours for MAXFORCE on the training set.

5 Conclusions

We have presented a latent-variable violation-
fixing framework for general structured predic-
tion problems with inexact search over hyper-
graphs. Its application on HIERO brings signif-
icant improvement in BLEU, compared to algo-
rithms that are specially designed for MT tuning
such as MERT and PRO.
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Abstract

Modern statistical dependency parsers as-
sign lexical heads to punctuations as well
as words. Punctuation parsing errors lead
to low parsing accuracy on words. In this
work, we propose an alternative approach
to addressing punctuation in dependency
parsing. Rather than assigning lexical
heads to punctuations, we treat punctu-
ations as properties of their neighbour-
ing words, used as features to guide the
parser to build the dependency graph. In-
tegrating our method with an arc-standard
parser yields a 93.06% unlabelled attach-
ment score, which is the best accuracy by
a single-model transition-based parser re-
ported so far.

1 Introduction

The task of dependency parsing is to identify the
lexical head of each of the tokens in a string.
Modern statistical parsers (McDonald et al., 2005;
Nivre et al., 2007; Huang and Sagae, 2010; Zhang
and Nivre, 2011) treat all the tokens equally, as-
signing lexical heads to punctuations as well as
words. Punctuations arguably play an important
role in syntactic analysis. However, there are a
number of reasons that it is not necessary to parse
punctuations:

First, the lexical heads of punctuations are not
as well defined as those of words. Consequently,
punctuations are not as consistently annotated in
treebanks as words, making it harder to parse
punctuations. For example, modern statistical
parsers achieve above 90% unlabelled attachment
score (UAS) on words. However, the UAS on
punctuations are generally below 85%.

∗This work was done while the first author was visiting
SUTD

Moreover, experimental results showed that
parsing accuracy of content words drops on sen-
tences which contain higher ratios of punctuations.
One reason for this result is that projective de-
pendency parsers satisfy the “no crossing links”
constraint, and errors in punctuations may pre-
vent correct word-word dependencies from being
created (see section 2). In addition, punctuations
cause certain type of features inaccurate. Take va-
lency features for example, previous work (Zhang
and Nivre, 2011) has shown that such features are
important to parsing accuracy, e.g., it may inform
the parser that a verb already has two objects at-
tached to it. However, such information might
be inaccurate when the verb’s modifiers contain
punctuations.

Ultimately, it is the dependencies between
words that provide useful information for real
world applications. Take machine translation or
information extraction for example, most systems
take advantage of the head-modifier relationships
between word pairs rather than word-punctuation
pairs to make better predictions. The fact that most
previous work evaluates parsing accuracies with-
out taking punctuations into account is also largely
due to this reason.

Given the above reasons, we propose an alterna-
tive approach to punctuation processing for depen-
dency parsing. In this method, punctuations are
not associated with lexical heads, but are treated
as properties of their neighbouring words.

Our method is simple and can be easily incor-
porated into state-of-the-art parsers. In this work,
we report results on an arc-standard transition-
based parser. Experiments show that our method
achieves about 0.90% UAS improvement over the
greedy baseline parser on the standard Penn Tree-
bank test set. Although the improvement becomes
smaller as the beam width grows larger, we still
achieved 93.06% UAS with a beam of width 64,
which is the best result for transition-based parsers
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Length 1 ∼ 20 21− 40 41− 60
Punc % 0 ∼ 15 15 ∼ 30 > 30 0 ∼ 15 15 ∼ 30 > 30 0 ∼ 15 15 ∼ 30 > 30

E-F 94.56 92.88 87.67 91.84 91.82 83.87 89.83 88.01 −
A-S 93.87 92.00 90.05 90.81 90.15 75.00 88.06 88.89 −

A-S-64 95.28 94.43 88.15 92.96 92.63 76.61 90.78 88.76 −
MST 94.90 93.55 88.15 92.45 93.11 77.42 90.89 89.77 −

Table 2: Parsing accuracies vs punctuation ratios, on the development set

System E-F A-S A-S-64 MST
Dev UAS 91.83 90.71 93.02 92.56
Test UAS 91.75 90.34 92.84 92.10

Dev UAS-p 83.20 79.69 84.80 84.42
Test UAS-p 84.67 79.64 87.80 85.67
Dev− UAS 90.64 89.55 91.87 90.11
Test− UAS 90.40 89.33 91.75 89.82

Table 1: Parsing accuracies. “E-F” and “MST” de-
note easy-first parser and MSTparser, respectively.
“A-S” and “A-S 64” denote our arc-standard parser
with beam width 1 and 64, respectively. “UAS”
and “UAS-p” denote word and punctuation unla-
belled attachment score, respectively. “−” denotes
the data set with punctuations removed.

reported so far. Our code will be available at
https://github.com/majineu/Parser/Punc/A-STD.

2 Influence of Punctuations on Parsing

In this section, we conduct a set of experiments to
show the influence of punctuations on dependency
parsing accuracies.

2.1 Setup

We use the Wall Street Journal portion of the Penn
Treebank with the standard splits: sections 02-21
are used as the training set; section 22 and sec-
tion 23 are used as the development and test set,
respectively. Penn2Malt is used to convert brack-
eted structures into dependencies. We use our own
implementation of the Part-Of-Speech (POS) tag-
ger proposed by Collins (2002) to tag the devel-
opment and test sets. Training set POS tags are
generated using 10-fold jack-knifing. Parsing ac-
curacy is evaluated using unlabelled attachment
score (UAS), which is the percentage of words that
are assigned the correct lexical heads.

To show that the influence of punctuations
on parsing is independent of specific pars-
ing algorithms, we conduct experiments us-
ing three parsers, each representing a different
parsing methodology: the open source MST-

Parser1(McDonald and Pereira, 2006), our own
re-implementation of an arc-standard transition-
based parser (Nivre, 2008), which is trained us-
ing global learning and beam-search (Zhang and
Clark, 2008) with a rich feature set (Zhang and
Nivre, 2011) 2, and our own re-implementation of
the easy-first parser (Goldberg and Elhadad, 2010)
with an extended feature set (Ma et al., 2013).

2.2 Punctuations and Parsing Accuracy

Our first experiment is to show that, compared
with words, punctuations are more difficult to
parse and to learn. To see this, we evaluate the
parsing accuracies of the selected parsers on words
and punctuations, separately. Results are listed
in Table 1, where row 2 and row 3 list the UAS
of words (all excluding punctuations) on the de-
velopment and test set, respectively. Row 4 and
row 5 list accuracies of punctuations (all excluding
words) on the development and test set, respec-
tively. We can see that although all the parsers
achieve above 90% UAS on words, the UAS on
punctuations are mostly below 85%.

As for learning, we calculate the percentage of
parameter updates that are caused by associating
punctuations with incorrect heads during training
of the easy-first parser3. The result is that more
than 31% of the parameter updates are caused due
to punctuations, though punctuations account for
only 11.6% of the total tokens in the training set.

The fact that parsers achieve low accuracies on
punctuations is to some degree expected, because
the head of a punctuation mark is linguistically
less well-defined. However, a related problem is

1We trained a second order labelled parser with all the
configurations set to the default value. The code is publicly
available at http://sourceforge.net/projects/mstparser/

2Some feature templates in Zhang and Nivre (2011) in-
volve head word and head POS tags which are not avail-
able for an arc-standard parser. Interestingly, without those
features our arc-standard parser still achieves 92.84% UAS
which is comparable to the 92.90% UAS obtained by the arc-
eager parser of Zhang and Nivre (2011)

3For the greedy easy-first parser, whether a parameter up-
date is caused by punctuation error can be determined with
no ambiguity.
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Figure 1: Illustration of processing paired punctuation. The property of a word is denoted by the punc-
tuation below that word.

that parsing accuracy on words tends to drop on
the sentences which contain high ratio of punc-
tuations. To see this, we divide the sentences in
the development set into sub-sets according the
punctuation ratio (percentage of punctuations that
a sentence contains), and then evaluate parsing ac-
curacies on the sub-sets separately.

The results are listed in Table 2. Since long
sentences are inherently more difficult to parse,
to make a fair comparison, we further divide the
development set according to sentence lengths as
shown in the first row4. We can see that most of the
cases, parsing accuracies drop on sentences with
higher punctuation ratios. Note that this negative
effect on parsing accuracy might be overlooked
since most previous work evaluates parsing accu-
racy without taking punctuations into account.

By inspecting the parser outputs, we found that
error propagation caused by assigning incorrect
head to punctuations is one of the main reason that
leads to this result. Take the sentence shown in
Figure 1 (a) for example, the word Mechanisms
is a modifier of entitled according to the gold ref-
erence. However, if the quotation mark, “, is in-
correctly recognized as a modifier of was, due to
the “no crossing links” constraint, the arc between
Mechanisms and entitled can never be created.

A natural question is whether it is possible to
reduce such error propagation by simply remov-
ing all punctuations from parsing. Our next ex-
periment aims at answering this question. In this
experiment, we first remove all punctuations from
the original data and then modify the dependency
arcs accordingly in order to maintain word-word
dependencies in the original data. We re-train the
parsers on the modified training set and evaluate

41694 out of 1700 sentences on the development set with
length no larger than 60 tokens

parsing accuracies on the modified data.
Results are listed in row 6 and row 7 of Table 1.

We can see that parsing accuracies on the modified
data drop significantly compared with that on the
original data. The result indicates that by remov-
ing punctuations, we lose some information that is
important for dependency parsing.

3 Punctuation as Properties

In our method, punctuations are treated as prop-
erties of its neighbouring words. Such properties
are used as additional features to guide the parser
to construct the dependency graph.

3.1 Paired Punctuation
Our method distinguishes paired punctuations
from other punctuations. Here paired punctuations
include brackets and quotations marks, whose
Penn Treebank POS tags are the following four:

-LRB- -RRB- “ ”

The characteristics of paired punctuations include:
(1) they typically exist in pairs; (2) they serve as
boundaries that there is only one dependency arc
between the words inside the boundaries and the
words outside. Take the sentence in Figure 1 (a)
for example, the only arc cross the boundary is
(Mechanisms, entitled) where entitled is the head.

To utilize such boundary information, we fur-
ther classify paired punctuations into two cate-
gories: those that serve as the beginning of the
boundary, whose POS tags are either -LRB- or “,
denoted by BPUNC; and those that serve as the end
of the boundary, denoted by EPUNC.

Before parsing starts, a preprocessing step is
used to first attach the paired punctuations as
properties of their neighbouring words, and then
remove them from the sentence. In particular,
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unigram for p in β0, β1, β2, β3, σ0, σ1, σ2 ppunc

for p in β0, β1, β2, σ0, σ1 ppunc � pw, ppunc � pt

bigram for p, q in (σ0, β0), (σ0, β1), (σ0, β2), (σ0, σ1), (σ0, σ2) ppunc � qpunc, ppunc � qt, ppunc � qw

for p, q in (σ2, σ0), (σ1, σ0), (σ2, σ0) ppunc � qt, ppunc � pt � qt

for p, q in (σ2, σ0), (σ1, σ0), (σ0, β0) dpq � ppunc � pt � qt

Table 3: Feature templates. For an element p either on σ or β of an arc-standard parser, we use ppunc,
pw and pt to denote the punctuation property, head word and head tag of p, respectively. dpq denotes the
distance between the two elements p and q.

we attach BPUNCs to their right neighbours and
EPUNCs to their left neighbours, as shown in Fig-
ure 1 (b). Note that in Figure 1 (a), the left neigh-
bour of ” is also a punctuation. In such cases, we
simply remove these punctuations since the exis-
tence of paired punctuations already indicates that
there should be a boundary.

During parsing, when a dependency arc with
lexical head wh is created, the property of wh is
updated by the property of its left (or right) most
child to keep track whether there is a BPUNC (or
EPUNC) to the left (or right) side of the sub-tree
rooted at wh, as shown in Figure 1 (c). When
BPUNCs and EPUNCs meet each other at wh, a
PAIRED property is assigned to wh to capture that
the words within the paired punctuations form a
sub-tree, rooted at wh. See Figure 1 (d).

3.2 Practical Issues

It is not uncommon that two BPUNCS appear ad-
jacent to each other. For example,

(“Congress’s Environmental Buccaneers,”
Sept. 18).

In our implementation, BPUNC or EPUNC prop-
erties are implemented using flags. In the exam-
ple, we set two flags “ and ( on the word Con-
grees’s. When BPUNC and EPUNC meet each
other, the corresponding flags are turned off. In
the example, when Congrees’s is identified as a
modifier of Buccaneers, the ” flag of Buccaneers
is turned off. However, we do not assign a PAIRED

property to Buccaneers since its ( flag is still on.
The PAIRED property is assigned only when all
the flags are turned off.

3.3 Non-Paired Punctuations

Though some types of non-paired punctuations
may capture certain syntactic patterns, we do not
make further distinctions between them, and treat
these punctuations uniformly for simplicity.

Before parsing starts and after the preprocessing
step for paired punctuations, our method employs

a second preprocessing step to attach non-paired
punctuations to their left neighbouring words. It
is guaranteed that the property of the left neigh-
bouring words of non-paired punctuations must be
empty. Otherwise, it means the non-paired punc-
tuation is adjacent to a paired punctuation. In
such cases, the non-paired punctuation would be
removed in the first processing step.

During parsing, non-paired punctuations are
also passed bottom-up: the property of wh is up-
dated by its right-most dependent to keep track
whether there is a punctuation to the right side
of the tree rooted at wh. The only special case is
that ifwh already contains a BPUNC property, then
our method simply ignores the non-paired prop-
erty since we maintain the boundary information
with the highest priority.

3.4 Features

We incorporate our method into the arc-standard
transition-based parser, which uses a stack σ to
maintain partially constructed trees and a buffer β
for the incoming words (Nivre, 2008). We design
a set of features to exploit the potential of using
punctuation properties for the arc-standard parser.

The feature templates are listed in Table 3.
In addition to the features designed for paired
punctuations, such as bigram punctuation features
listed in line 3 of Table 3, we also design features
for non-paired punctuations. For example, the dis-
tance features in line 5 of Table 3 is used to capture
the pattern that if a word w with comma property
is the left modifier of a noun or a verb, the distance
between w and its lexical head is often larger than
1. In other words, they are not adjacent.

4 Results

Our first experiment is to investigate the effect of
processing paired punctuations on parsing accu-
racy. In this experiment, the method introduced
in Section 3.1 is used to process paired punctua-
tions, and the non-paired punctuations are left un-
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s Baseline Paired All
1 90.76 91.25 91.47
2 91.88 92.06 92.34
4 92.50 92.61 92.70
8 92.73 92.76 92.82
16 92.90 92.94 92.99
64 92.99 93.04 93.10

Table 4: Parsing accuracies on the development
set. s denotes the beam width.

touched. Feature templates used in this experi-
ment are those listed in the top three rows of Ta-
ble 3 together with those used for the baseline arc-
standard parser.

Results on the development set are shown in the
second column of Table 4. We can see that when
the beam width is set to 1, our method achieves an
0.49 UAS improvement. By comparing the out-
puts of the two parsers, two types of errors made
by the baseline parser are effectively corrected.

The first is that our method is able to cap-
ture the pattern that there is only one depen-
dency arc between the words within the paired-
punctuations and the words outside, while the
baseline parser sometimes creates more depen-
dency arcs that cross the boundary.

The second is more interesting. Our method is
able to capture that the root, wh, of the sub-tree
within the paired-punctuation, such as “Mecha-
nisms” in Figure 1, generally serves as a modifier
of the words outside, while the baseline parser oc-
casionally make wh as the head of the sentence.

As we increase the beam width, the improve-
ment of our method over the baseline becomes
smaller. This is as expected, since beam search
also has the effect of reducing error propagation
(Zhang and Nivre, 2012), thereby alleviating the
errors caused by punctuations.

In the last experiment, we examine the effect
of incorporating all punctuations using the method
introduced in Section 2. In this experiment, we
use all the feature templates in Table 3 and those
in the baseline parser. Results are listed in the
fourth column of Table 4, which shows that pars-
ing accuracies can be further improved by also
processing non-paired punctuations. The overall
accuracy improvement when the beam width is 1
reaches 0.91%. The extra improvements mainly
come from better accuracies on the sentences with
comma. However, the exact type of errors that
are corrected by using non-paired punctuations is
more difficult to summarize.

system UAS Comp Root
Baseline 90.38 37.71 89.45
All-Punc 91.32 41.35 92.43

Baseline-64 92.84 46.90 95.57
All-Punc-64 93.06 48.55 95.53

Huang 10 92.10 − −
Zhang 11 92.90 48.00 91.80
Choi 13 92.96 − −

Bohnet 12 93.03 − −

Table 5: Final result on the test set.

The final results on the test set are listed in Ta-
ble 55. Table 5 also lists the accuracies of state-
of-the-art transition-based parsers. In particular,
“Huang 10” and “Zhang 11” denote Huang and
Sagae (2010) and Zhang and Nivre (2011), re-
spectively. “Bohnet 12” and “Choi 13” denote
Bohnet and Nivre (2012) and Choi and Mccal-
lum (2013), respectively. We can see that our
method achieves the best accuracy for single-
model transition-based parsers.

5 Conclusion and Related Work

In this work, we proposed to treat punctuations
as properties of context words for dependency
parsing. Experiments with an arc-standard parser
showed that our method effectively improves pars-
ing performance and we achieved the best accu-
racy for single-model transition-based parser.

Regarding punctuation processing for depen-
dency parsing, Li et al. (2010) proposed to uti-
lize punctuations to segment sentences into small
fragments and then parse the fragments separately.
A similar approach is proposed by Spitkovsky et
al. (2011) which also designed a set of constraints
on the fragments to improve unsupervised depen-
dency parsing.
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Abstract

Finite-state chunking and tagging meth-
ods are very fast for annotating non-
hierarchical syntactic information, and are
often applied in applications that do not
require full syntactic analyses. Scenar-
ios such as incremental machine transla-
tion may benefit from some degree of hier-
archical syntactic analysis without requir-
ing fully connected parses. We introduce
hedge parsing as an approach to recover-
ing constituents of length up to some max-
imum span L. This approach improves ef-
ficiency by bounding constituent size, and
allows for efficient segmentation strategies
prior to parsing. Unlike shallow parsing
methods, hedge parsing yields internal hi-
erarchical structure of phrases within its
span bound. We present the approach and
some initial experiments on different infer-
ence strategies.

1 Introduction

Parsing full hierarchical syntactic structures is
costly, and some NLP applications that could ben-
efit from parses instead substitute shallow prox-
ies such as NP chunks. Models to derive such
non-hierarchical annotations are finite-state, so in-
ference is very fast. Still, these partial annota-
tions omit all but the most basic syntactic segmen-
tation, ignoring the abundant local structure that
could be of utility even in the absence of fully con-
nected structures. For example, in incremental (si-
multaneous) machine translation (Yarmohammadi
et al., 2013), sub-sentential segments are trans-
lated independently and sequentially, hence the
fully-connected syntactic structure is not generally
available. Even so, locally-connected source lan-
guage parse structures can inform both segmen-
tation and translation of each segment in such a
translation scenario.

One way to provide local hierarchical syntactic

structures without fully connected trees is to fo-
cus on providing full hierarchical annotations for
structures within a local window, ignoring global
constituents outside that window. We follow the
XML community in naming structures of this type
hedges (not to be confused with the rhetorical de-
vice of the same name), due to the fact that they are
like smaller versions of trees which occur in se-
quences. Such structures may be of utility to var-
ious structured inference tasks, as well as within
a full parsing pipeline, to quickly constrain subse-
quent inference, much as finite-state models such
as supertagging (Bangalore and Joshi, 1999) or
chart cell constraints (Roark and Hollingshead,
2008; Roark et al., 2012) are used.

In this paper, we consider the problem of hedge
parsing, i.e., discovering every constituent of
length up to some span L. Similar constraints
have been used in dependency parsing (Eisner
and Smith, 2005; Dreyer et al., 2006), where the
use of hard constraints on the distance between
heads and dependents is known as vine parsing.
It is also reminiscent of so-called Semi-Markov
models (Sarawagi and Cohen, 2004), which allow
finite-state models to reason about segments rather
than just tags by imposing segment length limits.
In the XML community, trees and hedges are used
for models of XML document instances and for
the contents of elements (Brüggemann-Klein and
Wood, 2004). As far as we know, this paper is
the first to consider this sort of partial parsing ap-
proach for natural language.

We pursue this topic via tree transformation,
whereby non-root non-terminals labeling con-
stituents of span > L in the tree are recursively
elided and their children promoted to attach to
their parent. In such a way, hedges are sequen-
tially connected to the top-most non-terminal in
the tree, as demonstrated in Figure 1. After apply-
ing such a transform to a treebank, we can induce
grammars and modify parsing to search as needed
to recover just these constituents.

In this paper, we propose several methods to
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Figure 1: a) Full parse tree, b) Hedge parse tree with maximum constituent span of 7 (L = 7).

parse hedge constituents and examine their accu-
racy/efficiency tradeoffs. This is compared with
a baseline of parsing with a typically induced
context-free grammar and transforming the result
via the hedge transform, which provides a ceiling
on accuracy and a floor on efficiency. We inves-
tigate pre-segmenting the sentences with a finite-
state model prior to hedge parsing, and achieve
large speedups relative to hedge parsing the whole
string, though at a loss in accuracy due to cas-
cading segmentation errors. In all cases, we find
it crucial that our “hedgebank” grammars be re-
trained to match the conditions during inference.

2 Methods

In this section, we present the details of our ap-
proach. First, we present the simple tree transform
from a full treebank parse tree to a (root attached)
sequence of hedges. Next, we discuss modifica-
tions to inference and the resulting computational
complexity gains. Finally, we discuss segmenting
to further reduce computational complexity.

2.1 Hedge Tree Transform
The hedge tree transform converts the original
parse tree into a hedge parse tree. In the resulting
hedge parse tree, every child of the top-most node
spans at most L words. To transform an original
tree to a hedge tree, we remove every non-terminal

with span larger thanL and attach its children to its
parent. We label span length on each node by re-
cursively summing the span lengths of each node’s
children, with terminal items by definition having
span 1. A second top-down pass evaluates each
node before evaluating its children, and removes
nodes spanning> Lwords. For example, the span
of the non-root S, SBAR, ADJP, and VP nodes in
Figure 1(a) have spans between 10 and 13, hence
are removed in the tree in Figure 1(b).

If we apply this transform to an entire tree-
bank, we can use the transformed trees to induce
a PCFG for parsing. Figure 2 plots the percentage
of constituents from the original WSJ Penn tree-
bank (sections 2-21) retained in the transformed
version, as we vary the maximum span length pa-
rameterL. Over half of constituents have span 3 or
less (which includes frequent base noun phrases);
L = 7 covers approximately three quarters of the
original constituents, and L = 15 over 90%. Most
experiments in this paper will focus on L = 7,
which is short enough to provide a large speedup
yet still cover a large fraction of constituents.

2.2 Hedge Parsing

As stated earlier, our brute-force baseline ap-
proach is to parse the sentence using a full context-
free grammar (CFG) and then hedge-transform the
result. This method should yield a ceiling on
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Figure 2: Percentage of constituents retained at various
span length parameters

hedge-parsing accuracy, as it has access to rich
contextual information (as compared to grammars
trained on transformed trees). Naturally, inference
will be slow; we aim to improve efficiency upon
this baseline while minimizing accuracy loss.

Since we limit the span of non-terminal la-
bels, we can constrain the search performed by the
parser, greatly reduce the CYK processing time. In
essence, we perform no work in chart cells span-
ning more than L words, except for the cells along
the periphery of the chart, which are just used to
connect the hedges to the root. Consider the flat
tree in Figure 1(b). For use by a CYK parsing al-
gorithm, trees are binarized prior to grammar in-
duction, resulting in special non-terminals created
by binarization. Other than the symbol at the root
of the tree, the only constituents with span length
greater than L in the binarized tree will be labeled
with these special binarization non-terminals. Fur-
ther, if the binarization systematically groups the
leftmost or the rightmost children under these new
non-terminals (the most common strategy), then
constituents with span greater than L will either
begin at the first word (leftmost grouping) or end
at the last word (rightmost), further constraining
the number of cells in the chart requiring work.

Complexity of parsing with a full CYK parser is
O(n3|G|) where n is the length of input and |G| is
the grammar size constant. In contrast, complex-
ity of parsing with a hedge constrained CYK is re-
duced to O((nL2 +n2)|G|). To see that this is the
case, consider that there areO(nL) cells of span L
or less, and each has a maximum of L midpoints,
which accounts for the first term. Beyond these,
there are O(n) remaining active cells with O(n)
possible midpoints, which accounts for the second
term. Note also that these latter cells (spanning
> L words) may be less expensive, as the set of
possible non-terminals is reduced to only those in-
troduced by binarization.

It is possible to parse with a standardly induced

PCFG using this sort of hedge constrained pars-
ing that only considers a subset of the chart cells,
and speedups are achieved, however this is clearly
non-optimal, since the model is ill-suited to com-
bining hedges into flat structures at the root of the
tree. Space constraints preclude inclusion of tri-
als with this method, but the net result is a se-
vere degradation in accuracy (tens of points of F-
measure) versus standard parsing. Thus, we train
a grammar in a matched condition, which we call
it a hedgebank grammar. A hedgebank gram-
mar is a fully functional PCFG which is learned
from a hedge transformed treebank. A hedgebank
grammar can be used with any standard parsing
algorithm, i.e., these are not generally finite-state
equivalent models. However, using the Berke-
ley grammar learner (see §3), we find that hedge-
bank grammars are typically smaller than tree-
bank grammars, reducing the grammar constant
and contributing to faster inference.

