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Abstract

We test both bottom-up and top-down ap-
proaches in learning the phonemic status
of the sounds of English and Japanese. We
used large corpora of spontaneous speech
to provide the learner with an input that
models both the linguistic properties and
statistical regularities of each language.
We found both approaches to help dis-
criminate between allophonic and phone-
mic contrasts with a high degree of accu-
racy, although top-down cues proved to be
effective only on an interesting subset of
the data.

1 Introduction

Developmental studies have shown that, during
their first year, infants tune in on the phonemic cat-
egories (consonants and vowels) of their language,
i.e., they lose the ability to distinguish some
within-category contrasts (Werker and Tees, 1984)
and enhance their ability to distinguish between-
category contrasts (Kuhl et al., 2006). Current
work in early language acquisition has proposed
two competing hypotheses that purport to account
for the acquisition of phonemes. The bottom-up
hypothesis holds that infants converge on the lin-
guistic units of their language through a similarity-
based distributional analysis of their input (Maye
et al., 2002; Vallabha et al., 2007). In contrast,
the top-down hypothesis emphasizes the role of
higher level linguistic structures in order to learn
the lower level units (Feldman et al., 2013; Mar-
tin et al., 2013). The aim of the present work is
to explore how much information can ideally be
derived from both hypotheses.

The paper is organized as follows. First we de-
scribe how we modeled phonetic variation from
audio recordings, second we introduce a bottom-
up cue based on acoustic similarity and top-
down cues based of the properties of the lexicon.

1

We test their performance in a task that consists
in discriminating within-category contrasts from
between-category contrasts. Finally we discuss
the role and scope of each cue for the acquisition
of phonemes.

2 Modeling phonetic variation

In this section, we describe how we modeled the
representation of speech sounds putatively pro-
cessed by infants, before they learn the relevant
phonemic categories of their language. Following
Peperkamp et al. (2006), we make the assumption
that this input is quantized into context-dependent
phone-sized unit we call allophones. Consider the
example of the allophonic rule that applies to the
French /r/:

/r/—>{

Figure 1: Allophonic variation of French /r/

[x]/ before a voiceless obstruent
[] elsewhere

The phoneme /1/ surfaces as voiced ([g]) before
a voiced obstruent like in [kanay 3on] (“canard
jaune”, yellow duck) and as voiceless ([]) before
a voiceless obstruent as in [kanay puypr] (“ca-
nard pourpre”, purple duck). Assuming speech
sounds are coded as allophones, the challenge fac-
ing the learner is to distinguish the allophonic vari-
ation ([8], [y]) from the phonemic variation (re-
lated to a difference in the meaning) like the con-
trast ([B],[1]).

Previous work has generated allophonic varia-
tion using random contexts (Martin et al., 2013).
This procedure does not take into account the fact
that contexts belong to natural classes. In addition,
it does not enable to compute an acoustic distance.
Here, we generate linguistically and acoustically
controlled allophones using Hidden Markov Mod-
els (HMMs) trained on audio recordings.
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2.1 Corpora

We use two speech corpora: the Buckeye Speech
corpus (Pitt et al., 2007), which consists of 40
hours of spontaneous conversations with 40 speak-
ers of American English, and the core of the Cor-
pus of Spontaneous Japanese (Maekawa et al.,
2000) which also consists of about 40 hours of
recorded spontaneous conversations and public
speeches in different fields. Both corpora are time-
aligned with phonetic labels. Following Boruta
(2012), we relabeled the japanese corpus using 25
phonemes. For English, we used the phonemic
version which consists of 45 phonemes.

2.2 Input generation

2.2.1 HMM-based allophones

In order to generate linguistically and acoustically
plausible allophones, we apply a standard Hidden
Markov Model (HMM) phoneme recognizer with
a three-state per phone architecture to the signal,
as follows.

First, we convert the raw speech waveform of
the corpora into successive vectors of Mel Fre-
quency Cepstrum Coefficients (MFCC), computed
over 25 ms windows, using a period of 10 ms
(the windows overlap). We use 12 MFCC coeffi-
cients, plus the energy, plus the first and second or-
der derivatives, yielding 39 dimensions per frame.
Second, we start HMM training using one three-
state model per phoneme. Third, each phoneme
model is cloned into context-dependent triphone
models, for each context in which the phoneme
actually occurs (for example, the phoneme /a/ oc-
curs in the context [d—a—g] as in the word /dag/
(““dog”). The triphone models are then retrained on
only the relevant subset of the data, corresponding
to the given triphone context. These detailed mod-
els are clustered back into inventories of various
sizes (from 2 to 20 times the size of the phone-
mic inventory) using a linguistic feature-based de-
cision tree, and the HMM states of linguistically
similar triphones are tied together so as to max-
imize the likelihood of the data. Finally, the tri-
phone models are trained again while the initial
gaussian emission models are replaced by mix-
ture of gaussians with a progressively increasing
number of components, until each HMM state is
modeled by a mixture of 17 diagonal-covariance
gaussians. The HMM were built using the HMM
Toolkit (HTK: Young et al., 2006).

2.2.2 Random allophones

As a control, we also reproduce the random al-
lophones of Martin et al. (2013), in which allo-
phonic contexts are determined randomly: for a
given phoneme /p/, the set of all possible con-
texts is randomly partitioned into a fixed number
n of subsets. In the transcription, the phoneme /p/
is converted into one of its allophones (p1,p2,..,pn)
depending on the subset to which the current con-
text belongs.

3 Bottom-up and top-down hypotheses

3.1 Acoustic cue

The bottom-up cue is based on the hypothesis that
instances of the same phoneme are likely to be
acoustically more similar than instances of two
different phonemes (see Cristia and Seidl, in press)
for a similar proposition). In order to provide
a proxy for the perceptual distance between al-
lophones, we measure the information theoretic
distance between the acoustic HMMs of these al-
lophones. The 3-state HMMs of the two allo-
phones were aligned with Dynamic Time Warping
(DTW), using as a distance between pairs of emit-
ting states, a symmetrized version of the Kullback-
Leibler (KL) divergence measure (each state was
approximated by a single non-diagonal Gaussian):

A(x7y> -

Y. KL(Ny|INy,) + KL(Ny || Na,)
(4,J)eDTW (z,y)

Where {(i,j) € DTW (z,y)} is the set of in-
dex pairs over the HMM states that correspond to
the optimal DTW path in the comparison between
phone model z and y, and IV, the full covariance
Gaussian distribution for state ¢ of phone x. For
obvious reasons, the acoustic distance cue cannot
be computed for Random allophones.

3.2 Lexical cues

The top-down information we use in this study, is
based on the insight of Martin et al. (2013). It rests
on the idea that true lexical minimal pairs are not
very frequent in human languages, as compared to
minimal pairs due to mere phonological processes.
In fact, the latter creates variants (alternants) of the
same lexical item since adjacent sounds condition
the realization of the first and final phoneme. For
example, as shown in figure 1, the phoneme /1/ sur-
faces as [y] or [B] depending on whether or not the



next sound is a voiceless obstruent. Therefore, the
lexical item /kanar/ surfaces as [kanay] or [kanas].
The lexical cue assumes that a pair of words dif-
fering in the first or last segment (like [kanay] and
[kanag]) is more likely to be the result of a phono-
logical process triggered by adjacent sounds, than
a true semantic minimal pair.

However, this strategy clearly gives rise to false
alarms in the (albeit relatively rare) case of true
minimal pairs like [kanay] (“duck™) and [kanal]

“canal”), where ([y], [1]) will be mistakenly la-
beled as allophonic.

In order to mitigate the problem of false alarms,
we also use Boruta (2011)’s continuous version,
where each pair of phones is characterized by the
number of lexical minimal pairs it forms.

B(z,y) = |(Az, Ay) € L?| + |(z4,yA) € L?|

where { Az € L} is the set of words in the lex-
icon L that end in the phone z, and {(Ax, Ay) €
L?} is the set of phonological minimal pairs in
L x L that vary on the final segment.

In addition, we introduce another cue that could
be seen as a normalization of Boruta’s cue:

o [(Az,A )GLZH—\(xA, A)ELz\
N(2,Y) = [azer) T Aye L {e AL} - Ty ACTY]

4 Experiment

4.1 Task

For each corpus we list all the possible pairs of
attested allophones. Some of these pairs are allo-
phones of the same phoneme (allophonic pair) and
others are allophones of different phonemes (non-
allophonic pairs). The task is a same-different
classification, whereby each of these pairs is given
a score from the cue that is being tested. A good
cue gives higher scores to allophonic pairs.

4.2 Evaluation

We use the same evaluation procedure as in Mar-
tin et al. (2013). It is carried out by computing
the area under the curve of the Receiver Operat-
ing Characteristic (ROC). A value of 0.5 repre-
sents chance and a value of 1 represents perfect
performance.

In order to lessen the potential influence of the
structure of the corpus (mainly the order of the ut-
terances) on the results, we use a statistical resam-
pling scheme. The corpus is divided into small
blocks (of 20 utterances each). In each run, we
draw randomly with replacement from this set of

blocks a sample of the same size as the original
corpus. This sample is then used to retrain the
acoustic models and generate a phonetic inven-
tory that we use to re-transcribe the corpus and
re-compute the cues. We report scores averaged
over 5 such runs.

4.3 Results

Table 1 shows the classification scores for the lex-
ical cues when we vary the inventory size from
2 allophones per phoneme in average, to 20 al-
lophones per phoneme, using the Random allo-
phones. The top-down scores are very high, repli-
cating Martin et al.’s results, and even improving
the performance using Boruta’s cue and our new
Normalized cue.

English Japanese
Allo./phon. | M B N M B N
2 0.784 0.935 0.951|0.580 0.989 1.00
5 0.845 0.974 0.982|0.653 0.978 0.991
10 0.886 0.974 0.981|0.733 0.944 0.971
20 0.918 0.961 0.966 | 0.785 0.869 0.886

Table 1 : Same-different scores for top-down cues on
Random allophones, as a function of the average number of
allophones per phoneme. M=Martin et al., B=Boruta, N=

Normalized

Table 2 shows the results for HMM-based allo-
phones. The acoustic score is very accurate for
both languages and is quite robust to variation.
Top-down cues, on the other hand, perform, sur-
prisingly, almost at chance level in distinguish-
ing between allophonic and non-allophonic pairs.
A similar discrepancy for the case of Japanese
was actually noted, but not explained, in Boruta
(2012).

English Japanese
Allo./phon. | A M B N A M B N
2 0.916 0.592 0.632 0.643 |0.885 0.422 0.524 0.537
5 0.918 0.592 0.607 0.611[0.908 0.507 0.542 0.551
10 0.893 0.569 0.571 0.571(0.827 0.533 0.546 0.548
20 0.879 0.560 0.560 0.559 (0.876 0.541 0.543 0.543

Table 2 : Same-different scores for bottom-up and top-down
cues on HMM-based allophones, as a function of the
average number of allophones per phoneme. A=Acoustic,
M=Martin et al., B=Boruta, N= Normalized

5 Analysis

5.1 Why does the performance drop for
realistic allophones?

When we list all possible pairs of allophones in
the inventory, some of them correspond to lexi-



cal alternants ([], [8]) — ([kanay] and [kanax]),
others to true minimal pairs ([g], [1]) — ([kanag]
and [kanal]), and yet others will simply not gen-
erate lexical variation at all, we will call those:
invisible pairs. For instance, in English, /h/ and
/y/ occur in different syllable positions and thus
cannot appear in any minimal pair. As defined
above, top-down cues are set to 0 in such pairs
(which means that they are systematically classi-
fied as non-allophonic). This is a correct decision
for /b/ vs. /y/, but not for invisible pairs that also
happen to be allophonic, resulting in false nega-
tives. In tables 3, we show that, indeed, invisible
pairs is a major issue, and could explain to a large
extent the pattern of results found above. In fact,
the proportion of visible allophonic pairs (“allo”
column) is way lower for HMM-based allophones.
This means that the majority of allophonic pairs in
the HMM case are invisible, and therefore, will be
mistakenly classified as non-allophonic.

Random HMM
English Japanese English Japanese
Allo./phon. | allo —allo|allo —allo|allo —allo|allo —allo
2 929 36.3 | 100 839 489 253 |37.1 532
5 97.2 284 |99.6 69.0 |31.1 143 |25.0 259
10 96.8 19.9 {96.7 50.1 [19.8 4.23 |21.0 14.4
20 943 10.8 |83.4 264 140 1.89 |124 4.04

Table 3 : Proportion (in %) of allophonic pairs (allo), and
non-allophonic pairs (— allo) associated with at least one

lexical minimal pair, in Random and HMM allophones.

There are basically two reasons why an allo-
phonic pair would be invisible ( will not generate
lexical alternants). The first one is the absence of
evidence, e.g., if the edges of the word with the
underlying phoneme do not appear in enough con-
texts to generate the corresponding variants. This
happens when the corpus is so small that no word
ending with, say, /t/ appears in both voiced and
voiceless contexts. The second, is when the allo-
phones are triggered on maximally different con-
texts (on the right and the left) as illustrated below:

. [p1]1/A_B
& {[Pz]/CD

When A doesn’t overlap with C and B does not
overlap with D, it becomes impossible for the pair
(Ip1], [p2]) to generate a lexical minimal pair. This
is simply because a pair of allophones needs to
share at least one context to be able to form vari-
ants of a word (the second or penultimate segment
of this word).

When asked to split the set of contexts in two
distinct categories that trigger [p;] and [p2] (i.e.,
A__ B and C__D), the random procedure will of-
ten make A overlap with B and C overlap with D
because it is completely oblivious to any acous-
tic or linguistic similarity, thus making it always
possible for the pair of allophones to generate lex-
ical alternants. A more realistic categorization
(like the HMM-based one), will naturally tend to
minimize within-category distance, and maximize
between-category distance. Therefore, we will
have less overlap, making the chances of the pair
to generate a lexical pair smaller. The more al-
lophones we have, the bigger is the chance to end
up with non-overlapping categories (invisible allo-
phonic pairs), and the more mistakes will be made,
as shown in Table 3.

5.2 Restricting the role of top-down cues

The analysis above shows that top-down cues can-
not be used to classify all contrasts. The approxi-
mation that consists in considering all pairs that do
not generate lexical pairs as non-allophonic, does
not scale up to realistic input. A more intuitive,
but less ambitious, assumption is to restrict the
scope of top-down cues to contrasts that do gen-
erate lexical variation (lexical alternants or true
minimal pairs). Thus, they remain completely ag-
nostic to the status of invisible pairs. This restric-
tion makes sense since top-down information boils
down to knowing whether two word forms belong
to the same lexical category (reducing variation to
allophony), or to two different categories (varia-
tion is then considered non-allophonic). Phonetic
variation that does not cause lexical variation is, in
this particular sense, orthogonal to our knowledge
about the lexicon.

We test this hypothesis by applying the cues
only to the subset of pairs that are associated with
at least one lexical minimal pair. We vary the num-
ber of allophones per phoneme on the one hand
(Table 4) and the size of the input on the other
hand (Table 5). We refer to this subset by an aster-
isk (*), by which we also mark the cues that apply
to it. Notice that, in this new framing, the M cue is
completely uninformative since it assigns the same
value to all pairs.

As predicted, the cues perform very well on this
subset, especially the N cue. The combination of
top-down and bottom-up cues shows that the for-
mer is always useful, and that these two sources of



English Japanese
Individual cues Combination Individual cues Combination
Allo./phon. | * (%) A A* B* N#* | A*+B*  A*4N* | * (%) A A* B* N* | A*+B*  A*4N*
2 26.6 | 0916 0.965 0.840 0.950 | 0.971 0.994 | 60.92 | 0.885 0.909 0.859 0.906 | 0918 0.946
4 143 | 0918 0.964 0.858 0.951 | 0.975 0.991 | 30.88 | 0.908 0917 0.850 0.936 | 0.934 0.976
10 424 |0.893 0.937 0.813 0.939 | 0.960 0.968 | 16.06 | 0.827 0.839 0.899 0.957 | 0.904 0.936
20 1.67 | 0.879 0.907 0.802 0.907 | 0.942 0.940 | 5.02 | 0.876 0.856 0.882 0.959 | 0913 0.950

Table 4 : Same-different scores for different cues and their combinations with HMM-allophones, as a function of average

number of allophones per phonemes.

English Japanese

Individual cues Combination Individual cues Combination
Size (hours) | * (%) A A* B* N* | A*+B*  A*+N* | * (%) A A* B* N#* | A¥+B* A*4N*
1 9.87 | 0.885 0.907 0.741 0915 | 0.927 0.969 | 34.78 | 0.890 0.883 0.835 0.915| 0.889 0.934
4 183 | 0918 0958 0.798 0917 | 0.967 0.989 | 48.00 | 0917 0.939 0.860 0.937 | 0.938 0.973
8 21.3 | 0916 0964 0.837 0942 | 0.971 0.992 | 51.71 | 0915 0940 0.889 0.937 | 0.954 0.977
20 244 10911 0960 0.827 0.936 | 0.969 0.994 | 58.12 | 0.921 0954 0.865 0912 | 0.945 0.971
40 26.6 | 0916 0965 0.840 0.950 | 0.971 0.994 | 60.92 | 0.885 0.909 0.859 0.906 | 0.918 0.946
00 34.82 72.16

Table 5 : Same-different scores for different cues and their combinations with HMM-allophones, as a function of corpus size.

* (%) refers to the proportion of the subset of contrasts associated with at least one minimal pair. The cues applied to this

subset are marked with an asterisk (*)

information are not completely redundant. How-
ever, the scope of top-down cues (the proportion of
the subset * ) shrinks as we increase the number of
allophones. Table 5 shows that this problem can,
in principle, be mitigated by increasing the amount
of data available to the learner. As we were limited
to only 40 hours of speech, we generated an artifi-
cial corpus that uses the same lexicon but with all
possible word orders so as to maximize the num-
ber of contexts in which words appear. This artifi-
cial corpus increases the proportion of the subset,
but we are still not at 100 % coverage, which ac-
cording the analysis above, is due (at least in part)
to the irreducible set of non-overlapping pairs.

6 Conclusion

In this study we explored the role of both bottom-
up and top-down hypotheses in learning the
phonemic status of the sounds of two typologically
different languages. We introduced a bottom-up
cue based on acoustic similarity, and we used al-
ready existing top-down cues to which we pro-
vided a new extension. We tested these hypothe-
ses on English and Japanese, providing the learner
with an input that mirrors closely the linguistic
and acoustic properties of each language. We
showed, on the one hand, that the bottom-up cue is
a very reliable source of information, across differ-
ent levels of variation and even with small amount
of data. Top-down cues, on the other hand, were
found to be effective only on a subset of the data,

which corresponds to the interesting contrasts that
cause lexical variation. Their role becomes more
relevant as the learner gets more linguistic experi-
ence, and their combination with bottom-up cues
shows that they can provide non-redundant infor-
mation. Note, finally, that even if this work is
based on a more realistic input compared to previ-
ous studies, it still uses simplifying assumptions,
like ideal word segmentation, and no low-level
acoustic variability. Those assumptions are, how-
ever, useful in quantifying the information that can
ideally be extracted from the input, which is a nec-
essary preliminary step before modeling how this
input is used in a cognitively plausible way. Inter-
ested readers may refer to (Fourtassi and Dupoux,
2014; Fourtassi et al., 2014) for a more learning-
oriented approach, where some of the assumptions
made here about high level representations are re-
laxed.
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Abstract

We consider the prediction of three hu-
man behavioral measures — lexical deci-
sion, word naming, and picture naming —
through the lens of domain bias in lan-
guage modeling. Contrasting the predic-
tive ability of statistics derived from 6 dif-
ferent corpora, we find intuitive results
showing that, e.g., a British corpus over-
predicts the speed with which an Amer-
ican will react to the words ward and
duke, and that the Google n-grams over-
predicts familiarity with technology terms.
This study aims to provoke increased con-
sideration of the human language model
by NLP practitioners: biases are not lim-
ited to differences between corpora (i.e.
“train” vs. “test”); they can exist as well
between corpora and the intended user of
the resultant technology.

1 Introduction

Computational linguists build statistical language
models for aiding in natural language processing
(NLP) tasks. Computational psycholinguists build
such models to aid in their study of human lan-
guage processing. Errors in NLP are measured
with tools like precision and recall, while errors in
psycholinguistics are defined as failures to model
a target phenomenon.

In the current study, we exploit errors of the lat-
ter variety—failure of a language model to predict
human performance—to investigate bias across
several frequently used corpora in computational
linguistics. The human data is revealing because
it trades on the fact that human language process-
ing is probability-sensitive: language processing
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reflects implicit knowledge of probabilities com-
puted over linguistic units (e.g., words). For ex-
ample, the amount of time required to read a word
varies as a function of how predictable that word is
(McDonald and Shillcock, 2003). Thus, failure of
a language model to predict human performance
reveals a mismatch between the language model
and the human language model, i.e., bias.