A unique property of hedge constituents com-
pared to constituents in the original parse trees
is that they are sequentially connected to the top-
most node. This property enables us to chunk the
sentence into segments that correspond to com-
plete hedges, and parse the segments indepen-
dently (and simultaneously) instead of parsing the
entire sentence. In section 2.3, we present our ap-
proach to hedge segmentation.

In all scenarios where the chart is constrained
to search for hedges, we learn a hedgebank gram-
mar, which is matched to the maximum length al-
lowed by the parser. In the pre-segmentation sce-
nario, we first decompose the hedge transformed
treebank into its hedge segments and then learn a
hedgebank grammar from the new corpus.

2.3 Hedge Segmentation
In this section we present our segmentation model
which takes the input sentence and chunks it into
appropriate segments for hedge parsing. We treat
this as a binary classification task which decides
if a word can begin a new hedge. We use hedge
segmentation as a finite-state pre-processing step
for hedge context-free parsing.

Our task is to learn which words can begin
(B) a hedge constituent. Given a set of labeled
pairs (S,H) where S is a sentence of n words
w1 . . . wn and H is its hedge parse tree, word wb

belongs to B if there is a hedge constituent span-
ningwb . . . we for some e ≥ b andwb belongs to B̄
otherwise. To predict the hedge boundaries more
accurately, we grouped consecutive unary or POS-
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tag hedges together under a new non-terminal la-
beled G. Unlabeled segmentation tags for the
words in the example sentence in Figure 1(b) are:

“Analysts/B are/B̄ concerned/B̄ that/B̄ much/B
of/B̄ the/B̄ high-yield/B̄ market/B̄ will/B
remain/B̄ treacherous/B̄ for/B̄ investors/B̄ ./B”

In addition to the simple unlabeled segmentation
with B and B̄ tags, we try a labeled segmenta-
tion with BC and B̄C tags where C is hedge con-
stituent type. We restrict the types to the most im-
portant types – following the 11 chunk types an-
notated in the CoNLL-2000 chunking task (Sang
and Buchholz, 2000) – by replacing all other types
with a new type OUT. Thus, “Analysts” is labeled
BG; “much”, BNP; “will”, BVP and so on.

To automatically predict the class of each word
position, we train a multi-class classifier from la-
beled training data using a discriminative linear
model, learning the model parameters with the av-
eraged perceptron algorithm (Collins, 2002). We
follow Roark et al. (2012) in the features they used
to label words as beginning or ending constituents.
The segmenter extracts features from word and
POS-tag input sequences and hedge-boundary tag
output sequences. The feature set includes tri-
grams of surrounding words, trigrams of surround-
ing POS tags, and hedge-boundary tags of the pre-
vious words. An additional orthographical fea-
ture set is used to tag rare1 and unknown words.
This feature set includes prefixes and suffixes of
the words (up to 4 characters), and presence of
a hyphen, digit, or an upper-case character. Re-
ported results are for a Markov order-2 segmenter,
which includes features with the output classes of
the previous two words.

3 Experimental Results
We ran all experiments on the WSJ Penn Tree-
bank corpus (Marcus et al., 1999) using section
2-21 for training, section 24 for development, and
section 23 for testing. We performed exhaustive
CYK parsing using the BUBS parser2 (Bodenstab
et al., 2011) with Berkeley SM6 latent-variable
grammars (Petrov and Klein, 2007) learned by the
Berkeley grammar trainer with default settings.
We compute accuracy from the 1-best Viterbi
tree extracted from the chart using the standard
EVALB script. Accuracy results are reported as
precision, recall and F1-score, the harmonic mean
between the two. In all trials, we evaluate accuracy
with respect to the hedge transformed reference

1Rare words occur less than 5 times in the training data.
2https://code.google.com/p/bubs-parser

Hedge Parsing Acc/Eff
Parser P R F1 w/s
Full w/full CYK 88.8 89.2 89.0 2.4
Hedgebank 87.6 84.4 86.0 25.7

Table 1: Hedge parsing results on section 24 for L = 7.

treebank, i.e., we are not penalizing the parser for
not discovering constituents longer than the max-
imum length. Segmentation accuracy is reported
as an F1-score of unlabeled segment bracketing.
We ran timing tests on an Intel 2.66GHz proces-
sor with 3MB of cache and 2GB of memory. Note
that segmentation time is negligible compared to
the parsing time, hence is omitted in reported time.
Efficiency results are reported as number of words
parsed per second (w/s).

Table 1 presents hedge parsing accuracy on
the development set for the full parsing baseline,
where the output of regular PCFG parsing is trans-
formed to hedges and evaluated, versus parsing
with a hedgebank grammar, with no segmenta-
tion of the strings. We find an order of magnitude
speedup of parsing, but at the cost of 3 percent F-
measure absolute. Note that most of that loss is
in recall, indicating that hedges predicted in that
condition are nearly as reliable as in full parsing.

Table 2 shows the results on the development
set when segmenting prior to hedge parsing. The
first row shows the result with no segmentation,
the same as the last row in Table 1 for ease of ref-
erence. The next row shows behavior with per-
fect segmentation. The final two rows show per-
formance with automatic segmentation, using a
model that includes either unlabeled or labeled
segmentation tags, as described in the last section.
Segmentation accuracy is better for the model with
labels, although overall that accuracy is rather low.
We achieve nearly another order of magnitude
speedup over hedge parsing without segmentation,
but again at the cost of nearly 5 percent F1.

Table 3 presents results of our best configura-
tions on the eval set, section 23. The results show
the same patterns as on the development set. Fi-
nally, Figure 3 shows the speed of inference, la-

Table 2: Hedge segmentation and parsing results on section
24 for L = 7.

Segmen- Seg Hedge Parsing Acc/Eff
tation F1 P R F1 w/s

None n/a 87.6 84.4 86.0 25.7
Oracle 100 91.3 88.9 90.1 188.6
Unlabeled 80.6 77.2 75.3 76.2 159.1
Labeled 83.8 83.1 79.5 81.3 195.8
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Segmentation Grammar
Segmentation Acc Hedge Parsing Acc/Eff

P R F1 P R F1 w/s
None Full w/full CYK n/a 90.3 90.3 90.3 2.7
None Hedgebank n/a 88.3 85.3 86.8 26.2

Labeled Hedgebank 84.0 86.6 85.3 85.1 81.1 83.0 203.0

Table 3: Hedge segmentation and parsing results on test data, section 23, for L = 7.
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Figure 3: Hedge parsing a) efficiency, and b) accuracy on test data, section 23, for L = 3–20.

beled precision and labeled recall of annotating
hedge constituents on the test set as a function
of the maximum span parameter L, versus the
baseline parser. Keep in mind that the number
of reference constituents increases as L increases,
hence both precision and recall can decrease as
the parameter grows. Segmentation achieves large
speedups for smaller L values, but the accuracy
degradation is consistent, pointing to the need for
improved segmentation.

4 Conclusion and Future Work

We proposed a novel partial parsing approach for
applications that require a fast syntactic analysis
of the input beyond shallow bracketing. The span-
limit parameter allows tuning the annotation of in-
ternal structure as appropriate for the application
domain, trading off annotation complexity against
inference time. These properties make hedge pars-
ing potentially very useful for incremental text or
speech processing, such as streaming text analysis
or simultaneous translation.

One interesting characteristic of these anno-
tations is that they allow for string segmenta-
tion prior to inference, provided that the segment
boundaries do not cross any hedge boundaries. We
found that baseline segmentation models did pro-

vide a significant speedup in parsing, but that cas-
cading errors remain a problem.

There are many directions of future work to
pursue here. First, the current results are all for
exhaustive CYK parsing, and we plan to per-
form a detailed investigation of the performance
of hedgebank parsing with prioritization and prun-
ing methods of the sort available in BUBS (Bo-
denstab et al., 2011). Further, this sort of annota-
tion seems well suited to incremental parsing with
beam search, which has been shown to achieve
high accuracies even for fully connected parsing
(Zhang and Clark, 2011). Improvements to the
transform (e.g., grouping items not in hedges un-
der non-terminals) and to the segmentation model
(e.g., increasing precision at the expense of recall)
could improve accuracy without greatly reducing
efficiency. Finally, we intend to perform an ex-
trinsic evaluation of this parsing in an on-line task
such as simultaneous translation.
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Abstract

Most approaches to incremental parsing
either incur a degradation of accuracy or
they have to postpone decisions, yield-
ing underspecified intermediate output. We
present an incremental predictive depen-
dency parser that is fast, accurate, and
largely language independent. By extend-
ing a state-of-the-art dependency parser,
connected analyses for sentence prefixes
are obtained, which even predict properties
and the structural embedding of upcoming
words. In contrast to other approaches, ac-
curacy for complete sentence analyses does
not decrease.

1 Introduction

When humans communicate by means of a natu-
ral language, utterances are not produced at once
but evolve over time. Human interaction benefits
from this property by processing yet unfinished
utterances and reacting on them. Computational
parsing on the other hand is mostly performed on
complete sentences, a processing mode which ren-
ders a responsive interaction based on incomplete
utterances impossible.

When spoken language is analyzed, a mismatch
between speech recognition and parsing occurs:
If parsing does not work incrementally, the over-
all system loses all the desirable properties made
possible by incremental processing. For speech di-
alogue systems, this leads to increased reaction
times and an unnatural ping-pong style of interac-
tion (Schlangen and Skantze, 2011).

1.1 Desirable features of incremental parsers

Dependency parsing assigns a head and a depen-
dency label to each word form of an input sentence
and the resulting analysis of the sentence is usually
required to form a tree. An incremental dependency

parser processes a sentence word by word, building
analyses for sentence prefixes (partial dependency
analyses, PDA), which are extended and modified
in a piecemeal fashion as more words become avail-
able.

A PDA should come with three important (but
partly contradictory) properties: beyond being ac-
curate, it should also be as stable and informative as
possible. Stability can be measured as the amount
of structure (attachments and their labels) of a PDA
ai which is also part of the analysis an of the whole
sentence. To be maximally informative, at least all
available word forms should be integrated into the
prefix PDA. Even such a simple requirement cannot
easily be met without predicting a structural skele-
ton for the word forms in the upcoming part of the
sentence(bottom-up prediction). Other predictions
merely serve to satisfy completeness conditions
(i.e. valency requirements) in an anticipatory way
(top-down predictions). In fact, humans are able to
derive such predictions and they do so during sen-
tence comprehension (Sturt and Lombardo, 2005).

Without prediction, the sentence prefix “John
drives a” of “John drives a car” can only be parsed
as a disconnected structure:

John drives a

SBJ

The determiner remains unconnected to the rest of
the sentence, because a possible head is not yet
available. However, the determiner could be inte-
grated into the PDA if the connection is established
by means of a predicted word form, which has not
yet been observed. Beuck et al. (2011) propose to
use virtual nodes (VNs) for this purpose. Each VN
represents exactly one upcoming word. Its lexical
instantiation and its exact position remain unspeci-
fied. Using a VN, the prefix “John drives a” could
then be parsed as follows, creating a fully con-
nected analysis, which also satisfies the valency
requirements of the finite verb.
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John drives a [VirtNoun]

SBJ
DET

OBJ

This analysis is clearly more informative but still
restricted to the existence of a noun filling the ob-
ject role of ”drives” without predicting its position.
Although a VN does not specify the lexical identity
of the word form it represents, it can nonetheless
carry some information such as a coarse-grained
part-of-speech category.

1.2 Related work
Parsers that produce incremental output are rel-
atively rare: PLTag (Demberg-Winterfors, 2010)
aims at psycholinguistic plausibility. It makes trade-
offs in the field of accuracy and coverage (they
report 6.2 percent of unparseable sentences on sen-
tences of the Penn Treebank with less than 40
words). Due to its use of beam search, the incre-
mental results are non-monotonic. Hassan et al.
(2009) present a CCG-based parser that can parse
in an incremental mode. The parser guarantees
that every parse of an increment extends the previ-
ous parse monotonically. However, using the incre-
mental mode without look-ahead, parsing accuracy
drops from 86.70% to 59.01%. Obviously, insist-
ing on strict monotonicity (ai ⊆ an) is too strong
a requirement, since it forces the parser to keep
attachments that later turn out to be clearly wrong
in light of new evidence.

Being a transition-based parser, Maltparser
(Nivre et al., 2007) does incremental parsing by
design. It is, however, not able to predict upcom-
ing structure and therefore its incremental output is
usually fragmented into several trees. In addition,
Maltparser needs a sufficiently large look-ahead to
achieve high accuracy (Beuck et al., 2011).

Beuck et al. (2011) introduced incremental and
predictive parsing using Weighted Constraint De-
pendency Grammar. While their approach does not
decrease in incremental mode, it is much slower
than most other parsers. Another disadvantage is
its hand-written grammar which prevents the parser
from being adapted to additional languages by sim-
ply training it on an annotated corpus and which
makes it difficult to derive empirically valid con-
clusions from the experimental results.

2 Challenges for predictive parsing

Extending a dependency parser to incremental pars-
ing with VNs introduces a significant shift in the
problem to be solved: While originally the problem

was where to attach each word to (1), in the incre-
mental case the additional problem arises, which
VNs to include into the analysis (2). Problem (2),
however, depends on the syntactic structure of the
sentence prefix. Therefore, it is not possible to de-
termine the VNs before parsing commences, but
the decision has to be made while parsing is going
on. We can resolve this issue by transforming prob-
lem (2) into problem (1) by providing the parser
with an additional node, named unused. It is always
attached to the special node 0 (the root node of ev-
ery analysis) and it can only dominate VNs. unused
and every VN it dominates are not considered part
of the analysis. Using this idea, the problem of
whether a VN should be included into the analysis
is now reduced to the problem of where to attach
that VN:

John drives a [VirtNoun] [VirtVerb] [unused]

SBJ
DET

OBJ

To enable the parser to include VNs into PDAs,
a set of VNs has to be provided. While this set
could include any number of VNs, we only in-
clude a set that covers most cases of prediction
since rare virtual nodes have a very low a-priori
probability of being included and additional VNs
make the parsing problem more complex. This set
is language-dependent and has to be determined in
advance. It can be obtained by generating PDAs
from a treebank and counting the occurrences of
VNs in them. Eventually, a set of VNs is used that
is a super-set of a large enough percentage (> 90%)
of the observed sets.

3 Gold annotations for sentence prefixes

Annotating sentence prefixes by hand is pro-
hibitively costly because the number of increments
is a multitude of the number of sentences in the
corpus. Beuck and Menzel (2013) propose an ap-
proach to automatically generate predictive depen-
dency analyses from the annotation of full sen-
tences. Their method tries to generate upper bounds
for predictability which are relatively tight. There-
fore, not everything that is deemed predictable by
the algorithm is predictable in reality, but every-
thing that is predictable should be deemed as pre-
dictable: Let W be all tokens of the sentence and P
the set of tokens that lie in the prefix for which an
incremental analysis should be generated. A word
w ∈W \P is assumed to be predictable (w ∈ Pr) if
one of the following three criteria is met:
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Figure 1: Results for TurboParser for German and English with gold standard PoS (labeled)

bottom-up prediction w lies on the path from
some w′ ∈ P to 0. E. g., given the sentence prefix
“The”, an upcoming noun and a verb is predicted:

The [VirtNoun] [VirtVerb]

top down prediction π(w), the head of w, is in
P∪Pr, and w fills a syntactic role – encoded by its
dependency label – that is structurally determined.
That means w can be predicted independently of
the lexical identity of π(w). An example for this
is the subject label: If π(w) is in Pr and w is its
subject, w is assumed to be predictable.

lexical top-down prediction π(w) ∈ P and w
fills a syntactic role that is determined by an already
observed lexical item, e.g. the object role: If π(w)
is a known verb and w is its object, w ∈ Pr because
it is required by a valency of the verb.

While this procedure is language-independent,
some language-specific transformations must be
applied nonetheless. For English, parts of gapping
coordinations can be predicted whereas others can
not. For German, the transformations described in
(Beuck and Menzel, 2013) have been used with-
out further changes. Both sets of structurally and
lexically determined roles are language dependent.
The label sets for German have been adopted from
(Beuck and Menzel, 2013), while the sets for En-
glish have been obtained by manually analyzing
the PTB (Marcus et al., 1994) for predictability.

For words marked as predictable their existence
and word class, but not their lexicalization and
position can be predicted. Therefore, we replace
the lexical item with “[virtual]” and generalize the
part-of-speech tag to a more coarse grained one.

4 Predictive parsing with TurboParser

We adapt TurboParser (Martins et al., 2013) for
incremental parsing because it does not impose
structural constraints such as single-headedness in
its core algorithm. For each parsing problem, it

creates an integer linear program – in the form of a
factor graph – with the variables representing the
possible edges of the analyses.

Since well-formedness is enforced by factors,
additional constraints on the shape of analyses can
be imposed without changing the core algorithm of
the parser. We define three additional restrictions
with respect to VNs: 1) A VN that is attached to
unused may not have any dependents. 2) A VN
may not be attached to 0 if it has no dependents. 3)
Only VNs may be attached to the unused node.

For a given sentence prefix, let A be the set of
possible edges, V the set of all vertices, N ⊂ V
the VNs and u ∈V the unused node. Moreover, let
B⊂ A be the set of edges building a well-formed
analysis and za , I(a ∈ B), where I(.) is the indica-
tor function. The three additional conditions can be
expressed as linear constraints which ensure that
every output is a valid PDA:

z〈n, j〉+ z〈u,n〉 ≤ 1, n ∈ N, j ∈V (1)

z〈0,n〉 ≤ ∑
j∈V

z〈n, j〉, n ∈ N (2)

z〈u,i〉 = 0, i ∈V \N (3)

The current implementation is pseudo-incremen-
tal. It reinitializes the ILP for every increment with-
out passing intermediate results from one incremen-
tal processing step to the next, although this might
be an option for further optimization.

High quality incremental parsing results can not
be expected from models which have only been
trained on whole-sentence annotations. If a parser
is trained on gold-standard PDAs (generated as de-
scribed in section 3), it would include every VN
into every analysis because that data does not in-
clude any non-attached VNs. We therefore add non-
attached VNs to the generated PDAs until they
contain at least the set of VNs that is later used
during parsing. For instance, each German training
increment contains at least one virtual verb and
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two virtual nouns and each English one at least one
virtual verb and one virtual noun. This way, the per-
centage of VNs of a specific type being attached in
the training data resembles the a priori probability
that a VN of that type should be included by the
parser while parsing.

TurboParser is trained on these extended PDAs
and no adaptation of the training algorithm is
needed. The training data is heavily skewed be-
cause words at the beginning of the sentences are
more prevalent than the ones at the end. As a com-
parison with a version trained on non-incremental
data shows, this has no noticeable effect on the
parsing quality.

5 Evaluation

The usual methods to determine the quality of a
dependency parser – labeled and unlabeled attach-
ment scores (AS) – are not sufficient for the evalu-
ation of incremental parsers. If the AS is computed
for whole sentences, all incremental output is dis-
carded and not considered at all. If every intermedi-
ate PDA is used, words at the start of a sentence are
counted more often than the ones at the end. No in-
formation becomes available on how the accuracy
of attachments evolves while parsing proceeds, and
the prediction quality (i.e. the VNs) is completely
ignored. Therefore, we adopt the enhanced mode
of evaluation proposed by Beuck et al. (2013): In
addition to the accuracy for whole sentences, the
accuracies of the n newest words of each analy-
sis are computed. This yields a curve that shows
how good a word can be assumed to be attached
depending on its distance to the most recent word.

Let 〈V,G〉 be the gold standard analysis of an
increment and 〈V ′,P〉 the corresponding parser out-
put. V and V ′ are the vertices and G and P the
respective edges of the analyses. Let V ′p and V ′v be
the in-prefix and virtual subset of V ′, respectively.
To evaluate the prediction capabilities of a parser,
for each increment an optimal partial, surjective
mapping1 V ′→V from the output produced by the
parser to the (automatically generated) gold stan-
dard is computed, where each non-virtual element
of V ′ has to be mapped to the corresponding ele-
ment in V . Let M be the set of all such mappings.
Then the best mapping is defined as follows:

φ = argmax
m∈M

∑
w∈V ′

I(π(m(w)) = m(π(w)))

1The mapping is partial because for some VNs in V ′ there
might be no corresponding VN in the gold standard.

We define a word w as correctly attached (ignor-
ing the label) if π(φ(w)) = φ(π(w)). In an incre-
mental analysis, an attachment of a word w can be
classified into four cases:

correct π(φ(w)) = φ(π(w)), π(w) ∈V ′p
corr. pred. π(φ(w)) = φ(π(w)), π(w) ∈V ′v
wrong pred. π(φ(w)) 6= φ(π(w)), π(w) ∈V ′v
wrong π(φ(w)) 6= φ(π(w)), π(w) ∈V ′p

We can count the number of VNs that have been
correctly attached: Let T be the set of all analyses
produced by the parser and φt the best mapping as
defined above for each t ∈ T . Furthermore, let vn(t)
be the set of VNs in t. The total number of correct
predictions of VNs is then defined as:

corr = ∑
t∈T

∑
v∈vn(t)

I(π(φt(v)) = φt(π(v)))

Precision and recall for the prediction with VNs
can be computed by dividing corr by the number
of predicted VNs and the number of VNs in the
gold standard, respectively.

Evaluation has been carried out on the PTB con-
verted to dependency structure using the LTH con-
verter (Johansson and Nugues, 2007) and on the
Hamburg Dependency Treebank (Foth et al., 2014).
From both corpora predictive PDAs padded with
unused virtual nodes have been created for training.
For English, the sentences of part 1-9 of the PTB
were used, for German the first 50,000 sentences
of the HDT have been selected. Testing was done
using one virtual noun and one virtual verb for En-
glish and two virtual nouns and one virtual verb for
German because these sets cover about 90% of the
prefixes in both training sets.

Figure 1 shows the evaluation results for pars-
ing German and English using TurboParser. For
both languages the attachment accuracy rises with
the amount of context available. The difference be-
tween the attachment accuracy of the most recent
word (relative time point 0, no word to the right
of it) and the second newest word (time point 1)
is strongest, especially for English. The word five
elements left of the newest word (time point 5) gets
attached with an accuracy that is nearly as high as
the accuracy for the whole sentence (final).

The types of errors made for German and En-
glish are similar. For both German and English the
unlabeled precision reaches more than 70% (see
Table 1). Even the correct dependency label of up-
coming words can be predicted with a fairly high
precision. TurboParser parses an increment in about
0.015 seconds, which is much faster than WCDG
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Figure 2: Results for TurboParser and jwcdg for German with tagger (labeled).

English German German&tagger German (jwcdg)

labeled unlabeled labeled unlabeled labeled unlabeled labeled unlabeled
precision 75.47% 78.55% 67.42% 75.90% 65.21% 73.39% 32.95% 42.23%

recall 57.92% 60,29% 46.77% 52.65% 45.79% 51.54% 35.90% 46.00%

Table 1: Precision and recall for the prediction of virtual nodes

time point 0 time point 5

unlabeled labeled unlabeled labeled
En 89.28% 84.92% 97.32% 97.11%
De 90.91% 88.96% 96.11% 95.65%

Table 2: Stability measures

where about eight seconds per word are needed to
achieve a good accuracy (Köhn and Menzel, 2013).
The prediction recall is higher for English than for
German which could be due to the differences in
gold-standard annotation.

Training TurboParser on the non-incremental
data sets results in a labeled whole-sentence accu-
racy of 93.02% for German.The whole-sentence
accuracy for parsing with VNs is 93.33%. This
shows that the additional mechanism of VNs has
no negative effects on the overall parsing quality.

To compare TurboParser and WCDG running
both in the predictive incremental mode, we use
jwcdg, the current implementation of this approach.
jwcdg differs from most other parsers in that it
does not act on pre-tagged data but runs an exter-
nal tagger itself in a multi-tag mode. To compare
both systems, TurboParser needs to be run in a
tagger-parser pipeline. We have chosen TurboTag-
ger without look-ahead for this purpose. Running
TurboParser in this pipeline leads to only slightly
worse results compared to the use of gold-standard
tags (see Figure 2). TurboParser’s attachment ac-
curacy is about ten percentage points better than
jwcdg’s across the board. In addition, its VN pre-
diction is considerably better.

To measure the stability, let Pi be a prefix of the
sentence Pn and ai and an be the corresponding
analyses produced by the parser. An attachment
of a word w ∈ Pi is stable if either w’s head is the

same in ai and an or w’s head is not part of Pi in
both ai and an. The second part covers the case
where the parser predicts the head of w to lie in the
future and it really does, according to the final parse.
Table 2 shows the attachment stability of the newest
word at time point 0 compared to the word five
positions to the left of time point 0. TurboParser’s
stability turns out to be much higher than jwcdg’s:
For German Beuck et al. (2013) report a stability
of only 80% at the most recent word. Interestingly,
labeling the newest attachment for English seems
to be much harder than for German.

6 Conclusion

Using a parser based on ILP, we were able to an-
alyze sentences incrementally and produce con-
nected dependency analyses at every point in time.
The intermediate structures produced by the parser
are highly informative, including predictions for
properties and structural embeddings of upcom-
ing words. In contrast to previous approaches, we
achieve state-of-the-art accuracy for whole sen-
tences by abandoning strong monotonicity and aim
at high stability instead, allowing the parser to im-
prove intermediate results in light of new evidence.

The parser is trained on treebank data for whole
sentences from which prefix annotations are de-
rived in a fully automatic manner. To guide this
process, a specification of structurally and lexically
determined dependency relations and some addi-
tional heuristics are needed. For parsing, only a set
of possible VNs has to be provided. These are the
only language specific components required. There-
fore, the approach can be ported to other languages
with quite modest effort.
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Abstract

Word representations have proven useful
for many NLP tasks, e.g., Brown clusters
as features in dependency parsing (Koo et
al., 2008). In this paper, we investigate the
use of continuous word representations as
features for dependency parsing. We com-
pare several popular embeddings to Brown
clusters, via multiple types of features, in
both news and web domains. We find that
all embeddings yield significant parsing
gains, including some recent ones that can
be trained in a fraction of the time of oth-
ers. Explicitly tailoring the representations
for the task leads to further improvements.
Moreover, an ensemble of all representa-
tions achieves the best results, suggesting
their complementarity.