Psycholinguists have known for some time that
the ability of a corpus to explain behavior depends
on properties of the corpus and the subjects (cf.
Balota et al. (2004)). We extend that line of work
by directly analyzing and quantifying this bias,
and by linking the results to methodological con-
cerns in both NLP and psycholinguistics.

Specifically, we predict human data from
three widely used psycholinguistic experimental
paradigms—Ilexical decision, word naming, and
picture naming—using unigram frequency esti-
mates from Google n-grams (Brants and Franz,
2006), Switchboard (Godfrey et al., 1992), spoken
and written English portions of CELEX (Baayen
et al.,, 1995), and spoken and written portions
of the British National Corpus (BNC Consor-
tium, 2007). While we find comparable overall
fits of the behavioral data from all corpora un-
der consideration, our analyses also reveal spe-
cific domain biases. For example, Google n-
grams overestimates the ease with which humans
will process words related to the web (fech, code,
search, site), while the Switchboard corpus—a
collection of informal telephone conversations be-
tween strangers—overestimates how quickly hu-
mans will react to colloquialisms (heck, darn) and
backchannels (wow, right).

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 7-12,
Baltimore, Maryland, USA, June 23-25 2014. (©2014 Association for Computational Linguistics
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Figure 1: Pairwise correlations between log frequency es-
timates from each corpus. Histograms show distribution over
frequency values from each corpus. Lower left panels give
Pearson (top) and Spearman (bottom) correlation coefficients
and associated p-values for each pair. Upper right panels plot
correlations

2 Fitting Behavioral Data
2.1 Data

Pairwise Pearson correlation coefficients for log
frequency were computed for all corpora under
consideration. Significant correlations were found
between log frequency estimates for all pairs (Fig-
ure 1). Intuitive biases are apparent in the corre-
lations, e.g.: BNCw correlates heavily with BNCs
(0.91), but less with SWBD (0.79), while BNCs
correlates more with SWBD (0.84).!

Corpus Size (tokens)

~ 1 trillion

~ 90 million
~ 10 million
~ 16.6 million
~ 1.3 million
~ 800,000

Google n-grams (web release)

British National Corpus (written, BNCw)
British National Corpus (spoken, BNCs)
CELEX (written, CELEXw)

CELEX (spoken, CELEXs)

Switchboard (Penn Treebank subset 3)

Table 1: Summary of the corpora under consideration.

2.2 Approach

We ask whether domain biases manifest as sys-
tematic errors in predicting human behavior. Log
unigram frequency estimates were derived from
each corpus and used to predict reaction times
(RTs) from three experiments employing lexical

'BNCw and BNCs are both British, while BNCs and
SWBD are both spoken.

decision (time required by subjects to correctly
identify a string of letters as a word of English
(Balota et al., 1999)); word naming (time required
to read aloud a visually presented word (Spieler
and Balota, 1997); (Balota and Spieler, 1998));
and picture naming (time required to say a pic-
ture’s name (Bates et al., 2003)). Previous work
has shown that more frequent words lead to faster
RTs. These three measures provide a strong test
for the biases present in these corpora, as they
span written and spoken lexical comprehension
and production.

To compare the predictive strength of log fre-
quency estimates from each corpus, we fit mixed
effects regression models to the data from each
experiment. As controls, all models included (1)
mean log bigram frequency for each word, (2)
word category (noun, verb, etc.), (3) log mor-
phological family size (number of inflectional and
derivational morphological family members), (4)
number of synonyms, and (5) the first principal
component of a host of orthographic and phono-
logical features capturing neighborhood effects
(type and token counts of orthographic and phono-
logical neighbors as well as forward and backward
inconsistent words; (Baayen et al., 2006)). Mod-
els of lexical decision and word naming included
random intercepts of participant age to adjust for
differences in mean RTs between old (mean age
= 72) vs. young (mean age = 23) subjects, given
differences between younger vs. older adults’ pro-
cessing speed (cf. (Ramscar et al., 2014)). (All
participants in the picture naming study were col-
lege students.)

2.3 Results

For each of the six panels corresponding to fre-
quency estimates from a corpus A, Figure 2 gives
the x? value resulting from the log-likelihood ra-
tio of (1) a model containing A and an estimate
from one of the five remaining corpora (given on
the x axis) and (2) a model containing just the cor-
pus indicated on the x axis. Thus, for each panel,
each bar in Figure 2 shows the explanatory power
of estimates from the corpus given at the top of the
panel after controlling for estimates from each of
the other corpora.

Model fits reveal intuitive, previously undocu-
mented biases in the ability of each corpus to pre-
dict human data. For example, corpora of British
English tend to explain relatively little after con-



trolling for other British corpora in modeling lexi-
cal decision RTs (yellow). Similarly, Switchboard
provides relatively little explanatory power over
the other corpora in predicting picture naming
RTs (blue bars), possibly because highly image-
able nouns and verbs frequent in everyday interac-
tions are underrepresented in telephone conversa-
tions between people with no common visual ex-
perience. In other words, idiosyncratic facts about
the topics, dialects, etc. represented in each cor-
pus lead to systematic patterns in how well each
corpus can predict human data relative to the oth-
ers. In some cases, the predictive value of one
corpus after controlling for another—apparently
for reasons related to genre, dialect—can be quite
large (cf. the 2 difference between a model with
both Google and Switchboard frequency estimates
compared to one with only Switchboard [top right
yellow bar]).

In addition to comparing the overall predictive
power of the corpora, we examined the words
for which behavioral predictions derived from the
corpora deviated most from the observed behav-
ior (word frequencies strongly over- or under-
estimated by each corpora). First, in Table 2 we
give the ten words with the greatest relative differ-
ence in frequency for each corpus pair. For exam-
ple, fife is deemed more frequent according to the
BNC than to Google.?

These results suggest that particular corpora
may be genre-biased in systematic ways. For in-
stance, Google appears to be biased towards termi-
nology dealing with adult material and technology.
Similarly, BNCw is biased, relative to Google, to-
wards Britishisms. For these words in the BNC
and Google, we examined errors in predicted lexi-
cal decision times. Figure 3 plots errors in the lin-
ear model’s prediction of RTs for older (top) and
younger (bottom) subjects.

The figure shows a positive correlation between
how large the difference is between the lexical de-
cision RT predicted by the model and the actu-
ally observed RT, and how over-estimated the log
frequency of that word is in the BNC relative to
Google (left panel) or in Google relative to the
BNC (right panel). The left panel shows that BNC
produces a much greater estimate of the log fre-

2Surprisingly, fife was determined to be one of the words
with the largest frequency asymmetry between Switchboard
and the Google n-grams corpus. This was a result of lower-
casing all of the words in in the analyses, and the fact that
Barney Fife was mentioned several times in the BNC.

quency of the word lee relative to Google, which
leads the model to predict a lower RT for this word
than is observed (i.e., the error is positive; though
note that the error is less severe for older relative to
younger subjects). By contrast, the asymmetry be-
tween the two corpora in the estimated frequency
of sir is less severe, so the observed RT deviates
less from the predicted RT. In the right panel, we
see that Google assigns a much greater estimate
of log frequency to the word fech than the BNC,
which leads a model predicting RTs from Google-
derived frequency estimates to predict a far lower
RT for this word than observed.

3 Discussion

Researchers in computational linguistics often as-
sume that more data is always better than less
data (Banko and Brill, 2001). This is true in-
sofar as larger corpora allow computational lin-
guists to generate less noisy estimates of the av-
erage language experience of the users of compu-
tational linguistics applications. However, corpus
size does not necessarily eliminate certain types of
biases in estimates of human linguistic experience,
as demonstrated in Figure 3.

Our analyses reveal that 6 commonly used cor-
pora fail to reflect the human language model in
various ways related to dialect, modality, and other
properties of each corpus. Our results point to
a type of bias in commonly used language mod-
els that has been previously overlooked. This bias
may limit the effectiveness of NLP algorithms in-
tended to generalize to a linguistic domains whose
statistical properties are generated by humans.

For psycholinguists these results support an im-
portant methodological point: while each corpus
presents systematic biases in how well it predicts
human behavior, all six corpora are, on the whole,
of comparable predictive value and, specifically,
the results suggest that the web performs as well
as traditional instruments in predicting behavior.
This has two implications for psycholinguistic re-
search. First, as argued by researchers such as
Lew (2009), given the size of the Web compared to
other corpora, research focusing on low-frequency
linguistic events—or requiring knowledge of the
distributional characteristics of varied contexts—
is now more tractable. Second, the viability of
the web in predicting behavior opens up possibil-
ities for computational psycholinguistic research
in languages for which no corpora exist (i.e., most
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Figure 2: Results of log likelihood ratio model comparisons. Large values indicate that the reference predictor (panel title)
explained a large amount of variance over and above the predictor given on the x-axis.
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Figure 3: Errors in the linear model predicting lexical decision RTs from log frequency are plotted against the standardized
difference in log frequency in the Google n-grams corpus versus the written portion of the BNC. Top and bottom panels show
errors for older and younger subjects, respectively. The left panel plots words with much greater frequency in the written
portion of the BNC relative to Google; the right panel plots words occurring more frequently in Google. Errors in the linear
model are plotted against the standardized difference in log frequency across the corpora, and word color encodes the degree to
which each word is more (red) or less (blue) frequent in Google. That the fit line in each graph is above 0O in the y-axis means
that on average these biased words in each domain are being over-predicted, i.e., the corpus frequencies suggest humans will
react (sometimes much) faster than they actually did in the lab.
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Greater  Lesser Top-10

google bnc.s web, ass, gay, tire, text, tool, code, woe, site, zip

google  bnc.w ass, teens, tech, gay, bug, suck, site, cart, log, search
google celex.s teens, cart, gay, zip, mail, bin, tech, click, pee, site

google  celex.w  web, full, gay, bin, mail, zip, site, sake, ass, log

google swbd gay, thread, text, search, site, link, teens, seek, post, sex
bnc.w google fife, lord, duke, march, dole, god, cent, nick, dame, draught
bnc.w bnc.s pact, corps, foe, tract, hike, ridge, dine, crest, aide, whim
bnc.w celex.s  staff, nick, full, waist, ham, lap, knit, sheer, bail, march
bnc.w celex.w staff, lord, last, nick, fair, glen, low, march, should, west
bnc.w swbd rose, prince, seek, cent, text, clause, keen, breach, soul, rise
celex.s  google  art, yes, pound, spoke, think, mean, say, thing, go, drove
celex.s bnc.s art, hike, pact, howl, ski, corps, peer, spoke, jazz, are
celex.s  bnc.w art, yes, dike, think, thing, sort, mean, write, pound, lot
celex.s celex.w yes, sort, thank, think, jazz, heck, tape, well, fife, get
celex.s  swbd art, cell, rose, spoke, aim, seek, shall, seed, text, knight
celex.w google  art, plod, pound, shake, spoke, dine, howl, sit, say, draught
celex.w bnc.s hunch, stare, strife, hike, woe, aide, rout, yell, glaze, flee
celex.w  bnc.w dike, whiz, dine, shake, grind, jerk, whoop, say, are, cram
celex.w  celex.s wrist, pill, lawn, clutch, stare, spray, jar, shark, plead, horn
celex.w  swbd art, rose, seek, aim, rise, burst, seed, cheek, grin, lip

swbd google mow, kind, lot, think, fife, corps, right, cook, sort, do
swbd bnc.s creek, mow, guess, pact, strife, tract, hank, howl, foe, nap
swbd bnc.w stuff, whiz, tech, lot, kind, creek, darn, dike, bet, kid

swbd celex.s  wow, sauce, mall, deck, full, spray, flute, rib, guy, bunch
swbd celex.w  heck, guess, right, full, stuff, lot, last, well, guy, fair

Table 2: Examples of words with largest difference in z-transformed log frequencies (e.g., the relative frequencies of fife,

lord, and duke, in the BNC are far greater than in Google).

languages). This furthers the arguments of the “the
web as corpus” community (Kilgarriff and Grefen-
stette, 2003) with respect to psycholinguistics.

Finally, combining multiple sources of fre-
quency estimates is one way researchers may be
able to reduce the prediction bias from any sin-
gle corpus. This relates to work in automatically
building domain specific corpora (e.g., Moore and
Lewis (2010), Axelrod et al. (2011), Daumé III
and Jagarlamudi (2011), Wang et al. (2014), Gao
et al. (2002), and Lin et al. (1997)). Those efforts
focus on building representative document collec-
tions for a target domain, usually based on a seed
set of initial documents. Our results prompt the
question: can one use human behavior as the tar-
get in the construction of such a corpus? Con-
cretely, can we build corpora by optimizing an ob-
jective measure that minimizes error in predicting
human reaction times? Prior work in building bal-
anced corpora used either rough estimates of the
ratio of genre styles a normal human is exposed to
daily (e.g., the Brown corpus (Kucera and Fran-
cis, 1967)), or simply sampled text evenly across
genres (e.g., COCA: the Corpus of Contemporary
American English (Davies, 2009)). Just as lan-
guage models have been used to predict reading
grade-level of documents (Collins-Thompson and
Callan, 2004), human language models could be
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used to predict the appropriateness of a document
for inclusion in an “automatically balanced” cor-
pus.

4 Conclusion

We have shown intuitive, domain-specific biases
in the prediction of human behavioral measures
via corpora of various genres. While some psy-
cholinguists have previously acknowledged that
different corpora carry different predictive power,
this is the first work to our knowledge to system-
atically document these biases across a range of
corpora, and to relate these predictive errors to do-
main bias, a pressing issue in the NLP community.
With these results in hand, future work may now
consider the automatic construction of a “prop-
erly” balanced text collection, such as originally
desired by the creators of the Brown corpus.

Acknowledgments

The authors wish to thank three anonymous ACL
reviewers for helpful feedback. This research
was supported by a DARPA award (FA8750-13-2-
0017) and NSF grant IIS-0916599 to BVD, NSF
IIS-1150028 CAREER Award and Alfred P. Sloan
Fellowship to TFJ, and an NSF Graduate Research
Fellowship to ABF.



References

A. Axelrod, X. He, and J. Gao. 2011. Domain adap-
tation via pseudo in-domain data selection. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP 11).

R. H. Baayen, R. Piepenbrock, and L. Gulikers. 1995.
The CELEX Lexical Database (Release 2). Linguis-
tic Data Consortium, Philadelphia.

R. H. Baayen, L. F. Feldman, and R. Schreuder.
2006. Morphological influences on the recognition
of monosyllabic monomorphemic words. Journal of
Memory and Language, 53:496-512.

D. A. Balota and D. H. Spieler. 1998. The utility of
item-level analyses in model evaluation: A reply to
Seidenberg & Plaut (1998). Psychological Science.

D. A. Balota, M. J. Cortese, and M. Pilotti. 1999. Item-
level analyses of lexical decision performance: Re-
sults from a mega-study. In Abstracts of the 40th An-
nual Meeting of the Psychonomics Society, page 44.

D. Balota, M. Cortese, S. Sergent-Marshall, D. Spieler,
and M. Yap. 2004. Visual word recognition for
single-syllable words. Journal of Experimental Psy-
chology:General, (133):283316.

M. Banko and E. Brill. 2001. Mitigating the paucity of
data problem. Human Language Technology.

E. Bates, S. D’Amico, T. Jacobsen, A. Szkely, E. An-
donova, A. Devescovi, D. Herron, CC Lu, T. Pech-
mann, C. Plh, N. Wicha, K. Federmeier, I. Gerd-
jikova, G. Gutierrez, D. Hung, J. Hsu, G. lIyer,
K. Kohnert, T. Mehotcheva, A. Orozco-Figueroa,
A. Tzeng, and O. Tzeng. 2003. Timed picture nam-
ing in seven languages. Psychonomic Bulletin & Re-
view, 10(2):344-380.

BNC Consortium. 2007. The British National Corpus,
version 3 (BNC XML Edition). Distributed by Ox-
ford University Computing Services on behalf of the
BNC Consortium.

T. Brants and A. Franz. 2006. Web 1T 5-gram Version
1. Linguistic Data Consortium (LDC).

Kevyn Collins-Thompson and James P. Callan. 2004.
A language modeling approach to predicting reading
difficulty. In HLT-NAACL, pages 193-200.

H. Daumé III and J. Jagarlamudi. 2011. Domain
adaptation for machine translation by mining unseen
words. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies (ACL-HLT 11).

M. Davies. 2009. The 385+ million word corpus of
contemporary american english (19902008+): De-
sign, architecture, and linguistic insights. Inter-
national Journal of Corpus Linguistics, 14(2):159—
190.

12

. Gao, J. Goodman, M. Li, and K. F. Lee. 2002. To-
ward a unified approach to statistical language mod-
eling for chinese. In Proceedings of the ACM Trans-
actions on Asian Language Information Processing
(TALIP 02).

. Godfrey, E. Holliman, and J. McDaniel. 1992.
SWITCHBOARD: Telephone Speech Corpus for
Research and Development. In Proceedings of
ICASSP-92, pages 517-520.

A. Kilgarriff and G. Grefenstette. 2003. Introduction
to the special issue on the web as corpus. Computa-
tional Linguistics, 29(3):333-348.

H. Kucera and W.N. Francis. 1967. Computational
analysis of present-day american english. provi-
dence, ri: Brown university press.

R. Lew, 2009. Contemporary Corpus Linguistics,
chapter The Web as corpus versus traditional cor-
pora: Their relative utility for linguists and language
learners, pages 289-300. London/New York: Con-
tinuum.

. C. Lin, C. L. Tsai, L. F. Chien, K. J. Chen, and
L. S. Lee. 1997. Chinese language model adapta-
tion based on document classification and multiple
domain-specific language models. In Proceedings
of the 5th European Conference on Speech Commu-
nication and Technology.

S.A. McDonald and R.C. Shillcock. 2003. Eye
movements reveal the on-line computation of lexical
probabilities during reading. Psychological science,
14(6):648-52, November.

R. C. Moore and W. Lewis. 2010. Intelligent selection
of language model training data. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics (ACL 10).

M. Ramscar, P. Hendrix, C. Shaoul, P. Milin, and R. H.
Baayen. 2014. The myth of cognitive decline: non-
linear dynamics of lifelong learning. Topics in Cog-
nitive Science, 32:5-42.

D. H. Spieler and D. A. Balota. 1997. Bringing com-
putational models of word naming down to the item
level. 6:411-416.

L. Wang, D.F. Wong, L.S. Chao, Y. Lu, and J. Xing.
2014. A systematic comparison of data selection
criteria for smt domain adaptation. The Scientific
World Journal.



Probabilistic Labeling for Efficient Referential Grounding based on
Collaborative Discourse

Changsong Liu, Lanbo She, Rui Fang, Joyce Y. Chai
Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824

{cliu, shelanbo, fangrui,

Abstract

When humans and artificial agents (e.g.
robots) have mismatched perceptions of
the shared environment, referential com-
munication between them becomes diffi-
cult. To mediate perceptual differences,
this paper presents a new approach us-
ing probabilistic labeling for referential
grounding. This approach aims to inte-
grate different types of evidence from the
collaborative referential discourse into a
unified scheme. Its probabilistic labeling
procedure can generate multiple ground-
ing hypotheses to facilitate follow-up dia-
logue. Our empirical results have shown
the probabilistic labeling approach sig-
nificantly outperforms a previous graph-
matching approach for referential ground-
ing.

1 Introduction

In situated human-robot dialogue, humans and
robots have mismatched capabilities of perceiving
the shared environment. Thus referential commu-
nication between them becomes extremely chal-
lenging. To address this problem, our previous
work has conducted a simulation-based study to
collect a set of human-human conversation data
that explain how partners with mismatched per-
ceptions strive to succeed in referential commu-
nication (Liu et al., 2012; Liu et al., 2013). Our
data have shown that, when conversation partners
have mismatched perceptions, they tend to make
extra collaborative effort in referential commu-
nication. For example, the speaker often refers
to the intended object iteratively: first issuing an
initial installment, and then refashioning till the
hearer identifies the referent correctly. The hearer,
on the other hand, often provides useful feedback
based on which further refashioning can be made.
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This data has demonstrated the importance of in-
corporating collaborative discourse for referential
grounding.

Based on this data, as a first step we developed
a graph-matching approach for referential ground-
ing (Liu et al., 2012; Liu et al., 2013). This ap-
proach uses Attributed Relational Graph to cap-
ture collaborative discourse and employs a state-
space search algorithm to find proper ground-
ing results.  Although it has made meaning-
ful progress in addressing collaborative referen-
tial grounding under mismatched perceptions, the
state-space search based approach has two ma-
jor limitations. First, it is neither flexible to ob-
tain multiple grounding hypotheses, nor flexible
to incorporate different hypotheses incrementally
for follow-up grounding. Second, the search al-
gorithm tends to have a high time complexity for
optimal solutions. Thus, the previous approach
is not ideal for collaborative and incremental di-
alogue systems that interact with human users in
real time.

To address these limitations, this paper de-
scribes a new approach to referential grounding
based on probabilistic labeling. This approach
aims to integrate different types of evidence from
the collaborative referential discourse into a uni-
fied probabilistic scheme. It is formulated un-
der the Bayesian reasoning framework to easily
support generation and incorporation of multi-
ple grounding hypotheses for follow-up processes.
Our empirical results have shown that the prob-
abilistic labeling approach significantly outper-
forms the state-space search approach in both
grounding accuracy and efficiency. This new ap-
proach provides a good basis for processing col-
laborative discourse and enabling collaborative di-
alogue system in situated referential communica-
tion.

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 1318,
Baltimore, Maryland, USA, June 23-25 2014. (©)2014 Association for Computational Linguistics



2 Related Work

Previous works on situated referential grounding
have mainly focused on computational models that
connect linguistic referring expressions to the per-
ceived environment (Gorniak and Roy, 2004; Gor-
niak and Roy, 2007; Siebert and Schlangen, 2008;
Matuszek et al., 2012; Jayant and Thomas, 2013).
These works have provided valuable insights on
how to manually and/or automatically build key
components (e.g., semantic parsing, grounding
functions between visual features and words, map-
ping procedures) for a situated referential ground-
ing system. However, most of these works only
dealt with the interpretation of single referring ex-
pressions, rather than interrelated expressions in
collaborative dialogue.

Some earlier work (Edmonds, 1994; Heeman
and Hirst, 1995) proposed a symbolic reasoning
(i.e. planning) based approach to incorporate col-
laborative dialogue. However, in situated settings
pure symbolic approaches will not be sufficient
and new approaches that are robust to uncertain-
ties need to be pursued. DeVault and Stone (2009)
proposed a hybrid approach which combined sym-
bolic reasoning and machine learning for inter-
preting referential grounding dialogue. But their
“environment” was a simplistic block world and
the issue of mismatched perceptions was not ad-
dressed.

3 Data

Previously, we have collected a set of human-
human dialogues on an object-naming task (Liu
et al., 2012). To simulate mismatched perceptions
between a human and an artificial agent, two par-
ticipants were shown different versions of an im-
age: the director was shown the original image
containing some randomly placed objects (e.g.,
fruits), and the matcher was shown an impov-
erished version of the image generated by com-
puter vision. They were instructed to communi-
cate with each other to figure out the identities of
some “named” objects (only known to the direc-
tor), such that the matcher could also know which

object has what name.

Here is an example excerpt from this dataset:

D': there is basically a cluster of four objects in the upper
left, do you see that D

M: yes 2)
D: ok, so the one in the corner is a blue cup 3)

D stands for the director; M stands for the matcher.
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M: 1 see there is a square, but fine, it is blue 4)
D: alright, I will just go with that, so and then right under

that is a yellow pepper 5)
M: ok, I see apple but orangish yellow (6)
D: ok, so that yellow pepper is named Brittany @)
M: uh, the bottom left of those four? Because I do see a

yellow pepper in the upper right ®)
D: the upper right of the four of them? C))

M: yes (10)
D: ok, so that is basically the one to the right of the blue

cup (11)
M: yeah (12)
D: that is actually an apple (13)

As we can see from this example, both the direc-
tor and the matcher make extra efforts to overcome
the mismatched perceptions through collaborative
dialogue. Our ultimate goal is to develop com-
putational approaches that can ground interrelated
referring expressions to the physical world, and
enable collaborative actions of the dialogue agent
(similar to the active role that the matcher played
in the human-human dialogue). For the time be-
ing, we use this data to evaluate our computa-
tional approach for referential grounding, namely,
replacing the matcher by our automatic system to
ground the director’s referring expressions.

4 Probabilistic Labeling for Reference
Grounding

4.1 System Overview

Our system first processes the data using auto-
matic semantic parsing and coreference resolu-
tion. For semantic parsing, we use a rule-based
CCG parser (Bozsahin et al., 2005) to parse each
utterance into a formal semantic representation.
For example, the utterance “a pear is to the right
of the apple” is parsed as

[a’17 a2] s [Pear(al)v Apple(a‘Q)v nghtof(a’lv a2)]

which consists of a list of discourse entities (e.g.,
a1 and a9) and a list of first-order-logic predicates
that specify the unary attributes of these entities
and the binary relations between them.

We then perform pairwise coreference resolu-
tion on the discourse entities to find out the dis-
course relations between entities from different ut-
terances. Formally, let a; be a discourse entity ex-
tracted from the current utterance, and a; a dis-
course entity from a previous utterance. We train a
maximum entropy classifier” (Manning and Klein,

The features we use for the classification include the dis-
tance between a; and a;, the determiners associated with
them, the associated pronouns, the syntactic roles, the ex-
tracted unary properties, etc.



2003) to predict whether a; and a; should refer to
the same object (i.e. positive) or to different ob-
jects (i.e. negative).

Based on the semantic parsing and pairwise
coreference resolution results, our system fur-
ther builds a graph representation to capture the
collaborative discourse and formulate referential
grounding as a probabilistic labeling problem, as
described next.

4.2

We use an Attributed Relational Graph (Tsai and
Fu, 1979) to represent the referential grounding
discourse (which we call the “dialogue graph”). It
is constructed based on the semantic parsing and
coreference resolution results. The dialogue graph
contains a set A of N nodes:

Graph Representation

A={a,a9,...,an}

in which each node a; represents a discourse en-
tity from the parsing results. And for each pair

of nodes a; and a; there can be an edge a;a; that
represents the physical or discourse relation (i.e.
coreference) between the two nodes.

Furthermore, each node a; can be assigned a set
of “attributes’:

X; = {x,gl),a:?), .. ,:UEK)}

which are used to specify information about the
unary properties of the corresponding discourse
entity. Similarly, each edge a;a; can also be as-
signed a set of attributes x;; to specify informa-
tion about the binary relations between two dis-
course entities. The node attributes are from the
semantic parsing results, i.e., the unary proper-
ties associated to a discourse entity. The edge at-
tributes can be either from parsing results, such
as a spatial relation between two entities (e.g.,
RightO f(a1,az2)); Or from pairwise coreference
resolution results, i.e., two entities are coreferen-
tial (coref = +) or not (coref = —).

Besides the dialogue graph that represents the
linguistic discourse, we build another graph to rep-
resent the perceived environment. This graph is
called the “vision graph” (since this graph is built
based on computer vision’s outputs). It has a set {2

of M nodes:
Q: {wl,wg,...,wM}

in which each node w, represents a physical ob-
ject in the scene. Similar to the dialogue graph,

15

the vision graph also has edges (e.g., wawpg), node
attributes (e.g., X, ) and edge attributes (e.g., Xo3).
Note that the attributes in the vision graph mostly
have numeric values extracted by computer vision
algorithms, whereas the attributes in the dialogue
graph have symbolic values extracted from the lin-
guistic discourse. A set of “symbol grounding
functions” are used to bridge between the hetero-
geneous attributes (described later).

Given these two graph representations, referen-
tial grounding then can be formulated as a “node
labeling” process, that is to assign a label 6; to
each node a;. The value of ; can be any of the
M node labels from the set 2.

4.3 Probabilistic Labeling Algorithm

The probabilistic labeling algorithm (Christmas et
al., 1995) is formulated in the Bayesian frame-
work. It provides a unified evidence-combining
scheme to integrate unary attributes, binary rela-
tions and prior knowledge for updating the label-
ing probabilities (i.e. P (6; = wy)). The algo-
rithm finds proper labelings in an iterative manner:
it first initiates the labeling probabilities by consid-
ering only the unary attributes of each node, and
then updates the labeling probability of each node
based on the labeling of its neighbors and the rela-
tions with them.

Initialization:
Compute the initial labeling probabilities:

in which P (0; = wq) is the prior probability of
labeling a; with w,. The prior probability can be
used to encode any prior knowledge about possi-
ble labelings. Especially in incremental process-
ing of the dialogue, the prior can encode previ-
ous grounding hypotheses, and other information
from the collaborative dialogue such as confirma-
tion, rejection, or replacement.

P (a; | 0; = w,) is called the “compatibility co-
efficient” between a; and w,, which is computed
based on the attributes of a; and w,:

and we further define
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where L(%) is the “lexicon” for the k-th attribute of
a dialogue graph node, e.g., for the color attribute:

3

) is what we call a

LK)

(k)

= {red, green, blue, . .

| x(k’)

and p ( “symbol

grounding function”, i.e
serving i‘&k) given the word J,’gk). It judges the
compatibilities between the symbolic attribute val-
ues from the dialogue graph and the numeric at-
tribute values from the vision graph. These sym-
bol grounding functions can be either manually
defined or automatically learned. In our current
work, we use a set of manually defined ground-
ing functions motivated by previous work (Gor-
niak and Roy, 2004).

, the probability of ob-

Iteration:

Once the initial probabilities are calculated, the
labeling procedure iterates till all the labeling
probabilities have converged or the number of it-
erations has reached a specified limit. At each it-
eration and for each possible labeling, it computes
a “support function” as:

[1 3 P™(; =wp)

jENiLUﬁEQ
P (aiaj | 02 = wa,Hj = (,e.)5)

Q(n) (0; = wa) =

and updates the probability of each possible label-
ing as:

P (0;=wa) Q™) (;=wa)

> PO (0;=wx)Q(™) (0;=wy)
wreQ

P(n+1)(9i

Wa) =

The support function Q™ (#; = w,) expresses
how the labeling 6; wq at the n-th itera-
tion is supported by the labeling of a;’s neigh-
bors?, taking into consideration the binary rela-
tions that exist between a; and them. Similar to
the node compatibility coefficient, the edge com-
patibility coefficient between a;a; and wewpg ,

3The set of indices N; is defined as:

Ni={1,2,...,i—1,i+1,...,N}

Y)
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[ [ Top-1 [ Top2 [ Top3
Random 7.7% 15.4% 23.1%
Guess

S.S.S. 19.1% 19.7% 21.3%
PL. 24.9% 36.1% 45.0%
Gain® 5.8% 16.4% 23.7%
(p<0.01) | (p<0.001) | (p<0.001)
PL. using
annotated 66.4% 74.8% 81.9%
coreference

“Each image contains an average of 13 objects.
bp-value is based on the Wilcoxon signed-rank
test (Wilcoxon et al., 1970) on the 62 dialogues.

Table 1: Comparison of the reference grounding
performances of a random guess baseline, Prob-
abilistic Labeling (P.L.) and State-Space Search
(S.S.S.), and P.L. using manually annotated coref-
erence.

namely the P (a;a; | 6; = wq,0; = wg) for com-
puting Q™ (6; = w,), is also based on the at-
tributes of the two edges and their corresponding
symbol grounding functions. So we also man-
ually defined a set of grounding functions for
edge attributes such as the spatial relation (e.g.,
RightOf, Above). If an edge is used to encode
the discourse relation between two entities (i.e.,
the pairwise coreference results), the compatibility
coefficient can be defined as (suppose edge a;a;
encodes a positive coreference relation between
entities a; and a;):

P (@iaj = + [ 0; = wa, 0j = wp)
P(0i=wa 0;=wpl@ia;=+) P(@ia;=+)

P(0i=wa,0;=wp)

which can be calculated based on the results from
the coreference classifier (Section 4.1).

5 Evaluation and Discussion

Our dataset has 62 dialogues, each of which con-
tains an average of 25 valid utterances from the
director. We first applied the semantic parser and
coreference classifier as described in Section 4.1
to process each dialogue, and then built a graph
representation based on the automatic processing
results at the end of the dialogue. On average, a di-
alogue graph consists of 33 discourse entities from
the director’s utterances that need to be grounded.

We then applied both the probabilistic label-
ing algorithm and the state-space search algorithm
to ground each of the director’s discourse entities
onto an object perceived from the image. The av-
eraged grounding accuracies of the two algorithms



are shown in the middle part of Table 1. The first
column of Table 1 shows the grounding accura-
cies of the algorithm’s top-1 grounding hypothesis
(i.e., 0; = argmax P (0; = w,) for each 7). The

Wa
second and third column then show the “accura-

cies” of the top-2 and top-3 hypotheses*, respec-
tively.

As shown in Table 1, probabilistic labeling
(i.e. PL.) significantly outperforms state-space
search (S.S.S.), especially with regard to produc-
ing meaningful multiple grounding hypotheses.
The state-space search algorithm actually only re-
sults in multiple hypotheses for the overall match-
ing, and it fails to produce multiple hypotheses
for many individual discourse entities. Multiple
grounding hypotheses can be very useful to gen-
erate responses such as clarification questions or
nonverbal feedback (e.g. pointing, gazing). For
example, if there are two competing hypotheses,
the dialogue manager can utilize them to gener-
ate a response like “I see two objects there, are
you talking about this one (pointing to) or that one
(pointing to the other)?”. Such proactive feedback
is often an effective way in referential communi-
cation (Clark and Wilkes-Gibbs, 1986; Liu et al.,
2013).

The probabilistic labeling algorithm not only
produces better grounding results, it also runs
much faster (with a running-time complexity of
(@] (]\4]\[2),5 comparing to O (N4) of the state-
space search algorithm®). Figure 1 shows the av-
eraged running time of the state-space search al-
gorithm on a Intel Core i7 1.60GHz CPU with
16G RAM computer (the running time of the prob-
abilistic labeling algorithm is not shown in Fig-
ure 1 since it always takes less than 1 second to
run). As we can see, when the size of the dialogue
graph becomes greater than 15, state-space search
takes more than 1 minute to run. The efficiency of
the probabilistic labeling algorithm thus makes it
more appealing for real-time interaction applica-
tions.

Although probabilistic labeling significantly
outperforms the state-space search, the grounding
performance is still rather poor (less than 50%)

“The accuracy of the top-2/top-3 grounding hypotheses is
measured by whether the ground-truth reference is included
in the top-2/top-3 hypotheses.

5 M is the number of nodes in the vision graph and N is
the number of nodes in the dialogue graph.

Beam search algorithm is applied to reduce the exponen-
tial O (M™) to O (N*).
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Figure 1: Average running time of the state-space

search algorithm with respect to the number of
nodes to be grounded in a dialogue graph.

even for the top-3 hypotheses. With no surprise,
the coreference resolution performance plays an
important role in the final grounding performance
(see the grounding performance of using manually
annotated coreference in the bottom part of Ta-
ble 1). Due to the simplicity of our current coref-
erence classifier and the flexibility of the human-
human dialogue in the data, the pairwise coref-
erence resolution only achieves 0.74 in precision
and 0.43 in recall. The low recall of coreference
resolution makes it difficult to link interrelated re-
ferring expressions and resolve them jointly. So it
is important to develop more sophisticated coref-
erence resolution and dialogue management com-
ponents to reliably track the discourse relations
and other dynamics in the dialogue to facilitate ref-
erential grounding.

6 Conclusion

In this paper, we have presented a probabilistic la-
beling based approach for referential grounding in
situated dialogue. This approach provides a uni-
fied scheme for incorporating different sources of
information. Its probabilistic scheme allows each
information source to present multiple hypotheses
to better handle uncertainties. Based on the in-
tegrated information, the labeling procedure then
efficiently generates probabilistic grounding hy-
potheses, which can serve as important guidance
for the dialogue manager’s decision making. In
future work, we will utilize probabilistic labeling
to incorporate information from verbal and non-
verbal communication incrementally as the dia-
logue unfolds, and to enable collaborative dia-
logue agents in the physical world.
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Abstract

Dialog topic tracking aims at analyzing
and maintaining topic transitions in on-
going dialogs. This paper proposes a com-
posite kernel approach for dialog topic
tracking to utilize various types of do-
main knowledge obtained from Wikipedia.
Two kernels are defined based on history
sequences and context trees constructed
based on the extracted features. The ex-
perimental results show that our compos-
ite kernel approach can significantly im-
prove the performances of topic tracking
in mixed-initiative human-human dialogs.

1 Introduction

Human communications in real world situations
interlace multiple topics which are related to each
other in conversational contexts. This fact sug-
gests that a dialog system should be also capable
of conducting multi-topic conversations with users
to provide them a more natural interaction with the
system. However, the majority of previous work
on dialog interfaces has focused on dealing with
only a single target task. Although some multi-
task dialog systems have been proposed (Lin et al.,
1999; Ikeda et al., 2008; Celikyilmaz et al., 2011),
they have aimed at just choosing the most proba-
ble one for each input from the sub-systems, each
of which is independently operated from others.
To analyze and maintain dialog topics from a
more systematic perspective in a given dialog flow,
some researchers (Nakata et al., 2002; Lagus and
Kuusisto, 2002; Adams and Martell, 2008) have
considered this dialog topic identification as a sep-
arate sub-problem of dialog management and at-
tempted to solve it with text categorization ap-
proaches for the recognized utterances in a given
turn. The major obstacle to the success of these
approaches results from the differences between
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written texts and spoken utterances. In most text
categorization tasks, the proper category for each
textual unit can be assigned based only on its own
content. However, the dialog topic at each turn
can be determined not only by the user’s inten-
tions captured from the given utterances, but also
by the system’s decisions for dialog management
purposes. Thus, the text categorization approaches
can only be effective for the user-initiative cases
when users tend to mention the topic-related ex-
pressions explicitly in their utterances.

The other direction of dialog topic tracking ap-
proaches made use of external knowledge sources
including domain models (Roy and Subramaniam,
20006), heuristics (Young et al., 2007), and agen-
das (Bohus and Rudnicky, 2003; Lee et al., 2008).
These knowledge-based methods have an advan-
tage of dealing with system-initiative dialogs, be-
cause dialog flows can be controlled by the sys-
tem based on given resources. However, this as-
pect can limit the flexibility to handle the user’s
responses which are contradictory to the system’s
suggestions. Moreover, these approaches face cost
problems for building a sufficient amount of re-
sources to cover broad states of complex dialogs,
because these resources should be manually pre-
pared by human experts for each specific domain.

In this paper, we propose a composite kernel
to explore various types of information obtained
from Wikipedia for mixed-initiative dialog topic
tracking without significant costs for building re-
sources. Composite kernels have been success-
fully applied to improve the performances in other
NLP problems (Zhao and Grishman, 2005; Zhang
et al., 2006) by integrating multiple individual ker-
nels, which aim to overcome the errors occurring
at one level by information from other levels. Our
composite kernel consists of a history sequence
and a domain context tree kernels, both of which
are composed based on similar textual units in
Wikipedia articles to a given dialog context.
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t Speaker Utterance Topic Transition

0 Guide How can I help you? NONE—NONE

Tourist Can you recommend some good places to visit
in Singapore?

Well if you like to visit an icon of Singapore,
Merlion park will be a nice place to visit.

NONE— ATTR
Guide

Tourist
Guide

Merlion is a symbol for Singapore, right?

Yes, we use that to symbolise Singapore. ATTR—ATTR

Tourist
Guide

Okay.

The lion head symbolised the founding of the is-
land and the fish body just symbolised the hum-
ble fishing village.

ATTR— ATTR

Tourist
Guide

How can I get there from Orchard Road?
You can take the north-south line train from Or-
chard Road and stop at Raffles Place station.

ATTR—TRSP

Tourist Is this walking distance from the station to the
destination?

Yes, it’ll take only ten minutes on foot.

TRSP—TRSP
Guide

Tourist
Guide

Alright.

Well, you can also enjoy some seafoods at the TRSP—FOOD

riverside near the place.

What food do you have any recommendations
to try there?

If you like spicy foods, you must try chilli crab
which is one of our favourite dishes here in Sin-
gapore.

Tourist FOOD—FOOD

Guide

8 Tourist Great! I'll try that. FOOD—FOOD

Figure 1: Examples of dialog topic tracking on
Singapore tour guide dialogs

2 Dialog Topic Tracking

Dialog topic tracking can be considered as a clas-
sification problem to detect topic transitions. The
most probable pair of topics at just before and after
each turn is predicted by the following classifier:
f(xt) = (yt—1,y:), where x; contains the input
features obtained at a turn ¢, y; € C, and C'is a
closed set of topic categories. If a topic transition
occurs at ¢, y; should be different from y;_;. Oth-
erwise, both y; and y;_1 have the same value.
Figure 1 shows an example of dialog topic
tracking in a given dialog fragment on Singapore
tour guide domain between a tourist and a guide.
This conversation is divided into three segments,
since f detects three topic transitions at ¢, t4 and
tg. Then, a topic sequence of ‘Attraction’, ‘Trans-
portation’, and ‘Food’ is obtained from the results.

3 Wikipedia-based Composite Kernel for
Dialog Topic Tracking

The classifier f can be built on the training exam-
ples annotated with topic labels using supervised
machine learning techniques. Although some fun-
damental features extracted from the utterances
mentioned at a given turn or in a certain number of
previous turns can be used for training the model,
this information obtained solely from an ongoing
dialog is not sufficient to identify not only user-
initiative, but also system-initiative topic transi-
tions.

To overcome this limitation, we propose to
leverage on Wikipedia as an external knowledge
source that can be obtained without significant
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effort toward building resources for topic track-
ing. Recently, some researchers (Wilcock, 2012;
Breuing et al., 2011) have shown the feasibility
of using Wikipedia knowledge to build dialog sys-
tems. While each of these studies mainly focuses
only on a single type of information including cat-
egory relatedness or hyperlink connectedness, this
work aims at incorporating various knowledge ob-
tained from Wikipedia into the model using a com-
posite kernel method.