1 Introduction

Word representations derived from unlabeled text
have proven useful for many NLP tasks, e.g., part-
of-speech (POS) tagging (Huang et al., 2014),
named entity recognition (Miller et al., 2004),
chunking (Turian et al., 2010), and syntactic
parsing (Koo et al., 2008; Finkel et al., 2008;
Täckström et al., 2012). Most word representa-
tions fall into one of two categories. Discrete rep-
resentations consist of memberships in a (possibly
hierarchical) hard clustering of words, e.g., via k-
means or the Brown et al. (1992) algorithm. Con-
tinuous representations (or distributed representa-
tions or embeddings) consist of low-dimensional,
real-valued vectors for each word, typically in-
duced via neural language models (Bengio et al.,
2003; Mnih and Hinton, 2007) or spectral meth-
ods (Deerwester et al., 1990; Dhillon et al., 2011).

Koo et al. (2008) found improvement on in-
domain dependency parsing using features based
on discrete Brown clusters. In this paper, we ex-
periment with parsing features derived from con-

tinuous representations. We find that simple at-
tempts based on discretization of individual word
vector dimensions do not improve parsing. We
see gains only after first performing a hierarchi-
cal clustering of the continuous word vectors and
then using features based on the hierarchy.

We compare several types of continuous rep-
resentations, including those made available by
other researchers (Turian et al., 2010; Collobert et
al., 2011; Huang et al., 2012), and embeddings we
have trained using the approach of Mikolov et al.
(2013a), which is orders of magnitude faster than
the others. The representations exhibit different
characteristics, which we demonstrate using both
intrinsic metrics and extrinsic parsing evaluation.
We report significant improvements over our base-
line on both the Penn Treebank (PTB; Marcus et
al., 1993) and the English Web treebank (Petrov
and McDonald, 2012).

While all embeddings yield some parsing im-
provements, we find larger gains by tailoring them
to capture similarity in terms of context within
syntactic parses. To this end, we use two sim-
ple modifications to the models of Mikolov et al.
(2013a): a smaller context window, and condition-
ing on syntactic context (dependency links and la-
bels). Interestingly, the Brown clusters of Koo et
al. (2008) prove to be difficult to beat, but we find
that our syntactic tailoring can lead to embeddings
that match the parsing performance of Brown (on
all test sets) in a fraction of the training time. Fi-
nally, a simple parser ensemble on all the represen-
tations achieves the best results, suggesting their
complementarity for dependency parsing.

2 Continuous Word Representations

There are many ways to train continuous represen-
tations; in this paper, we are primarily interested
in neural language models (Bengio et al., 2003),
which use neural networks and local context to
learn word vectors. Several researchers have
made their trained representations publicly avail-
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Representation Source Corpus Types, Tokens V D Time
BROWN Koo et al. (2008) BLLIP 317K, 43M 316,710 – 2.5 days†

SENNA Collobert et al. (2011) Wikipedia 8.3M, 1.8B 130,000 50 2 months∗

TURIAN Turian et al. (2010) RCV1 269K, 37M 268,810 50 few weeks∗

HUANG Huang et al. (2012) Wikipedia 8.3M, 1.8B 100,232 50 —
CBOW, SKIP, SKIPDEP Mikolov et al. (2013a) BLLIP 317K, 43M 316,697 100 2-4 mins.†

Table 1: Details of word representations used, including datasets, vocabulary size V , and dimensionality D. Continuous
representations require an additional 4 hours to run hierarchical clustering to generate features (§3.2). RCV1 = Reuters Corpus,
Volume 1. ∗ = time reported by authors. † = run by us on a 3.50 GHz desktop, using a single thread.

able, which we use directly in our experiments.
In particular, we use the SENNA embeddings of
Collobert et al. (2011); the scaled TURIAN em-
beddings (C&W) of Turian et al. (2010); and the
HUANG global-context, single-prototype embed-
dings of Huang et al. (2012). We also use the
BROWN clusters trained by Koo et al. (2008). De-
tails are given in Table 1.

Below, we describe embeddings that we train
ourselves (§2.1), aiming to make them more useful
for parsing via smaller context windows (§2.1.1)
and conditioning on syntactic context (§2.1.2). We
then compare the representations using two intrin-
sic metrics (§2.2).

2.1 Syntactically-tailored Representations
We train word embeddings using the continu-
ous bag-of-words (CBOW) and skip-gram (SKIP)
models described in Mikolov et al. (2013a;
2013b) as implemented in the open-source toolkit
word2vec. These models avoid hidden layers
in the neural network and hence can be trained
in only minutes, compared to days or even weeks
for the others, as shown in Table 1.1 We adapt
these embeddings to be more useful for depen-
dency parsing in two ways, described next.

2.1.1 Smaller Context Windows
The CBOW model learns vectors to predict a
word given its set of surrounding context words
in a window of size w. The SKIP model learns
embeddings to predict each individual surround-
ing word given one particular word, using an anal-
ogous window size w. We find that w affects
the embeddings substantially: with large w, words
group with others that are topically-related; with
small w, grouped words tend to share the same
POS tag. We discuss this further in the intrinsic
evaluation presented in §2.2.

1We train both models on BLLIP (LDC2000T43) with
PTB removed, the same corpus used by Koo et al. (2008) to
train their BROWN clusters. We created a special vector for
unknown words by averaging the vectors for the 50K least
frequent words; we did not use this vector for the SKIPDEP

(§2.1.2) setting because it performs slightly better without it.

2.1.2 Syntactic Context
We expect embeddings to help dependency pars-
ing the most when words that have similar parents
and children are close in the embedding space. To
target this type of similarity, we train the SKIP

model on dependency context instead of the linear
context in raw text. When ordinarily training SKIP

embeddings, words v′ are drawn from the neigh-
borhood of a target word v, and the sum of log-
probabilities of each v′ given v is maximized. We
propose to instead choose v′ from the set contain-
ing the grandparent, parent, and children words of
v in an automatic dependency parse.

A simple way to implement this idea is to train
the original SKIP model on a corpus of depen-
dency links and labels. For this, we parse the
BLLIP corpus (minus PTB) using our baseline de-
pendency parser, then build a corpus in which each
line contains a single child word c, its parent word
p, its grandparent g, and the dependency label ` of
the 〈c, p〉 link:

“`<L> g<G> p c `<L>”,
that is, both the dependency label and grandparent
word are subscripted with a special token to avoid
collision with words.2 We train the SKIP model on
this corpus of tuples with window size w = 1, de-
noting the result SKIPDEP. Note that this approach
needs a parsed corpus, but there also already ex-
ist such resources (Napoles et al., 2012; Goldberg
and Orwant, 2013).

2.2 Intrinsic Evaluation of Representations

Short of running end-to-end parsing experiments,
how can we choose which representations to use
for parsing tasks? Several methods have been pro-
posed for intrinsic evaluation of word representa-

2We use a subscript on g so that it will be treated dif-
ferently from c when considering the context of p. We re-
moved all g<G> from the vocabulary after training. We also
tried adding information about POS tags. This increases M-1
(§2.2), but harms parsing performance, likely because the em-
beddings become too tag-like. Similar ideas have been used
for clustering (Sagae and Gordon, 2009; Haffari et al., 2011;
Grave et al., 2013), semantic space models (Padó and Lapata,
2007), and topic modeling (Boyd-Graber and Blei, 2008).
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Representation SIM M-1
BROWN – 89.3
SENNA 49.8 85.2
TURIAN 29.5 87.2
HUANG 62.6 78.1
CBOW, w = 2 34.7 84.8
SKIP, w = 1 37.8 86.6
SKIP, w = 2 43.1 85.8
SKIP, w = 5 44.4 81.1
SKIP, w = 10 44.6 71.5
SKIPDEP 34.6 88.3

Table 2: Intrinsic evaluation of representations. SIM column
has Spearman’s ρ× 100 for 353-pair word similarity dataset.
M-1 is our unsupervised POS tagging metric. For BROWN,
M-1 is simply many-to-one accuracy of the clusters. Best
score in each column is bold.

tions; we discuss two here:

Word similarity (SIM): One widely-used evalu-
ation compares distances in the continuous space
to human judgments of word similarity using the
353-pair dataset of Finkelstein et al. (2002). We
compute cosine similarity between the two vectors
in each word pair, then order the word pairs by
similarity and compute Spearman’s rank correla-
tion coefficient (ρ) with the gold similarities. Em-
beddings with high ρ capture similarity in terms of
paraphrase and topical relationships.

Clustering-based tagging accuracy (M-1): In-
tuitively, we expect embeddings to help parsing
the most if they can tell us when two words are
similar syntactically. To this end, we use a met-
ric based on unsupervised evaluation of POS tag-
gers. We perform clustering and map each cluster
to one POS tag so as to maximize tagging accu-
racy, where multiple clusters can map to the same
tag. We cluster vectors corresponding to the to-
kens in PTB WSJ sections 00-21.3

Table 2 shows these metrics for representations
used in this paper. The BROWN clusters have
the highest M-1, indicating high cluster purity in
terms of POS tags. The HUANG embeddings have
the highest SIM score but low M-1, presumably
because they were trained with global context,
making them more tuned to capture topical sim-
ilarity. We compare several values for the win-
dow size (w) used when training the SKIP embed-
dings, finding that smallw leads to higher M-1 and
lower SIM. Table 3 shows examples of clusters
obtained by clustering SKIP embeddings of w = 1
versus w = 10, and we see that the former cor-
respond closely to POS tags, while the latter are

3For clustering, we use k-means with k = 1000 and ini-
tialize by placing centroids on the 1000 most-frequent words.

w Example clusters
1 [Mr., Mrs., Ms., Prof., ...], [Jeffrey, Dan, Robert,

Peter, ...], [Johnson, Collins, Schmidt, Freedman,
...], [Portugal, Iran, Cuba, Ecuador, ...], [CST, 4:30,
9-10:30, CDT, ...], [his, your, her, its, ...], [truly,
wildly, politically, financially, ...]

10 [takeoff, altitude, airport, carry-on, airplane, flown,
landings, ...], [health-insurance, clinic, physician,
doctor, medical, health-care, ...], [financing, equity,
investors, firms, stock, fund, market, ...]

Table 3: Example clusters for SKIP embeddings with win-
dow size w = 1 (syntactic) and w = 10 (topical).

much more topically-coherent and contain mixed
POS tags.4 For parsing experiments, we choose
w = 2 for CBOW and w = 1 for SKIP. Finally,
our SKIPDEP embeddings, trained with syntactic
context and w = 1 (§2.1.2), achieve the highest
M-1 of all continuous representations. In §4, we
will relate these intrinsic metrics to extrinsic pars-
ing performance.

3 Dependency Parsing Features

We now discuss the features that we add to our
baseline dependency parser (second-order MST-
Parser; McDonald and Pereira, 2006) based on
discrete and continuous representations.

3.1 Brown Cluster Features
We start by replicating the features of Koo et al.
(2008) using their BROWN clusters; each word is
represented by a 0-1 bit string indicating the path
from the root to the leaf in the binary merge tree.
We follow Koo et al. in adding cluster versions of
the first- and second-order features in MSTParser,
using bit string prefixes of the head, argument,
sibling, intermediate words, etc., to augment or
replace the POS and lexical identity information.
We tried various sets of prefix lengths on the devel-
opment set and found the best setting to use pre-
fixes of length 4, 6, 8, and 12.5

3.2 Continuous Representation Features
We tried two kinds of indicator features:

Bucket features: For both parent and child vec-
tors in a potential dependency, we fire one indi-
cator feature per dimension of each embedding

4A similar effect, when changing distributional context
window sizes, was found by Lin and Wu (2009).

5See Koo et al. (2008) for the exact feature templates.
They used the full string in place of the length-12 prefixes,
but that setting worked slightly worse for us. Note that the
baseline parser used by Koo et al. (2008) is different from the
second-order MSTParser that we use here; their parser allows
grandparent interactions in addition to the sibling interactions
in ours. We use their clusters, available at http://people.
csail.mit.edu/maestro/papers/bllip-clusters.gz.
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vector, where the feature consists of the dimen-
sion index d and a bucketed version of the embed-
ding value in that dimension, i.e., bucketk(Evd)
for word index v and dimension d, where E is the
V ×D embedding matrix.6 We also tried standard
conjunction variants of this feature consisting of
the bucket values of both the head and argument
along with their POS-tag or word information, and
the attachment distance and direction.7

Cluster bit string features: To take into account
all dimensions simultaneously, we perform ag-
glomerative hierarchical clustering of the embed-
ding vectors. We use Ward’s minimum variance
algorithm (Ward, 1963) for cluster distance and
the Euclidean metric for vector distance (via MAT-
LAB’s linkage function with {method=ward,
metric=euclidean}). Next, we fire features on the
hierarchical clustering bit strings using templates
identical to those for BROWN, except that we use
longer prefixes as our clustering hierarchies tend
to be deeper.8

4 Parsing Experiments

Setup: We use the publicly-available MST-
Parser for all experiments, specifically its second-
order projective model.9 We remove all fea-
tures that occur only once in the training data.
For WSJ parsing, we use the standard train(02-
21)/dev(22)/test(23) split and apply the NP brack-
eting patch by Vadas and Curran (2007). For
Web parsing, we still train on WSJ 02-21, but
test on the five Web domains (answers, email,
newsgroup, reviews, and weblog) of the ‘English
Web Treebank’ (LDC2012T13), splitting each do-
main in half (in original order) for the develop-
ment and test sets.10 For both treebanks, we con-
vert from constituent to dependency format us-
ing pennconverter (Johansson and Nugues,
2007), and generate POS tags using the MXPOST
tagger (Ratnaparkhi, 1996). To evaluate, we use

6Our bucketing function bucketk(x) converts the real
value x to its closest multiple of k. We choose a k value
of around 1/5th of the embedding’s absolute range.

7We initially experimented directly with real-valued fea-
tures (instead of bucketed indicator features) and similar con-
junction variants, but these did not perform well.

8We use prefixes of length 4, 6, 8, 12, 16, 20, and full-
length, again tuned on the development set.

9We use the recommended MSTParser settings: training-
k:5 iters:10 loss-type:nopunc decode-type:proj

10Our setup is different from SANCL 2012 (Petrov and
McDonald, 2012) because the exact splits and test data were
only available to participants.

System Dev Test
Baseline 92.38 91.95
BROWN 93.18 92.69
SENNA (Buckets) 92.64 92.04
SENNA (Bit strings) 92.88 92.30
HUANG (Buckets) 92.44 91.86
HUANG (Bit strings) 92.55 92.36
CBOW (Buckets) 92.57 91.93
CBOW (Bit strings) 93.06 92.53

Table 4: Bucket vs. bit string features (UAS on WSJ).

System Dev Test
Baseline 92.38 91.95
BROWN 93.18 92.69
SENNA 92.88 92.30
TURIAN 92.84 92.26
HUANG 92.55 92.36
CBOW 93.06 92.53
SKIP 92.94 92.29
SKIPDEP 93.33 92.69

Ensemble Results
ALL – BROWN 93.46 92.90
ALL 93.54 92.98

Table 5: Full results with bit string features (UAS on WSJ).

unlabeled attachment score (UAS).11 We report
statistical significance (p < 0.01, 100K sam-
ples) using the bootstrap test (Efron and Tibshi-
rani, 1994).

Comparing bucket and bit string features: In
Table 4, we find that bucket features based on in-
dividual embedding dimensions do not lead to im-
provements in test accuracy, while bit string fea-
tures generally do. This is likely because indi-
vidual embedding dimensions rarely correspond to
interpretable or useful distinctions among words,
whereas the hierarchical bit strings take into ac-
count all dimensions of the representations simul-
taneously. Their prefixes also naturally define fea-
tures at multiple levels of granularity.

WSJ results: Table 5 shows our main WSJ
results. Although BROWN yields one of the
highest individual gains, we also achieve statis-
tically significant gains over the baseline from
all embeddings. The CBOW embeddings per-
form as well as BROWN (i.e., no statistically
significant difference) but are orders of magni-
tude faster to train. Finally, the syntactically-
trained SKIPDEP embeddings are statistically indis-
tinguishable from BROWN and CBOW, and sig-
nificantly better than all other embeddings. This
suggests that targeting the similarity captured by
syntactic context is useful for dependency parsing.

11We find similar improvements under labeled attachment
score (LAS). We ignore punctuation : , “ ” . in our evalua-
tion (Yamada and Matsumoto, 2003; McDonald et al., 2005).
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System ans eml nwg rev blog Avg
Baseline 82.6 81.2 84.3 83.8 85.5 83.5
BROWN 83.4 81.7 85.2 84.5 86.1 84.2
SENNA 83.7 81.9 85.0 85.0 86.0 84.3
TURIAN 83.0 81.5 85.0 84.1 85.7 83.9
HUANG 83.1 81.8 85.1 84.7 85.9 84.1
CBOW 82.9 81.3 85.2 83.9 85.8 83.8
SKIP 83.1 81.1 84.7 84.1 85.4 83.7
SKIPDEP 83.3 81.5 85.2 84.3 86.0 84.1

Ensemble Results
ALL–BR 83.9 82.2 85.9 85.0 86.6 84.7
ALL 84.2 82.3 85.9 85.1 86.8 84.9

Table 6: Main UAS test results on Web treebanks. Here,
ans=answers, eml=email, nwg=newsgroup, rev=reviews,
blog=weblog, BR=BROWN, Avg=Macro-average.

Web results: Table 6 shows our main Web re-
sults.12 Here, we see that the SENNA, BROWN,
and SKIPDEP embeddings perform the best on av-
erage (and are statistically indistinguishable, ex-
cept SENNA vs. SKIPDEP on the reviews domain).
They yield statistically significant UAS improve-
ments over the baseline across all domains, except
weblog for SENNA (narrowly misses significance,
p=0.014) and email for SKIPDEP.13

Ensemble results: When analyzing errors, we
see differences among the representations, e.g.,
BROWN does better at attaching proper nouns,
prepositions, and conjunctions, while CBOW
does better on plural common nouns and adverbs.
This suggests that the representations might be
complementary and could benefit from combina-
tion. To test this, we use a simple ensemble parser
that chooses the highest voted parent for each ar-
gument.14 As shown in the last two rows of Ta-
bles 5 and 6, this leads to substantial gains. The
‘ALL – BROWN’ ensemble combines votes from
all non-BROWN continuous representations, and
the ‘ALL’ ensemble also includes BROWN.

Characteristics of representations: We now re-
late the intrinsic metrics from §2.2 to parsing
performance. The clearest correlation appears
when comparing variations of a single model,
e.g., for SKIP, the WSJ dev accuracies are 93.33
(SKIPDEP), 92.94 (w = 1), 92.86 (w = 5), and
92.70 (w = 10), which matches the M-1 score or-
der and is the reverse of the SIM score order.

12We report individual domain results and macro-average
over domains. We do not tune any features/parameters on
Web dev sets; we only show the test results for brevity.

13Note that SENNA and HUANG are trained on Wikipedia
which may explain why they work better on Web parsing as
compared to WSJ parsing.

14This does not guarantee a valid tree. Combining features
from representations will allow training to weigh them appro-
priately and also guarantee a tree.

5 Related Work

In addition to work mentioned above, relevant
work that uses discrete representations exists for
POS tagging (Ritter et al., 2011; Owoputi et
al., 2013), named entity recognition (Ratinov
and Roth, 2009), supersense tagging (Grave et
al., 2013), grammar induction (Spitkovsky et al.,
2011), constituency parsing (Finkel et al., 2008),
and dependency parsing (Tratz and Hovy, 2011).
Continuous representations in NLP have been
evaluated for their ability to capture syntactic and
semantic word similarity (Huang et al., 2012;
Mikolov et al., 2013a; Mikolov et al., 2013b) and
used for tasks like semantic role labeling, part-
of-speech tagging, NER, chunking, and sentiment
classification (Turian et al., 2010; Collobert et al.,
2011; Dhillon et al., 2012; Al-Rfou’ et al., 2013).

For dependency parsing, Hisamoto et al. (2013)
also used embedding features, but there are several
differences between their work and ours. First,
they use only one set of pre-trained embeddings
(TURIAN) while we compare several and also train
our own, tailored to the task. Second, their em-
bedding features are simpler than ours, only us-
ing flat (non-hierarchical) cluster IDs and binary
strings obtained via sign quantization (1[x > 0])
of the vectors. They also compare to a first-order
baseline and only evaluate on the Web treebanks.

Concurrently, Andreas and Klein (2014) inves-
tigate the use of embeddings in constituent pars-
ing. There are several differences: we work on de-
pendency parsing, use clustering-based features,
and tailor our embeddings to dependency-style
syntax; their work additionally studies vocabulary
expansion and relating in-vocabulary words via
embeddings.

6 Conclusion

We showed that parsing features based on hierar-
chical bit strings work better than those based on
discretized individual embedding values. While
the Brown clusters prove to be well-suited to pars-
ing, we are able to match their performance with
our SKIPDEP embeddings that train much faster.
Finally, we found the various representations to
be complementary, enabling a simple ensemble
to perform best. Our SKIPDEP embeddings and
bit strings are available at ttic.edu/bansal/
data/syntacticEmbeddings.zip.
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Abstract

Recent work has sparked new interest
in type-supervised part-of-speech tagging,
a data setting in which no labeled sen-
tences are available, but the set of allowed
tags is known for each word type. This
paper describes observational initializa-
tion, a novel technique for initializing EM
when training a type-supervised HMM
tagger. Our initializer allocates probabil-
ity mass to unambiguous transitions in an
unlabeled corpus, generating token-level
observations from type-level supervision.
Experimentally, observational initializa-
tion gives state-of-the-art type-supervised
tagging accuracy, providing an error re-
duction of 56% over uniform initialization
on the Penn English Treebank.

1 Introduction

For many languages, there exist comprehensive
dictionaries that list the possible parts-of-speech
for each word type, but there are no corpora la-
beled with the part-of-speech of each token in con-
text. Type-supervised tagging (Merialdo, 1994)
explores this scenario; a model is provided with
type-level information, such as the fact that “only”
can be an adjective, adverb, or conjunction, but
not any token-level information about which in-
stances of “only” in a corpus are adjectives. Re-
cent research has focused on using type-level su-
pervision to infer token-level tags. For instance,
Li et al. (2012) derive type-level supervision from
Wiktionary, Das and Petrov (2011) and Täckström
et al. (2013) project type-level tag sets across lan-
guages, and Garrette and Baldridge (2013) solicit
type-level annotations directly from speakers. In
all of these efforts, a probabilistic sequence model
is trained to disambiguate token-level tags that are

∗Research conducted during an internship at Google.

constrained to match type-level tag restrictions.
This paper describes observational initialization,
a simple but effective learning technique for train-
ing type-supervised taggers.

A hidden Markov model (HMM) can be used
to disambiguate tags of individual tokens by max-
imizing corpus likelihood using the expectation
maximization (EM) algorithm. Our approach is
motivated by a suite of oracle experiments that
demonstrate the effect of initialization on the fi-
nal tagging accuracy of an EM-trained HMM tag-
ger. We show that initializing EM with accurate
transition model parameters is sufficient to guide
learning toward a high-accuracy final model.

Inspired by this finding, we introduce obser-
vational initialization, which is a simple method
to heuristically estimate transition parameters for
a corpus using type-level supervision. Transi-
tion probabilities are estimated from unambiguous
consecutive tag pairs that arise when two consec-
utive words each have only a single allowed tag.
These unambiguous word pairs can be tagged cor-
rectly without any statistical inference. Initializing
EM with the relative frequency of these unambigu-
ous pairs improves tagging accuracy dramatically
over uniform initialization, reducing errors by
56% in English and 29% in German. This efficient
and data-driven approach gives the best reported
tagging accuracy for type-supervised sequence
models, outperforming the minimized model of
Ravi and Knight (2009), the Bayesian LDA-based
model of Toutanova and Johnson (2008), and an
HMM trained with language-specific initialization
described by Goldberg et al. (2008).

2 Type-Supervised Tagging

A first-order Markov model for part-of-speech
tagging defines a distribution over sentences for
which a single tag is given to each word token.
Let wi ∈W refer to the ith word in a sentence w,
drawn from language vocabulary W . Likewise,
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ti ∈ T is the tag in tag sequence t of the ith word,
drawn from tag inventory T . The joint probabil-
ity of a sentence can be expressed in terms of two
sets of parameters for conditional multinomial dis-
tributions: φ defines the probability of a tag given
its previous tag and θ defines the probability of a
word given its tag.

Pφ,θ(w, t) =
|w|∏
i=1

Pφ(ti|ti−1) · Pθ(wi|ti)

Above, t0 is a fixed start-of-sentence tag.
For a set of sentences S, the EM algorithm can

be used to iteratively find a local maximum of the
corpus log-likelihood:

`(φ, θ;S) =
∑
w∈S

ln

[∑
t

Pφ,θ(w, t)

]
The parameters φ and θ can then be used to predict
the most likely sequence of tags for each sentence
under the model:

t̂(w) = arg max
t

Pφ,θ(w, t)

Tagging accuracy is the fraction of these tags in
t̂(w) that match hand-labeled oracle tags t∗(w).

Type Supervision. In addition to an unlabeled
corpus of sentences, type-supervised models also
have access to a tag dictionary D ⊆ W × T that
contains all allowed word-tag pairs. For an EM-
trained HMM, initially setting Pθ(w|t) = 0 for all
(w, t) /∈ D ensures that all words will be labeled
with allowed tags.