Our composite kernel consists of two different
kernels: a history sequence kernel and a domain
context tree kernel. Both represent the current di-
alog context at a given turn with a set of relevant
Wikipedia paragraphs which are selected based on
the cosine similarity between the term vectors of
the recently mentioned utterances and each para-
graph in the Wikipedia collection as follows:

_ ol@) - op)
@)ool

where x is the input, p; is the ¢-th paragraph in
the Wikipedia collection, ¢(p;) is the term vector
extracted from p;. The term vector for the input x,
¢(x), is computed by accumulating the weights in
the previous turns as follows:

o(x) = (al,ag, o

where o; = Z?:o (N - tfidf (wi, ug—j))). e is
the utterance mentioned in a turn ¢, ¢ fidf (w;, ut)
is the product of term frequency of a word w; in
u; and inverse document frequency of w;, A is a
decay factor for giving more importance to more
recent turns, |WV] is the size of word dictionary,
and h is the number of previous turns considered
as dialog history features.

After computing this relatedness between the
current dialog context and every paragraph in the
Wikipedia collection, two kernel structures are
constructed using the information obtained from
the highly-ranked paragraphs in the Wikipedia.

sim (.I, pl)

w
7a|W\) € R‘ |>

3.1 History Sequence Kernel

The first structure to be constructed for our com-
posite kernel is a sequence of the most similar
paragraph IDs of each turn from the beginning of
the session to the current turn. Formally, the se-
quence S at a given turn ¢ is defined as:

S:(S()v"' >8t>7

where s; = argmax; (sim (2, p;)).



Since our hypothesis is that the more similar the
dialog histories of the two inputs are, the more
similar aspects of topic transtions occur for them,
we propose a sub-sequence kernel (Lodhi et al.,
2002) to map the data into a new feature space de-
fined based on the similarity of each pair of history
sequences as follows:

Slu S2 Z Z Z )\l(l +l(J

w€A™ i:u=51[i] j:u=52]j]

where A is a finite set of paragraph IDs, S is a fi-
nite sequence of paragraph IDs, u is a subsequence
of S, Sj] is the subsequence with the i-th charac-
ters Vi € j, I(i) is the length of the subsequence,
and A € (0, 1) is a decay factor.

3.2 Domain Context Tree Kernel

The other kernel incorporates more various types
of domain knowledge obtained from Wikipedia
into the feature space. In this method, each in-
stance is encoded in a tree structure constructed
following the rules in Figure 2. The root node of
a tree has few children, each of which is a subtree
rooted at each paragraph node in:

Py = {pi|sim (x¢,p;) > 6},

where 6 is a threshold value to select the relevant
paragraphs. Each subtree consists of a set of fea-
tures from a given paragraph in the Wikipedia col-
lection in a hierarchical structure. Figure 3 shows
an example of a constructed tree.

Since this constructed tree structure represents
semantic, discourse, and structural information
extracted from the similar Wikipedia paragraphs
to each given instance, we can explore these more
enriched features to build the topic tracking model
using a subset tree kernel (Collins and Dufty,
2002) which computes the similarity between each
pair of trees in the feature space as follows:

KT, To) = > Y. Ang,ng)

n1 €N, n2€NT,

where Ny is the set of T"s nodes, A (n1,ng) =
> i Li (ny) - I; (n2), and I;(n) is a function that is
1 iff the ¢-th tree fragment occurs with root at node
n and 0 otherwise.

3.3 Kernel Composition

In this work, a composite kernel is defined by com-
bining the individual kernels including history se-
quence and domain context tree kernels, as well as

<TREE>:= (ROOT <PAR>...<PAR>)
<PAR>:= (PAR_ID <PARENTS>
<PREV_PAR><NEXT_PAR><LINKS>)
<PARENTS>:=( ‘PARENTS’ <ART><SEC>)
<ART>:= (ART_ID <ART_NAME><CAT_LIST>)
<ART_NAME>:=( ‘ART_NAME’ ART_NAME)
<CAT_LIST>:=(‘CAT’ <CAT>...<CAT>)
<CAT>:=(CAT_ID )
<SEC>:=(SEC_ID <SEC_NAME><PARENT_SEC>
<PREV_SEC><NEXT_SEC>)

<SEC_NAME>:=(‘SEC_NAME’ SEC_NAME)
<PARENT_SEC>:=(‘PRN_SEC’, PRN_SEC_ID)
<PREV_SEC>:=(‘PREV_SEC’, PREV_SEC_NAME)
<NEXT_SEC>:=( ‘NEXT_SEC’, NEXT_SEC_NAME)
<PREV_PAR>:=(‘PREV_PAR’, PREV_PAR_ID)
<NEXT_PAR>:=( ‘NEXT_PAR’, NEXT_PAR_ID)
<LINKS>:=(‘LINKS’ <LINK>...<LINK>)

<LINK>:=(LINK_NAME <)

Figure 2: Rules for constructing a domain context
tree from Wikipedia: PAR, ART, SEC, and CAT
are acronyms for paragraph, article, section, and
category, respectively

P1S3497:13

PARENTS

[ooen ] [ow ] [rowon | [ ]

[owr]  [or ] [ ][]

Coner ] ][ op o ] [Cowr ]

Figure 3: An example of domain context tree

the linear kernel between the vectors representing
fundamental features extracted from the utterances
themselves and the results of linguistic preproces-
sors. The composition is performed by linear com-
bination as follows:

K(z1,22) =a - K;(V1, Vo) + - K4(S1, S2)
+7 - Ki(Th, T3),

where V;, S;, and T; are the feature vector, his-
tory sequence, and domain context tree of x;, re-
spectively, K is the linear kernel computed by in-
ner product of the vectors, «, 3, and v are coeffi-
cients for linear combination of three kernels, and
a+pB+y=1

4 Evaluation

To demonstrate the effectiveness of our proposed
kernel method for dialog topic tracking, we per-
formed experiments on the Singapore tour guide
dialogs which consists of 35 dialog sessions col-
lected from real human-human mixed initiative
conversations related to Singapore between guides
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and tourists. All the recorded dialogs with the total
length of 21 hours were manually transcribed, then
these transcribed dialogs with 19,651 utterances
were manually annotated with the following nine
topic categories: Opening, Closing, Itinerary, Ac-
commodation, Attraction, Food, Transportation,
Shopping, and Other.

Since we aim at developing the system which
acts as a guide communicating with tourist users,
an instance for both training and prediction of
topic transition was created for each turn of
tourists. The annotation of an instance is a pair of
previous and current topics, and the actual number
of labels occurred in the dataset is 65.

For each instance, the term vector was gener-
ated from the utterances in current user turn, previ-
ous system turn, and history turns within the win-
dow sizes h = 10. Then, the history sequence and
tree context structures for our composite kernel
were constructed based on 3,155 articles related
to Singapore collected from Wikipedia database
dump as of February 2013. For the linear ker-
nel baseline, we used the following features: n-
gram words, previous system actions, and current
user acts which were manually annotated. Finally,
8,318 instances were used for training the model.

We trained the SVM models using
SVM/ght 1 (Joachims, 1999) with the follow-
ing five different combinations of kernels: K
only, K; with P as features, K;+ K, K;+ K}, and
K;+ K+ K. The threshold value @ for selecting
‘P was 0.5, and the combinations of kernels were
performed with the same «, (3, or ~ coefficient
values for all sub-kernels. All the evaluations
were done in five-fold cross validation to the man-
ual annotations with two different metrics: one
is accuracy of the predicted topic label for every
turn, and the other is precision/recall/F-measure
for each event of topic transition occurred either
in the answer or the predicted result.

Table 1 compares the performances of the five
combinations of kernels. When just the para-
graph IDs were included as additional features,
it failed to improve the performances from the
baseline without any external features. However,
our proposed kernels using history sequences and
domain context trees achieved significant perfor-
mances improvements for both evaluation metrics.
While the history sequence kernel enhanced the
coverage of the model to detect topic transitions,

"http://svmlight.joachims.org/
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Turn-level Transition-level
Accuracy P R F
K; 62.45 4277 2477 31.37
K, +P 62.44 4276 2477 31.37
K;+ K, 67.19 39.94 40.59 40.26
K+ K, 68.54 45.55 35.69 40.02
All 69.98 44.82 39.83 42.18
Table 1: Experimental Results
3000
FN(USR)
FP(USR)
2300 s FP(SYS)
2000

1500

1000

Number of Transition Errors

500

K K +P K +Ks K+K;  ALL

Figure 4: Error distibutions of topic transitions:
FN and FP denotes false negative and false posi-
tive respectively. USR and SYS in the parentheses

indicate the initiativity of the transitions.

the domain context tree kernel contributed to pro-
duce more precise outputs. Finally, the model
combining all the kernels outperformed the base-
line by 7.53% in turn-level accuracy and 10.81%
in transition-level F-measure.

The error distributions in Figure 4 indicate that
these performance improvements were achieved
by resolving the errors not only on user-initiative
topic transitions, but also on system-initiative
cases, which implies the effectiveness of the struc-
tured knowledge from Wikipedia to track the top-
ics in mixed-initiative dialogs.

5 Conclusions

This paper presented a composite kernel approach
for dialog topic tracking. This approach aimed to
represent various types of domain knowledge ob-
tained from Wikipedia as two structures: history
sequences and domain context trees; then incor-
porate them into the model with kernel methods.
Experimental results show that the proposed ap-
proaches helped to improve the topic tracking per-
formances in mixed-initiative human-human di-
alogs with respect to the baseline model.
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Abstract

BLANC is a link-based coreference eval-
uation metric for measuring the qual-
ity of coreference systems on gold men-
tions. This paper extends the original
BLANC (“BLANC-gold” henceforth) to
system mentions, removing the gold men-
tion assumption. The proposed BLANC
falls back seamlessly to the original one if
system mentions are identical to gold men-
tions, and it is shown to strongly correlate
with existing metrics on the 2011 and 2012
CoNLL data.

1 Introduction

Coreference resolution aims at identifying natu-
ral language expressions (or mentions) that refer
to the same entity. It entails partitioning (often
imperfect) mentions into equivalence classes. A
critically important problem is how to measure the
quality of a coreference resolution system. Many
evaluation metrics have been proposed in the past
two decades, including the MUC measure (Vilain
etal., 1995), B-cubed (Bagga and Baldwin, 1998),
CEAF (Luo, 2005) and, more recently, BLANC-
gold (Recasens and Hovy, 2011). B-cubed and
CEAF treat entities as sets of mentions and mea-
sure the agreement between key (or gold standard)
entities and response (or system-generated) enti-
ties, while MUC and BLANC-gold are link-based.

In particular, MUC measures the degree of
agreement between key coreference links (i.e.,
links among mentions within entities) and re-
sponse coreference links, while non-coreference
links (i.e., links formed by mentions from different
entities) are not explicitly taken into account. This
leads to a phenomenon where coreference systems
outputting large entities are scored more favorably

Sameer Pradhan
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300 Longwood Ave., Boston, MA 02115
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than those outputting small entities (Luo, 2005).
BLANC (Recasens and Hovy, 2011), on the other
hand, considers both coreference links and non-
coreference links. It calculates recall, precision
and F-measure separately on coreference and non-
coreference links in the usual way, and defines
the overall recall, precision and F-measure as the
mean of the respective measures for coreference
and non-coreference links.

The BLANC-gold metric was developed with
the assumption that response mentions and key
mentions are identical. In reality, however, men-
tions need to be detected from natural language
text and the result is, more often than not, im-
perfect: some key mentions may be missing in
the response, and some response mentions may be
spurious—so-called “twinless” mentions by Stoy-
anov et al. (2009). Therefore, the identical-
mention-set assumption limits BLANC-gold’s ap-
plicability when gold mentions are not available,
or when one wants to have a single score mea-
suring both the quality of mention detection and
coreference resolution. The goal of this paper is
to extend the BLANC-gold metric to imperfect re-
sponse mentions.

We first briefly review the original definition of
BLANC, and rewrite its definition using set nota-
tion. We then argue that the gold-mention assump-
tion in Recasens and Hovy (2011) can be lifted
without changing the original definition. In fact,
the proposed BLANC metric subsumes the origi-
nal one in that its value is identical to the original
one when response mentions are identical to key
mentions.

The rest of the paper is organized as follows.
We introduce the notions used in this paper in
Section 2. We then present the original BLANC-
gold in Section 3 using the set notation defined in
Section 2. This paves the way to generalize it to
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imperfect system mentions, which is presented in
Section 4. The proposed BLANC is applied to the
CoNLL 2011 and 2012 shared task participants,
and the scores and its correlations with existing
metrics are shown in Section 5.

2 Notations

To facilitate the presentation, we define the nota-
tions used in the paper.

We use key to refer to gold standard mentions or
entities, and response to refer to system mentions
or entities. The collection of key entities is denoted
by K = {kz}‘f:('l, where k; is the i*" key entity;
.
entities, and 7; is the 4 response entity. We as-
sume that mentions in {k;} and {r;} are unique;
in other words, there is no duplicate mention.

Let Ci(i) and C,(j) be the set of coreference
links formed by mentions in k; and r;:

accordingly, R = {r;}._ is the set of response

(4)
()

Cr(i) = {(m1,m2) : m1 € ki, ma € ks, my1 # mo}
Cr(4) = {(m1,m2) : m1 € 7j,ma2 € rj, M1 # M2}
As can be seen, a link is an undirected edge be-
tween two mentions, and it can be equivalently
represented by a pair of mentions. Note that when
an entity consists of a single mention, its corefer-
ence link set is empty.

Let Ni(i,j) (i # j) be key non-coreference
links formed between mentions in k; and those
in k;, and let N,.(2,7) (¢ # j) be response non-
coreference links formed between mentions in r;
and those in r;, respectively:

Ni(iy ) = {(m1,m2) : m1 € ks, ma € kj}
Ny (i,7) = {(m1,m2) : m1 € r;,ma € 15}
Note that the non-coreference link set is empty
when all mentions are in the same entity.

We use the same letter and subscription with-

out the index in parentheses to denote the union of

sets, e.g.,

Cr = U]C’r(])? N”‘ = UZ#JNT(Z"?)

Weuse T, = C, UNg and T, = C, U N, to
denote the total set of key links and total set of
response links, respectively. Clearly, C and Ny
form a partition of T} since C, N N = 0, T}, =
Cj U Ng. Likewise, C,. and N, form a partition of
T,.
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We say that a key link /1 € T}, equals a response
link Il € T, if and only if the pair of mentions
from which the links are formed are identical. We
write [; = [ if two links are equal. It is easy to
see that the gold mention assumption—same set
of response mentions as the set of key mentions—
can be equivalently stated as T}, = T, (this does
not necessarily mean that Cy, = C,. or N, = N,.).

We also use | - | to denote the size of a set.

3 Original BLANC

BLANC-gold is adapted from Rand Index (Rand,
1971), a metric for clustering objects. Rand Index
is defined as the ratio between the number of cor-
rect within-cluster links plus the number of correct
cross-cluster links, and the total number of links.

When T}, = T,, Rand Index can be applied di-
rectly since coreference resolution reduces to a
clustering problem where mentions are partitioned
into clusters (entities):

|Cr N Cr| + | Nk N Ny |

Rand Index =
5 (1Tl (1T | = 1))

ey

In practice, though, the simple-minded adoption
of Rand Index is not satisfactory since the number
of non-coreference links often overwhelms that of
coreference links (Recasens and Hovy, 2011), or,
|Ng| > |Ck| and |N,| > |C,|. Rand Index, if
used without modification, would not be sensitive
to changes of coreference links.

BLANC-gold solves this problem by averaging
the F-measure computed over coreference links
and the F-measure over non-coreference links.
Using the notations in Section 2, the recall, pre-
cision, and F-measure on coreference links are:

(9) _ |Ck ﬂCr| 2
R = \CkﬂCT|+|CkﬂNT\ 2)
C’kﬁCT|
Pl — | 3
¢ |Cr N Ck| + |Cr N Ny ©)
(9) p(9)
(o) _ 2R P

Similarly, the recall, precision, and F-measure on
non-coreference links are computed as:

N ﬂNT|
R — | 5
" |NkﬂCT|+|NkﬂNT| 3)
N ﬁNT|
plo) — | 6
' [N, N Ck| + | Ny N Ny ©)
(9) p(9)
@ _ 2R Py
RO 7



Finally, the BLANC-gold metric is the arithmetic
average of F\?) and F\:

Fc(g) + Fy(f”

BLANCY = 5

®
Superscript 9 in these equations highlights the fact
that they are meant for coreference systems with
gold mentions.

Eqgn. (8) indicates that BLANC-gold assigns
equal weight to Fc(g ), the F-measure from coref-
erence links, and F,S,g ), the F-measure from non-
coreference links. This avoids the problem that
|Nk| > |C| and | N,.| > |C.|, should the original
Rand Index be used.

In Eqn. (2) - (3) and Eqn. (5) - (6), denominators
are written as a sum of disjoint subsets so they can
be related to the contingency table in (Recasens
and Hovy, 2011). Under the assumption that T}, =
T, it is clear that C}, = (C N C,) U (Cx, N N;.),
Cr=(Cp,NCy)U(NgNC,), and so on.

4 BLANC for Imperfect Response
Mentions

Under the assumption that the key and response
mention sets are identical (which implies that
Ty, = 1T;), Equations (2) to (7) make sense. For
example, R, is the ratio of the number of correct
coreference links over the number of key corefer-
ence links; P, is the ratio of the number of cor-
rect coreference links over the number of response
coreference links, and so on.

However, when response mentions are not iden-
tical to key mentions, a key coreference link may
not appear in either C). or N,., so Equations (2) to
(7) cannot be applied directly to systems with im-
perfect mentions. For instance, if the key entities
are {a,b,c} {d,e}; and the response entities
are {b,c} {e, £, g}, then the key coreference
link (a,b) is not seen on the response side; sim-
ilarly, it is possible that a response link does not
appear on the key side either: (c, £) and (£, g)
are not in the key in the above example.

To account for missing or spurious links, we ob-
serve that

e (). \ T, are key coreference links missing in
the response;

e Ny \ T, are key non-coreference links miss-
ing in the response;

e (., \ T}, are response coreference links miss-
ing in the key;

e N, \ T} are response non-coreference links
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missing in the key,

and we propose to extend the coreference F-
measure and non-coreference F-measure as fol-
lows. Coreference recall, precision and F-measure
are changed to:

|CkﬂCr\
R. = 9
GG+ e N TGN T O

|Cr N Crl
P = 10
GG I N+ o] O

2R P,

- 11
Rt P (11)

Non-coreference recall, precision and F-measure
are changed to:

|Nk n NT|
R, = 12
|INk, N Cr| + | Nk NN | + |[Ng \ T (12
|Nk n Nr|
P, = 13
|N, N Ck| + |Nr N Ni| + [Ny \ Tk| (13
2R, P,
F, = . 14

The proposed BLANC continues to be the arith-
metic average of F; and F,:

F.+ F,

BLANC = 5

15)

We observe that the definition of the proposed
BLANC, Equ. (9)-(14) subsume the BLANC-
gold (2) to (7) due to the following proposition:

If T, = T, then BLANC = BLANC9),

Proof. We only need to show that R, = Rgg ),
P. = Pc(g), R, = Rglg), and P, = P7(lg). We prove
the first one (the other proofs are similar and elided
due to space limitations). Since Ty = 7, and
Cy C Ty, we have Cy, C T,; thus Cj, \ T, = (), and
|Cx N T,| = 0. This establishes that R, = Rgg ),

Indeed, since CY, is a union of three disjoint sub-
sets: C = (Ck N CT) U (Ck N Nr> U (Ck \ Tr),
Rgg ) and R, can be unified as % Unification
for other component recalls and precisions can be
done similarly. So the final definition of BLANC
can be succinctly stated as:

o |CkﬂCT‘ - |Ckﬂ0r|

R. = , Pe= (16)

|Ck| |C+|

[Nk N N, | [Nk 0 Ny

Ry=——, Ph="—"7-+—7"" a7

| Ni| | V- |
2|k NG| _ 2[Np NN, (18)

ST CK 1G] T T Nk + N

BLANC = FJ;F” (19)



4.1 Boundary Cases

Care has to be taken when counts of the BLANC
definition are 0. This can happen when all key
(or response) mentions are in one cluster or are
all singletons: the former case will lead to Ny = ()
(or N, = (0); the latter will lead to C}, = 0 (or
C, = (). Observe that as long as |C| + |C;| > 0,
F. in (18) is well-defined; as long as | Ng|+|N,| >
0, F,, in (18) is well-defined. So we only need to
augment the BLANC definition for the following
cases:

(HIfCr = C, = 0 and N, = N, = 0, then
BLANC = I(My = M,), where I(-) is an in-
dicator function whose value is 1 if its argument
is true, and O otherwise. M} and M, are the key
and response mention set. This can happen when a
document has no more than one mention and there
is no link.

(2) If C, = C, = 0 and | Ni| + |N,| > 0, then
BLANC = F;,. This is the case where the key
and response side has only entities consisting of
singleton mentions. Since there is no coreference
link, BLANC reduces to the non-coreference F-
measure Fj,.