Tag dictionaries can be derived from various
sources, such as lexicographic resources (Li et
al., 2012) and cross-lingual projections (Das and
Petrov, 2011). In this paper, we will follow pre-
vious work in deriving the tag dictionary from
a labeled corpus (Smith and Eisner, 2005); this
synthetic setting maximizes experiment repeata-
bility and allows for direct comparison of type-
supervised learning techniques.

Transductive Applications. We consider a
transductive data setting in which the test set is
available during training. In this case, the model
is not required to generalize to unseen examples or
unknown words, as in the typical inductive setting.

Transductive learning arises in document clus-
tering and corpus analysis applications. For ex-
ample, before running a document clustering al-
gorithm on a fixed corpus of documents, it may be

useful to tag each word with its most likely part-
of-speech in context, disambiguating the lexical
features in a bag-of-words representation. In cor-
pus analysis or genre detection, it may be useful
to determine for a fixed corpus the most common
part-of-speech for each word type, which could be
inferred by tagging each word with its most likely
part-of-speech. In both cases, the set of sentences
to tag is known in advance of learning.

3 Initializing HMM Taggers

The EM algorithm is sensitive to initialization. In
a latent variable model, different parameter values
may yield similar data likelihoods but very differ-
ent predictions. We explore this issue via exper-
iments on the Wall Street Journal section of the
English Penn Treebank (Marcus et al., 1993). We
adopt the transductive data setting introduced by
Smith and Eisner (2005) and used by Goldwa-
ter and Griffiths (2007), Toutanova and Johnson
(2008) and Ravi and Knight (2009); models are
trained on all sections 00-24, the tag dictionary D
is constructed by allowing all word-tag pairs ap-
pearing in the entire labeled corpus, and the tag-
ging accuracy is evaluated on a 1005 sentence sub-
set sampled from the corpus.

The degree of variation in tagging accuracy due
to initialization can be observed most clearly by
two contrasting initializations. UNIFORM initial-
izes the model with uniform distributions over al-
lowed outcomes:

Pφ(t|t′) =
1
|T |

Pθ(w|t) =
1

|{w : (w, t) ∈ D}|
SUPERVISED is an oracle setting that initializes
the model with the relative frequency of observed
pairs in a labeled corpus:

Pφ(t|t′) ∝
∑

(w,t∗)

|w|∑
i=1

δ((t∗i , t
∗
i−1), (t, t

′))

Pθ(w|t) ∝
∑

(w,t∗)

|w|∑
i=1

δ((wi, t∗i ), (w, t))

where the Kronecker δ(x, y) function is 1 if x and
y are equal and 0 otherwise.

Figure 1 shows that while UNIFORM and
SUPERVISED achieve nearly identical data log-
likelihoods, their final tagging accuracy differs by
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Figure 1: The data log-likelihood (top) and tag-
ging accuracy (bottom) of two contrasting initial-
izers, UNIFORM and SUPERVISED, compared on
the Penn Treebank.
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Figure 2: The data log-likelihood (top) and tag-
ging accuracy (bottom) of two partially supervised
initializers, one with SUPERVISED TRANSITIONS

and one with SUPERVISED EMISSIONS, compared
on the Penn Treebank.

12%. Accuracy degrades somewhat from the SU-
PERVISED initialization, since the data likelihood
objective differs from the objective of maximizing
tagging accuracy. However, the final SUPERVISED

performance of 94.1% shows that there is substan-
tial room for improvement over the UNIFORM ini-
tializer.

Figure 2 compares two partially supervised ini-
tializations. SUPERVISED TRANSITIONS initial-
izes the transition model with oracle counts, but
the emission model uniformly. Conversely, SU-
PERVISED EMISSIONS initializes the emission pa-
rameters from oracle counts, but initializes the
transition model uniformly. There are many more
emission parameters (57,390) than transition pa-
rameters (1,858). Thus, it is not surprising that

SUPERVISED EMISSIONS gives a higher initial
likelihood. Again, both initializers lead to solu-
tions with nearly the same likelihood as SUPER-
VISED and UNIFORM.

Figure 2 shows that SUPERVISED TRANSI-
TIONS outperforms SUPERVISED EMISSIONS in
tagging accuracy, despite the fact that fewer pa-
rameters are set with supervision. With fixed D,
an accurate initialization of the transition distribu-
tions leads to accurate tagging after EM training.
We therefore concentrate on developing an effec-
tive initialization for the transition distribution.

4 Observational Initialization

The SUPERVISED TRANSITIONS initialization is
estimated from observations of consecutive tags in
a labeled corpus. Our OBSERVATIONAL initializer
is likewise estimated from the relative frequency
of consecutive tags, taking advantage of the struc-
ture of the tag dictionary D. However, it does not
require a labeled corpus.

Let D(w, ·) = {t : (w, t) ∈ D} denote the
allowed tags for word w. The set

U = {w : |D(w, ·)| = 1}
contains all words that have only one allowed tag.
When a token of some w ∈ U is observed in a
corpus, its tag is unambiguous. Therefore, its tag
is observed as well, and a portion of the tag se-
quence is known. When consecutive pairs of to-
kens are both in U , we can observe a transition in
the latent tag sequence. The OBSERVATIONAL ini-
tializer simply estimates a transition distribution
from the relative frequency of these unambiguous
observations that occur whenever two consecutive
tokens both have a unique tag.

We now formally define the observational ini-
tializer. Let g(w, t) = δ(D(w, ·), {t}) be an indi-
cator function that is 1 whenever w ∈ U and its
single allowed tag is t, and 0 otherwise. Then, we
initialize φ such that:

Pφ(t|t′) ∝
∑
w∈S

|w|∑
i=1

g(wi, t) · g(wi−1, t
′)

The emission parameters θ are set to be uniform
over allowed words for each tag, as in UNIFORM

initialization.
Figure 3 compares the OBSERVATIONAL ini-

tializer to the SUPERVISED TRANSITIONS initial-
izer, and the top of Table 1 summarizes the perfor-
mance of all initializers discussed so far for the
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Figure 3: The data log-likelihood (top) and tag-
ging accuracy (bottom) of initializing with SU-
PERVISED TRANSITIONS compared to the unsu-
pervised OBSERVATIONAL initialization that re-
quires only a tag dictionary and an unlabeled train-
ing corpus.

English Penn Treebank. The OBSERVATIONAL

initializer provides an error reduction over UNI-
FORM of 56%, surpassing the performance of an
initially supervised emission model and nearing
the performance of a supervised transition model.

The bottom of Table 1 shows a similar compar-
ison on the Tübingen treebank of spoken German
(Telljohann et al., 2006). Both training and test-
ing were performed on the entire treebank. The
observational initializer provides an error reduc-
tion over UNIFORM of 29%, and again outper-
forms SUPERVISED EMISSIONS. On this dataset
OBSERVATIONAL initialization matches the final
performance of SUPERVISED TRANSITIONS.

5 Discussion

The fact that observations and prior knowledge are
useful for part-of-speech tagging is well under-
stood (Brill, 1995), but the approach of estimating
an initial transition model only from unambiguous
word pairs is novel.

Our experiments show that for EM-trained
HMM taggers in a type-supervised transductive
data setting, observational initialization is an ef-
fective technique for guiding training toward high-
accuracy solutions, approaching the oracle accu-
racy of SUPERVISED TRANSITIONS initialization.

The fact that models with similar data likeli-
hood can vary dramatically in accuracy has been
observed in other learning problems. For instance,
Toutanova and Galley (2011) show that optimal

English Initial EM-trained
UNIFORM 72.0 82.1

OBSERVATIONAL 89.2 92.1
SUP. EMISSIONS 92.8 91.0

SUP. TRANSITIONS 93.5 93.7
FULLY SUPERVISED 96.7 94.1
German Initial EM-trained

UNIFORM 77.2 88.8
OBSERVATIONAL 92.7 92.1
SUP. EMISSIONS 90.7 89.0

SUP. TRANSITIONS 94.8 92.0
FULLY SUPERVISED 97.0 92.9

Table 1: Accuracy of English (top) and German
(bottom) tagging models at initialization (left) and
after 30 iterations of EM training (right) using var-
ious initializers.

parameters for IBM Model 1 are not unique, and
alignments predicted from different optimal pa-
rameters vary significantly in accuracy.

However, the effectiveness of observational ini-
tialization is somewhat surprising because EM
training includes these unambiguous tag pairs in
its expected counts, even with uniform initializa-
tion. Our experiments indicate that this signal is
not used effectively unless explicitly encoded in
the initialization.

In our English data, 48% of tokens and 74% of
word types have only one allowed tag. 28% of
pairs of adjacent tokens have only one allowed tag
pair and contribute to observational initialization.
In German, 49% of tokens and 87% of word types
are unambiguous, and 26% of adjacent token pairs
are unambiguous.

6 Related Work

We now compare with several previous published
results on type-supervised part-of-speech tagging
trained using the same data setting on the English
WSJ Penn Treebank, introduced by Smith and Eis-
ner (2005).

Contrastive estimation (Smith and Eisner, 2005)
is a learning technique that approximates the par-
tition function of the EM objective in a log-linear
model by considering a neighborhood around ob-
served training examples. The Bayesian HMM
of Goldwater and Griffiths (2007) is a second-
order HMM (i.e., likelihood factors over triples
of tags) that is estimated using a prior distribu-
tion that promotes sparsity. Sparse priors have
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45 tag set 17 tag set
All train 973k train All train 973k train

Observational initialization (this work) 92.1 92.8 93.9 94.8
Contrastive Estimation (Smith and Eisner, 2005) – – 88.7 –
Bayesian HMM (Goldwater and Griffiths, 2007) 86.8 – 87.3 –
Bayesian LDA-HMM (Toutanova and Johnson, 2008) – – 93.4 –
Linguistic initialization (Goldberg et al., 2008) 91.4 – 93.8 –
Minimal models (Ravi and Knight, 2009) – 92.3 – 96.8

Table 2: Tagging accuracy of different approaches on English Penn Treebank. Columns labeled 973k
train describe models trained on the subset of 973k tokens used by Ravi and Knight (2009).

been motivated empirically for this task (Johnson,
2007). The Bayesian HMM model predicts tag se-
quences via Gibbs sampling, integrating out model
parameters. The Bayesian LDA-based model of
Toutanova and Johnson (2008) models ambiguity
classes of words, which allows information shar-
ing among words in the tag dictionary. In addition,
it incorporates morphology features and a sparse
prior of tags for a word. Inference approximations
are required to predict tags, integrating out model
parameters.

Ravi and Knight (2009) employs integer linear
programming to select a minimal set of parame-
ters that can generate the test sentences, followed
by EM to set parameter values. This technique
requires the additional information of which sen-
tences will be used for evaluation, and its scalabil-
ity is limited. In addition, this work used a sub-
set of the WSJ Penn Treebank for training and se-
lecting a tag dictionary. This restriction actually
tends to improve performance, because a smaller
tag dictionary further constrains model optimiza-
tion. We compare directly to their training set,
kindly provided to us by the authors.

The linguistic initialization of Goldberg et al.
(2008) is most similar to the current work, in
that it estimates maximum likelihood parameters
of an HMM using EM, but starting with a well-
chosen initialization with language specific lin-
guistic knowledge. That work estimates emission
distributions using a combination of suffix mor-
phology rules and corpus context counts.

Table 2 compares our results to these related
techniques. Each column represents a variant of
the experimental setting used in prior work. Smith
and Eisner (2005) introduced a mapping from the
full 45 tag set of the Penn Treebank to 17 coarse
tags. We report results on this coarse set by pro-
jecting from the full set after learning and infer-

ence.1 Using the full tag set or the full training
data, our method offers the best published perfor-
mance without language-specific assumptions or
approximate inference.

7 Future Work

This paper has demonstrated a simple and effec-
tive learning method for type-supervised, trans-
ductive part-of-speech tagging. However, it is an
open question whether the technique is as effec-
tive for tag dictionaries derived from more natural
sources than the labels of an existing treebank.

All of the methods to which we compare ex-
cept Goldberg et al. (2008) focus on learning and
modeling techniques, while our method only ad-
dresses initialization. We look forward to inves-
tigating whether our technique can be used as an
initialization or prior for these other methods.
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Abstract

Do continuous word embeddings encode
any useful information for constituency
parsing? We isolate three ways in which
word embeddings might augment a state-
of-the-art statistical parser: by connecting
out-of-vocabulary words to known ones,
by encouraging common behavior among
related in-vocabulary words, and by di-
rectly providing features for the lexicon.
We test each of these hypotheses with a
targeted change to a state-of-the-art base-
line. Despite small gains on extremely
small supervised training sets, we find
that extra information from embeddings
appears to make little or no difference
to a parser with adequate training data.
Our results support an overall hypothe-
sis that word embeddings import syntac-
tic information that is ultimately redun-
dant with distinctions learned from tree-
banks in other ways.

1 Introduction

This paper investigates a variety of ways in
which word embeddings might augment a con-
stituency parser with a discrete state space. Word
embeddings—representations of lexical items as
points in a real vector space—have a long history
in natural language processing, going back at least
as far as work on latent semantic analysis (LSA)
for information retrieval (Deerwester et al., 1990).
While word embeddings can be constructed di-
rectly from surface distributional statistics, as in
LSA, more sophisticated tools for unsupervised
extraction of word representations have recently
gained popularity (Collobert et al., 2011; Mikolov
et al., 2013a). Semi-supervised and unsupervised
models for a variety of core NLP tasks, includ-
ing named-entity recognition (Freitag, 2004), part-
of-speech tagging (Schütze, 1995), and chunking

(Turian et al., 2010) have been shown to benefit
from the inclusion of word embeddings as fea-
tures. In the other direction, access to a syntac-
tic parse has been shown to be useful for con-
structing word embeddings for phrases composi-
tionally (Hermann and Blunsom, 2013; Andreas
and Ghahramani, 2013). Dependency parsers have
seen gains from distributional statistics in the form
of discrete word clusters (Koo et al., 2008), and re-
cent work (Bansal et al., 2014) suggests that simi-
lar gains can be derived from embeddings like the
ones used in this paper.

It has been less clear how (and indeed whether)
word embeddings in and of themselves are use-
ful for constituency parsing. There certainly exist
competitive parsers that internally represent lexi-
cal items as real-valued vectors, such as the neural
network-based parser of Henderson (2004), and
even parsers which use pre-trained word embed-
dings to represent the lexicon, such as Socher et
al. (2013). In these parsers, however, use of word
vectors is a structural choice, rather than an added
feature, and it is difficult to disentangle whether
vector-space lexicons are actually more powerful
than their discrete analogs—perhaps the perfor-
mance of neural network parsers comes entirely
from the model’s extra-lexical syntactic structure.
In order to isolate the contribution from word em-
beddings, it is useful to demonstrate improvement
over a parser that already achieves state-of-the-art
performance without vector representations.

The fundamental question we want to explore
is whether embeddings provide any information
beyond what a conventional parser is able to in-
duce from labeled parse trees. It could be that
the distinctions between lexical items that embed-
dings capture are already modeled by parsers in
other ways and therefore provide no further bene-
fit. In this paper, we investigate this question em-
pirically, by isolating three potential mechanisms
for improvement from pre-trained word embed-
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Figure 1: Word representations of English de-
terminers, projected onto their first two principal
components. Embeddings from Collobert et al.
(2011).

dings. Our result is mostly negative. With ex-
tremely limited training data, parser extensions us-
ing word embeddings give modest improvements
in accuracy (relative error reduction on the order
of 1.5%). However, with reasonably-sized training
corpora, performance does not improve even when
a wide variety of embedding methods, parser mod-
ifications, and parameter settings are considered.

The fact that word embedding features result
in nontrivial gains for discriminative dependency
parsing (Bansal et al., 2014), but do not appear to
be effective for constituency parsing, points to an
interesting structural difference between the two
tasks. We hypothesize that dependency parsers
benefit from the introduction of features (like clus-
ters and embeddings) that provide syntactic ab-
stractions; but that constituency parsers already
have access to such abstractions in the form of su-
pervised preterminal tags.

2 Three possible benefits of word
embeddings

We are interested in the question of whether
a state-of-the-art discrete-variable constituency
parser can be improved with word embeddings,
and, more precisely, what aspect (or aspects) of
the parser can be altered to make effective use of
embeddings.

It seems clear that word embeddings exhibit
some syntactic structure. Consider Figure 1,

which shows embeddings for a variety of English
determiners, projected onto their first two princi-
pal components. We can see that the quantifiers
each and every cluster together, as do few and
most. These are precisely the kinds of distinc-
tions between determiners that state-splitting in
the Berkeley parser has shown to be useful (Petrov
and Klein, 2007), and existing work (Mikolov et
al., 2013b) has observed that such regular em-
bedding structure extends to many other parts of
speech. But we don’t know how prevalent or
important such “syntactic axes” are in practice.
Thus we have two questions: Are such groupings
(learned on large data sets but from less syntacti-
cally rich models) better than the ones the parser
finds on its own? How much data is needed to
learn them without word embeddings?

We consider three general hypotheses about
how embeddings might interact with a parser:

1. Vocabulary expansion hypothesis: Word
embeddings are useful for handling out-of-
vocabulary words, because they automati-
cally ensure that unknown words are treated
the same way as known words with similar
representations. Example: the infrequently-
occurring treebank tag UH dominates greet-
ings (among other interjections). Upon en-
countering the unknown word hey, the parser
assigns a low posterior probability of hav-
ing been generated from UH. But its distri-
butional representation is very close to the
known word hello, and a model capable of
mapping hey to its neighbor should be able to
assign the right tag.

2. Statistic sharing hypothesis: Word embed-
dings are useful for handling in-vocabulary
words, by making it possible to pool statistics
for related words. Example: individual first
names are also rare in the treebank, but tend
to cluster together in distributional represen-
tations. A parser which exploited this effect
could use this to acquire a robust model of
name behavior by sharing statistics from all
first names together, preventing low counts
from producing noisy models of names.

3. Embedding structure hypothesis: The
structure of the space used for the embed-
dings directly encodes syntactic information
in its coordinate axes. Example: with the
exception of a, the vertical axis in Figure 1
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seems to group words by definiteness. We
would expect a feature corresponding to a
word’s position along this axis to be a useful
feature in a feature-based lexicon.

Note that these hypotheses are not all mutually
exclusive, and two or all of them might provide in-
dependent gains. Our first task is thus to design a
set of orthogonal experiments which make it pos-
sible to test each of the three hypotheses in isola-
tion. It is also possible that other mechanisms are
at play that are not covered by these three hypothe-
ses, but we consider these three to be likely central
effects.

3 Parser extensions

For the experiments in this paper, we will use
the Berkeley parser (Petrov and Klein, 2007) and
the related Maryland parser (Huang and Harper,
2011). The Berkeley parser induces a latent, state-
split PCFG in which each symbol V of the (ob-
served) X-bar grammar is refined into a set of
more specific symbols {V1, V2, . . .} which cap-
ture more detailed grammatical behavior. This
allows the parser to distinguish between words
which share the same tag but exhibit very differ-
ent syntactic behavior—for example, between ar-
ticles and demonstrative pronouns. The Maryland
parser builds on the state-splitting parser, replac-
ing its basic word emission model with a feature-
rich, log-linear representation of the lexicon.

The choice of this parser family has two moti-
vations. First, these parsers are among the best in
the literature, with a test performance of 90.7 F1

for the baseline Berkeley parser on the Wall Street
Journal corpus (compared to 90.4 for Socher et al.
(2013) and 90.1 for Henderson (2004)). Second,
and more importantly, the fact that they use no
continuous state representations internally makes
it easy to design experiments that isolate the con-
tributions of word vectors, without worrying about
effects from real-valued operators higher up in the
model. We consider the following extensions:

Vocabulary expansion → OOV model
To evaluate the vocabulary expansion hypothe-
sis, we introduce a simple but targeted out-of-
vocabulary (OOV) model in which every unknown
word is simply replaced by its nearest neighbor in
the training set. For OOV words which are not in
the dictionary of embeddings, we back off to the
unknown word model for the underlying parser.

Statistic sharing → Lexicon pooling model
To evaluate the statistic sharing hypothesis, we
propose a novel smoothing technique. The Berke-
ley lexicon stores, for each latent (tag, word) pair,
the probability p(w|t) directly in a lookup ta-
ble. If we want to encourage similarly-embedded
words to exhibit similar behavior in the generative
model, we need to ensure that the are preferen-
tially mapped onto the same latent preterminal tag.
In order to do this, we replace this direct lookup
with a smoothed, kernelized lexicon, where:

p(w|t) =
1
Z

∑
w′

αt,w′e−β||ϕ(w)−ϕ(w′)||2 (1)

with Z a normalizing constant to ensure that p(·|t)
sums to one over the entire vocabulary. ϕ(w) is the
vector representation of the word w, αt,w are per-
basis weights, and β is an inverse radius parame-
ter which determines the strength of the smooth-
ing. Each αt,w is learned in the same way as
its corresponding probability in the original parser
model—during each M step of the training proce-
dure, αw,t is set to the expected number of times
the word w appears under the refined tag t. Intu-
itively, as β grows small groups of related words
will be assigned increasingly similar probabilities
of being generated from the same tag (in the limit
where β = 0, Equation 1 is a uniform distribu-
tion over the entire vocabulary). As β grows large
words become more independent (and in the limit
where β = ∞, each summand in Equation 1 is
zero except where w′ = w, and we recover the
original direct-lookup model).

There are computational concerns associated
with this approach: the original scoring procedure
for a (word, tag) pair was a single (constant-time)
lookup; here it might take time linear in the size
of the vocabulary. This causes parsing to become
unacceptably slow, so an approximation is neces-
sary. Luckily, the exponential decay of the kernel
ensures that each word shares most of its weight
with a small number of close neighbors, and al-
most none with words farther away. To exploit
this, we pre-compute the k-nearest-neighbor graph
of points in the embedding space, and take the sum
in Equation 1 only over this set of nearest neigh-
bors. Empirically, taking k = 20 gives adequate
performance, and increasing it does not seem to
alter the behavior of the parser.

As in the OOV model, we also need to worry
about how to handle words for which we have no
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vector representation. In these cases, we simply
treat the words as if their vectors were so far away
from everything else they had no influence, and
report their weights as p(w|t) = αw. This ensures
that our model continues to include the original
Berkeley parser model as a limiting case.

Embedding structure → embedding features
To evaluate the embedding structure hypothesis,
we take the Maryland featured parser, and replace
the set of lexical template features used by that
parser with a set of indicator features on a dis-
cretized version of the embedding. For each di-
mension i, we create an indicator feature corre-
sponding to the linearly-bucketed value of the fea-
ture at that index. In order to focus specifically
on the effect of word embeddings, we remove the
morphological features from the parser, but retain
indicators on the identity of each lexical item.

The extensions we propose are certainly not
the only way to target the hypotheses described
above, but they have the advantage of being min-
imal and straightforwardly interpretable, and each
can be reasonably expected to improve parser per-
formance if its corresponding hypothesis is true.

4 Experimental setup

We use the Maryland implementation of the
Berkeley parser as our baseline for the kernel-
smoothed lexicon, and the Maryland featured
parser as our baseline for the embedding-featured
lexicon.1 For all experiments, we use 50-
dimensional word embeddings. Embeddings la-
beled C&W are from Collobert et al. (2011); em-
beddings labeled CBOW are from Mikolov et al.
(2013a), trained with a context window of size 2.

Experiments are conducted on the Wall Street
Journal portion of the English Penn Treebank. We
prepare three training sets: the complete training
set of 39,832 sentences from the treebank (sec-
tions 2 through 21), a smaller training set, consist-
ing of the first 3000 sentences, and an even smaller
set of the first 300.

Per-corpus-size settings of the parameter β are
set by searching over several possible settings on
the development set. For each training corpus size
we also choose a different setting of the number of
splitting iterations over which the Berkeley parser
is run; for 300 sentences this is two splits, and for

1Both downloaded from https://code.google.
com/p/umd-featured-parser/

Model 300 3000 Full

Baseline 71.88 84.70 91.13

OOV (C&W) 72.20 84.77 91.22
OOV (CBOW) 72.20 84.78 91.22

Pooling (C&W) 72.21 84.55 91.11
Pooling (CBOW) 71.61 84.73 91.15

Features (ident) 67.27 82.77 90.65
Features (C&W) 70.32 83.78 91.08
Features (CBOW) 69.87 84.46 90.86

Table 1: Contributions from OOV, lexical pooling
and featured models, for two kinds of embeddings
(C&W and CBOW). For both choices of embed-
ding, the pooling and OOV models provide small
gains with very little training data, but no gains
on the full training set. The featured model never
achieves scores higher than the generative base-
line.

Model 300 3000 Full

Baseline 72.02 84.09 90.70
Pool + OOV (C&W) 72.43∗ 84.36∗ 90.11

Table 2: Test set experiments with the best com-
bination of models (based on development exper-
iments). Again, we observe small gains with re-
stricted training sets but no gains on the full train-
ing set. Entries marked ∗ are statistically signifi-
cant (p < 0.05) under a paired bootstrap resam-
pling test.

3000 four splits. This is necessary to avoid over-
fitting on smaller training sets. Consistent with the
existing literature, we stop at six splits when using
the full training corpus.

5 Results

Various model-specific experiments are shown in
Table 1. We begin by investigating the OOV
model. As can be seen, this model alone achieves
small gains over the baseline for a 300-word train-
ing corpus, but these gains become statistically in-
significant with more training data. This behavior
is almost completely insensitive to the choice of
embedding.