(3)If N, = N, = (0 and |Cy| + |C)| > 0, then
BLANC = F,. This is the case where all mentions
in the key and response are in one entity. Since
there is no non-coreference link, BLANC reduces
to the coreference F-measure F..

4.2 Toy Examples

We walk through a few examples and show how
BLANC is calculated in detail. In all the examples
below, each lower-case letter represents a mention;
mentions in an entity are closed in { }; two letters
in () represent a link.

Example 1. Key entities are {abc} and {d}; re-
sponse entities are {bc} and {de}. Obviously,

Cr = {(ab), (bc), (ac)};

Ni = {(ad), (bd), (cd)};

Cr = {(be), (de)}:

N, = {(bd), (be), (cd), (ce)}.
Therefore, C, N C, = {(bc)}, N,y N N, =
{( )(cd)} andR. =%, P.=35, F.=% R, =
2 P=2F,=1% Flnally, BLANC iL.

Example 2. Key entity is {a}; response entity
is {b}. This is boundary case (1): BLANC = 0.

Example 3. Key entities are {a}{b}{c}; re-
sponse entities are {a}{b}{d}. This is boundary
case (2): there are no coreference links. Since

Ni = {(ab), (bc), (ca)},
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Participant R P BLANC
lee 50.23 49.28 48.84
sapena 40.68 49.05 44.47
nugues 47.83 4422 45.95
chang 44.71 47.48 45.49
stoyanov 49.37 29.80 34.58
santos 46.74 37.33 41.33
song 36.88 39.69 30.92
sobha 35.42 39.56 36.31
yang 47.95 29.12 36.09
charton 42.32 31.54 35.65
hao 45.41 32.75 36.98
zhou 29.93 45.58 34.95
kobdani 32.29 33.01 32.57
Xinxin 36.83 34.39 35.02
kummerfeld 34.84 29.53 30.98
zhang 30.10 43.96 35.71
zhekova 26.40 15.32 15.37
irwin 3.62 28.28 6.28
Table 1: The proposed BLANC scores of the

CoNLL-2011 shared task participants.

N, = {(ab), (bd), (ad)},
we have

Ny NN, ={(ab)},and R, = £, P,
SoBLANC = F,, = £

Example 4. Key entity is {abc}; response entity
is {bc}. This is boundary case (3): there are no
non-coreference links. Since

Cr = {(ab), (bc), (ca)}, and C, = {(bc)},

we have

1
3

CrNCp ={(bc)},and R. = &, P, =1,
SoBLANC = F, = % = L.
5 Results

5.1 CoNLL-2011/12

We have updated the publicly available CoNLL
coreference scorer' with the proposed BLANC,
and used it to compute the proposed BLANC
scores for all the CoNLL 2011 (Pradhan et al.,
2011) and 2012 (Pradhan et al., 2012) participants
in the official track, where participants had to au-
tomatically predict the mentions. Tables 1 and 2
report the updated results.?

5.2 Correlation with Other Measures

Figure 1 shows how the proposed BLANC mea-
sure works when compared with existing met-
rics such as MUC, B-cubed and CEAF, us-
ing the BLANC and F1 scores. The proposed
BLANC is highly positively correlated with the

"http://code.google.com/p/reference-coreference-scorers
2The order is kept the same as in Pradhan et al. (2011) and
Pradhan et al. (2012) for easy comparison.



Participant R P BLANC
Language: Arabic

fernandes 33.43 44.66 37.99
bjorkelund 32.65 45.47 37.93
uryupina 31.62 35.26 33.02
stamborg 32.59 36.92 34.50
chen 31.81 31.52 30.82
zhekova 11.04 62.58 18.51
li 4.60 56.63 8.42
Language: English

fernandes 54.91 63.66 58.75
martschat 52.00 58.84 55.04
bjorkelund 52.01 59.55 55.42
chang 52.85 55.03 53.86
chen 50.52 56.82 52.87
chunyang 51.19 55.47 52.65
stamborg 54.39 54.88 54.42
yuan 50.58 54.29 52.11
Xu 45.99 54.59 46.47
shou 49.55 52.46 50.44
uryupina 44.15 48.89 46.04
songyang 40.60 50.85 45.10
zhekova 41.46 33.13 34.80
xinxin 44.39 32.79 36.54
li 25.17 52.96 31.85
Language: Chinese

chen 48.45 62.44 54.10
yuan 53.15 40.75 43.20
bjorkelund 47.58 45.93 44.22
Xu 44.11 36.45 38.45
fernandes 42.36 61.72 49.63
stamborg 39.60 55.12 45.89
uryupina 33.44 56.01 41.88
martschat 27.24 62.33 37.89
chunyang 37.43 36.18 36.77
xinxin 36.46 39.79 37.85
li 21.61 62.94 30.37
chang 18.74 40.76 25.68
zhekova 21.50 37.18 22.89

Table 2: The proposed BLANC scores of the
CoNLL-2012 shared task participants.

R P F1
MUC 0.975 0.844 0.935
B-cubed 0.981 0.942 0.966
CEAF-m 0.941 0.923 0.966
CEAF-¢e 0.797 0.781 0919

Table 3: Pearson’s r correlation coefficients be-
tween the proposed BLANC and the other coref-
erence measures based on the CoNLL 2011/2012
results. All p-values are significant at < 0.001.
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Figure 1: Correlation plot between the proposed
BLANC and the other measures based on the

CoNLL 2011/2012 results. All values are F1
scores.

other measures along R, P and F1 (Table 3),
showing that BLANC is able to capture most
entity-based similarities measured by B-cubed and
CEAF. However, the CoNLL data sets come from
OntoNotes (Hovy et al., 2006), where singleton
entities are not annotated, and BLANC has a wider
dynamic range on data sets with singletons (Re-
casens and Hovy, 2011). So the correlations will
likely be lower on data sets with singleton entities.

6 Conclusion

The original BLANC-gold (Recasens and Hovy,
2011) requires that system mentions be identical
to gold mentions, which limits the metric’s utility
since detected system mentions often have missing
key mentions or spurious mentions. The proposed
BLANC is free from this assumption, and we
have shown that it subsumes the original BLANC-
gold. Since BLANC works on imperfect system
mentions, we have used it to score the CoNLL
2011 and 2012 coreference systems. The BLANC
scores show strong correlation with existing met-
rics, especially B-cubed and CEAF-m.
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Abstract

The definitions of two coreference scoring
metrics—B> and CEAF—are underspeci-
fied with respect to predicted, as opposed
to key (or gold) mentions. Several varia-
tions have been proposed that manipulate
either, or both, the key and predicted men-
tions in order to get a one-to-one mapping.
On the other hand, the metric BLANC was,
until recently, limited to scoring partitions
of key mentions. In this paper, we (i) ar-
gue that mention manipulation for scoring
predicted mentions is unnecessary, and po-
tentially harmful as it could produce unin-
tuitive results; (ii) illustrate the application
of all these measures to scoring predicted
mentions; (iii) make available an open-
source, thoroughly-tested reference imple-
mentation of the main coreference eval-
uation measures; and (iv) rescore the re-
sults of the CoNLL-2011/2012 shared task
systems with this implementation. This
will help the community accurately mea-
sure and compare new end-to-end corefer-
ence resolution algorithms.

1

Coreference resolution is a key task in natural
language processing (Jurafsky and Martin, 2008)
aiming to detect the referential expressions (men-
tions) in a text that point to the same entity.
Roughly over the past two decades, research in
coreference (for the English language) had been
plagued by individually crafted evaluations based
on two central corpora—MUC (Hirschman and
Chinchor, 1997; Chinchor and Sundheim, 2003;
Chinchor, 2001) and ACE (Doddington et al.,
2004). Experimental parameters ranged from us-
ing perfect (gold, or key) mentions as input for
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purely testing the quality of the entity linking al-
gorithm, to an end-to-end evaluation where pre-
dicted mentions are used. Given the range of
evaluation parameters and disparity between the
annotation standards for the two corpora, it was
very hard to grasp the state of the art for the
task of coreference. This has been expounded in
Stoyanov et al. (2009). The activity in this sub-
field of NLP can be gauged by: (i) the contin-
ual addition of corpora manually annotated for
coreference—The OntoNotes corpus (Pradhan et
al., 2007; Weischedel et al., 2011) in the general
domain, as well as the i2b2 (Uzuner et al., 2012)
and THYME (Styler et al., 2014) corpora in the
clinical domain would be a few examples of such
emerging corpora; and (ii) ongoing proposals for
refining the existing metrics to make them more
informative (Holen, 2013; Chen and Ng, 2013).

The CoNLL-2011/2012 shared tasks on corefer-
ence resolution using the OntoNotes corpus (Prad-
han et al., 2011; Pradhan et al., 2012) were an
attempt to standardize the evaluation settings by
providing a benchmark annotated corpus, scorer,
and state-of-the-art system results that would al-
low future systems to compare against them. Fol-
lowing the timely emphasis on end-to-end evalu-
ation, the official track used predicted mentions
and measured performance using five coreference
measures: MUC (Vilain et al., 1995), B® (Bagga
and Baldwin, 1998), CEAF, (Luo, 2005), CEAF,,
(Luo, 2005), and BLANC (Recasens and Hovy,
2011). The arithmetic mean of the first three was
the task’s final score.

An unfortunate setback to these evaluations had
its root in three issues: (i) the multiple variations
of two of the scoring metrics—B> and CEAF—
used by the community to handle predicted men-
tions; (ii) a buggy implementation of the Cai and
Strube (2010) proposal that tried to reconcile these
variations; and (iii) the erroneous computation of

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 30-35,
Baltimore, Maryland, USA, June 23-25 2014. (©)2014 Association for Computational Linguistics



the BLANC metric for partitions of predicted men-
tions. Different interpretations as to how to com-
pute B2 and CEAF scores for coreference systems
when predicted mentions do not perfectly align
with key mentions—which is usually the case—
led to variations of these metrics that manipulate
the gold standard and system output in order to
get a one-to-one mention mapping (Stoyanov et
al., 2009; Cai and Strube, 2010). Some of these
variations arguably produce rather unintuitive re-
sults, while others are not faithful to the original
measures.

In this paper, we address the issues in scor-
ing coreference partitions of predicted mentions.
Specifically, we justify our decision to go back
to the original scoring algorithms by arguing that
manipulation of key or predicted mentions is un-
necessary and could in fact produce unintuitive re-
sults. We demonstrate the use of our recent ex-
tension of BLANC that can seamlessly handle pre-
dicted mentions (Luo et al., 2014). We make avail-
able an open-source, thoroughly-tested reference
implementation of the main coreference evalua-
tion measures that do not involve mention manip-
ulation and is faithful to the original intentions of
the proposers of these metrics. We republish the
CoNLL-2011/2012 results based on this scorer, so
that future systems can use it for evaluation and
have the CoNLL results available for comparison.

The rest of the paper is organized as follows.
Section 2 provides an overview of the variations
of the existing measures. We present our newly
updated coreference scoring package in Section 3
together with the rescored CoNLL-2011/2012 out-
puts. Section 4 walks through a scoring example
for all the measures, and we conclude in Section 5.

2 Variations of Scoring Measures

Two commonly used coreference scoring metrics
—B3 and CEAF—are underspecified in their ap-
plication for scoring predicted, as opposed to key
mentions. The examples in the papers describing
these metrics assume perfect mentions where pre-
dicted mentions are the same set of mentions as
key mentions. The lack of accompanying refer-
ence implementation for these metrics by its pro-
posers made it harder to fill the gaps in the speci-
fication. Subsequently, different interpretations of
how one can evaluate coreference systems when
predicted mentions do not perfectly align with key
mentions led to variations of these metrics that ma-
nipulate the gold and/or predicted mentions (Stoy-
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anov et al., 2009; Cai and Strube, 2010). All these
variations attempted to generate a one-to-one map-
ping between the key and predicted mentions, as-
suming that the original measures cannot be ap-
plied to predicted mentions. Below we first pro-
vide an overview of these variations and then dis-
cuss the unnecessity of this assumption.

Coining the term twinless mentions for those
mentions that are either spurious or missing from
the predicted mention set, Stoyanov et al. (2009)
proposed two variations to B> — Bgll and B%—to
handle them. In the first variation, all predicted
twinless mentions are retained, whereas the lat-
ter discards them and penalizes recall for twin-
less predicted mentions. Rahman and Ng (2009)
proposed another variation by removing “all and
only those twinless system mentions that are sin-
gletons before applying B* and CEAF.” Follow-
ing upon this line of research, Cai and Strube
(2010) proposed a unified solution for both B3 and
CEAF,,, leaving the question of handling CEAF,
as future work because “it produces unintuitive
results.” The essence of their solution involves
manipulating twinless key and predicted mentions
by adding them either from the predicted parti-
tion to the key partition or vice versa, depend-
ing on whether one is computing precision or re-
call. The Cai and Strube (2010) variation was used
by the CoNLL-2011/2012 shared tasks on corefer-
ence resolution using the OntoNotes corpus, and
by the i2b2 2011 shared task on coreference res-
olution using an assortment of clinical notes cor-
pora (Uzuner et al., 2012)." It was later identified
by Recasens et al. (2013) that there was a bug in
the implementation of this variation in the scorer
used for the CoNLL-2011/2012 tasks. We have
not tested the correctness of this variation in the
scoring package used for the i2b2 shared task.

However, it turns out that the CEAF metric (Luo,
2005) was always intended to work seamlessly on
predicted mentions, and so has been the case with
the B2 metric.? In a latter paper, Rahman and Ng
(2011) correctly state that “CEAF can compare par-
titions with twinless mentions without any modifi-
cation.” We will look at this further in Section 4.3.

We argue that manipulations of key and re-
sponse mentions/entities, as is done in the exist-
ing B? variations, not only confound the evalu-
ation process, but are also subject to abuse and
can seriously jeopardize the fidelity of the evalu-

"Personal communication with Andreea Bodnari, and
contents of the i2b2 scorer code.
ZPersonal communication with Breck Baldwin.



ation. Given space constraints we use an exam-
ple worked out in Cai and Strube (2010). Let
the key contain an entity with mentions {a, b, c}
and the prediction contain an entity with mentions
{a,b,d}. As detailed in Cai and Strube (2010,
p. 29-30, Tables 1-3), Bg assigns a perfect pre-
cision of 1.00 which is unintuitive as the system
has wrongly predicted a mention d as belonging to
the entity. For the same prediction, lel assigns a
precision of 0.556. But, if the prediction contains
two entities {a, b, d} and {c} (i.e., the mention ¢
is added as a spurious singleton), then lel preci-
sion increases to 0.667 which is counter-intuitive
as it does not penalize the fact that c is erroneously
placed in its own entity. The version illustrated in
Section 4.2, which is devoid of any mention ma-
nipulations, gives a precision of 0.444 in the first
scenario and the precision drops to 0.333 in the
second scenario with the addition of a spurious
singleton entity {c}. This is a more intuitive be-
havior.

Contrary to both B3 and CEAF, the BLANC mea-
sure (Recasens and Hovy, 2011) was never de-
signed to handle predicted mentions. However, the
implementation used for the SemEval-2010 shared
task as well as the one for the CoNLL-2011/2012
shared tasks accepted predicted mentions as input,
producing undefined results. In Luo et al. (2014)
we have extended the BLANC metric to deal with
predicted mentions

3 Reference Implementation

Given the potential unintuitive outcomes of men-
tion manipulation and the misunderstanding that
the original measures could not handle twinless
predicted mentions (Section 2), we redesigned the
CoNLL scorer. The new implementation:

e is faithful to the original measures;

removes any prior mention manipulation,
which might depend on specific annotation
guidelines among other problems;

has been thoroughly tested to ensure that it
gives the expected results according to the
original papers, and all test cases are included
as part of the release;

is free of the reported bugs that the CoNLL
scorer (v4) suffered (Recasens et al., 2013);
includes the extension of BLANC to handle

predicted mentions (Luo et al., 2014).

This is the open source scoring package® that
we present as a reference implementation for the

3
http://code.google.com/p/reference-coreference-scorers/
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SYSTEM MD MUC B CEAF BLANC CONLL
m e AVERAGE
F1 F} ¥2 F1 ¥

CoNLL-2011; English
lee 70.7 59.6 48.9 53.0 46.1 48.8 51.5
sapena 68.4 59.5 46.5 51.3 44.0 44.5 50.0
nugues 69.0 58.6 45.0 484 40.0 46.0 479
chang 64.9 572 46.0 50.7 40.0 455 47.7
stoyanov 67.8 584 40.1 433 36.9 34.6 45.1
santos 65.5 56.7 429 45.1 35.6 413 45.0
song 67.3 60.0 414 41.0 33.1 30.9 44.8
sobha 64.8 50.5 39.5 442 394 36.3 43.1
yang 63.9 523 39.4 432 355 36.1 424
charton 64.3 52.5 38.0 42.6 345 35.7 41.6
hao 64.3 545 37.7 41.9 31.6 37.0 413
zhou 62.3 49.0 37.0 40.6 35.0 35.0 40.3
kobdani 61.0 53.5 34.8 38.1 34.1 32.6 38.7
Xinxin 61.9 46.6 349 37.7 31.7 35.0 37.7
kummerfeld 62.7 42.7 34.2 38.8 355 31.0 375
zhang 61.1 47.9 34.4 37.8 29.2 35.7 372
zhekova 48.3 24.1 23.7 23.4 20.5 15.4 22.8
irwin 26.7 20.0 11.7 18.5 14.7 6.3 15.5

CoNLL-2012; English
fernandes 71.7 70.5 57.6 61.4 53.9 58.8 60.7
martschat 752 67.0 54.6 58.8 51.5 55.0 57.7
bjorkelund 75.4 67.6 54.5 58.2 50.2 55.4 574
chang 743 66.4 53.0 57.1 48.9 53.9 56.1
chen 73.8 63.7 51.8 55.8 48.1 529 54.5
chunyang 73.7 63.8 512 55.1 47.6 52.7 542
stamborg 73.9 65.1 51.7 55.1 46.6 54.4 54.2
yuan 72.5 62.6 50.1 54.5 46.0 52.1 529
Xu 72.0 66.2 50.3 51.3 41.3 46.5 52.6
shou 73.7 62.9 494 532 46.7 50.4 53.0
uryupina 70.9 60.9 46.2 49.3 429 46.0 50.0
songyang 68.8 59.8 459 49.6 424 45.1 494
zhekova 67.1 53.5 35.7 39.7 322 34.8 40.5
Xinxin 62.8 48.3 35.7 38.0 319 36.5 38.6
i 59.9 50.8 32.3 36.3 252 31.9 36.1

CoNLL-2012; Chinese
chen 71.6 62.2 55.7 60.0 55.0 54.1 57.6
yuan 68.2 60.3 52.4 55.8 50.2 43.2 54.3
bjorkelund 66.4 58.6 51.1 542 47.6 44.2 525
Xu 65.2 58.1 49.5 51.9 46.6 38.5 514
fernandes 66.1 60.3 49.6 54.4 44.5 49.6 515
stamborg 64.0 57.8 474 51.6 419 459 49.0
uryupina 59.0 53.0 41.7 46.9 37.6 41.9 44.1
martschat 58.6 524 40.8 46.0 382 379 43.8
chunyang 61.6 49.8 39.6 44.2 373 36.8 422
xinxin 559 48.1 38.8 429 345 379 40.5
i 51.5 44.7 315 36.7 253 304 33.8
chang 47.6 379 28.8 36.1 29.6 25.7 32.1
zhekova 473 40.6 28.1 314 212 229 30.0

CoNLL-2012; Arabic
fernandes 64.8 46.5 42.5 49.2 46.5 38.0 45.2
bjorkelund 60.6 47.8 41.6 46.7 41.2 379 435
uryupina 554 41.5 36.1 414 35.0 33.0 375
stamborg 59.5 412 35.9 40.0 329 345 36.7
chen 59.8 39.0 32.1 34.7 26.0 30.8 324
zhekova 41.0 29.9 22.7 31.1 259 18.5 26.2
li 29.7 18.1 13.1 21.0 17.3 8.4 16.2

Table 1: Performance on the official, closed track
in percentages using all predicted information for
the CoNLL-2011 and 2012 shared tasks.

community to use. It is written in perl and stems
from the scorer that was initially used for the
SemEval-2010 shared task (Recasens et al., 2010)
and later modified for the CoNLL-2011/2012
shared tasks.*

Partitioning detected mentions into entities (or
equivalence classes) typically comprises two dis-
tinct tasks: (i) mention detection; and (ii) coref-
erence resolution. A typical two-step coreference
algorithm uses mentions generated by the best

“We would like to thank Emili Sapena for writing the first
version of the scoring package.
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Figure 1: Example key and response entities along
with the partitions for computing the MUC score.

possible mention detection algorithm as input to
the coreference algorithm. Therefore, ideally one
would want to score the two steps independently
of each other. A peculiarity of the OntoNotes
corpus is that singleton referential mentions are
not annotated, thereby preventing the computation
of a mention detection score independently of the
coreference resolution score. In corpora where all
referential mentions (including singletons) are an-
notated, the mention detection score generated by
this implementation is independent of the corefer-
ence resolution score.