Next we consider the lexicon pooling model.
We began by searching over exponentially-spaced
values of β to determine an optimal setting for
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Experiment WSJ → Brown French

Baseline 86.36 74.84
Pool + OOV 86.42 75.18

Table 3: Experiments for other corpora, using the
same combined model (lexicon pooling and OOV)
as in Table 2. Again, we observe no significant
gains over the baseline.

each training set size; as expected, for small set-
tings of β (corresponding to aggressive smooth-
ing) performance decreased; as we increased the
parameter, performance increased slightly before
tapering off to baseline parser performance. The
first block in Table 1 shows the best settings of β
for each corpus size; as can be seen, this also gives
a small improvement on the 300-sentence training
corpus, but no discernible once the system has ac-
cess to a few thousand labeled sentences.

Last we consider a model with a featured lex-
icon, as described in Huang and Harper (2011).
A baseline featured model (“ident”) contains only
indicator features on word identity (and performs
considerably worse than its generative counter-
part on small data sets). As described above, the
full featured model adds indicator features on the
bucketed value of each dimension of the word em-
bedding. Here, the trend observed in the other two
models is even more prominent—embedding fea-
tures lead to improvements over the featured base-
line, but in no case outperform the standard base-
line with a generative lexicon.

We take the best-performing combination of all
of these models (based on development experi-
ments, a combination of the lexical pooling model
with β = 0.3, and OOV, both using C&W word
embeddings), and evaluate this on the WSJ test
set (Table 2). We observe very small (but statis-
tically significant) gains with 300 and 3000 train
sentences, but a decrease in performance on the
full corpus.

To investigate the possibility that improvements
from embeddings are exceptionally difficult to
achieve on the Wall Street Journal corpus, or on
English generally, we perform (1) a domain adap-
tation experiment, in which we use the OOV and
lexicon pooling models to train on WSJ and test
on the first 4000 sentences of the Brown corpus
(the “WSJ → Brown” column in Table 3), and (2)
a multilingual experiment, in which we train and

test on the French treebank (the “French” column).
Apparent gains from the OOV and lexicon pooling
models remain so small as to be statistically indis-
tinguishable.

6 Conclusion

With the goal of exploring how much useful syn-
tactic information is provided by unsupervised
word embeddings, we have presented three vari-
ations on a state-of-the-art parsing model, with
extensions to the out-of-vocabulary model, lexi-
con, and feature set. Evaluation of these modi-
fied parsers revealed modest gains on extremely
small training sets, which quickly vanish as train-
ing set size increases. Thus, at least restricted to
phenomena which can be explained by the exper-
iments described here, our results are consistent
with two claims: (1) unsupervised word embed-
dings do contain some syntactically useful infor-
mation, but (2) this information is redundant with
what the model is able to determine for itself from
only a small amount of labeled training data.

It is important to emphasize that these results
do not argue against the use of continuous repre-
sentations in a parser’s state space, nor argue more
generally that constituency parsers cannot possi-
bly benefit from word embeddings. However, the
failure to uncover gains when searching across a
variety of possible mechanisms for improvement,
training procedures for embeddings, hyperparam-
eter settings, tasks, and resource scenarios sug-
gests that these gains (if they do exist) are ex-
tremely sensitive to these training conditions, and
not nearly as accessible as they seem to be in de-
pendency parsers. Indeed, our results suggest a
hypothesis that word embeddings are useful for
dependency parsing (and perhaps other tasks) be-
cause they provide a level of syntactic abstrac-
tion which is explicitly annotated in constituency
parses. We leave explicit investigation of this hy-
pothesis for future work.
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Abstract

We introduce a model for incorporating
contextual information (such as geogra-
phy) in learning vector-space representa-
tions of situated language. In contrast to
approaches to multimodal representation
learning that have used properties of the
object being described (such as its color),
our model includes information about the
subject (i.e., the speaker), allowing us to
learn the contours of a word’s meaning
that are shaped by the context in which
it is uttered. In a quantitative evaluation
on the task of judging geographically in-
formed semantic similarity between repre-
sentations learned from 1.1 billion words
of geo-located tweets, our joint model out-
performs comparable independent models
that learn meaning in isolation.

1 Introduction

The vast textual resources used in NLP –
newswire, web text, parliamentary proceedings –
can encourage a view of language as a disembod-
ied phenomenon. The rise of social media, how-
ever, with its large volume of text paired with in-
formation about its author and social context, re-
minds us that each word is uttered by a particular
person at a particular place and time. In short: lan-
guage is situated.

The coupling of text with demographic infor-
mation has enabled computational modeling of
linguistic variation, including uncovering words
and topics that are characteristic of geographical
regions (Eisenstein et al., 2010; O’Connor et al.,
2010; Hong et al., 2012; Doyle, 2014), learning
correlations between words and socioeconomic
variables (Rao et al., 2010; Eisenstein et al., 2011;
Pennacchiotti and Popescu, 2011; Bamman et al.,
2014); and charting how new terms spread geo-
graphically (Eisenstein et al., 2012). These models

can tell us that hella was (at one time) used most
often by a particular demographic group in north-
ern California, echoing earlier linguistic studies
(Bucholtz, 2006), and that wicked is used most
often in New England (Ravindranath, 2011); and
they have practical applications, facilitating tasks
like text-based geolocation (Wing and Baldridge,
2011; Roller et al., 2012; Ikawa et al., 2012).
One desideratum that remains, however, is how the
meaning of these terms is shaped by geographical
influences – while wicked is used throughout the
United States to mean bad or evil (“he is a wicked
man”), in New England it is used as an adverbial
intensifier (“my boy’s wicked smart”). In lever-
aging grounded social media to uncover linguistic
variation, what we want to learn is how a word’s
meaning is shaped by its geography.

In this paper, we introduce a method that ex-
tends vector-space lexical semantic models to
learn representations of geographically situated
language. Vector-space models of lexical seman-
tics have been a popular and effective approach
to learning representations of word meaning (Lin,
1998; Turney and Pantel, 2010; Reisinger and
Mooney, 2010; Socher et al., 2013; Mikolov et al.,
2013, inter alia). In bringing in extra-linguistic in-
formation to learn word representations, our work
falls into the general domain of multimodal learn-
ing; while other work has used visual informa-
tion to improve distributed representations (An-
drews et al., 2009; Feng and Lapata, 2010; Bruni
et al., 2011; Bruni et al., 2012a; Bruni et al.,
2012b; Roller and im Walde, 2013), this work
generally exploits information about the object be-
ing described (e.g., strawberry and a picture of a
strawberry); in contrast, we use information about
the speaker to learn representations that vary ac-
cording to contextual variables from the speaker’s
perspective. Unlike classic multimodal systems
that incorporate multiple active modalities (such
as gesture) from a user (Oviatt, 2003; Yu and
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Figure 1: Model. Illustrated are the input dimensions that fire for a single sample, reflecting a particular word (vocabulary item
#2) spoken in Alaska, along with a single output. Parameter matrix W consists of the learned low-dimensional embeddings.

Ballard, 2004), our primary input is textual data,
supplemented with metadata about the author and
the moment of authorship. This information en-
ables learning models of word meaning that are
sensitive to such factors, allowing us to distin-
guish, for example, between the usage of wicked
in Massachusetts from the usage of that word else-
where, and letting us better associate geographi-
cally grounded named entities (e.g, Boston) with
their hypernyms (city) in their respective regions.

2 Model

The model we introduce is grounded in the distri-
butional hypothesis (Harris, 1954), that two words
are similar by appearing in the same kinds of con-
texts (where “context” itself can be variously de-
fined as the bag or sequence of tokens around a tar-
get word, either by linear distance or dependency
path). We can invoke the distributional hypothe-
sis for many instances of regional variation by ob-
serving that such variants often appear in similar
contexts. For example:

• my boy’s wicked smart
• my boy’s hella smart
• my boy’s very smart

Here, all three variants can often be seen in an im-
mediately pre-adjectival position (as is common
with intensifying adverbs).

Given the empirical success of vector-space rep-
resentations in capturing semantic properties and
their success at a variety of NLP tasks (Turian et
al., 2010; Socher et al., 2011; Collobert et al.,
2011; Socher et al., 2013), we use a simple, but
state-of-the-art neural architecture (Mikolov et al.,
2013) to learn low-dimensional real-valued repre-

sentations of words. The graphical form of this
model is illustrated in figure 1.

This model corresponds to an extension of
the “skip-gram” language model (Mikolov et al.,
2013) (hereafter SGLM). Given an input sentence
s and a context window of size t, each word si is
conditioned on in turn to predict the identities of
all of the tokens within t words around it. For a
vocabulary V , each input word si is represented
as a one-hot vector wi of length |V |. The SGLM
has two sets of parameters. The first is the rep-
resentation matrix W ∈ R|V |×k, which encodes
the real-valued embeddings for each word in the
vocabulary. A matrix multiply h = w>W,∈ Rk

serves to index the particular embedding for word
w, which constitutes the model’s hidden layer. To
predict the value of the context word y (again, a
one-hot vector of dimensionality |V |), this hidden
representation h is then multiplied by a second pa-
rameter matrix X ∈ R|V |×k. The final prediction
over the output vocabulary is then found by pass-
ing this resulting vector through the softmax func-
tion o = softmax(Xh), giving a vector in the |V |-
dimensional unit simplex. Backpropagation using
(input x, output y) word tuples learns the values
of W (the embeddings) and X (the output param-
eter matrix) that maximize the likelihood of y (i.e.,
the context words) conditioned on x (i.e., the si’s).
During backpropagation, the errors propagated are
the difference between o (a probability distribu-
tion with k outcomes) and the true (one-hot) out-
put y.

Let us define a set of contextual variables
C; in the experiments that follow, C is com-
prised solely of geographical state Cstate =
{AK,AL, . . . ,WY}) but could in principle in-
clude any number of features, such as calendar
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month, day of week, or other demographic vari-
ables of the speaker. Let |C| denote the sum of the
cardinalities of all variables in C (i.e., 51 states,
including the District of Columbia). Rather than
using a single embedding matrix W that contains
low-dimensional representations for every word in
the vocabulary, we define a global embedding ma-
trix Wmain ∈ R|V |×k and an additional |C| such
matrices (each again of size |V | × k, which cap-
ture the effect that each variable value has on each
word in the vocabulary. Given an input word w
and set of active variable values A (e.g., A =
{state = MA}), we calculate the hidden layer
h as the sum of these independent embeddings:
h = w>Wmain +

∑
a∈Aw

>Wa. While the word
wicked has a common low-dimensional represen-
tation in Wmain,wicked that is invoked for every
instance of its use (regardless of the place), the
corresponding vector WMA,wicked indicates how
that common representation should shift in k-
dimensional space when used in Massachusetts.
Backpropagation functions as in standard SGLM,
with gradient updates for each training example
{x, y} touching not onlyWmain (as in SGLM), but
all active WA as well.

The additional W embeddings we add lead to
an increase in the number of total parameters by
a factor of |C|. To control for the extra degrees
of freedom this entails, we add squared `2 regu-
larization to all parameters, using stochastic gra-
dient descent for backpropagation with minibatch
updates for the regularization term. As in Mikolov
et al. (2013), we speed up computation using the
hierarchical softmax (Morin and Bengio, 2005) on
the output matrix X .

This model defines a joint parameterization over
all variable values in the data, where information
from data originating in California, for instance,
can influence the representations learned for Wis-
consin; a naive alternative would be to simply train
individual models on each variable value (a “Cal-
ifornia” model using data only from California,
etc.). A joint model has three a priori advantages
over independent models: (i) sharing data across
variable values encourages representations across
those values to be similar; e.g., while city may be
closer to Boston in Massachusetts and Chicago in
Illinois, in both places it still generally connotes
a municipality; (ii) such sharing can mitigate data
sparseness for less-witnessed areas; and (iii) with
a joint model, all representations are guaranteed to

be in the same vector space and can therefore be
compared to each other; with individual models
(each with different initializations), word vectors
across different states may not be directly com-
pared.

3 Evaluation

We evaluate our model by confirming its face
validity in a qualitative analysis and estimating
its accuracy at the quantitative task of judging
geographically-informed semantic similarity. We
use 1.1 billion tokens from 93 million geolocated
tweets gathered between September 1, 2011 and
August 30, 2013 (approximately 127,000 tweets
per day evenly sampled over those two years).
This data only includes tweets that have been ge-
olocated to state-level granularity in the United
States using high-precision pattern matching on
the user-specified location field (e.g., “new york
ny” → NY, “chicago” → IL, etc.). As a pre-
processing step, we identify a set of target mul-
tiword expressions in this corpus as the maximal
sequence of adjectives + nouns with the highest
pointwise mutual information; in all experiments
described below, we define the vocabulary V as
the most frequent 100,000 terms (either unigrams
or multiword expressions) in the total data, and set
the dimensionality of the embedding k = 100. In
all experiments, the contextual variable is the ob-
served US state (including DC), so that |C| = 51;
the vector space representation of word w in state
s is w>Wmain +w>Ws.

3.1 Qualitative Evaluation

To illustrate how the model described above can
learn geographically-informed semantic represen-
tations of words, table 1 displays the terms with
the highest cosine similarity to wicked in Kansas
and Massachusetts after running our joint model
on the full 1.1 billion words of Twitter data; while
wicked in Kansas is close to other evaluative terms
like evil and pure and religious terms like gods and
spirit, in Massachusetts it is most similar to other
intensifiers like super, ridiculously and insanely.

Table 2 likewise presents the terms with the
highest cosine similarity to city in both Califor-
nia and New York; while the terms most evoked
by city in California include regional locations
like Chinatown, Los Angeles’ South Bay and San
Francisco’s East Bay, in New York the most sim-
ilar terms include hamptons, upstate and borough
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Kansas Massachusetts
term cosine term cosine
wicked 1.000 wicked 1.000
evil 0.884 super 0.855
pure 0.841 ridiculously 0.851
gods 0.841 insanely 0.820
mystery 0.830 extremely 0.793
spirit 0.830 goddamn 0.781
king 0.828 surprisingly 0.774
above 0.825 kinda 0.772
righteous 0.823 #sarcasm 0.772
magic 0.822 sooooooo 0.770

Table 1: Terms with the highest cosine similarity to wicked
in Kansas and Massachusetts.

California New York
term cosine term cosine
city 1.000 city 1.000
valley 0.880 suburbs 0.866
bay 0.874 town 0.855
downtown 0.873 hamptons 0.852
chinatown 0.854 big city 0.842
south bay 0.854 borough 0.837
area 0.851 neighborhood 0.835
east bay 0.845 downtown 0.827
neighborhood 0.843 upstate 0.826
peninsula 0.840 big apple 0.825

Table 2: Terms with the highest cosine similarity to city in
California and New York.

(New York City’s term of administrative division).

3.2 Quantitative Evaluation

As a quantitative measure of our model’s perfor-
mance, we consider the task of judging semantic
similarity among words whose meanings are likely
to evoke strong geographical correlations. In the
absence of a sizable number of linguistically in-
teresting terms (like wicked) that are known to be
geographically variable, we consider the proxy of
estimating the named entities evoked by specific
terms in different geographical regions. As noted
above, geographic terms like city provide one such
example: in Massachusetts we expect the term city
to be more strongly connected to grounded named
entities like Boston than to other US cities. We
consider seven categories for which we can rea-
sonably expect the connotations of each term to
vary by geography; in each case, we calculate the
distance between two terms x and y using repre-
sentations learned for a given state (δstate(x, y)).

1. city. For each state, we measure the distance
between the word city and the state’s most
populous city; e.g., δAZ(city , phoenix ).

2. state. For each state, the distance between

the word state and the state’s name; e.g.,
δWI(state,wisconsin).

3. football. For all NFL teams, the distance be-
tween the word football and the team name;
e.g., δIL(football , bears).

4. basketball. For all NBA teams from
a US state, the distance between the
word basketball and the team name; e.g.,
δFL(basketball , heat).

5. baseball. For all MLB teams from a US
state, the distance between the word baseball
and the team name; e.g., δIL(baseball , cubs),
δIL(baseball ,white sox ).

6. hockey. For all NHL teams from a US state,
the distance between the word hockey and the
team name; e.g., δPA(hockey , penguins).

7. park. For all US national parks, the distance
between the word park and the park name;
e.g., δAK(park , denali).

Each of these questions asks the following:
what words are evoked for a given target word
(like football)? While football may everywhere
evoke similar sports like baseball or soccer or
more specific football-related terms like touch-
down or field goal, we expect that particular sports
teams will be evoked more strongly by the word
football in their particular geographical region: in
Wisconsin, football should evoke packers, while
in Pennsylvania, football evokes steelers. Note
that this is not the same as simply asking which
sports team is most frequently (or most character-
istically) mentioned in a given area; by measuring
the distance to a target word (football), we are at-
tempting to estimate the varying strengths of asso-
ciation between concepts in different regions.

For each category, we measure similarity as the
average cosine similarity between the vector for
the target word for that category (e.g., city) and the
corresponding vector for each state-specific an-
swer (e.g., chicago for IL; boston for MA). We
compare three different models:

1. JOINT. The full model described in section
2, in which we learn a global representation
for each word along with deviations from that
common representation for each state.

2. INDIVIDUAL. For comparison, we also parti-
tion the data among all 51 states, and train a
single model for each state using only data
from that state. In this model, there is no
sharing among states; California has the most
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Figure 2: Average cosine similarity for all models across all categories, with 95% confidence intervals on the mean.

data with 11,604,637 tweets; Wyoming has
the least with 47,503 tweets.

3. –GEO. We also train a single model on all of
the training data, but ignore any state meta-
data. In this case the distance δ between two
terms is their overall distance within the en-
tire United States.

As one concrete example of these differences
between individual data points, the cosine similar-
ity between city and seattle in the –GEO model
is 0.728 (seattle is ranked as the 188th most sim-
ilar term to city overall); in the INDIVIDUAL

model using only tweets from Washington state,
δWA(city, seattle) = 0.780 (rank #32); and in
the JOINT model, using information from the en-
tire United States with deviations for Washington,
δWA(city, seattle) = 0.858 (rank #6). The over-
all similarity for the city category of each model is
the average of 51 such tests (one for each city).

Figure 2 present the results of the full evalua-
tion, including 95% confidence intervals for each
mean. While the two models that include ge-
ographical information naturally outperform the
model that does not, the JOINT model generally
far outperforms the INDIVIDUAL models trained
on state-specific subsets of the data.1 A model that
can exploit all of the information in the data, learn-
ing core vector-space representations for all words
along with deviations for each contextual variable,
is able to learn more geographically-informed rep-
resentations for this task than strict geographical
models alone.

1This result is robust to the choice of distance metric; an
evaluation measuring the Euclidean distance between vectors
shows the JOINT model to outperform the INDIVIDUAL and
–GEO models across all seven categories.

4 Conclusion

We introduced a model for leveraging situational
information in learning vector-space representa-
tions of words that are sensitive to the speaker’s
social context. While our results use geographical
information in learning low-dimensional represen-
tations, other contextual variables are straightfor-
ward to include as well; incorporating effects for
time – such as time of day, month of year and ab-
solute year – may be a powerful tool for reveal-
ing periodic and historical influences on lexical se-
mantics.

Our approach explores the degree to which ge-
ography, and other contextual factors, influence
word meaning in addition to frequency of usage.
By allowing all words in different regions (or more
generally, with different metadata factors) to ex-
ist in the same vector space, we are able com-
pare different points in that space – for example,
to ask what terms used in Chicago are most simi-
lar to hot dog in New York, or what word groups
shift together in the same region in comparison
to the background (indicating the shift of an en-
tire semantic field). All datasets and software to
support these geographically-informed represen-
tations can be found at: http://www.ark.
cs.cmu.edu/geoSGLM.
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Abstract

Models that learn semantic representations
from both linguistic and perceptual in-
put outperform text-only models in many
contexts and better reflect human concept
acquisition. However, experiments sug-
gest that while the inclusion of perceptual
input improves representations of certain
concepts, it degrades the representations
of others. We propose an unsupervised
method to determine whether to include
perceptual input for a concept, and show
that it significantly improves the ability of
multi-modal models to learn and represent
word meanings. The method relies solely
on image data, and can be applied to a va-
riety of other NLP tasks.

1 Introduction

Multi-modal models that learn semantic concept
representations from both linguistic and percep-
tual input were originally motivated by parallels
with human concept acquisition, and evidence that
many concepts are grounded in the perceptual sys-
tem (Barsalou et al., 2003). Such models extract
information about the perceptible characteristics
of words from data collected in property norming
experiments (Roller and Schulte im Walde, 2013;
Silberer and Lapata, 2012) or directly from ‘raw’
data sources such as images (Feng and Lapata,
2010; Bruni et al., 2012). This input is combined
with information from linguistic corpora to pro-
duce enhanced representations of concept mean-
ing. Multi-modal models outperform language-
only models on a range of tasks, including mod-
elling conceptual association and predicting com-
positionality (Bruni et al., 2012; Silberer and Lap-
ata, 2012; Roller and Schulte im Walde, 2013).

Despite these results, the advantage of multi-
modal over linguistic-only models has only been

demonstrated on concrete concepts, such as
chocolate or cheeseburger, as opposed to abstract
concepts such as such as guilt or obesity. Indeed,
experiments indicate that while the addition of
perceptual input is generally beneficial for repre-
sentations of concrete concepts (Hill et al., 2013a;
Bruni et al., 2014), it can in fact be detrimental
to representations of abstract concepts (Hill et al.,
2013a). Further, while the theoretical importance
of the perceptual modalities to concrete represen-
tations is well known, evidence suggests this is not
the case for more abstract concepts (Paivio, 1990;
Hill et al., 2013b). Indeed, perhaps the most influ-
ential characterization of the abstract/concrete dis-
tinction, the Dual Coding Theory (Paivio, 1990),
posits that concrete representations are encoded
in both the linguistic and perceptual modalities
whereas abstract concepts are encoded only in the
linguistic modality.

Existing multi-modal architectures generally
extract and process all the information from their
specified sources of perceptual input. Since per-
ceptual data sources typically contain information
about both abstract and concrete concepts, such in-
formation is included for both concept types. The
potential effect of this design decision on perfor-
mance is significant because the vast majority of
meaning-bearing words in everyday language cor-
respond to abstract concepts. For instance, 72% of
word tokens in the British National Corpus (Leech
et al., 1994) were rated by contributors to the Uni-
versity of South Florida dataset (USF) (Nelson et
al., 2004) as more abstract than the noun war, a
concept that many would consider quite abstract.

In light of these considerations, we propose
a novel algorithm for approximating conceptual
concreteness. Multi-modal models in which per-
ceptual input is filtered according to our algorithm
learn higher-quality semantic representations than
previous approaches, resulting in a significant per-
formance improvement of up to 17% in captur-
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ing the semantic similarity of concepts. Further,
our algorithm constitutes the first means of quan-
tifying conceptual concreteness that does not rely
on labor-intensive experimental studies or annota-
tors. Finally, we demonstrate the application of
this unsupervised concreteness metric to the se-
mantic classification of adjective-noun pairs, an
existing NLP task to which concreteness data has
proved valuable previously.

2 Experimental Approach

Our experiments focus on multi-modal models
that extract their perceptual input automatically
from images. Image-based models more natu-
rally mirror the process of human concept acquisi-
tion than those whose input derives from exper-
imental datasets or expert annotation. They are
also more scalable since high-quality tagged im-
ages are freely available in several web-scale im-
age datasets.

We use Google Images as our image source,
and extract the first n image results for each con-
cept word. It has been shown that images from
Google yield higher-quality representations than
comparable sources such as Flickr (Bergsma and
Goebel, 2011). Other potential sources, such as
ImageNet (Deng et al., 2009) or the ESP Game
Dataset (Von Ahn and Dabbish, 2004), either do
not contain images for abstract concepts or do not
contain sufficient images for the concepts in our
evaluation sets.

2.1 Image Dispersion-Based Filtering

Following the motivation outlined in Section 1, we
aim to distinguish visual input corresponding to
concrete concepts from visual input correspond-
ing to abstract concepts. Our algorithm is moti-
vated by the intuition that the diversity of images
returned for a particular concept depends on its
concreteness (see Figure 1). Specifically, we an-
ticipate greater congruence or similarity among a
set of images for, say, elephant than among im-
ages for happiness. By exploiting this connection,
the method approximates the concreteness of con-
cepts, and provides a basis to filter the correspond-
ing perceptual information.

Formally, we propose a measure, image disper-
sion d of a concept word w, defined as the aver-
age pairwise cosine distance between all the image
representations { ~w1 . . . ~wn} in the set of images
for that concept:

Figure 1: Example images for a concrete (elephant
– little diversity, low dispersion) and an abstract
concept (happiness – greater diversity, high dis-
persion).

Figure 2: Computation of PHOW descriptors us-
ing dense SIFT for levels l = 0 to l = 2 and the
corresponding histogram representations (Bosch
et al., 2007).

d(w) =
1

2n(n− 1)

∑
i<j≤n

1− ~wi · ~wj

| ~wi|| ~wj | (1)

We use an average pairwise distance-based met-
ric because this emphasizes the total variation
more than e.g. the mean distance from the cen-
troid. In all experiments we set n = 50.

Generating Visual Representations Visual
vector representations for each image were ob-
tained using the well-known bag of visual words
(BoVW) approach (Sivic and Zisserman, 2003).
BoVW obtains a vector representation for an

836



image by mapping each of its local descriptors
to a cluster histogram using a standard clustering
algorithm such as k-means.

Previous NLP-related work uses SIFT (Feng
and Lapata, 2010; Bruni et al., 2012) or SURF
(Roller and Schulte im Walde, 2013) descriptors
for identifying points of interest in an image,
quantified by 128-dimensional local descriptors.
We apply Pyramid Histogram Of visual Words
(PHOW) descriptors, which are particularly well-
suited for object categorization, a key component
of image similarity and thus dispersion (Bosch et
al., 2007). PHOW is roughly equivalent to run-
ning SIFT on a dense grid of locations at a fixed
scale and orientation and at multiple scales (see
Fig 2), but is both more efficient and more accu-
rate than regular (dense) SIFT approaches (Bosch
et al., 2007). We resize the images in our dataset
to 100x100 pixels and compute PHOW descriptors
using VLFeat (Vedaldi and Fulkerson, 2008).