We used this reference implementation to
rescore the CoNLL-2011/2012 system outputs for
the official task to enable future comparisons with
these benchmarks. The new CoNLL-2011/2012
results are in Table 1. We found that the over-
all system ranking remained largely unchanged for
both shared tasks, except for some of the lower
ranking systems that changed one or two places.
However, there was a considerable drop in the
magnitude of all B? scores owing to the combi-
nation of two things: (i) mention manipulation, as
proposed by Cai and Strube (2010), adds single-
tons to account for twinless mentions; and (ii) the
B> metric allows an entity to be used more than
once as pointed out by Luo (2005). This resulted
in a drop in the CONLL averages (B> is one of the
three measures that make the average).

4 An Illustrative Example

This section walks through the process of com-
puting each of the commonly used metrics for
an example where the set of predicted mentions
has some missing key mentions and some spu-
rious mentions. While the mathematical formu-
lae for these metrics can be found in the original
papers (Vilain et al., 1995; Bagga and Baldwin,
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1998; Luo, 2005), many misunderstandings dis-
cussed in Section 2 are due to the fact that these
papers lack an example showing how a metric is
computed on predicted mentions. A concrete ex-
ample goes a long way to prevent similar misun-
derstandings in the future. The example is adapted
from Vilain et al. (1995) with some slight modifi-
cations so that the total number of mentions in the
key is different from the number of mentions in
the prediction. The key (K) contains two entities
with mentions {a, b, ¢} and {d, e, f, g} and the re-
sponse (R) contains three entities with mentions
{a,b}; {c,d} and {f, g, h,i}:

—— —
K ={a,b,c}{d,e, f,g}
Ri  Ro R

/—’\\r—/é—\
R = {a,b} {c,d} {f,g, h,i}.

Ko

1
)

Mention e is missing from the response, and men-

tions h and ¢ are spurious in the response. The fol-
lowing sections use R to denote recall and P for
precision.

4.1 wMUC

The main step in the MUC scoring is creating the
partitions with respect to the key and response re-
spectively, as shown in Figure 1. Once we have
the partitions, then we compute the MUC score by:

SR (K| — [p(Kq)))
SNk (K| - 1)
_3-2)+(4-3)

(3 — 1) + (4 — 1)
_ (R — [P (R
SN (R~ 1)
@D+ E-+E-3)
2-D+2-1)+@4-1)

R =

= 0.40

0.40,

where K; is the it" key entity and p(K;) is the
set of partitions created by intersecting K; with
response entities (cf. the middle sub-figure in Fig-
ure 1); R; is the i response entity and p/(R;) is
the set of partitions created by intersecting R; with
key entities (cf. the right-most sub-figure in Fig-
ure 1); and Ny and N, are the number of key and
response entities, respectively.

The MUC F} score in this case is 0.40.

42 B3

For computing B? recall, each key mention is as-
signed a credit equal to the ratio of the number of
correct mentions in the predicted entity contain-
ing the key mention to the size of the key entity to
which the mention belongs, and the recall is just



the sum of credits over all key mentions normal-
ized over the number of key mentions. B? preci-
sion is computed similarly, except switching the
role of key and response. Applied to the example:

|K;NR;|?

N N
_ ZL="1 ZJ=T1 [K;|
- N

R

4
— = 0.50

1

Note that terms with O value are omitted. The B3
F7 score is 0.46.

4.3 CEAF

The first step in the CEAF computation is getting
the best scoring alignment between the key and
response entities. In this case the alignment is
straightforward. Entity R; aligns with K; and R3
aligns with K. Ry remains unaligned.

CEAF,,
CEAF,, recall is the number of aligned mentions
divided by the number of key mentions, and preci-
sion is the number of aligned mentions divided by
the number of response mentions:

7‘K10R1|+‘K20R3|7(2+2)~O57
[K1] + |K2| (3+4) ‘
KiNR Ko N R 242
P:‘ 1 i+ [K2 sl __(2+2) — 0.50
|R1| 4+ |Rz| + |Rs| (2+2+4)

The CEAF,,, Fj score is 0.53.

CEAF,

We use the same notation as in Luo (2005):
¢4(K;, R;) to denote the similarity between a key
entity K; and a response entity R;. ¢4(K;, R;) is
defined as:

2 x |K; N Ry

¢a(Ki, Rj) = .
’ | K| + | R

CEAF, recall and precision, when applied to this
example, are:

(2x2) (2x2)
Ki,R K, R: R e
po PalEL R +0a(K2 Bs)  GFo T @D _ g
N 2
(2x2) (2x2)
Ki,R Ko, R +
p o $alE1 1); ba(K2, Rs) _ 312 ; D .43

The CEAF, F} score is 0.52.

4.4 BLANC

The BLANC metric illustrated here is the one in
our implementation which extends the original
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BLANC (Recasens and Hovy, 2011) to predicted
mentions (Luo et al., 2014).

Let C}, and C, be the set of coreference links
in the key and response respectively, and N and
N, be the set of non-coreference links in the key
and response respectively. A link between a men-
tion pair m and n is denoted by mn; then for the
example in Figure 1, we have

C = {ab, ac, be, de, df,dg,ef,eg, fg}

Ny, = {ad, ae,af,ag,bd, be,bf, by, cd, ce,cf,cg}

C, = {ab,cd, fg, fh, fi, gh, gi, hi}

N,. = {ac,ad,af,ag,ah,ai, bc,bd, bf, bg, bh, bi,
cf,cg, ch,ct,df,dg,dh,di}.

Recall and precision for coreference links are:

CknCy 2
Rc=7| k | _2 Lo22
ICkl 9
P =G0 205
‘ Icl 8

and the coreference F-measure, F,. ~ 0.23. Sim-
ilarly, recall and precision for non-coreference
links are:

[Nk N N, | 8
Rp=—F " =~ ~0.67

[Nil 12

Ni N N, 8
Pnzyzfzo.m,

N 20

and the non-coreference F-measure, F;,, = 0.50.
So the BLANC score is £<42 ~ 0.36.

5 Conclusion

We have cleared several misunderstandings about
coreference evaluation metrics, especially when a
response contains imperfect predicted mentions,
and have argued against mention manipulations
during coreference evaluation. These misunder-
standings are caused partially by the lack of il-
lustrative examples to show how a metric is com-
puted on predicted mentions not aligned perfectly
with key mentions. Therefore, we provide detailed
steps for computing all four metrics on a represen-
tative example. Furthermore, we have a reference
implementation of these metrics that has been rig-
orously tested and has been made available to the
public as open source software. We reported new
scores on the CoNLL 2011 and 2012 data sets,
which can serve as the benchmarks for future re-
search work.
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Abstract

The effort required for a human annota-
tor to detect sentiment is not uniform for
all texts, irrespective of his/her expertise.
We aim to predict a score that quantifies
this effort, using linguistic properties of
the text. Our proposed metric is called
Sentiment Annotation Complexity (SAC).
As for training data, since any direct judg-
ment of complexity by a human annota-
tor is fraught with subjectivity, we rely on
cognitive evidence from eye-tracking. The
sentences in our dataset are labeled with
SAC scores derived from eye-fixation du-
ration. Using linguistic features and anno-
tated SACs, we train a regressor that pre-
dicts the SAC with a best mean error rate of
22.02% for five-fold cross-validation. We
also study the correlation between a hu-
man annotator’s perception of complexity
and a machine’s confidence in polarity de-
termination. The merit of our work lies in
(a) deciding the sentiment annotation cost
in, for example, a crowdsourcing setting,
(b) choosing the right classifier for senti-
ment prediction.

1 Introduction

The effort required by a human annotator to de-
tect sentiment is not uniform for all texts. Com-
pare the hypothetical tweet “Just what I wanted: a
good pizza.” with “Just what I wanted: a cold
pizza.”. The two are lexically and structurally
similar. However, because of the sarcasm in the
second tweet (in “cold” pizza, an undesirable sit-
uation followed by a positive sentiment phrase
“just what I wanted”, as discussed in Riloff et al.
(2013)), it is more complex than the first for senti-
ment annotation. Thus, independent of how good

* Aditya is funded by the TCS Research Fellowship Pro-
gram.
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the annotator is, there are sentences which will be
perceived to be more complex than others. With
regard to this, we introduce a metric called senti-
ment annotation complexity (SAC). The SAC of a
given piece of text (sentences, in our case) can be
predicted using the linguistic properties of the text
as features.

The primary question is whether such complex-
ity measurement is necessary at all. Fort et al
(2012) describe the necessity of annotation com-
plexity measurement in manual annotation tasks.
Measuring annotation complexity is beneficial in
annotation crowdsourcing. If the complexity of
the text can be estimated even before the annota-
tion begins, the pricing model can be fine-tuned
(pay less for sentences that are easy to annotate,
for example). Also, in terms of an automatic SA
engine which has multiple classifiers in its ensem-
ble, a classifier may be chosen based on the com-
plexity of sentiment annotation (for example, use
a rule-based classifier for simple sentences and a
more complex classifier for other sentences). Our
metric adds value to sentiment annotation and sen-
timent analysis, in these two ways. The fact that
sentiment expression may be complex is evident
from a study of comparative sentences by Gana-
pathibhotla and Liu (2008), sarcasm by Riloff et
al. (2013), thwarting by Ramteke et al. (2013) or
implicit sentiment by Balahur et al. (2011). To
the best of our knowledge, there is no general ap-
proach to “measure” how complex a piece of text
is, in terms of sentiment annotation.

The central challenge here is to annotate a data
set with SAC. To measure the “actual” time spent
by an annotator on a piece of text, we use an eye-
tracker to record eye-fixation duration: the time
for which the annotator has actually focused on
the sentence during annotation. Eye-tracking an-
notations have been used to study the cognitive as-
pects of language processing tasks like translation
by Dragsted (2010) and sense disambiguation by

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 36—41,
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Joshi et al. (2011). Mishra et al. (2013) present a
technique to determine translation difficulty index.
The work closest to ours is by Scott et al. (2011)
who use eye-tracking to study the role of emotion
words in reading.

The novelty of our work is three-fold: (a) The
proposition of a metric to measure complexity of
sentiment annotation, (b) The adaptation of past
work that uses eye-tracking for NLP in the con-
text of sentiment annotation, (c) The learning of
regressors that automatically predict SAC using
linguistic features.

2 Understanding Sentiment Annotation
Complexity

The process of sentiment annotation consists of
two sub-processes: comprehension (where the an-
notator understands the content) and sentiment
judgment (where the annotator identifies the sen-
timent). The complexity in sentiment annotation
stems from an interplay of the two and we expect
SAC to capture the combined complexity of both
the sub-processes. In this section, we describe
how complexity may be introduced in sentiment
annotation in different classical layers of NLP.

The simplest form of sentiment annotation com-
plexity is at the lexical level. Consider the sen-
tence “It is messy, uncouth, incomprehensible, vi-
cious and absurd”’. The sentiment words used
in this sentence are uncommon, resulting in com-
plexity.

The next level of sentiment annotation com-
plexity arises due to syntactic complexity. Con-
sider the review: “A somewhat crudely con-
structed but gripping, questing look at a person so
racked with self-loathing, he becomes an enemy to
his own race.”. An annotator will face difficulty
in comprehension as well as sentiment judgment
due to the complicated phrasal structure in this re-
view. Implicit expression of sentiment introduces
complexity at the semantic and pragmatic level.
Sarcasm expressed in “It’s like an all-star salute to
disney’s cheesy commercialism” leads to difficulty
in sentiment annotation because of positive words
like “an all-star salute”.

Manual annotation of complexity scores may
not be intuitive and reliable. Hence, we use a cog-
nitive technique to create our annotated dataset.
The underlying idea is: if we monitor annotation
of two textual units of equal length, the more com-
plex unit will take longer to annotate, and hence,
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should have a higher SAC. Using the idea of “an-
notation time” linked with complexity, we devise a
technique to create a dataset annotated with SAC.

It may be thought that inter-annotator agree-
ment (IAA) provides implicit annotation: the
higher the agreement, the easier the piece of text
is for sentiment annotation. However, in case of
multiple expert annotators, this agreement is ex-
pected to be high for most sentences, due to the
expertise. For example, all five annotators agree
with the label for 60% sentences in our data set.
However, the duration for these sentences has a
mean of 0.38 seconds and a standard deviation of
0.27 seconds. This indicates that although IAA is
easy to compute, it does not determine sentiment
annotation complexity of text in itself.

3 Creation of dataset annotated with
SAC

We wish to predict sentiment annotation complex-
ity of the text using a supervised technique. As
stated above, the time-to-annotate is one good can-
didate. However, “simple time measurement” is
not reliable because the annotator may spend time
not doing any annotation due to fatigue or distrac-
tion. To accurately record the time, we use an
eye-tracking device that measures the “duration of
eye-fixations'”. Another attribute recorded by the
eye-tracker that may have been used is “saccade
duration®”. However, saccade duration is not sig-
nificant for annotation of short text, as in our case.
Hence, the SAC labels of our dataset are fixation
durations with appropriate normalization.

It may be noted that the eye-tracking device is
used only to annotate training data. The actual
prediction of SAC is done using linguistic features
alone.

3.1 Eye-tracking Experimental Setup

We use a sentiment-annotated data set consisting
of movie reviews by (Pang and Lee, 2005) and
tweets from http://help.sentiment140.
com/for-students. A total of 1059 sen-
tences (566 from a movie corpus, 493 from a twit-
ter corpus) are selected.

We then obtain two kinds of annotation from
five paid annotators: (a) sentiment (positive, nega-
tive and objective), (b) eye-movement as recorded

' A long stay of the visual gaze on a single location.
%A rapid movement of the eyes between positions of rest
on the sentence.
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Figure 1: Gaze-data recording using Translog-II

by an eye-tracker. They are given a set of instruc-
tions beforehand and can seek clarifications. This
experiment is conducted as follows:

1. A sentence is displayed to the annotator on
the screen. The annotator verbally states the
sentiment of this sentence, before (s)he can
proceed to the next.

. While the annotator reads the sentence, a
remote eye-tracker (Model: Tobii TX 300,
Sampling rate: 300Hz) records the eye-
movement data of the annotator. The eye-
tracker is linked to a Translog II soft-
ware (Carl, 2012) in order to record the data.
A snapshot of the software is shown in fig-
ure 1. The dots and circles represent position
of eyes and fixations of the annotator respec-
tively.

. The experiment then continues in modules of
50 sentences at a time. This is to prevent fa-
tigue over a period of time. Thus, each an-
notator participates in this experiment over a
number of sittings.

We ensure the quality of our dataset in different
ways: (a) Our annotators are instructed to avoid
unnecessary head movements and eye-movements
outside the experiment environment. (b) To min-
imize noise due to head movements further, they
are also asked to state the annotation verbally,
which was then manually recorded, (c) Our an-
notators are students between the ages 20-24 with
English as the primary language of academic in-
struction and have secured a TOEFL iBT score of
110 or above.

We understand that sentiment is nuanced- to-
wards a target, through constructs like sarcasm and
presence of multiple entities. However, we want to
capture the most natural form of sentiment anno-
tation. So, the guidelines are kept to a bare mini-
mum of “annotating a sentence as positive, nega-
tive and objective as per the speaker”. This exper-
iment results in a data set of 1059 sentences with

38

a fixation duration recorded for each sentence-
annotator pair® The multi-rater kappa IAA for sen-
timent annotation is 0.686.

3.2 Calculating SAC from eye-tracked data

We now need to annotate each sentence with a
SAC. We extract fixation durations of the five an-
notators for each of the annotated sentences. A
single SAC score for sentence s for N annotators
is computed as follows:

z(n,dur(s,n))
len (s)

SAC(s) = L Z
n:l
where,

z(n,dur(s,n)) =

)

dur(s,n)—p(dur(n))
o(dur(n))

In the above formula, IV is the total number of an-
notators while n corresponds to a specific annota-
tor. dur(s,n) is the fixation duration of annotator
n on sentence s. len(s) is the number of words
in sentence s. This normalization over number
of words assumes that long sentences may have
high dur(s,n) but do not necessarily have high
SACs. u(dur(n)), o(dur(n)) is the mean and
standard deviation of fixation durations for anno-
tator n across all sentences. z(n,.) is a function
that z-normalizes the value for annotator n to stan-
dardize the deviation due to reading speeds. We
convert the SAC values to a scale of 1-10 using
min-max normalization. To understand how the
formula records sentiment annotation complexity,
consider the SACs of examples in section 2. The
sentence “it is messy , uncouth , incomprehensi-
ble , vicious and absurd” has a SAC of 3.3. On the
other hand, the SAC for the sarcastic sentence “it’s
like an all-star salute to disney’s cheesy commer-
cialism.” is 8.3.

4 Predictive Framework for SAC

The previous section shows how gold labels for
SAC can be obtained using eye-tracking experi-
ments. This section describes our predictive for
SAC that uses four categories of linguistic fea-
tures: lexical, syntactic, semantic and sentiment-
related in order to capture the subprocesses of an-
notation as described in section 2.

4.1 Experiment Setup

The linguistic features described in Table 3.2 are
extracted from the input sentences. Some of these

3The complete eye-tracking data is available at:http: //
www.cfilt.iitb.ac.in/~cognitive-nlp/.



Feature

Description

Lexical

- Word Count
- Degree of polysemy
- Mean Word Length

- % ge of nouns and adjs.
- %%ge of Out-of-
vocabulary words

Average number of Wordnet senses per word
Average number of characters per word (commonly used in readability studies
as in the case of Pascual et al. (2005))

Syntactic

- Dependency Distance
- Non-terminal to Ter-
minal ratio

Average distance of all pairs of dependent words in the sentence (Lin, 1996)
Ratio of the number of non-terminals to the number of terminals in the con-
stituency parse of a sentence

Semantic

- Discourse connectors
- Co-reference distance
- Perplexity

Number of discourse connectors
Sum of token distance between co-referring entities of anaphora in a sentence
Trigram perplexity using language models trained on a mixture of sentences
from the Brown corpus, the Amazon Movie corpus and Stanford twitter corpus
(mentioned in Sections 3 and 5)

Sentiment-related (Computed using SentiWordNet (Esuli et al., 2006))

- Subjective = Word
Count
- Subjective Score

- Sentiment Flip Count

Sum of SentiWordNet scores of all words
A positive word followed in sequence by a negative word, or vice versa counts
as one sentiment flip

Table 1: Linguistic Features for the Predictive Framework

features are extracted using Stanford Core NLP *

dicted SAC.

tools and NLTK (Bird et al., 2009). Words that

do not appear in Academic Word List > and Gen-
eral Service List ¢ are treated as out-of-vocabulary
words. The training data consists of 1059 tuples,
with 13 features and gold labels from eye-tracking

experiments.

To predict SAC, we use Support Vector Regres-
sion (SVR) (Joachims, 2006). Since we do not
have any information about the nature of the rela-
tionship between the features and SAC, choosing
SVR allows us to try multiple kernels. We carry
out a 5-fold cross validation for both in-domain
and cross-domain settings, to validate that the re-
gressor does not overfit. The model thus learned is
evaluated using: (a) Error metrics namely, Mean
Squared Error estimate, Mean Absolute Error esti-
mate and Mean Percentage Error. (b) the Pearson
correlation coefficient between the gold and pre-

*nttp://nlp.stanford.edu/software/

corenlp.shtml
5

www.jbauman.com/gsL.html

www.victoria.ac.nz/lals/resources/academicwordlist/

4.2 Results

The results are tabulated in Table 2. Our obser-
vation is that a quadratic kernel performs slightly
better than linear. The correlation values are pos-
itive and indicate that even if the predicted scores
are not as accurate as desired, the system is capa-
ble of ranking sentences in the correct order based
on their sentiment complexity. The mean percent-
age error (MPE) of the regressors ranges between
22-38.21%. The cross-domain MPE is higher than
the rest, as expected.

To understand how each of the features per-
forms, we conducted ablation tests by con-
sidering one feature at a time. Based on
the MPE values, the best features are: Mean
word length (MPE=27.54%), Degree of Polysemy
(MPE=36.83%) and %ge of nouns and adjectives
(MPE=38.55%). To our surprise, word count per-
forms the worst (MPE=85.44%). This is unlike
tasks like translation where length has been shown
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Kernel Linear Quadratic Cross Domain Linear
Domain Mixed Movie Twitter Mixed Movie Twitter Movie Twitter
MSE 1.79 1.55 1.99 1.68 1.53 1.88 3.17 2.24
MAE 0.93 0.89 0.95 0.91 0.88 0.93 1.39 1.19
MPE 2249% 23.8% 2545% 22.02% 23.8% 25% 35.01% 38.21%
Correlation 0.54 0.38 0.56 0.57 0.37 0.6 0.38 0.46

Table 2: Performance of Predictive Framework for 5-fold in-domain and cross-domain validation using
Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Percentage Error (MPE) estimates

and correlation with the gold labels.

to be one of the best predictors in translation dif-
ficulty (Mishra et al., 2013). We believe that for
sentiment annotation, longer sentences may have
more lexical clues that help detect the sentiment
more easily. Note that some errors may be intro-
duced in feature extraction due to limitations of
the NLP tools.