The descriptors for the images were subse-
quently clustered using mini-batch k-means (Scul-
ley, 2010) with k = 50 to obtain histograms of
visual words, yielding 50-dimensional visual vec-
tors for each of the images.

Generating Linguistic Representations We
extract continuous vector representations (also of
50 dimensions) for concepts using the continu-
ous log-linear skipgram model of Mikolov et al.
(2013a), trained on the 100M word British Na-
tional Corpus (Leech et al., 1994). This model
learns high quality lexical semantic representa-
tions based on the distributional properties of
words in text, and has been shown to outperform
simple distributional models on applications such
as semantic composition and analogical mapping
(Mikolov et al., 2013b).

2.2 Evaluation Gold-standards

We evaluate models by measuring the Spearman
correlation of model output with two well-known
gold-standards reflecting semantic proximity – a
standard measure for evaluating the quality of rep-
resentations (see e.g. Agirre et al. (2009)).

To test the ability of our model to capture
concept similarity, we measure correlations with
WordSim353 (Finkelstein et al., 2001), a selec-
tion of 353 concept pairs together with a similar-
ity rating provided by human annotators. Word-
Sim has been used as a benchmark for distribu-
tional semantic models in numerous studies (see

e.g. (Huang et al., 2012; Bruni et al., 2012)).
As a complementary gold-standard, we use the

University of South Florida Norms (USF) (Nelson
et al., 2004). This dataset contains scores for free
association, an experimental measure of cognitive
association, between over 40,000 concept pairs.
The USF norms have been used in many previous
studies to evaluate semantic representations (An-
drews et al., 2009; Feng and Lapata, 2010; Sil-
berer and Lapata, 2012; Roller and Schulte im
Walde, 2013). The USF evaluation set is partic-
ularly appropriate in the present context because
concepts in the dataset are also rated for concep-
tual concreteness by at least 10 human annotators.

We create a representative evaluation set of USF
pairs as follows. We randomly sample 100 con-
cepts from the upper quartile and 100 concepts
from the lower quartile of a list of all USF con-
cepts ranked by concreteness. We denote these
sets C, for concrete, and A for abstract respec-
tively. We then extract all pairs (w1, w2) in the
USF dataset such that bothw1 andw2 are inA∪C.
This yields an evaluation set of 903 pairs, of which
304 are such that w1, w2 ∈ C and 317 are such
that w1, w2 ∈ A.

The images used in our experiments and
the evaluation gold-standards can be down-
loaded from http://www.cl.cam.ac.uk/

˜dk427/dispersion.html.

3 Improving Multi-Modal
Representations

We apply image dispersion-based filtering as fol-
lows: if both concepts in an evaluation pair have
an image dispersion below a given threshold, both
the linguistic and the visual representations are in-
cluded. If not, in accordance with the Dual Cod-
ing Theory of human concept processing (Paivio,
1990), only the linguistic representation is used.
For both datasets, we set the threshold as the
median image dispersion, although performance
could in principle be improved by adjusting this
parameter. We compare dispersion filtered rep-
resentations with linguistic, perceptual and stan-
dard multi-modal representations (concatenated
linguistic and perceptual representations). Sim-
ilarity between concept pairs is calculated using
cosine similarity.

As Figure 3 shows, dispersion-filtered multi-
modal representations significantly outperform
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Figure 3: Performance of conventional multi-
modal (visual input included for all concepts) vs.
image dispersion-based filtering models (visual in-
put only for concepts classified as concrete) on the
two evaluation gold-standards.

standard multi-modal representations on both
evaluation datasets. We observe a 17% increase in
Spearman correlation on WordSim353 and a 22%
increase on the USF norms. Based on the corre-
lation comparison method of Steiger (1980), both
represent significant improvements (WordSim353,
t = 2.42, p < 0.05; USF, t = 1.86, p < 0.1). In
both cases, models with the dispersion-based filter
also outperform the purely linguistic model, which
is not the case for other multi-modal approaches
that evaluate on WordSim353 (e.g. Bruni et al.
(2012)).

4 Concreteness and Image Dispersion

The filtering approach described thus far improves
multi-modal representations because image dis-
persion provides a means to distinguish concrete
concepts from more abstract concepts. Since re-
search has demonstrated the applicability of con-
creteness to a range of other NLP tasks (Turney et
al., 2011; Kwong, 2008), it is important to exam-
ine the connection between image dispersion and
concreteness in more detail.

4.1 Quantifying Concreteness

To evaluate the effectiveness of image dispersion
as a proxy for concreteness we evaluated our al-
gorithm on a binary classification task based on
the set of 100 concrete and 100 abstract concepts
A∪C introduced in Section 2. By classifying con-
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Figure 4: Visual input is valuable for representing
concepts that are classified as concrete by the im-
age dispersion algorithm, but not so for concepts
classified as abstract. All correlations are with the
USF gold-standard.

cepts with image dispersion below the median as
concrete and concepts above this threshold as ab-
stract we achieved an abstract-concrete prediction
accuracy of 81%.

While well-understood intuitively, concreteness is
not a formally defined notion. Quantities such as
the USF concreteness score depend on the sub-
jective judgement of raters and the particular an-
notation guidelines. According to the Dual Cod-
ing Theory, however, concrete concepts are pre-
cisely those with a salient perceptual representa-
tion. As illustrated in Figure 4, our binary clas-
sification conforms to this characterization. The
importance of the visual modality is significantly
greater when evaluating on pairs for which both
concepts are classified as concrete than on pairs of
two abstract concepts.

Image dispersion is also an effective predic-
tor of concreteness on samples for which the ab-
stract/concrete distinction is less clear. On a differ-
ent set of 200 concepts extracted by random sam-
pling from the USF dataset stratified by concrete-
ness rating (including concepts across the con-
creteness spectrum), we observed a high correla-
tion between abstractness and dispersion (Spear-
man ρ = 0.61, p < 0.001). On this more diverse
sample, which reflects the range of concepts typi-
cally found in linguistic corpora, image dispersion
is a particularly useful diagnostic for identifying
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Concept Image Dispersion Conc. (USF)
shirt .488 6.05
bed .495 5.91
knife .560 6.08
dress .578 6.59
car .580 6.35
ego 1.000 1.93
nonsense .999 1.90
memory .999 1.78
potential .997 1.90
know .996 2.70

Table 1: Concepts with highest and lowest image
dispersion scores in our evaluation set, and con-
creteness ratings from the USF dataset.

the very abstract or very concrete concepts. As
Table 1 illustrates, the concepts with the lowest
dispersion in this sample are, without exception,
highly concrete, and the concepts of highest dis-
persion are clearly very abstract.

It should be noted that all previous approaches
to the automatic measurement of concreteness rely
on annotator ratings, dictionaries or manually-
constructed resources. Kwong (2008) proposes
a method based on the presence of hard-coded
phrasal features in dictionary entries correspond-
ing to each concept. By contrast, Sánchez et al.
(2011) present an approach based on the position
of word senses corresponding to each concept in
the WordNet ontology (Fellbaum, 1999). Turney
et al. (2011) propose a method that extends a large
set of concreteness ratings similar to those in the
USF dataset. The Turney et al. algorithm quanti-
fies the concreteness of concepts that lack such a
rating based on their proximity to rated concepts
in a semantic vector space. In contrast to each of
these approaches, the image dispersion approach
requires no hand-coded resources. It is therefore
more scalable, and instantly applicable to a wide
range of languages.

4.2 Classifying Adjective-Noun Pairs

Finally, we explored whether image dispersion
can be applied to specific NLP tasks as an effec-
tive proxy for concreteness. Turney et al. (2011)
showed that concreteness is applicable to the clas-
sification of adjective-noun modification as either
literal or non-literal. By applying a logistic regres-
sion with noun concreteness as the predictor vari-
able, Turney et al. achieved a classification accu-

racy of 79% on this task. This model relies on sig-
nificant supervision in the form of over 4,000 hu-
man lexical concreteness ratings.1 Applying im-
age dispersion in place of concreteness in an iden-
tical classifier on the same dataset, our entirely un-
supervised approach achieves an accuracy of 63%.
This is a notable improvement on the largest-class
baseline of 55%.

5 Conclusions

We presented a novel method, image dispersion-
based filtering, that improves multi-modal repre-
sentations by approximating conceptual concrete-
ness from images and filtering model input. The
results clearly show that including more percep-
tual input in multi-modal models is not always bet-
ter. Motivated by this fact, our approach provides
an intuitive and straightforward metric to deter-
mine whether or not to include such information.

In addition to improving multi-modal represen-
tations, we have shown the applicability of the im-
age dispersion metric to several other tasks. To
our knowledge, our algorithm constitutes the first
unsupervised method for quantifying conceptual
concreteness as applied to NLP, although it does,
of course, rely on the Google Images retrieval al-
gorithm. Moreover, we presented a method to
classify adjective-noun pairs according to modi-
fication type that exploits the link between image
dispersion and concreteness. It is striking that this
apparently linguistic problem can be addressed
solely using the raw data encoded in images.

In future work, we will investigate the precise
quantity of perceptual information to be included
for best performance, as well as the optimal filter-
ing threshold. In addition, we will explore whether
the application of image data, and the interaction
between images and language, can yield improve-
ments on other tasks in semantic processing and
representation.
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Abstract 

Event extraction generally suffers from the 

data sparseness problem. In this paper, we 

address this problem by utilizing the labeled 

data from two different languages. As a pre-

liminary study, we mainly focus on the sub-

task of trigger type determination in event 

extraction. To make the training data in dif-

ferent languages help each other, we pro-

pose a uniform text representation with bi-

lingual features to represent the samples and 

handle the difficulty of locating the triggers 

in the translated text from both monolingual 

and bilingual perspectives. Empirical studies 

demonstrate the effectiveness of the pro-

posed approach to bilingual classification on 

trigger type determination. 

 

1 Introduction 

Event extraction is an increasingly hot and chal-

lenging research topic in the natural language 

processing (NLP) community (Ahn, 2006; Saun 

et al. 2006; Zhao et al. 2008). It aims to automat-

ically extract certain types of events with the ar-

guments to present the texts under a structured 

form. In event extraction, there are four primary 

subtasks, named trigger identification, trigger 

type determination, argument identification, and 

argument role determination (Chen and NG, 

2012). As an important technology in infor-

mation extraction, event extraction could be ap-

plied to many fields such as information retrieval, 

summarization, text mining, and question an-

swering. 

Recently, the dominative approach to event 

extraction is based on supervised learning where 

a set of labeled samples are exploited to train a 

model to extract the events. However, the availa-

                                                 
 *  Corresponding author 

ble labeled data are rather sparse due to various 

kinds of event categories. For example, the event 

taxonomy in ACE 2005
1

 (Automatic Content 

Extraction) includes 8 types of events, with 33 

subtypes, such as “Marry/Life” (subtype/type), 

and “Transport/Movement”. Moreover, some 

subtypes such as “Nominate/Personnel” and 

“Convict/Justice” contain less than 10 labeled 

samples in the English and Chinese corpus re-

spectively. Apparently, such a small scale of 

training data is difficult to yield a satisfying per-

formance. 

One possible way to alleviate the data sparse-

ness problem in event extraction is to conduct 

bilingual event extraction with training data from 

two different languages. This is motivated by the 

fact that labeled data from a language is highly 

possible to convey similar information in another 

language. For example, E1 is an event sample 

from the English corpus and E2 is another one in 

the Chinese corpus. Apparently, E1 and the Eng-

lish translation text of E2, share some important 

clues such as meet and Iraq which highly indi-

cates the event type of “Meet/Contact”.  

 

E1: Bush arrived in Saint Petersburg on Sat-

urday, when he also briefly met German chancel-

lor Gerhard Schroeder, whose opposition to the 

Iraq war had soured his relationship with Wash-

ington, at a dinner hosted by Putin. 

E2: 美国总统布什将于２月访问德国并与施
罗德会谈 ，伊朗和伊拉克问题将是双方会谈
的重点。(U.S. president George W. Bush   will 

visit Germany in February and meet with   

Schroeder, Iran and Iraq will be the focus of the   

talks the two sides.) 
 

In this paper, we address the data sparseness 

problem in event extraction with a bilingual pro-

                                                 
1http://www.nist.gov/speech/tests/ace/2005 
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cessing approach which aims to exploit bilingual 

training data to enhance the extraction perfor-

mance in each language. As a preliminary work, 

we mainly focus on the subtask of trigger type 

determination. Accordingly, our goal is to design 

a classifier which is trained with labeled data 

from two different languages and is capable of 

classifying the test data from both languages. 

Generally, this task possesses two main chal-

lenges.  

The first challenge is text representation, 

namely, how to eliminate the language gap be-

tween the two languages. To tackle this, we first 

employ Google Translate
2
, a state-of-the-art ma-

chine translation system, to gain the translation 

of an event instance, similar to what has been 

widely done by previous studies in bilingual 

classification tasks e.g., Wan (2008); Then, we 

uniformly represent each text with bilingual 

word features. That is, we augment each original 

feature vector into a novel one which contains 

the translated features.  

The second challenge is the translation for 

some specific features. It is well-known that 

some specific features, such as the triggers and 

their context features, are extremely important 

for determining the event types. For example, in 

E3, both trigger “left” and named entity “Sad-

dam” are important features to tell the event type, 

i.e., "Transport/Movement". When it is translated 

to Chinese, it is also required to know trigger “离
开”(left) and named entity “萨达姆” (Saddam) 

in E4, the Chinese translation of E3.  

 

E3: Saddam's clan is said to have left for a 

small village in the desert. 

E4: Chinese translation: 据 说  萨 达 姆
(Saddam) 家族 已经 离开(left) 沙漠 中 的 一个 

小 村庄。 
 

However, it is normally difficult to know 

which words are the triggers and surrounding 

entities in the translated sentence. To tackle this 

issue, we propose to locate the trigger from both 

monolingual and bilingual perspectives in the 

translation text. Empirical studies demonstrate 

that adding the translation of these specific fea-

tures substantially improves the classification 

performance.  

The remainder of this paper is organized as 

follows. Section 2 overviews the related work on 

event extraction. Section 3 proposes our ap-

                                                 
2 www.google.com 

proach to bilingual event extraction. Section 4 

gives the experimental studies. In Section 5, we 

conclude our work and give some future work. 

2 Related Work  

In the NLP community, event extraction has 

been mainly studied in both English and Chinese. 

In English, various supervised learning ap-

proaches have been explored recently. Bethard 

and Martin (2006) formulate the event identifica-

tion as a classification problem in a word-

chunking paradigm, introducing a variety of lin-

guistically motivated features. Ahn (2006) pro-

poses a trigger-based method. It first identifies 

the trigger in an event, and then uses a multi-

classifier to implement trigger type determina-

tion. Ji and Grishman (2008) employ an ap-

proach to propagate consistent event arguments 

across sentences and documents. Liao and 

Grishman (2010) apply document level infor-

mation to improve the performance of event ex-

traction. Hong et al. (2011) leverage cross-entity 

information to improve traditional event extrac-

tion, regarding entity type consistency as a key 

feature. More recently, Li et al. (2013) propose a 

joint framework based on structured prediction 

which extracts triggers and arguments together. 

In Chinese, relevant studies in event extraction 

are in a relatively primary stage with focus on 

more special characteristics and challenges. Tan 

et al. (2008) employ local feature selection and 

explicit discrimination of positive and negative 

features to ensure the performance of trigger type 

determination. Chen and Ji (2009) apply lexical, 

syntactic and semantic features in trigger label-

ing and argument labeling to improve the per-

formance. More recently, Li et al. (2012) and Li 

et al. (2013) introduce two inference mechanisms 

to infer unknown triggers and recover trigger 

mentions respectively with morphological struc-

tures.  

In comparison with above studies, we focus on 

bilingual event extraction. Although bilingual 

classification has been paid lots of attention in 

other fields (Wan 2008; Haghighi et al., 2008; 

Ismail et al., 2010; Lu et al., 2011；Li et al., 

2013), there is few related work in event extrac-

tion. The only one related work we find is Ji 

(2009) which proposes an inductive learning ap-

proach to exploit cross-lingual predicate clusters 

to improve the event extraction task with the 

main goal to get the event taggers from extra re-

sources, i.e., an English and Chinese parallel 

corpus. Differently, our goal is to make the la-
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beled data from two languages help each other 

without any other extra resources, which is origi-

nal in the study of event extraction. 

3 The Proposed Approach 

Trigger type determination aims to determine the 

event type of a trigger given the trigger and its 

context (e.g., a sentence). Existing approaches to 

trigger type determination mainly focus on mon-

olingual classification. Figure 1 illustrates the 

framework for Chinese and English. 

In comparison, our approach exploits the cor-

pora from two different languages. Figure 2 illus-

trates the framework. As shown in the figure, we 

first get the translated corpora of Chinese and 

English origin corpora through machine transla-

tion. Then, we represent each text with bilingual 

features, which enables us to merge the training 

data from both languages so as to make them 

help each other. 

 
Figure 1: The framework of monolingual classifi-

cation for trigger type determination 

 

Figure 2: The framework of bilingual classification 

for trigger type determination 

3.1 Text Representation  

In a supervised learning approach, labeled data is 

trained to obtain a classifier. In this approach, the 

extracted features are the key components to 

make a successful classifier. Table 1 shows some 

typical kinds of features in a monolingual classi-

fication task for trigger type determination. To 

better understand these features, the real feature 

examples in E3 are given in the table. 

Given the feature definition, a monolingual 

sample x  is represented as the combination of all 

the features, i.e.,  

1 2, , , , _ , _ ,

_ , , _ , _

ne e e Tri POS Tri Tri con
x

POS con Ent Ent type Ent subtype

 
  
 

  (1) 

Features Feature examples in E3 

All words 

( 1 2, , ne e e ) 
Saddam, clan, is, ... , 

desert 

Trigger (Tri) left 

POS of the trigger 

(POS_Tri) 
VBN 

Trigger's context 

words (Tri_con) 
...,have, for,... 

POS of trigger's 

context words 

(POS_con) 

...,VB,IN,… 

Entities around trig-

ger (Ent) 
Saddam 

Entity type 

(Ent_type) 
PER 

Entity subtype 

(Ent_subtype) 
individual 

Table 1: The features and some feature examples for 

trigger type determination 

 

In bilingual classification, we represent a sam-

ple with bilingual features, which makes it possi-

ble to train with the data from two languages. To 

achieve this goal, we employ a single feature 

augmentation strategy to augment the monolin-

gual features into bilingual features, i.e.,  

,Chinese Englishx x x                       (2) 

Specifically, a sample x  is represented as fol-

lows: 

1 2

1 2

, , , , _ , _ ,

_ , , _ , _

, , , , , _ , _ ,

_ , , _ , _

m c c c

c c c

n e e e

e e e

c c c Tri POS Tri Tri con

POS con Ent Ent type Ent subtype
x

e e e Tri POS Tri Tri con

POS con Ent Ent type Ent subtype

  
  
  

  
 
   
  

  (3) 

Where the tokens with the ‘c’/‘e’ subscript mean 

the features generated from the Chinese/English 

text. From the features, we can see that some 

Classifier Results 

Chinese event 

corpus 

Machine trans-

lation 

Translated 

samples 

Text representation 

Translated 

samples 

English event 

corpus 
Machine trans-

lation 

Text representation 

Samples with 

bilingual features 

Samples with 

bilingual features 

Trigger type determination 

for Chinese 

Trigger type determination 

for English 

Chinese event 

corpus 

Classifier 

English 

event corpus 

Classifier 

Results Results 
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features, such as Tri_con and Ent, depend on the 

location of the trigger word. Therefore, locating 

the trigger in the translated text becomes crucial.  

3.2 Locating Translated Trigger 

Without loss of generality, we consider the case 

of translating a Chinese event sample into an 

English one. Formally, the word sequence of a 

Chinese event sample is denoted as 

1 2( , , , )c ns c c c , while the sequence of the 

translated one is denoted as
1 2( , , )e ms e e e . 

Then, the objective is to get the English trigger 

eTri  in 
es , given the Chinese trigger word  

cTri in 
cs . The objective function is given as fol-

lows:  

 _
1 ,

argmax k l e
k l m

P e Tri
 

                  (4) 

Where _k le  denotes the substring 
1( , , )k k le e e

 

in es  and 1 ,k l m  . 

In this paper, the above function could be 

solved in two perspectives: monolingual and bi-

lingual ones. The former uses the English train-

ing data alone to locate the trigger while the lat-

ter exploit the bilingual information to get the 

translated counterpart of the Chinese trigger. 

The monolingual perspective: The objective 

is to locate the trigger with the monolingual in-

formation. That is,  

 _
1 ,

argmax | ,k l e e e
k l m

P e Tri s R
 

            (5) 

Where eR  denotes the training resource in Eng-

lish. In fact, this task is exactly the first subtask 

in event extraction named trigger identification, 

as mentioned in Introduction. For a simplified 

implementation, we first estimate the probabili-

ties of  _k l eP e Tri  in eR  with maximum like-

lihood estimation when _k l ee s .  

The bilingual perspective: The objective is to 

locate the trigger with the bilingual information. 

That is, 

 _
1 ,

argmax | , ,k l e e c c
k l m

P e Tri s s Tri
 

         (6) 

Where cTri  is the trigger word in Chinese and es  

is the translated text towards cs . More generally, 

this can be solved from a standard word align-

ment model in machine translation (Och et al, 

1999; Koehn et al, 2003). However, training a 

word alignment requires a huge parallel corpus 

which is not available here.  

 For a simplified implementation, we first get 

the 
cTri ’s translation， denoted as 

cTritrans ，

with Google Translate. Then, we estimate 

 _k l eP e Tri  as follows:  

  _

_

0.9
ck l Tri

k l e

if e trans
P e Tri

others


  


    (7) 

Where 0.9 is an empirical value which makes the 

translation probability become a dominative fac-

tor when the translation of the trigger is found in 

the translated sentence.   is a small value which 

makes the sum of all probabilities equals 1.   

The final decision is made according to both 

the monolingual and bilingual perspectives, i.e., 

 

 

_
1 ,

_

arg max  | ,

              | , ,

k l e e e
k l m

k l e e c c

P e Tri s R

P e Tri s s Tri

 



 

        (8) 

Note that we reduce the computational cost by 

make the word length of the trigger less than 3, 

i.e., 3l k  . 

4 Experimentation 

4.1 Experimental Setting  

Data sets: The Chinese and English corpus for 

even extraction are from ACE2005, which in-

volves 8 types and 33 subtypes. All our experi-

ments are conducted on the subtype case. Due to 

the space limit, we only report the statistics for 

each type, as shown in Table 2. For each subtype, 

80% samples are used as training data while the 

rest are as test data. 

 
# Chinese English total 

Life 389 902 1291 

Movement 593 679 1272 

Transaction 147 379 526 

Business 144 137 281 

Conflict 514 1629 2143 

Contact 263 373 636 

Personnel 203 514 717 

Justice 457 672 1129 

total 2710 5285 7995 

Table 2: Statistics in each event type in both Chinese 

and English data sets 

 

Features: The features have been illustrated in 

Table 1 in Section 3.2.  
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Classification algorithm: The maximum en-

tropy (ME) classifier is implemented with the 

public tool, Mallet Toolkits3 
. 

Evaluation metric: The performance of event 

type recognition is evaluated with F-score. 

4.2 Experimental Results  

In this section, we evaluate the performance of 

our approach to bilingual classification on trigger 

type determination. For comparison, following 

approaches are implemented: 

 Monolingual: perform monolingual classi-

fication on the Chinese and English corpus 

individually, as shown in Figure 1. 

 Bilingual: perform bilingual classification 

with partial bilingual features, ignoring the 

context features (e.g., context words, con-

text entities) under the assumption that the 

trigger location task is not done. 

 Bilingual_location: perform bilingual clas-

sification by translating each sample into 

another language and using a uniform repre-

sentation with all bilingual features as 

shown in Section 3.2. This is exactly our 

approach. The number of the context words 

and entities before or after the trigger words 

is set as 3. 

0.658

0.706

0.677
0.6790.678

0.734

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Chinese Test Data English Test Data

F
-s

co
re

Monolingual Bilingual Bilingual_location

 
Figure 3: Performance comparison of the three ap-

proaches on the Chinese and English test data 

 

Figure 3 shows the classification results of the 

three approaches on the Chinese and English test 

data. From this figure, we can see that Bilin-

gual_location apparently outperform Monolin-

gual, which verifies the effectiveness of using 

bilingual corpus. Specifically, the improvement 

by our approach in Chinese is impressive, reach-

ing 7.6%. The results also demonstrate the im-

portance of the operation of the trigger location, 

                                                 
3 http://mallet.cs.umass.edu/   

without which, bilingual classification can only 

slightly improve the performance, as shown in 

the English test data.  

The results demonstrate that our bilingual 

classification approaches are more effective for 

the Chinese data. This is understandable because 

the size of English data is much larger than that 

of Chinese data, 5285 vs. 2710, as shown in Ta-

ble 2. Specifically, after checking the results in 

each subtype, we find that some subtypes in Chi-

nese have very few samples while corresponding 

subtypes in English have a certain number sam-

ples. For example, the subtype of 

“Elect/Personnel” only contains 30 samples in 

the Chinese data while 161 samples can be found 

in the English data, which leads a very high im-

provement (15.4%) for the Chinese test data. In 

summary, our bilingual classification approach 

provides an effective way to handle the data 

sparseness problem in even extraction. 

5 Conclusion and Future Work 

This paper addresses the data sparseness problem 

in event extraction by proposing a bilingual clas-

sification approach. In this approach, we use a 

uniform text representation with bilingual fea-

tures and merge the training samples from both 

languages to enlarge the size of the labeled data. 