5 Discussion

Our proposed metric measures complexity of sen-
timent annotation, as perceived by human annota-
tors. It would be worthwhile to study the human-
machine correlation to see if what is difficult for
a machine is also difficult for a human. In other
words, the goal is to show that the confidence
scores of a sentiment classifier are negatively cor-
related with SAC.

We use three sentiment classification tech-
niques: Naive Bayes, MaxEnt and SVM with un-
igrams, bigrams and trigrams as features. The
training datasets used are: a) 10000 movie reviews
from Amazon Corpus (McAuley et. al, 2013) and
b) 20000 tweets from the twitter corpus (same as
mentioned in section 3). Using NLTK and Scikit-
learn’ with default settings, we generate six posi-
tive/negative classifiers, for all possible combina-
tions of the three models and two datasets.

The confidence score of a classifier® for given
text t is computed as follows:

P : Probability of predicted class

P if predicted
polarity is correct
1— P otherwise

(2)

Confidence(t) =

"http://scikit-learn.org/stable/
81n case of SVM, the probability of predicted class is com-
puted as given in Platt (1999).
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Classifier (Corpus) Correlation
Naive Bayes (Movie) -0.06 (73.35)
Naive Bayes (Twitter) -0.13 (71.18)

MaxEnt (Movie) -0.29 (72.17)
MaxEnt (Twitter) -0.26 (71.68)
SVM (Movie) -0.24 (66.27)
SVM (Twitter) -0.19 (73.15)

Table 3: Correlation between confidence of the
classifiers with SAC; Numbers in parentheses in-
dicate classifier accuracy (%)

Table 3 presents the accuracy of the classifiers
along with the correlations between the confidence
score and observed SAC values. MaxEnt has the
highest negative correlation of -0.29 and -0.26.
For both domains, we observe a weak yet nega-
tive correlation which suggests that the perception
of difficulty by the classifiers are in line with that
of humans, as captured through SAC.

6 Conclusion & Future Work

We presented a metric called Sentiment Annota-
tion Complexity (SAC), a metric in SA research
that has been unexplored until now. First, the pro-
cess of data preparation through eye tracking, la-
beled with the SAC score was elaborated. Using
this data set and a set of linguistic features, we
trained a regression model to predict SAC. Our
predictive framework for SAC resulted in a mean
percentage error of 22.02%, and a moderate corre-
lation of 0.57 between the predicted and observed
SAC values. Finally, we observe a negative corre-
lation between the classifier confidence scores and
a SAC, as expected. As a future work, we would
like to investigate how SAC of a test sentence can
be used to choose a classifier from an ensemble,
and to determine the pre-processing steps (entity-
relationship extraction, for example).
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Abstract

Recent work classifying citations in scien-
tific literature has shown that it is possi-
ble to improve classification results with
extensive feature engineering. While this
result confirms that citation classification
is feasible, there are two drawbacks to
this approach: (i) it requires a large anno-
tated corpus for supervised classification,
which in the case of scientific literature
is quite expensive; and (ii) feature engi-
neering that is too specific to one area of
scientific literature may not be portable to
other domains, even within scientific liter-
ature. In this paper we address these two
drawbacks. First, we frame citation clas-
sification as a domain adaptation task and
leverage the abundant labeled data avail-
able in other domains. Then, to avoid
over-engineering specific citation features
for a particular scientific domain, we ex-
plore a deep learning neural network ap-
proach that has shown to generalize well
across domains using unigram and bigram
features. We achieve better citation clas-
sification results with this cross-domain
approach than using in-domain classifica-
tion.

1 Introduction

Citations have been categorized and studied for
a half-century (Garfield, 1955) to better under-
stand when and how citations are used, and
to record and measure how information is ex-
changed (e.g., networks of co-cited papers or au-
thors (Small and Griffith, 1974)). Recently, the
value of this information has been shown in practi-
cal applications such as information retrieval (IR)

* This work was primarily conducted at the IMS — Uni-
versity of Stuttgart.
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(Ritchie et al., 2008), summarization (Qazvinian
and Radev, 2008), and even identifying scientific
breakthroughs (Small and Klavans, 2011). We ex-
pect that by identifying and labeling the function
of citations we can improve the effectiveness of
these applications.

There has been no consensus on what aspects
or functions of a citation should be annotated and
how. Early citation classification focused more on
citation motivation (Garfield, 1964), while later
classification considered more the citation func-
tion (Chubin and Moitra, 1975). Recent stud-
ies using automatic classification have continued
this tradition of introducing a new classification
scheme with each new investigation into the use
of citations (Nanba and Okumura, 1999; Teufel
et al., 2006a; Dong and Schéfer, 2011; Abu-Jbara
et al., 2013). One distinction that has been more
consistently annotated across recent citation clas-
sification studies is between positive and negative
citations (Athar, 2011; Athar and Teufel, 2012;
Abu-Jbara et al., 2013)." The popularity of this
distinction likely owes to the prominence of sen-
timent analysis in NLP (Liu, 2010). We follow
much of the recent work on citation classification
and concentrate on citation polarity.

2 Domain Adaptation

By concentrating on citation polarity we are able
to compare our classification to previous citation
polarity work. This choice also allows us to access
the wealth of existing data containing polarity an-
notation and then frame the task as a domain adap-
tation problem. Of course the risk in approaching
the problem as domain adaptation is that the do-
mains are so different that the representation of
a positive instance of a movie or product review,
for example, will not coincide with that of a posi-

"Dong and Schifer (2011) also annotate polarity, which
can be found in their dataset (described later), but this is not
discussed in their paper.
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tive scientific citation. On the other hand, because
there is a limited amount of annotated citation data
available, by leveraging large amounts of anno-
tated polarity data we could potentially even im-
prove citation classification.

We treat citation polarity classification as a sen-
timent analysis domain adaptation task and there-
fore must be careful not to define features that are
too domain specific. Previous work in citation po-
larity classification focuses on finding new cita-
tion features to improve classification, borrowing
a few from text classification in general (e.g., n-
grams), and perhaps others from sentiment analy-
sis problems (e.g., the polarity lexicon from Wil-
son et al. (2005)). We would like to do as little
feature engineering as possible to ensure that the
features we use are meaningful across domains.
However, we do still want features that somehow
capture the inherent positivity or negativity of our
labeled instances, i.e., citations or Amazon prod-
uct reviews. Currently a popular approach for ac-
complishing this is to use deep learning neural net-
works (Bengio, 2009), which have been shown
to perform well on a variety of NLP tasks us-
ing only bag-of-word features (Collobert et al.,
2011). More specifically related to our work, deep
learning neural networks have been successfully
employed for sentiment analysis (Socher et al.,
2011) and for sentiment domain adaptation (Glo-
rot et al., 2011). In this paper we examine one
of these approaches, marginalized stacked denois-
ing autoencoders (mSDA) from Chen et al. (2012),
which has been successful in classifying the po-
larity of Amazon product reviews across product
domains. Since mSDA achieved state-of-the-art
performance in Amazon product domain adapta-
tion, we are hopeful it will also be effective when
switching to a more distant domain like scientific
citations.

3 Experimental Setup

3.1 Corpora

We are interested in domain adaptation for citation
classification and therefore need a target dataset of
citations and a non-citation source dataset. There
are two corpora available that contain citation
function annotation, the DFKI Citation Corpus
(Dong and Schifer, 2011) and the IMS Citation
Corpus (Jochim and Schiitze, 2012). Both corpora
have only about 2000 instances; unfortunately,
there are no larger corpora available with citation
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annotation and this task would benefit from more
annotated data. Due to the infrequent use of neg-
ative citations, a substantial annotation effort (an-
notating over 5 times more data) would be nec-
essary to reach 1000 negative citation instances,
which is the number of negative instances in a sin-
gle domain in the multi-domain corpus described
below.

The DFKI Citation Corpus? has been used for
classifying citation function (Dong and Schiéfer,
2011), but the dataset also includes polarity an-
notation. The dataset has 1768 citation sentences
with polarity annotation: 190 are labeled as pos-
itive, 57 as negative, and the vast majority, 1521,
are left neutral. The second citation corpus, the
IMS Citation Corpus® contains 2008 annotated ci-
tations: 1836 are labeled positive and 172 are la-
beled negative. Jochim and Schiitze (2012) use
annotation labels from Moravcsik and Murugesan
(1975) where positive instances are labeled confir-
mative, negative instances are labeled negational,
and there is no neutral class. Because each of
the citation corpora is of modest size we combine
them to form one citation dataset, which we will
refer to as CITD. The two citation corpora com-
prising CITD both come from the ACL Anthol-
ogy (Bird et al., 2008): the IMS corpus uses the
ACL proceedings from 2004 and the DFKI corpus
uses parts of the proceedings from 2007 and 2008.
Since mSDA also makes use of large amounts of
unlabeled data, we extend our CITD corpus with
citations from the proceedings of the remaining
years of the ACL, 1979-2003, 2005-2006, and
2009.

There are a number of non-citation corpora
available that contain polarity annotation. For
these experiments we use the Multi-Domain Senti-
ment Dataset* (henceforth MDSD), introduced by
Blitzer et al. (2007). We use the version of the
MDSD that includes positive and negative labels
for product reviews taken from Amazon.com in
the following domains: books, dvd, electronics,
and kitchen. For each domain there are 1000 pos-
itive reviews and 1000 negative reviews that com-
prise the “labeled” data, and then roughly 4000
more reviews in the “unlabeled” data. Reviews

https://aclbib.opendfki.de/repos/
trunk/citation_classification_dataset/

*http://www.ims.uni-stuttgart.de/
~jochimcs/citation-classification/

*http://www.cs.jhu.edu/-mdredze/

datasets/sentiment/
51t is usually treated as unlabeled data even though it ac-



Corpus Instances  Pos. Neg. Neut.
DFKI 1768 190 57 1521
IMS 2008 1836 172 -
MDSD 27,677 13,882 13,795 -

Table 1: Polarity corpora.

were preprocessed so that for each review you find
a list of unigrams and bigrams with their frequency
within the review. Unigrams from a stop list of 55
stop words are removed, but stop words in bigrams
remain.

Table 1 shows the distribution of polarity labels
in the corpora we use for our experiments. We
combine the DFKI and IMS corpora into the CITD
corpus. We omit the citations labeled neutral from
the DFKI corpus because the IMS corpus does not
contain neutral annotation nor does the MDSD. It
is the case in many sentiment analysis corpora that
only positive and negative instances are included,
e.g., (Pang et al., 2002).

The citation corpora presented above are both
unbalanced and both have a highly skewed distri-
bution. The MDSD on the other hand is evenly
balanced and an effort was even made to keep
the data treated as “unlabeled” rather balanced.
For this reason, in line with previous work us-
ing MDSD, we balance the labeled portion of the
CITD corpus. This is done by taking 179 unique
negative sentences in the DFKI and IMS corpora
and randomly selecting an equal number of posi-
tive sentences. The IMS corpus can have multiple
labeled citations per sentence: there are 122 sen-
tences containing the 172 negative citations from
Table 1. The final CITD corpus comprises this
balanced corpus of 358 labeled citation sentences
plus another 22,093 unlabeled citation sentences.

3.2 Features

In our experiments, we restrict our features to un-
igrams and bigrams from the product review or
citation context (i.e., the sentence containing the
citation). This follows previous studies in do-
main adaptation (Blitzer et al., 2007; Glorot et al.,
2011). Chen et al. (2012) achieve state-of-the-art
results on MDSD by testing the 5000 and 30,000
most frequent unigram and bigram features.
Previous work in citation classification has
largely focused on identifying new features for

tually contains positive and negative labels, which have been
used, e.g., in (Chen et al., 2012).
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improving classification accuracy. A significant
amount of effort goes into engineering new fea-
tures, in particular for identifying cue phrases,
e.g., (Teufel et al., 2006b; Dong and Schifer,
2011). However, there seems to be little consen-
sus on which features help most for this task. For
example, Abu-Jbara et al. (2013) and Jochim and
Schiitze (2012) find the list of polar words from
Wilson et al. (2005) to be useful, and neither study
lists dependency relations as significant features.
Athar (2011) on the other hand reported significant
improvement using dependency relation features
and found that the same list of polar words slightly
hurt classification accuracy. The classifiers and
implementation of features varies between these
studies, but the problem remains that there seems
to be no clear set of features for citation polarity
classification.

The lack of consensus on the most useful cita-
tion polarity features coupled with the recent suc-
cess of deep learning neural networks (Collobert et
al., 2011) further motivate our choice to limit our
features to the n-grams available in the product re-
view or citation context and not rely on external
resources or tools for additional features.

3.3 Classification with mSDA

For classification we use marginalized stacked de-
noising autoencoders (mSDA) from Chen et al.
(2012)° plus a linear SVM. mSDA takes the con-
cept of denoising — introducing noise to make the
autoencoder more robust — from Vincent et al.
(2008), but does the optimization in closed form,
thereby avoiding iterating over the input vector to
stochastically introduce noise. The result of this
is faster run times and currently state-of-the-art
performance on MDSD, which makes it a good
choice for our domain adaptation task. The mSDA
implementation comes with LIBSVM, which we
replace with LIBLINEAR (Fan et al., 2008) for
faster run times with no decrease in accuracy. LIB-
LINEAR, with default settings, also serves as our
baseline.

3.4 Outline of Experiments

Our initial experiments simply extend those of
Chen et al. (2012) (and others who have used
MDSD) by adding another domain, citations. We
train on each of the domains from the MDSD -

®We use their MATLAB implementation available at

http://www.cse.wustl.edu/~mchen/code/
mSDA.tar.
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Figure 1: Cross domain macro-F} results train-
ing on Multi-Domain Sentiment Dataset and test-
ing on citation dataset (CITD). The horizontal line
indicates macro-F7 for in-domain citation classifi-
cation.

books, dvd, electronics, and kitchen — and test on
the citation data. We split the labeled data 80/20
following Blitzer et al. (2007) (cf. Chen et al.
(2012) train on all “labeled” data and test on the
“unlabeled” data). These experiments should help
answer two questions: does a larger amount of
training data, even if out of domain, improve ci-
tation classification; and how well do the differ-
ent product domains generalize to citations (i.e.,
which domains are most similar to citations)?

In contrast to previous work using MDSD, a lot
of the work in domain adaptation also leverages a
small amount of labeled target data. In our second
set of experiments, we follow the domain adap-
tation approaches described in (Daumé I1I, 2007)
and train on product review and citation data be-
fore testing on citations.

4 Results and Discussion

4.1 Citation mSDA

Our initial results show that using mSDA for do-
main adaptation to citations actually outperforms
in-domain classification. In Figure 1 we com-
pare citation classification with mSDA to the SVM
baseline. Each pair of vertical bars represents
training on a domain from MDSD (e.g., books)
and testing on CITD. The dark gray bar indicates
the F) scores for the SVM baseline using the
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30,000 features and the lighter gray bar shows the
mSDA results. The black horizontal line indicates
the F score for in-domain citation classification,
which sometimes represents the goal for domain
adaptation. We can see that using a larger dataset,
even if out of domain, does improve citation clas-
sification. For books, dvd, and electronics, even
the SVM baseline improves on in-domain classifi-
cation. mSDA does better than the baseline for all
domains except dvd. Using a larger training set,
along with mSDA, which makes use of the un-
labeled data, leads to the best results for citation
classification.

In domain adaptation we would expect the do-
mains most similar to the target to lead to the
highest results. Like Dai et al. (2007), we mea-
sure the Kullback-Leibler divergence between the
source and target domains’ distributions. Accord-
ing to this measure, citations are most similar to
the books domain. Therefore, it is not surprising
that training on books performs well on citations,
and intuitively, among the domains in the Amazon
dataset, a book review is most similar to a scien-
tific citation. This makes the good mSDA results
for electronics a bit more surprising.

4.2 Easy Domain Adaptation

The results in Section 4.1 are for semi-supervised
domain adaptation: the case where we have some
large annotated corpus (Amazon product reviews)
and a large unannotated corpus (citations). There
have been a number of other successful attempts at
fully supervised domain adaptation, where it is as-
sumed that some small amount of data is annotated
in the target domain (Chelba and Acero, 2004;
Daumé III, 2007; Jiang and Zhai, 2007). To see
how mSDA compares to supervised domain adap-
tation we take the various approaches presented by
Daumé III (2007). The results of this comparison
can be seen in Table 2. Briefly, “All” trains on
source and target data; “Weight” is the same as
“All” except that instances may be weighted dif-
ferently based on their domain (weights are chosen
on a development set); “Pred” trains on the source
data, makes predictions on the target data, and
then trains on the target data with the predictions;
“LinlInt” linearly interpolates predictions using the
source-only and target-only models (the interpola-
tion parameter is chosen on a development set);
“Augment” uses a larger feature set with source-
specific and target-specific copies of features; see



Domain Baseline All  Weight Pred Linlnt Augment mSDA
books 54.5 548 520 519 534 53.4 57.1
dvd 53.2 509 560 534 519 47.5 51.6
electronics 53.4 490 505 534 548 51.9 59.2
kitchen 479 488 507 534 526 49.2 50.1
citations 51.9 - - - - - 54.9

Table 2: Macro-F7 results on CITD using different domain adaptation approaches.

(Daumé 111, 2007) for further details.

We are only interested in citations as the tar-
get domain. Daumé’s source-only baseline cor-
responds to the “Baseline” column for domains:
books, dvd, electronics, and kitchen; while his
target-only baseline can be seen for citations in the
last row of the “Baseline” column in Table 2.

The semi-supervised mSDA performs quite
well with respect to the fully supervised ap-
proaches, obtaining the best results for books and
electronics, which are also the highest scores over-
all. Weight and Pred have the highest F scores for
dvd and kitchen respectively. Daumé III (2007)
noted that the “Augment” algorithm performed
best when the target-only results were better than
the source-only results. When this was not the
case in his experiments, i.e., for the treebank
chunking task, both Weight and Pred were among
the best approaches. In our experiments, training
on source-only outperforms target-only, with the
exception of the kitchen domain.

We have included the line for citations to see the
results training only on the target data (F; = 51.9)
and to see the improvement when using all of the
unlabeled data with mSDA (F} = 54.9).

4.3 Discussion

These results are very promising. Although they
are not quite as high as other published results
for citation polarity (Abu-Jbara et al., 2013)7, we
have shown that you can improve citation polarity
classification by leveraging large amounts of an-
notated data from other domains and using a sim-
ple set of features.

mSDA and fully supervised approaches can also
be straightforwardly combined. We do not present
those results here due to space constraints. The

"Their work included a CRF model to identify the citation
context that gave them an increase of 9.2 percent I over a
single sentence citation context. Our approach achieves sim-
ilar macro-F on only the citation sentence, but using a dif-
ferent corpus.
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combination led to mixed results: adding mSDA
to the supervised approaches tended to improve F}
over those approaches but results never exceeded
the top mSDA numbers in Table 2.

5 Related Work

Teufel et al. (2006b) introduced automatic citation
function classification, with classes that could be
grouped as positive, negative, and neutral. They
relied in part on a manually compiled list of cue
phrases that cannot easily be transferred to other
classification schemes or other scientific domains.
Athar (2011) followed this and was the first to
specifically target polarity classification on scien-
tific citations. He found that dependency tuples
contributed the most significant improvement in
results. Abu-Jbara et al. (2013) also looks at both
citation function and citation polarity. A big con-
tribution of this work is that they also train a CRF
sequence tagger to find the citation context, which
significantly improves results over using only the
citing sentence. Their feature analysis indicates
that lexicons for negation, speculation, and po-
larity were most important for improving polarity
classification.

6 Conclusion

Robust citation classification has been hindered by
the relative lack of annotated data. In this pa-
per we successfully use a large, out-of-domain,
annotated corpus to improve the citation polarity
classification. Our approach uses a deep learning
neural network for domain adaptation with labeled
out-of-domain data and unlabeled in-domain data.
This semi-supervised domain adaptation approach
outperforms the in-domain citation polarity classi-
fication and other fully supervised domain adapta-
tion approaches.

Acknowledgments. We thank the DFG for
funding this work (SPP 1335 Scalable Visual An-
alytics).
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Abstract

We propose Adaptive Recursive Neural
Network (AdaRNN) for target-dependent
Twitter sentiment classification. AdaRNN
adaptively propagates the sentiments of
words to target depending on the context
and syntactic relationships between them.
It consists of more than one composition
functions, and we model the adaptive sen-
timent propagations as distributions over
these composition functions. The experi-
mental studies illustrate that AdaRNN im-
proves the baseline methods. Further-
more, we introduce a manually annotated
dataset for target-dependent Twitter senti-
ment analysis.

1 Introduction

Twitter becomes one of the most popular social
networking sites, which allows the users to read
and post messages (i.e. tweets) up to 140 charac-
ters. Among the great varieties of topics, people
in Twitter tend to express their opinions for the
brands, celebrities, products and public events. As
a result, it attracts much attention to estimate the
crowd’s sentiments in Twitter.