Furthermore, we handle the difficulty of locating 

the trigger from both the monolingual and bilin-

gual perspectives. Empirical studies show that 

our approach is effective in using bilingual cor-

pus to improve monolingual classification in 

trigger type determination.  

Bilingual event extraction is still in its early 

stage and many related research issues need to be 

investigated in the future work. For example, it is 

required to propose novel approaches to the bi-

lingual processing tasks in other subtasks of 

event extraction. Moreover, it is rather challeng-

ing to consider a whole bilingual processing 

framework when all these subtasks are involved 

together.  
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Abstract

This paper demonstrates the importance
of relation equivalence for entity trans-
lation pair discovery. Existing approach
of understanding relation equivalence has
focused on using explicit features of co-
occurring entities. In this paper, we ex-
plore latent features of temporality for un-
derstanding relation equivalence, and em-
pirically show that the explicit and latent
features complement each other. Our pro-
posed hybrid approach of using both ex-
plicit and latent features improves relation
translation by 0.16 F1-score, and in turn
improves entity translation by 0.02.

1 Introduction

Understanding relations is important in entity
tasks. In this paper, we illustrate such importance
using named entity (NE) translation mining prob-
lem. Early research on NE translation used pho-
netic similarities, for example, to mine the trans-
lation ‘Mandelson’→‘曼德尔森’[ManDeErSen]
with similar sounds (Knight and Graehl, 1998;
Wan and Verspoor, 1998). However, not all NE
translations are based on transliterations, but they
might be based on semantics (e.g., ‘WTO’→‘世
贸组织’[ShiMaoZuZhi]), or even arbitrary (e.g.,
‘Jackie Chan’→‘成龙’[ChengLong]).

To address this challenge, current state-of-the-
art approaches build an entity graph for each lan-
guage corpus, and align the two graphs by prop-
agating the seed translation similarities (Figure 1)
(Kim et al., 2011; You et al., 2012). For exam-
ple, arbitrary translation pair such as (Jackie Chan,
成龙) can be obtained, if he is connected to his
film ‘Drunken Master’ (醉拳) in both graphs. That
is, we can propagate the seed translation similar-
ity of (Drunken Master,醉拳) to neighbor entities
‘Jackie Chan’ and ‘成龙’ in each graph.

  

(Drunken Master)  

(Kung Fu) 

 

(Hong Kong) 

 

(Jackie Chan) 

Drunken Master 

Kung Fu 

Hong Kong 

Jackie Chan 

English Entity Graph Chinese Entity Graph 

D k M tDr (

Jackie ChanJackie Chan

Known translations 

Propagated translations 

Figure 1: Entity translation by propagation.

When two graphs are obtained from parallel
corpora, graphs are symmetric and “blind prop-
agation” described above is effective. In con-
trast, Lee and Hwang (2013) propose “selective
propagation” for asymmetric graphs, of compar-
ing the semantics of relations. A key contri-
bution of this paper is using relation temporal-
ity for determining relation equivalence. Exist-
ing work (Nakashole et al., 2012; Mohamed et
al., 2011; Lee and Hwang, 2013) uses only co-
occurring entity pairs, or explicit features (EF).
For example, for a relation pay an official visit to,
with a statement (Bush, pay an official visit to, China),
an entity pair (Bush, China) is in the “support
set”, which is a set of co-occurring entity pairs
of pay an official visit to. When its support set is
{(Bush, China), (Mandelson, Moscow), (Rice, Is-
rael)}, and that of visit is {(Bush, China), (Rice,
Israel), (Medvedev, Cuba)}, we can infer their se-
mantic equivalence based on the set intersection:
{(Bush, China), (Rice, Israel)}.

In contrast, we propose to explore corpus latent
features (LF), to complement the sparsity problem
of EF: Out of 158 randomly chosen correct re-
lation translation pairs we labeled, 64% has only
one co-occurring entity pair, which makes EF not
very effective to identify these relation transla-
tions. Therefore, we leverage relation temporality,
which is both orthogonal and complementary to
existing efforts leveraging entity temporality (Kle-
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mentiev and Roth, 2006; Kim et al., 2012; You
et al., 2013). In particular, we discover three new
challenges on using temporality for relation under-
standing in comparable corpora, which we discuss
in detail in Section 3.2. Based on these challenges,
we identify three new features for LF.

We observe the complementary nature of EF
and LF, then propose a hybrid approach combin-
ing both features. Our new hybrid approach sig-
nificantly improves the relation translation (0.16
higher F1-score than EF), and in turn improves the
entity translation (0.02 higher F1-score).

2 Preliminary: Entity Translation by
Selective Propagation

Selective propagation, leveraging the statements
extracted from bilingual comparable corpora, can
be summarized by several steps.

STEP 1 Initialize entity translation function T
(0)
N .

STEP 2 Build relation translation function T
(t)
R us-

ing T
(t)
N .

STEP 3 Update entity translation function to ac-
quire T

(t+1)
N using T

(t)
R .

STEP 4 Repeat STEP 2 and STEP 3.

For STEP 1, an existing method for entity trans-
lation is adopted. In our experiments, we use a
non-selective (hence not requiring relation trans-
lations) propagation approach (You et al., 2012)
with (Lam et al., 2007) for a base translation ma-
trix. The focus of this paper is STEP 2, building the
translation score T

(t)
R (rE , rC) of English relation

rE and Chinese relation rC : We will discuss the
detailed procedure of STEP 2 and propose how to
improve it in Section 3. STEP 3 is the stage that
selective propagation takes place.

STEP 2 and STEP 3 reinforce each other to im-
prove the final entity translation function. While
STEP 3 is well-defined in (Lee and Hwang, 2013),
to propagate entity translation scores when the re-
lation semantics of the edges are equivalent, STEP

2 has been restricted to the explicit feature, i.e., co-
occurring entities or shared context. In clear con-
trast, by discovering novel latent features based on
temporal properties, we can increase the accuracy
of both entity and relation translations. Note that
we omit t for readability in the following sections.

3 Relation Translation

In this section, we present our approaches to ob-
tain relations of equivalent semantics across lan-
guages (e.g., visit→访问). Formally, our goal
is to build the relation translation score function
TR(rE , rC) for English relation rE and Chinese
relation rC .

3.1 Baseline: Explicit Feature Approach (EF)

In this section, we briefly illustrate a baseline
method EF (Lee and Hwang, 2013). As we
mentioned in the introduction, traditional ap-
proaches leverage common co-occurring entity-
pairs. This observation also holds in the bilin-
gual environment by exploiting seed entity trans-
lations. For example, let us say that we have
two extracted statements: (Bruce Willis, star in,
The Sixth Sense) and (布鲁斯·威利斯 (Bruce
Willis),主演 (star in),第六感 (The Sixth Sense)).
Knowing a few seed entity translations using TN ,
‘Bruce Willis’→‘布鲁斯·威利斯’ and ‘The Sixth
Sense’→‘第六感’, we can find star in and主演
are semantically similar.

Specifically, we quantify this similarity based
on the number of such common entity pairs that
we denote as |H(rE , rC)| for an English relation
rE and a Chinese relation rC . The existing ap-
proaches are variations of using |H(rE , rC)|. Our
baseline implementation uses the one by (Lee and
Hwang, 2013), and we refer the reader to the pa-
per for formal definitions and processing steps we
omitted due to the page limit.

Unfortunately, this approach suffers from spar-
sity of the common entity pairs due to the incom-
parability of the corpora and those entities that
cannot be translated by TN . Therefore, we lever-
age corpus latent features as an additional signal
to overcome this problem.

3.2 Latent Feature Approach (LF)

Temporal Feature Discovery

We exploit the temporal distribution d[x](t) of tex-
tual element x during t-th week in statements;
we count the occurrences of the element x on
a weekly basis, and normalize them to observe∑

t d[x](t) = 1. For example, Figure 2a shows the
relation temporal distribution d[visit](t) against
week t. Unlike entities, we can easily observe
the dissimilarity of the temporal distributions of
semantically equivalent relations. We identify the
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(c) Temporality of non-equivalent relations: d[deploy]
and d[在...部署 (deploy at)]

Figure 2: Temporal distributions of a relation, and
a coupling.

three big challenges in exploiting the temporality
in relation translations.

[C1] Considering temporal distributions d[r] of
relations alone is not sufficient. For relations, such
as visit, that involves diverse entities, the temporal
distributions are highly noisy (Figure 2a).

To address the first challenge, we use a finer-
granularity unit for observing the temporality.
More specifically, we exploit a coupling of a re-
lation and an entity: d[e, r, ∗] where e is an en-
tity, r a relation, and * is a placeholder indicating
that any noun phrase is accepted for the second ar-
gument of a statement.1 As shown in Figure 2b,
d[e, r, ∗] is more distinctive and hence a key clue
to find semantically equivalent relations.

[C2] Considering entity-relation coupling dis-
tribution d[e, r, ∗] alone is not sufficient due to
the domination of individual temporality. For ex-
ample, Figure 3 shows entity-dominating entity-
relation temporality. If an entity has a peak at
some period (Figure 3a), most relations that are
coupled with the entity would have a peak at the
very same period (Figure 3b). This makes all re-
lations that appear with this entity very similar to

1We use both d[e, r, ∗] and d[∗, r, e] to measure the rela-
tion translation scores and leverage the average score. But in
this section, we only use d[e, r, ∗] for readability.
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(a) Temporal distribution of
an entity having a peak.

0

0.32

0.64

0 10 20 30 40 50

Week 

(b) Temporal distribution of
a coupling of a relation and
the entity.

Figure 3: False positive peak of an entity-relation
coupling.

each other regardlessly of semantics. To address
this challenge, we use features to measure whether
d[e, r, ∗] is too close to either of d[e] or d[r].

[C3] Lastly, we have to eliminate false positives
in relation temporality. To illustrate, two relations
deploy and 在...部署 (deploy at) have similar
temporal behaviors (Figure 2c). However, the first
relation takes [person], but the second relation [lo-
cation] for the second argument.

To address this, we check the common co-
occurring entity pair of the relations. For exam-
ple, we can obtain “Russia deployed an aircraft
carrier”, but not “Russia deployed at (在...部署)
an aircraft carrier”. Thus, we cannot acquire any
common entity pair like (Russia, aircraft carrier)
for deploy and在...部署 (deploy at).

Relation Similarity Computation
We compute the similarity of two relations rE in
English and rC in Chinese using the following 2-
steps.

• Compute the similarity SCP (rE , rC , eE , eC) of
temporal distributions of entity-relation cou-
plings for each bilingual entity pair (eE , eC).

• Compute the translation score TLF
R (rE , rC) by

aggregating the coupling similarities.

Considering the three challenges, we produce
a list of features {fx(rE , rC , eE , eC)} to mea-
sure the coupling similarity SCP (rE , rC , eE , eC)
as follows.

• [Base feature] fET : TN (eE , eC). The entity
translation score obtained in the previous iter-
ation or the seed entity translation score.

• [C1] fER: 1−JSD(d[eE , rE , ∗], d[eC , rC , ∗]).
The temporal similarity of the couplings, where
JSD(P, Q) is the Jensen-Shannon divergence
of two distributions P and Q, defined as
JSD(P, Q) = 1

2D(P ||M) + 1
2D(Q||M),
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with M = 1
2(P + Q) and D(P ||M) =∑

i P (i) log P (i)
M(i) .

• [C2] fD1,E , fD2,E , fD1,C , fD2,C :

JSD(d[eE ], d[eE , rE , ∗]), JSD(d[rE ], d[eE , rE , ∗])
JSD(d[eC ], d[eC , rC , ∗]), JSD(d[rC ], d[eC , rC , ∗])
Entity to entity-relation distribution difference
(D1) and relation to entity-relation distribution
difference (D2), for English and Chinese re-
spectively.

• [C3] fEX : The existence of a common entity
pair using the seed entity translations (boolean).
That is, fEX = 1 if |H(rE , rC)| ≥ 1, and
fEX = 0 otherwise.

Additionally, we use the following features to
consider absolute frequencies freq(·) of textual
elements as well because 1) we are more confi-
dent with more evidence and 2) in the comparable
corpora, the equivalent elements are likely to show
similar frequencies.

• fFW,E , fFW,C : S(freq(eE , rE)) and
S(freq(eC , rC)). S(x) is a normalization
function, for which we use a sigmoid function
over a linear transformation of x.

• fFS1 and fFS2:

min(freq(eE , rE), freq(eC , rC))
max(freq(eE , rE), freq(eC , rC))

,

min(freq(rE), freq(rC))
max(freq(rE), freq(rC))

With these features, we measure the similarity
of a pair of couplings as follows.

SCP (rE , rC , eE , eC) =
∏
x

fx(rE , rC , eE , eC)

(1)
By aggregating coupling similarities, we mea-

sure the translation score of two relations:

TLF
R (rE , rC) =

∑
(eE ,eC)∈T

SCP (rE , rC , eE , eC)

(2)
where T = {(eE , eC)|TN (eE , eC) ≥ θ} with θ =
0.6, a set of translation pairs obtained in the seeds
or previous iteration such as (Bush,布什).

We normalize the obtained function values for
each English relations using the top-k Chinese
translations. That is, for (rE , rC), we redefine the
score as TLF

R (rE , rC)/
∑

i∈[1,k] T
LF
R (rE , rranki

C )

where rranki
C is the i-th rank Chinese relation for

rE by Equation 2. We empirically set k = 4.

English LF EF
visit 访问 (visit) 访问 (visit)

support 向...提供 (provide to ...) -

ratify 讨论 (discuss)2 批准 (ratify)

Table 1: Examples of relation translations.

Person Organization
Method P. R. F1 P. R. F1
LF+EF 0.84 0.80 0.82 0.60 0.52 0.56
EF 0.81 0.79 0.80 0.56 0.52 0.54

Seed 0.80 0.77 0.78 0.49 0.44 0.46

PH+SM 0.59 0.59 0.59 0.29 0.29 0.29

Table 2: Entity translation comparison.

3.3 Hybrid Approach LF+EF
We find that LF and EF are complementary. Ta-
ble 1 shows the examples of relations and their
translations. In general, LF can translate more re-
lations (e.g., support and capture). However,
in some cases like ratify, highly related relations
may induce noise. That is, we always讨论 (dis-
cuss) before we 批准 (ratify) something and
hence the temporal behavior of 讨论 (discuss)
is also very similar to that of ratify. On the other
hand, it can be correctly translated using EF.

Thus, we produce the hybrid relation transla-
tion, and we empirically set λ = 0.4:

T LF+EF
R (rE , rC) = λT LF

R (rE , rC)+(1− λ)T EF
R (rE , rC)

(3)

4 Evaluation

In this section, we evaluate the proposed approach
on the entity translation task and the relation trans-
lation task. We extract English and Chinese state-
ments from news articles in 2008 by Xinhua news
who publishes news in both English and Chinese,
which were also used by Lee and Hwang (2013).
The number of English articles is 100,746, and
that of Chinese articles is 88,031. As we can see
from the difference in the numbers of the docu-
ments, the news corpora are not direct translations,
but they have asymmetry of entities and relations.

4.1 Entity Translation
In this section, we present experimental settings
and results on translating entities using our pro-
posed approaches. To measure the effectiveness,

2The correct translation批准 (ratify) is ranked second.
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Methods Precision Recall F1
LF+EF 0.37 0.44 0.40
LF 0.26 0.25 0.26

EF 0.41 0.17 0.24

Table 3: Relation translation comparison.

we use a set of gold standard entity translation
pairs which consist of 221 person entities and 52
organization entities. We measure precision, re-
call, and F1-score based on the returned trans-
lation pairs for each English entity as it is done
in (Lee and Hwang, 2013).

We compare our hybrid approach, which is de-
noted by LF+EF with EF (Lee and Hwang, 2013),
a combined approach PH+SM of phonetic similar-
ity and letter-wise semantic translation for better
accuracy for organizations (Lam et al., 2007), and
the seed translations Seed that we adopt (You et
al., 2012) with PH+SM as a base translation ma-
trix.3 We process one iteration of the entire frame-
work (STEP 1-3) for both LF+EF and EF.

Table 2 shows the comparison of the methods.
Our proposed approach LF+EF shows higher F1-
score than the baselines. In particular, our ap-
proach outperforms EF. For example, ‘Matthew
Emmons’ is a lesser known entity, and we have
only few statements mentioning him in the cor-
pora. The corpus explicit feature EF alone cannot
translate the relation win and, in turn, ‘Matthew
Emmons’. However, LF+EF translates him cor-
rectly into马修·埃蒙斯 through the relation win.

4.2 Relation Translation

This section considers the relation translation task.
Each relation translation method translates an En-
glish relation rE into a list of Chinese relations,
and we check whether a Chinese relation rC with
the highest translation score is the correct transla-
tion. We consider the relation translation is cor-
rect when the semantics are equivalent. For ex-
ample, 去 (leave for/go to) is a correct trans-
lation of leave for, but 离开 (leave) is not. To-
tal 3342 English-Chinese relation translation pairs
returned by our method and the baselines are ran-
domly shown and labeled. Out of 3342 pairs, 399
are labeled as correct.

3Our results leveraging relational temporality outper-
forms the reported results using entity temporality on the
same data set. The two approaches using temporality are or-
thogonal and can be aggregated, which we leave as our future
directions.

Eng. Rel. C1 C1+C2 C1+C2+C3 EF
visit 15 4 1 1

drop 21 14 1 -

capture 6 4 1 -

Table 4: Rank of correct relation translation. The
symbol ‘-’ indicates no correct translation.

Table 3 shows the comparisons of LF, EF
and their hybrid LF+EF. We can clearly see that
LF shows higher recall than EF while EF shows
higher precision. As we emphasized in Sec-
tion 3.3, we can see their complementary property.
Their hybrid LF+EF has both high precision and
recall, thus has the highest F1-score.

Note that the absolute numbers (due to the harsh
evaluation criteria) may look low. But the top
translations are still relevant (e.g., fight is trans-
lated to 驻 (deploy troops)). In addition, the
lower ranked but correct relation translations also
affect entity translation. Therefore, even lower-
performing EF boosted the entity translations, and
in effect, our approach could achieve higher F1-
score in the entity translation task.

To illustrate the detailed effects of the corpus
latent features, Table 4 shows the ranks of correct
Chinese translations for English relations by meth-
ods using selected features for the challenges. For
comparison, the ranks of the correct translations
when using EF are shown. Our approach using
the entity-relation coupling similarity feature for
[C1] alone often cannot find the correct transla-
tions. But using all features removes such noise.

5 Conclusion

This paper studied temporality features for re-
lation equivalence. With the proposed features,
we devised a hybrid approach combining corpus
latent and explicit features with complementary
strength. We empirically showed the effectiveness
of our hybrid approach on relation translation, and
it, in turn, improved entity translation.
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Abstract

The relative frequencies of character bi-
grams appear to contain much information
for predicting the first language (L1) of the
writer of a text in another language (L2).
Tsur and Rappoport (2007) interpret this
fact as evidence that word choice is dic-
tated by the phonology of L1. In order to
test their hypothesis, we design an algo-
rithm to identify the most discriminative
words and the corresponding character bi-
grams, and perform two experiments to
quantify their impact on the L1 identifica-
tion task. The results strongly suggest an
alternative explanation of the effectiveness
of character bigrams in identifying the na-
tive language of a writer.

1 Introduction

The task of Native Language Identification (NLI)
is to determine the first language of the writer of a
text in another language. In a ground-breaking pa-
per, Koppel et al. (2005) propose a set of features
for this task: function words, character n-grams,
rare part-of-speech bigrams, and various types of
errors. They report 80% accuracy in classifying a
set of English texts into five L1 languages using a
multi-class linear SVM.

The First Shared Task on Native Language
Identification (Tetreault et al., 2013) attracted sub-
missions from 29 teams. The accuracy on a set
of English texts representing eleven L1 languages
ranged from 31% to 83%. Many types of fea-
tures were employed, including word length, sen-
tence length, paragraph length, document length,
sentence complexity, punctuation and capitaliza-
tion, cognates, dependency parses, topic mod-
els, word suffixes, collocations, function word n-
grams, skip-grams, word networks, Tree Substi-
tution Grammars, string kernels, cohesion, and

passive constructions (Abu-Jbara et al., 2013; Li,
2013; Brooke and Hirst, 2013; Cimino et al., 2013;
Daudaravicius, 2013; Goutte et al., 2013; Hender-
son et al., 2013; Hladka et al., 2013; Bykh et al.,
2013; Lahiri and Mihalcea, 2013; Lynum, 2013;
Malmasi et al., 2013; Mizumoto et al., 2013; Nico-
lai et al., 2013; Popescu and Ionescu, 2013; Swan-
son, 2013; Tsvetkov et al., 2013). In particular,
word n-gram features appear to be particularly ef-
fective, as they were used by the most competitive
teams, including the one that achieved the highest
overall accuracy (Jarvis et al., 2013). Furthermore,
the most discriminative word n-grams often con-
tained the name of the native language, or coun-
tries where it is commonly spoken (Gebre et al.,
2013; Malmasi et al., 2013; Nicolai et al., 2013).
We refer to such words as toponymic terms.

There is no doubt that the toponymic terms
are useful for increasing the NLI accuracy; how-
ever, from the psycho-linguistic perspective, we
are more interested in what characteristics of L1
show up in L2 texts. Clearly, L1 affects the L2
writing in general, and the choice of words in par-
ticular, but what is the role played by the phonol-
ogy? Tsur and Rappoport (2007) observe that lim-
iting the set of features to the relative frequency of
the 200 most frequent character bigrams yields a
respectable 66% accuracy on a 5-language classi-
fication task. The authors propose the following
hypothesis to explain this finding: “the choice of
words [emphasis added] people make when writ-
ing in a second language is strongly influenced by
the phonology of their native language”. As the
orthography of alphabetic languages is at least par-
tially representative of the underlying phonology,
character bigrams may capture these phonological
preferences.

In this paper, we provide evidence against the
above hypothesis. We design an algorithm to iden-
tify the most discriminative words and the char-
acter bigrams that are indicative of such words,
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and perform two experiments to quantify their im-
pact on the NLI task. The results of the first ex-
periment demonstrate that the removal of a rela-
tively small set of discriminative words from the
training data significantly impairs the accuracy of
a bigram-based classifier. The results of the sec-
ond experiment reveal that the most indicative bi-
grams are quite similar across different language
sets. We conclude that character bigrams are ef-
fective in determining L1 of the author because
they reflect differences in L2 word usage that are
unrelated to the phonology of L1.

2 Method

Tsur and Rappoport (2007) report that character
bigrams are more effective for the NLI task than
either unigrams or trigrams. We are interested in
identifying the character bigrams that are indica-
tive of the most discriminative words in order to
quantify their impact on the bigram-based classi-
fier.

We follow both Koppel et al. (2005) and Tsur
and Rappoport (2007) in using a multi-class SVM
classifier for the NLI task. The classifier computes
a weight for each feature coupled with each L1
language by attempting to maximize the overall
accuracy on the training set. For example, if we
train the classifier using words as features, with
values representing their frequency relative to the
length of the document, the features correspond-
ing to the word China might receive the following
weights:

Arabic Chinese Hindi Japanese Telugu
-770 1720 -276 -254 -180

These weights indicate that the word provides
strong positive evidence for Chinese as L1, as op-
posed to the other four languages.

We propose to quantify the importance of each
word by converting its SVM feature weights into
a single score using the following formula:

WordScorei =

√√√√ N∑
j=1

wij
2

where N is the number of languages, and wij

is the feature weight of word i in language j.
The formula assigns higher scores to words with
weights of high magnitude, either positive or neg-
ative. We use the Euclidean norm rather than the

Algorithm 1 Computing the scores of words and
bigrams in the data.

1: create list of words in training data
2: train SVM using words as features
3: for all words i do
4: WordScorei =

√∑N
j=1wij

2

5: end for
6: sort words by WordScore
7: NormValue = WordScore200

8: create list of 200 most frequent bigrams
9: for bigrams k = 1 to 200 do

10: BigramScorek =
∏

k∈i
WordScorei
NormV alue

11: end for
12: sort character bigrams by BigramScore

sum of raw weights because we are interested in
the discriminative power of the words.

We normalize the word scores by dividing them
by the score of the 200th word. Consequently,
only the top 200 words have scores greater than
or equal to 1.0. For our previous example, the
200th word has a word score of 1493, while China
has a word score of 1930, which is normalized to
1930/1493 = 1.29. On the other hand, the 1000th

word gets a normalized score of 0.43.

In order to identify the bigrams that are indica-
tive of the most discriminative words, we promote
those that appear in the high-scoring words, and
downgrade those that appear in the low-scoring
words. Some bigrams that appear often in the
high-scoring words may be very common. For ex-
ample, the bigram an occurs in words like Japan,
German, and Italian, but also by itself as a deter-
miner, as an adjectival suffix, and as part of the
conjunction and. Therefore, we calculate the im-
portance score for each character bigram by multi-
plying the scores of each word in which the bigram
occurs.

Algorithm 1 summarizes our method of identi-
fying the discriminative words and indicative char-
acter bigrams. In line 2, we train an SVM on the
words encountered in the training data. In lines 3
and 4, we assign the Euclidean norm of the weight
vector of each word as its score. Starting in line
7, we determine which character bigrams are rep-
resentative of high scoring words. In line 10, we
calculate the bigram scores.
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3 Experiments

In this section, we describe two experiments aimed
at quantifying the importance of the discriminative
words and the indicative character bigrams that are
identified by Algorithm 1.

3.1 Data
We use two different NLI corpora. We follow the
setup of Tsur and Rappoport (2007) by extracting
two sets, denoted I1 and I2 (Table 1), from the
International Corpus of Learner English (ICLE),
Version 2 (Granger et al., 2009). Each set con-
sists of 238 documents per language, randomly se-
lected from the ICLE corpus. Each of the docu-
ments corresponds to a different author, and con-
tains between 500 and 1000 words. We follow the
methodology of the paper in performing 10-fold
cross-validation on the sets of languages used by
the authors.

For the development of the method described in
Section 2, we used a different corpus, namely the
TOEFL Non-Native English Corpus (Blanchard et
al., 2013). It consists of essays written by native
speakers of eleven languages, divided into three
English proficiency levels. In order to maintain
consistency with the ICLE sets, we extracted three
sets of five languages apiece (Table 1), with each
set including both related and unrelated languages:
European languages that use Latin script (T1),
non-European languages that use non-Latin scripts
(T2), and a mixture of both types (T3). Each sub-
corpus was divided into a training set of 80%, and
development and test sets of 10% each. The train-
ing sets are composed of approximately 700 docu-
ments per language, with an average length of 350
words per document. There are over 5000 word
types per language, and over 1000 character bi-
grams in total. The test sets include approximately
90 documents per language. We report results on
the test sets, after training on both the training and
development sets.

3.2 Setup
We replicate the experiments of Tsur and Rap-
poport (2007) by limiting the features to the 200
most frequent character bigrams.1 The feature val-
ues are set to the frequency of the character bi-

1Our development experiments suggest that using the full
set of bigrams results in a higher accuracy of a bigram-based
classifier. However, we limit the set of features to the 200
most frequent bigrams for the sake of consistency with previ-
ous work.

ICLE:
I1 Bulgarian Czech French Russian Spanish
I2 Czech Dutch Italian Russian Spanish
TOEFL:
T1 French German Italian Spanish Turkish
T2 Arabic Chinese Hindi Japanese Telugu
T3 French German Japanese Korean Telugu

Table 1: The L1 language sets.

grams normalized by the length of the document.
We use these feature vectors as input to the SVM-
Multiclass classifier (Joachims, 1999). The results
are shown in the Baseline column of Table 2.

3.3 Discriminative Words

The objective of the first experiment is to quantify
the influence of the most discriminative words on
the accuracy of the bigram-based classifier. Using
Algorithm 1, we identify the 100 most discrimi-
native words, and remove them from the training
data. The bigram counts are then recalculated, and
the new 200 most frequent bigrams are used as
features for the character-level SVM. Note that the
number of the features in the classifier remains un-
changed.

The results are shown in the Discriminative
Words column of Table 2. We see a statistically
significant drop in the accuracy of the classifier
with respect to the baseline in all sets except T3.
The words that are identified as the most discrim-
inative include function words, punctuation, very
common content words, and the toponymic terms.
The 10 highest scoring words from T1 are: indeed,
often, statement, : (colon), question, instance, . . .
(ellipsis), opinion, conclude, and however. In ad-
dition, France, Turkey, Italian, Germany, and Italy
are all found among the top 70 words.

For comparison, we attempt to quantify the ef-
fect of removing the same number of randomly-
selected words from the training data. Specifically,
we discard all tokens that correspond to 100 word
types that have the same or slightly higher fre-
quency as the discriminative words. The results
are shown in the Random Words column of Ta-
ble 2. The decrease is much smaller for I1, I2, and
T1, while the accuracy actually increases for T2
and T3. This illustrates the impact that the most
discriminative words have on the bigram-based
classifier beyond simple reduction in the amount
of the training data.
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Set Baseline Random Discriminative Random Indicative
Words Words Bigrams Bigrams

I1 67.5 −0.2 −3.6 −1.0 −2.2
I2 66.9 −2.5 −5.5 −0.7 −2.8
T1 60.7 −3.3 −7.7 −2.5 −3.9
T2 60.6 +0.5 −3.8 −1.1 −5.9
T3 62.2 +0.3 −0.0 −0.5 −4.1

Table 2: The impact of subsets of word types and bigram features on the accuracy of a bigram-based NLI
classifier.

3.4 Indicative Bigrams

Using Algorithm 1, we identify the top 20 charac-
ter bigrams, and replace them with randomly se-
lected bigrams. The results of this experiment are
reported in the Indicative Bigrams column of Ta-
ble 2. It is to be expected that the replacement of
any 20 of the top bigrams with 20 less useful bi-
grams will result in some drop in accuracy, regard-
less of which bigrams are chosen for replacement.
For comparison, the Random Bigrams column of
Table 2 shows the mean accuracy over 100 trials
obtained when 20 bigrams randomly selected from
the set of 200 bigrams are replaced with random
bigrams from outside of the set.

The results indicate that our algorithm indeed
identifies 20 bigrams that are on average more im-
portant than the other 180 bigrams. What is really
striking is that the sets of 20 indicative character
bigrams overlap substantially across different sets.
Table 3 shows 17 bigrams that are common across
the three TOEFL corpora, ordered by their score,
together with some of the highly scored words in
which they occur. Four of the bigrams consist
of punctuation marks and a space.2 The remain-
ing bigrams indicate function words, toponymic
terms like Germany, and frequent content words
like take and new.

The situation is similar in the ICLE sets, where
likewise 17 out of 20 bigrams are common. The
inter-fold overlap is even greater, with 19 out of
20 bigrams appearing in each of the 10 folds. In
particular, the bigrams fr and bu can be traced
to both the function words from and but, and the
presence of French and Bulgarian in I1. However,
the fact that the two bigrams are also on the list for

2It appears that only the relatively low frequency of most
of the punctuation bigrams prevents them from dominating
the sets of the indicative bigrams. When using all bigrams
instead of the top 200, the majority of the indicative bigrams
contain punctuation.

Bigram Words
,

,
.

.
u you Telugu
f of
ny any many Germany
yo you your
w now how
i I
y you your

ew new knew
kn know knew
ey they Turkey
wh what why where etc.
of of
ak make take

Table 3: The most indicative character bigrams in
the TOEFL corpus (sorted by score).

the I2 set, which does not include these languages,
suggests that their importance is mostly due to the
function words.

3.5 Discussion

In the first experiment, we showed that the re-
moval of the 100 most discriminative words from
the training data results in a significant drop in the
accuracy of the classifier that is based exclusively
on character bigrams. If the hypothesis of Tsur
and Rappoport (2007) was true, this should not be
the case, as the phonology of L1 would influence
the choice of words across the lexicon.

In the second experiment, we found that the ma-
jority of the most indicative character bigrams are
shared among different language sets. The bi-
grams appear to reflect primarily high-frequency
function words. If the hypothesis was true, this
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should not be the case, as the diverse L1 phonolo-
gies would induce different sets of bigrams. In
fact, the highest scoring bigrams reflect punctu-
ation patterns, which have little to do with word
choice.

4 Conclusion

We have provided experimental evidence against
the hypothesis that the phonology of L1 strongly
affects the choice of words in L2. We showed
that a small set of high-frequency function words
have disproportionate influence on the accuracy of
a bigram-based NLI classifier, and that the major-
ity of the indicative bigrams appear to be indepen-
dent of L1. This suggests an alternative explana-
tion of the effectiveness of a bigram-based classi-
fier in identifying the native language of a writer
— that the character bigrams simply mirror differ-
ences in the word usage rather than the phonology
of L1.

Our explanation concurs with the findings of
Daland (2013) that unigram frequency differences
in certain types of phonological segments between
child-directed and adult-directed speech are due to
a small number of word types, such as you, what,
and want, rather than to any general phonological
preferences. He argues that the relative frequency
of sounds in speech is driven by the relative fre-
quency of words. In a similar vein, Koppel et al.
(2005) see the usefulness of character n-grams as
“simply an artifact of variable usage of particular
words, which in turn might be the result of differ-
ent thematic preferences,” or as a reflection of the
L1 orthography.

We conclude by noting that our experimental re-
sults do not imply that the phonology of L1 has ab-
solutely no influence on L2 writing. Rather, they
show that the evidence from the Native Language
Identification task has so far been inconclusive in
this regard.
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Abstract 

Transfer learning has been used in opin-

ion analysis to make use of available lan-

guage resources for other resource scarce 

languages. However, the cumulative 

class noise in transfer learning adversely 

affects performance when more training 

data is used. In this paper, we propose a 

novel method in transductive transfer 

learning to identify noises through the 

detection of negative transfers. Evalua-

tion on NLP&CC 2013 cross-lingual 

opinion analysis dataset shows that our 

approach outperforms the state-of-the-art 

systems. More significantly, our system 

shows a monotonic increase trend in per-

formance improvement when more train-

ing data are used.  

1 Introduction 

Mining opinions from text by identifying their 

positive and negative polarities is an important 

task and supervised learning methods have been 

quite successful. However, supervised methods 

require labeled samples for modeling and the 

lack of sufficient training data is the performance 

bottle-neck in opinion analysis especially for re-

source scarce languages. To solve this problem, 

the transfer leaning method (Arnold et al., 2007) 

have been used to make use of samples from a 

resource rich source language to a resource 

scarce target language, also known as cross lan-

guage opinion analysis (CLOA). 

In transductive transfer learning (TTL) where 

the source language has labeled data and the tar-

get language has only unlabeled data, an algo-

rithm needs to select samples from the unlabeled 

target language as the training data and assign 

them with class labels using some estimated con-

fidence. These labeled samples in the target lan-

guage, referred to as the transferred samples, also 

have a probability of being misclassified. During 

training iterations, the misclassification introduc-

es class noise which accumulates, resulting in a 

so called negative transfer that affects the classi-

fication performance.  

In this paper, we propose a novel method 

aimed at reducing class noise for TTL in CLOA. 

The basic idea is to utilize transferred samples 

with high quality to identify those negative trans-

fers and remove them as class noise to reduce 

noise accumulation in future training iterations. 

Evaluations on NLP&CC 2013 CLOA evalua-

tion data set show that our algorithm achieves the 

best result, outperforming the current state-of-

the-art systems. More significantly, our system 

shows a monotonic increasing trend in perfor-

mance when more training data are used beating 

the performance degradation curse of most trans-

fer learning methods when training data reaches 

certain size. 

The rest of the paper is organized as follows. 

Section 2 introduces related works in transfer 

learning, cross lingual opinion analysis, and class 

noise detection technology. Section 3 presents 

our algorithm. Section 4 gives performance eval-

uation. Section 5 concludes this paper. 

2 Related works 

TTL has been widely used before the formal 

concept and definition of TTL was given in (Ar-

nold, 2007). Wan introduced the co-training 

method into cross-lingual opinion analysis (Wan, 

2009; Zhou et al., 2011), and Aue et al. intro-

duced transfer learning into cross domain analy-

sis (Aue, 2005) which solves similar problems. 

In this paper, we will use the terms source lan-

guage and target language to refer to all cross 

lingual/domain analysis. 

Traditionally, transfer learning methods focus 

on how to estimate the confidence score of trans-

ferred samples in the target language or domain 

(Blitzer et al, 2006, Huang et al., 2007; Sugiya-

ma et al., 2008, Chen et al, 2011, Lu et al., 2011). 

In some tasks, researchers utilize NLP tools such 

as alignment to reduce the bias towards that of 
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the source language in transfer learning (Meng et 

al., 2012). However, detecting misclassification 

in transferred samples (referred to as class noise) 

and reducing negative transfers are still an unre-

solved problem. 

There are two basic methods for class noise 

detection in machine learning. The first is the 

classification based method (Brodley and Friedl, 

1999; Zhu et al, 2003; Zhu 2004; Sluban et al., 

2010) and the second is the graph based method 

(Zighed et al, 2002; Muhlenbach et al, 2004; 

Jiang and Zhou, 2004). Class noise detection can 

also be applied to semi-supervised learning be-

cause noise can accumulate in iterations too. Li 

employed Zighed’s cut edge weight statistic 

method in self-training (Li and Zhou, 2005) and 

co-training (Li and Zhou, 2011). Chao used Li’s 

method in tri-training (Chao et al, 2008). (Fuku-

moto et al, 2013) used the support vectors to de-

tect class noise in semi-supervised learning.  

In TTL, however, training and testing samples 

cannot be assumed to have the same distributions. 

Thus, noise detection methods used in semi-

supervised learning are not directly suited in 

TTL. Y. Cheng has tried to use semi-supervised 

method (Jiang and Zhou, 2004) in transfer learn-

ing (Cheng and Li, 2009). His experiment 

showed that their approach would work when the 

source domain and the target domain share simi-

lar distributions. How to reduce negative trans-

fers is still a problem in transfer learning. 

3 Our Approach 

In order to reduce negative transfers, we pro-

pose to incorporate class noise detection into 

TTL. The basic idea is to first select high quality 

labeled samples after certain iterations as indica-

tor to detect class noise in transferred samples. 

We then remove noisy samples that cause nega-

tive transfers from the current accumulated train-

ing set to retain an improved set of training data 

for the remainder of the training phase. This neg-

ative sample reduction process can be repeated 

several times during transfer learning. Two ques-

tions must be answered in this approach: (1) how 

to measure the quality of transferred samples, 

and (2) how to utilize high quality labeled sam-

ples to detect class noise in training data. 

3.1 Estimating Testing Error 

To determine the quality of the transferred 

samples that are added iteratively in the learning 

process, we cannot use training error to estimate 

true error because the training data and the test-

ing data have different distributions. In this work, 

we employ the Probably Approximately Correct 

(PAC) learning theory to estimate the error 

boundary. According to the PAC learning theory, 

the least error boundary ε is determined by the 

size of the training set m and the class noise rate 

η, bound by the following relation: 

  √   (   )                      ( ) 
In TTL, m increases linearly, yet η is multi-

plied in each iteration. This means the signifi-

cance of m to performance is higher at the begin-

ning of transfer learning and gradually slows 

down in later iterations. On the contrary, the in-

fluence of class noise increases. That is why per-

formance improves initially and gradually falls to 

negative transfer when noise accumulation out-

performs the learned information as shown in 

Fig.1. In TTL, transferred samples in both the 

training data and test data have the same distribu-

tion. This implies that we can apply the PAC 

theory to analyze the error boundary of the ma-

chine learning model using transferred data. 

 
Figure 1 Negative transfer in the learning process 

According to PAC theorem with an assumed 

fixed probability δ (Angluin and Laird, 1988), 

the least error boundary ε is given by:   

  √   (   ⁄ )  ( (   ) )       ( ) 
where N is a constant decided by the hypothesis 

space.  In any iteration during TTL, the hypothe-

sis space is the same and the probability δ is 

fixed. Thus the least error boundary is deter-

mined by the size of the transferred sample m 

and the class noise of transferred samples η. Ac-

cording to (2), we apply a manifold assumption 

based method to estimate η. Let T be the number 

of iterations to serve as one period. We then es-

timate the least error boundary before and after 

each T to measure the quality of transferred sam-

ples during each T. If the least error boundary is 

reduced, it means that transferred samples used 

in this period are of high quality and can improve 

the performance. Otherwise, the transfer learning 

algorithm should stop.  

861



 

3.2 Estimating Class Noise 

For formula (2) to work, we need to know the 

class noise rate η to calculate the error boundary. 

Obviously, we cannot use conditional probabili-

ties from the training data in the source language 

to estimate the noise rate η of the transferred 

samples because the distribution of source lan-

guage is different from that of target language. 

Consider a KNN graph on the transferred 

samples using any similarity metric, for example, 

cosine similarity, for any two connected vertex 

(     )and (     ) in the graph from samples to 

classes, the edge weight is given by: 

       (     )                         ( ) 

Furthermore, a sign function for the two vertices 

(     )and (     ), is defined as: 

    {
          

          
                   ( ) 

According to the manifold assumption, the 

conditional probability  (  |  ) can be approxi-

mated by the frequency of  (     ) which is 

equal to  (     ). In opinion annotations, the 

agreement of two annotators is often no larger 

than 0.8. This means that for the best cases 

 (     )=0.2. Hence     follows a Bernoulli 

distribution with p=0.2 for the best cases in 

manual annotations.  

Let      (     )  be the vertices that are 

connected to the     vertex, the statistical magni-

tude of the     vertex can be defined as: 

   ∑                                 ( )  

where j refers to the     vertex that is connected 

to the     vertex.  

From the theory of cut edge statics, we know 

that the expectation of    is: 

    (     )  ∑                  ( )  

And the variance of    is: 

  
   (     ) (     )  ∑    

 
 ( )  

By the Center Limit Theorem (CLT),    fol-

lows the normal distribution: 
(     )

  
  (   )                    ( )  

To detect the noise rate of a sample (     ) , 
we can use (8) as the null hypothesis to test the 

significant level. Let    denotes probability of 

the correct classification for a transferred sample. 

   should follow a normal distribution,  

   
 

√    
∫  

 
(    )

 

   
   

  
           ( )  

Note that experiments (Li and Zhou, 2011; 

Cheng and Li, 2009; Brodley and Friedl, 1999) 

have shown that     is related to the error rate of 

the example (     ), but it does not reflect the 

ground-truth probability in statistics. Hence we 

assume the class noise rate of example (     ) is: 

                              (  ) 
 We take the general significant level of 0.05 

to reject the null hypothesis. It means that if    of 

(     ) is larger than 0.95, the sample will be 

considered as a class noisy sample. Furthermore, 

   can be used to estimate the average class noise 

rate of a transferred samples in (2). 

In our proposed approach, we establish the 

quality estimate period T to conduct class noise 

detection to estimate the class noise rate of trans-

ferred samples. Based on the average class noise 

we can get the least error boundary so as to tell if 

an added sample is of high quality. If the newly 

added samples are of high quality, they can be 

used to detect class noise in transferred training 

data. Otherwise, transfer learning should stop. 

The flow chart for negative transfer is in Fig.2. 

SLS(labeled)

TLS

(unlabeled)

Classifier

Top k

TS

 period 1

TS

period 2

TS

 period n

KNN 

graph

Estimate ηi and εn 
εn ≤ εn-1?

Output SLS and TS 

(period 1 to n-1)

No

Yes
Delete TS

 ηi≥ 0.95 

period 1 to n-1

Input 

Input 

T iterations per period

Transfer

process

Negative

transfer

detection

Figure 2 Flow charts of negative transfer detection 

In the above flow chart, SLS and TLS refer to 

the source and target language samples, respec-

tively. TS refers to the transferred samples. Let T 

denote quality estimate period T in terms of itera-

tion numbers. The transfer process select k sam-

ples in each iteration. When one period of trans-

fer process finishes, the negative transfer detec-

tion will estimate the quality by comparing and 

either select the new transferred samples or re-

move class noise accumulated up to this iteration. 

4 Experiment 

4.1 Experiment Setting 

The proposed approach is evaluated on the 

NLP&CC 2013 cross-lingual opinion analysis (in 
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short, NLP&CC) dataset
1
. In the training set, 

there are 12,000 labeled English Amazon.com 

products reviews, denoted by Train_ENG, and 

120 labeled Chinese product reviews, denoted as 

Train_CHN, from three categories, DVD, BOOK, 

MUSIC. 94,651 unlabeled Chinese products re-

views from corresponding categories are used as 

the development set, denoted as Dev_CHN. In 

the testing set, there are 12,000 Chinese product 

reviews (shown in Table.1). This dataset is de-

signed to evaluate the CLOA algorithm which 

uses Train_CHN, Train_ENG and Dev_CHN to 

train a classifier for Test_CHN. The performance 

is evaluated by the correct classification accuracy 

for each category in Test_CHN
2
:  

          
                                  

    
 

where c is either DVD, BOOK or MUSIC. 

Team DVD Book Music 

Train_CHN 40 40 40 

Train_ENG 4000 4000 4000 

Dev_CHN 17814 47071 29677 

Test_CHN 4000 4000 4000 

Table.1 The NLP&CC 2013 CLOA dataset 

In the experiment, the basic transfer learning 

algorithm is co-training. The Chinese word seg-

mentation tool is ICTCLAS (Zhang et al, 2003) 

and Google Translator
3
 is the MT for the source 

language. The monolingual opinion classifier is 

SVM
light4

, word unigram/bigram features are em-

ployed. 

4.2 CLOA Experiment Results 

Firstly, we evaluate the baseline systems 

which use the same monolingual opinion classi-

fier with three training dataset including 

Train_CHN, translated Train_ENG and their un-

ion, respectively.  

 DVD Book Music Accuracy 

Train_CHN 0.552 0.513 0.500 0.522 

Train_ENG 0.729 0.733 0.722 0.728 

Train_CHN 

+Train_ENG 
0.737 0.722 0.742 0.734 

Table.2 Baseline performances  

It can be seen that using the same method, the 

classifier trained by Train_CHN are on avergage 

20% worse than the English counter parts.The 

combined use of Train_CHN and translated 

Train_ENG, however, obtained similar 

                                                 
1http://tcci.ccf.org.cn/conference/2013/dldoc/evdata03.zip 
2http://tcci.ccf.org.cn/conference/2013/dldoc/evres03.pdf 
3https://translate.google.com 
4http://svmlight.joachims.org/ 

performance to the English counter parts. This 

means the predominant training comes from the 

English training data. 

In the second set of experiment, we compare  

our proposed approach to the official results in 

NLP&CC 2013 CLOA evaluation and the result 

is given in Table 3. Note that in Table 3, the top 

performer of NLP&CC 2013 CLOA evaluation 

is the HLT-HITSZ system(underscored in the 

table), which used the co-training method in 

transfer learning (Gui et al, 2013), proving that 

co-training is quite effective for cross-lingual 

analysis. With the additional negative transfer 

detection, our proposed approach achieves the 

best performance on this dataset outperformed 

the top system (by HLT-HITSZ) by a 2.97% 

which translate to 13.1% error reduction im-

provement to this state-of-the-art system as 

shown in the last row of Table 3.     

Team DVD Book Music Accuracy 

BUAA 0.481 0.498 0.503 0.494 

BISTU 0.647 0.598 0.661 0.635 

HLT-HITSZ 0.777 0.785 0.751 0.771 

THUIR 0.739 0.742 0.733 0.738 

SJTU 0.772 0.724 0.745 0.747 

WHU 0.783 0.770 0.760 0.771 

Our approach 0.816 0.801 0.786 0.801 

Error 

Reduction 
0.152 0.072 0.110 0.131 

Table.3 Performance compares with NLP&CC 

2013 CLOA evaluation results 

To further investigate the effectiveness of our 

method, the third set of experiments evaluate the 

negative transfer detection (NTD) compared to 

co-training (CO) without negative transfer 

detection as shown in Table.4 and Fig.3 Here, we 

use the union of Train_CHN and Train_ENG as 

labeled data and Dev_CHN as unlabeled data to 

be transferred in the learning algorithms. 

 DVD Book Music Mean 

NTD 

Best case 0.816 0.801 0.786 0.801 

Best period 0.809 0.798 0.782 0.796 

Mean 0.805 0.795 0.781 0.794 

CO 

Best case 0.804 0.796 0.783 0.794 

Best period 0.803 0.794 0.781 0.792 

Mean 0.797 0.790 0.775 0.787 

Table.4 CLOA performances 

Taking all categories of data, our proposed 

method improves the overall average precision 

(the best cases) from 79.4% to 80.1% when 

compared to the state of the art system which 

translates to error reduction of 3.40% (p-

value≤0.01 in Wilcoxon signed rank test). Alt-

hough the improvement does not seem large, our 
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Figure 3 Performance of negative transfer detection vs. co-training 

algorithm shows a different behavior in that it 

can continue to make use of available training 

data to improve the system performance. In other 

words, we do not need to identify the tipping 

point where the performance degradation can 

occur when more training samples are used. Our 

approach has also shown the advantage of stable 

improvement.  

In the most practical tasks, co-training based 

approach has the difficulty to determine when to 

stop the training process because of the negative 

transfer. And thus, there is no sure way to obtain 

the above best average precision. On the contrary, 

the performance of our proposed approach keeps 

stable improvement with more iterations, i.e. our 

approach has a much better chance to ensure the 

best performance. Another experiment is con-

ducted to compare the performance of our pro-

posed transfer learning based approach with su-

pervised learning. Here, the achieved perfor-

mance of 3-folder cross validation are given in 

Table 5. 

 DVD Book Music Average 

Supervised 0.833 0.800 0.801 0.811 

Our approach 0.816 0.801 0.786 0.801 

Table.5 Comparison with supervised learning  

The accuracy of our approach is only 1.0% 

lower than the supervised learning using 2/3 of 

Test_CHN. In the BOOK subset, our approach 

achieves match result. Note that the performance 

gap in different subsets shows positive correla-

tion to the size of Dev_CHN. The more samples 

are given in Dev_CHN, a higher precision is 

achieved even though these samples are unla-

beled. According to the theorem of PAC, we 

know that the accuracy of a classifier training 

from a large enough training set with confined 

class noise rate will approximate the accuracy of 

classifier training from a non-class noise training 

set. This experiment shows that our proposed 

negative transfer detection controls the class 

noise rate in a very limited boundary. Theoreti-

cally speaking, it can catch up with the perfor-

mance of supervised learning if enough unla-

beled samples are available. In fact, such an ad-

vantage is the essence of our proposed approach.  

5 Conclusion 

In this paper, we propose a negative transfer 

detection approach for transfer learning method 

in order to handle cumulative class noise and 

reduce negative transfer in the process of transfer 

learning. The basic idea is to utilize high quality 

samples after transfer learning to detect class 

noise in transferred samples. We take cross lin-

gual opinion analysis as the data set to evaluate 

our method. Experiments show that our proposed 

approach obtains a more stable performance im-

provement by reducing negative transfers. Our 

approach reduced 13.1% errors than the top sys-

tem on the NLP&CC 2013 CLOA evaluation 

dataset. In BOOK category it even achieves bet-

ter result than the supervised learning. Experi-

mental results also show that our approach can 

obtain better performance when the transferred 

samples are added incrementally, which in pre-

vious works would decrease the system perfor-

mance. In future work, we plan to extend this 

method into other language/domain resources to 

identify more transferred samples.  
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