For the tweets, our task is to classify their senti-
ments for a given target as positive, negative, and
neutral. People may mention several entities (or
targets) in one tweet, which affects the availabil-
ities for most of existing methods. For example,
the tweet “@ballmer: windows phone is better
than ios!” has three targets (@ballmer, windows
phone, and ios). The user expresses neutral, pos-
itive, and negative sentiments for them, respec-
tively. If target information is ignored, it is diffi-
cult to obtain the correct sentiment for a specified
target. For target-dependent sentiment classifica-
tion, the manual evaluation of Jiang et al. (2011)

*Contribution during internship at Microsoft Research.
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show that about 40% of errors are caused by not
considering the targets in classification.

The features used in traditional learning-based
methods (Pang et al., 2002; Nakagawa et al., 2010)
are independent to the targets, hence the results
are computed despite what the targets are. Hu and
Liu (2004) regard the features of products as tar-
gets, and sentiments for them are heuristically de-
termined by the dominant opinion words. Jiang
et al. (2011) combine the target-independent fea-
tures (content and lexicon) and target-dependent
features (rules based on the dependency parsing
results) together in subjectivity classification and
polarity classification for tweets.

In this paper, we mainly focus on integrating
target information with Recursive Neural Network
(RNN) to leverage the ability of deep learning
models. The neural models use distributed repre-
sentation (Hinton, 1986; Rumelhart et al., 1986;
Bengio et al., 2003) to automatically learn fea-
tures for target-dependent sentiment classification.
RNN utilizes the recursive structure of text, and it
has achieved state-of-the-art sentiment analysis re-
sults for movie review dataset (Socher et al., 2012;
Socher et al., 2013). The recursive neural mod-
els employ the semantic composition functions,
which enables them to handle the complex com-
positionalities in sentiment analysis.

Specifically, we propose a framework which
learns to propagate the sentiments of words to-
wards the target depending on context and syn-
tactic structure. We employ a novel adaptive
multi-compositionality layer in recursive neural
network, which is named as AdaRNN (Dong et
al., 2014). It consists of more than one compo-
sition functions, and we model the adaptive sen-
timent propagations as learning distributions over
these composition functions. We automatically
learn the composition functions and how to select
them from supervisions, instead of choosing them
heuristically or by hand-crafted rules. AdaRNN

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 49-54,
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determines how to propagate the sentiments to-
wards the target and handles the negation or in-
tensification phenomena (Taboada et al., 2011) in
sentiment analysis. In addition, we introduce a
manually annotated dataset, and conduct extensive
experiments on it. The experimental results sug-
gest that our approach yields better performances
than the baseline methods.

2 RNN: Recursive Neural Network

RNN (Socher et al., 2011) represents the phrases
and words as D-dimensional vectors. It performs
compositions based on the binary trees, and obtain
the vector representations in a bottom-up way.

very good

(oo (000 (000
not very good

Figure 1: The composition process for “not very
good” in Recursive Neural Network.

As illustrated in Figure 1, we obtain the repre-
sentation of “very good” by the composition of
“very” and “good”, and the representation of tri-
gram “not very good” is recursively obtained by
the vectors of “not” and “very good”. The di-
mensions of parent node are calculated by linear
combination of the child vectors’ dimensions. The
vector representation v is obtained via:

r(wiy]ee) o

where v, v, are the vectors of its left and right
child, g is the composition function, f is the non-
linearity function (such as tanh, sigmoid, softsign,
etc.), W € RP*2D i the composition matrix, and
b is the bias vector. The dimension of v is the
same as its child vectors, and it is recursively used
in the next step. Notably, the word vectors in the
leaf nodes are regarded as the parameters, and will
be updated according to the supervisions.

The vector representation of root node is then

fed into a softmax classifier to predict the label.

exp{xg}
> exp{x;}
a vector, the softmax obtains the distribution over

K classes. Specifically, the predicted distribution
is y = softmax (Uv), where y is the predicted
distribution, U € RE*D is the classification ma-
trix, and v is the vector representation of node.

v =f(g(vi,vr))

The k-th element of softmax(x) is . For
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3 Our Approach

We use the dependency parsing results to find the
words syntactically connected with the interested
target. Adaptive Recursive Neural Network is pro-
posed to propagate the sentiments of words to the
target node. We model the adaptive sentiment
propagations as semantic compositions. The com-
putation process is conducted in a bottom-up man-
ner, and the vector representations are computed
recursively. After we obtain the representation of
target node, a classifier is used to predict the sen-
timent label according to the vector.

In Section 3.1, we show how to build recur-
sive structure for target using the dependency pars-
ing results. In Section 3.2, we propose Adaptive
Recursive Neural Network and use it for target-
dependent sentiment analysis.

3.1 Build Recursive Structure

The dependency tree indicates the dependency re-
lations between words. As described above, we
propagate the sentiments of words to the target.
Hence the target is placed at the root node to com-
bine with its connected words recursively. The de-
pendency relation types are remained to guide the
sentiment propagations in our model.

Algorithm 1 Convert Dependency Tree
Input: Target node, Dependency tree
Output: Converted tree

1: function CONV(r)

2:  FE, < SoRrT(dep edges connected with r)
3: VT
4:  for (riwu/uiw") in E, do
5: if r is head of u then
6: w «— node with CONV(u), v as children
7: else
8: w «— node with v, CONV(u) as children
9: V— W

10:  return v

11: Call CoNV(target node) to get converted tree

As illustrated in the Algorithm 1, we recursively
convert the dependency tree starting from the tar-
get node. We find all the words connected to the
target, and these words are combined with target
node by certain order. Every combination is con-
sidered as once propagation of sentiments. If the
target is head of the connected words, the target
vector is combined as the right node; if otherwise,
it is combined as the left node. This ensures the



child nodes in a certain order. We use two rules
to determine the order of combinations: (1) the
words whose head is the target in dependency tree
are first combined, and then the rest of connected
words are combined; (2) if the first rule cannot de-
termine the order, the connected words are sorted
by their positions in sentence from right to left.
Notably, the conversion is performed recursively
for the connected words and the dependency rela-
tion types are remained. Figure 2 shows the con-
verted results for different targets in one sentence.

3.2 AdaRNN: Adaptive Recursive Neural
Network

RNN employs one global matrix to linearly com-
bine the elements of vectors. Sometimes it is
challenging to obtain a single powerful function
to model the semantic composition, which moti-
vates us to propose AdaRNN. The basic idea of
AdaRNN is to use more than one composition
functions and adaptively select them depending on
the linguistic tags and the combined vectors. The
model learns to propagate the sentiments of words
by using the different composition functions.

Figure 2 shows the computation process for the
example sentence “windows is better than ios”,
where the user expresses positive sentiment to-
wards windows and negative sentiment to ios. For
the targets, the order of compositions and the de-
pendency types are different. AdaRNN adap-
tively selects the composition functions g; ... gc
depending on the child vectors and the linguistic
types. Thus it is able to determine how to propa-
gate the sentiments of words towards the target.

Based on RNN described in Section 2, we de-
fine the composition result v in AdaRNN as:

C
v=f <ZP(gh!w,vr,e) 9n (Vlyvr)> (2)
h=1
where g1, ...,gc are the composition functions,
P (gn|vy, vy, e) is the probability of employing gy,
given the child vectors vy, v, and external feature
vector e, and f is the nonlinearity function. For
the composition functions, we use the same forms
as in Equation (1), i.e., we have C' composition
matrices Wy ... Weo. We define the distribution
over these composition functions as:

P(g]_|VZ,VT,e> A%
: = softmax | 8S | v,
P (gc|vi, vy, e) ©

3)

51

where (3 is the hyper-parameter, S € RC*(2D+le])
is the matrix used to determine which composition
function we use, vy, v, are the left and right child
vectors, and e are external feature vector. In this
work, e is a one-hot binary feature vector which
indicates what the dependency type is. If relation
is the k-th type, we set ey to 1 and the others to 0.

Adding [ in softmax function is a widely used
parametrization method in statistical mechanics,
which is known as Boltzmann distribution and
Gibbs measure (Georgii, 2011). When 8 = 0, this
function produces a uniform distribution; when
B = 1, it is the same as softmax function; when
[ — o0, it only activates the dimension with max-
imum weight, and sets its probability to 1.

3.3 Model Training

We use the representation of root node as the fea-
tures, and feed them into the softmax classifier to
predict the distribution over classes. We define the
ground truth vector t as a binary vector. If the k-th
class is the label, only t; is 1 and the others are
0. Our goal is to minimize the cross-entropy error
between the predicted distribution y and ground
truth distribution t. For each training instance, we
define the objective function as:

Z)\(;H@Hg

0cO

J
where © represents the parameters, and the Lo-
regularization penalty is used.

Based on the converted tree, we employ back-
propagation algorithm (Rumelhart et al., 1986) to
propagate the errors from root node to the leaf
nodes. We calculate the derivatives to update the
parameters. The AdaGrad (Duchi et al., 2011) is
employed to solve this optimization problem.

4 Experiments

As people tend to post comments for the celebri-
ties, products, and companies, we use these key-
words (such as “bill gates”, “taylor swift”, “xbox”,
“windows 77, “google”) to query the Twitter APL
After obtaining the tweets, we manually anno-
tate the sentiment labels (negative, neutral, posi-
tive) for these targets. In order to eliminate the
effects of data imbalance problem, we randomly
sample the tweets and make the data balanced.
The negative, neutral, positive classes account for
25%, 50%, 25%, respectively. Training data con-
sists of 6,248 tweets, and testing data has 692
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Figure 2: For the sentence “windows is better than ios’

better

’, we convert its dependency tree for the different

targets (windows and ios). AdaRNN performs semantic compositions in bottom-up manner and forward

propagates sentiment information to the target node. The g1, . . .

, gc are different composition functions,

and the combined vectors and dependency types are used to select them adaptively. These composition
functions decide how to propagate the sentiments to the target.

tweets. We randomly sample some tweets, and
they are assigned with sentiment labels by two an-
notators. About 82.5% of them have the same la-
bels. The agreement percentage of polarity clas-
sification is higher than subjectivity classification.
To the best of our knowledge, this is the largest
target-dependent Twitter sentiment classification
dataset which is annotated manually. We make the
dataset publicly available ! for research purposes.

We preprocess the tweets by replacing the tar-
gets with $7% and setting their POS tags to NN.
Liblinear (Fan et al., 2008) is used for baselines.
A tweet-specific tokenizer (Gimpel et al., 2011)
is employed, and the dependency parsing results
are computed by Stanford Parser (Klein and Man-
ning, 2003). The hyper-parameters are chosen by
cross-validation on the training split, and the test
accuracy and macro-average F1-score score are re-
ported. For recursive neural models, the dimen-
sion of word vector is set to 25, and f = tanh
is used as the nonlinearity function. We employ
10 composition matrices in AdaRNN. The param-
eters are randomly initialized. Notably, the word
vectors will also be updated.

SVM-indep: It uses the uni-gram, bi-gram,
punctuations, emoticons, and #hashtags as the
content features, and the numbers of positive or
negative words in General Inquirer as lexicon fea-
tures. These features are all target-independent.

SVM-dep: We re-implement the method pro-
posed by Jiang et al. (2011). It combines both

'http://goo.gl/SEnpu7
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the target-independent (SVM-indep) and target-
dependent features and uses SVM as the classifier.
There are seven rules to extract target-sensitive
features. We do not implement the social graph
optimization and target expansion tricks in it.
SVM-conn: The words, punctuations, emoti-
cons, and #hashtags included in the converted de-
pendency tree are used as the features for SVM.

RNN: It is performed on the converted depen-
dency tree without adaptive composition selection.
AdaRNN-w/oE: Our approach without using
the dependency types as features in adaptive se-
lection for the composition functions.
AdaRNN-w/E: Our approach with employing
the dependency types as features in adaptive se-
lection for the composition functions.
AdaRNN-comb: We combine the root vectors
obtained by AdaRNN-w/E with the uni/bi-gram
features, and they are fed into a SVM classifier.

Method Accuracy  Macro-F1
SVM-indep 62.7 60.2
SVM-dep 63.4 63.3
SVM-conn 60.0 59.6
RNN 63.0 62.8
AdaRNN-w/oE  64.9 64.4
AdaRNN-w/E  65.8 65.5
AdaRNN-comb 66.3 65.9

Table 1: Evaluation results on target-dependent
Twitter sentiment classification dataset. Our ap-
proach outperforms the baseline methods.



As shown in the Table 1, AdaRNN achieves bet-
ter results than the baselines. Specifically, we find
that the performances of SVM-dep increase than
SVM-indep. It indicates that target-dependent fea-
tures help improve the results. However, the accu-
racy and F1-score do not gain significantly. This
is caused by mismatch of the rules (Jiang et al.,
2011) used to extract the target-dependent fea-
tures. The POS tagging and dependency parsing
results are not precise enough for the Twitter data,
so these hand-crafted rules are rarely matched.
Further, the results of SVM-conn illustrate that us-
ing the words which have paths to target as bag-of-
words features does not perform well.

RNN is also based on the converted depen-
dency tree. It outperforms SVM-indep, and is
comparable with SVM-dep. The performances
of AdaRNN-w/oE are better than the above base-
lines. It shows that multiple composition functions
and adaptive selection help improve the results.
AdaRNN provides more powerful composition
ability, so that it achieves better semantic compo-
sition for recursive neural models. AdaRNN-w/E
obtains best performances among the above meth-
ods. Its macro-average Fl-score rises by 5.3%
than the target-independent method SVM-indep.
It employs dependency types as binary features to
select the composition functions adaptively. The
results illustrate that the syntactic tags are helpful
to guide the model propagate sentiments of words
towards target. Although the dependency results
are also not precise enough, the composition se-
lection is automatically learned from data. Hence
AdaRNN is more robust for the imprecision of
parsing results than the hand-crafted rules. The
performances become better after adding the uni-
gram and bi-gram features (target-independent).

4.1 Effects of 3

We compare different 3 for AdaRNN defined in
Equation (3) in this section. Different parameter 3
leads to different composition selection schemes.
As illustrated in Figure 3, the AdaRNN-w/oE
and AdaRNN-w/E achieve the best accuracies at
8 = 2, and they have a similar trend. Specifi-
cally, 8 = 0 obtains a uniform distribution over
the composition functions which does not help im-
prove performances.  — oo results in a max-
imum probability selection algorithm, i.e., only
the composition function which has the maximum
probability is used. This selection scheme makes
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Figure 3: The curve shows the accuracy as the
hyper-parameter 3 = 0,2° 2!, ..., 25 increases.
AdaRNN achieves the best results at 3 = 21.

the optimization instable. The performances of
J6] 1,2 are similar and they are better than
other settings. It indicates that adaptive selection
method is useful to model the compositions. The
hyper-parameter 3 makes trade-offs between uni-
form selection and maximum selection. It adjusts
the effects of these two perspectives.

5 Conclusion

We propose Adaptive Recursive Neural Network
(AdaRNN) for the target-dependent Twitter senti-
ment classification. AdaRNN employs more than
one composition functions and adaptively chooses
them depending on the context and linguistic tags.
For a given tweet, we first convert its dependency
tree for the interested target. Next, the AdaRNN
learns how to adaptively propagate the sentiments
of words to the target node. AdaRNN enables
the sentiment propagations to be sensitive to both
linguistic and semantic categories by using differ-
ent compositions. The experimental results illus-
trate that AdaRNN improves the baselines without
hand-crafted rules.
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Abstract

Supervised text classification algorithms
require a large number of documents la-
beled by humans, that involve a labor-
intensive and time consuming process.
In this paper, we propose a weakly su-
pervised algorithm in which supervision
comes in the form of labeling of Latent
Dirichlet Allocation (LDA) topics. We
then use this weak supervision to “sprin-
kle” artificial words to the training docu-
ments to identify topics in accordance with
the underlying class structure of the cor-
pus based on the higher order word asso-
ciations. We evaluate this approach to im-
prove performance of text classification on
three real world datasets.

1 Introduction

In supervised text classification learning algo-
rithms, the learner (a program) takes human la-
beled documents as input and learns a decision
function that can classify a previously unseen doc-
ument to one of the predefined classes. Usually a
large number of documents labeled by humans are
used by the learner to classify unseen documents
with adequate accuracy. Unfortunately, labeling
a large number of documents is a labor-intensive
and time consuming process.

In this paper, we propose a text classification
algorithm based on Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) which does not need la-
beled documents. LDA is an unsupervised prob-
abilistic topic model and it is widely used to dis-
cover latent semantic structure of a document col-
lection by modeling words in the documents. Blei
et al. (Blei et al., 2003) used LDA topics as fea-
tures in text classification, but they use labeled
documents while learning a classifier. SLDA (Blei
and McAuliffe, 2007), DiscLDA (Lacoste-Julien
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et al., 2008) and MedLDA (Zhu et al., 2009) are
few extensions of LDA which model both class
labels and words in the documents. These models
can be used for text classification, but they need
expensive labeled documents.

An approach that is less demanding in terms
of knowledge engineering is ClassifyLDA (Hing-
mire et al., 2013). In this approach, a topic model
on a given set of unlabeled training documents is
constructed using LDA, then an annotator assigns
a class label to some topics based on their most
probable words. These labeled topics are used
to create a new topic model such that in the new
model topics are better aligned to class labels. A
class label is assigned to a test document on the ba-
sis of its most prominent topics. We extend Clas-
sifyLDA algorithm by “sprinkling” topics to unla-
beled documents.

Sprinkling (Chakraborti et al., 2007) integrates
class labels of documents into Latent Semantic In-
dexing (LSD(Deerwester et al., 1990). The ba-
sic idea involves encoding of class labels as ar-
tificial words which are “sprinkled” (appended)
to training documents. As LSI uses higher or-
der word associations (Kontostathis and Pottenger,
2006), sprinkling of artificial words gives better
and class-enriched latent semantic structure. How-
ever, Sprinkled LSI is a supervised technique and
hence it requires expensive labeled documents.
The paper revolves around the idea of labeling top-
ics (which are far fewer in number compared to
documents) as in ClassifyLDA, and using these la-
beled topic for sprinkling.

As in ClassifyLDA, we ask an annotator to as-
sign class labels to a set of topics inferred on the
unlabeled training documents. We use the labeled
topics to find probability distribution of each train-
ing document over the class labels. We create a
set of artificial words corresponding to a class la-
bel and add (or sprinkle) them to the document.
The number of such artificial terms is propor-
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tional to the probability of generating the docu-
ment by the class label. We then infer a set of
topics on the sprinkled training documents. As
LDA uses higher order word associations (Lee et
al., 2010) while discovering topics, we hypothe-
size that sprinkling will improve text classification
performance of ClassifyLDA. We experimentally
verify this hypothesis on three real world datasets.

2 Related Work

Several researchers have proposed semi-
supervised text classification algorithms with
the aim of reducing the time, effort and cost
involved in labeling documents. These algorithms
can be broadly categorized into three categories
depending on how supervision is provided. In the
first category, a small set of labeled documents
and a large set of unlabeled documents is used
while learning a classifier. Semi-supervised text
classification algorithms proposed in (Nigam et
al., 2000), (Joachims, 1999), (Zhu and Ghahra-
mani, 2002) and (Blum and Mitchell, 1998) are a
few examples of this type. However, these algo-
rithms are sensitive to initial labeled documents
and hyper-parameters of the algorithm.

In the second category, supervision comes in the
form of labeled words (features). (Liu et al., 2004)
and (Druck et al., 2008) are a few examples of this
type. An important limitation of these algorithms
is coming up with a small set of words that should
be presented to the annotators for labeling. Also
a human annotator may discard or mislabel a pol-
ysemous word, which may affect the performance
of a text classifier.

The third type of semi-supervised text classifi-
cation algorithms is based on active learning. In
active learning, particular unlabeled documents or
features are selected and queried to an oracle (e.g.
human annotator).(Godbole et al., 2004), (Ragha-
van et al., 2006), (Druck et al., 2009) are a few ex-
amples of active learning based text classification
algorithms. However, these algorithms are sensi-
tive to the sampling strategy used to query docu-
ments or features.

In our approach, an annotator does not label
documents or words, rather she labels a small set
of interpretable topics which are inferred in an un-
supervised manner. These topics are very few,
when compared to the number of documents. As
the most probable words of topics are representa-
tive of the dataset, there is no need for the annota-
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tor to search for the right set of features for each
class. As LDA topics are semantically more mean-
ingful than individual words and can be acquired
easily, our approach overcomes limitations of the
semi-supervised methods discussed above.

3 Background
3.1 LDA

LDA is an unsupervised probabilistic generative
model for collections of discrete data such as text
documents. The generative process of LDA can be
described as follows:

1. for each topic ¢, draw a distribution over
words: ¢ ~ Dirichlet(3.)

2. for each document d € D

a. Draw a vector of topic proportions:
04 ~ Dirichlet(cv)
b. for each word w at position n in d
i. Draw a topic assignment:
zd,n ~ Multinomial(64)
ii. Draw a word:
Wq,n ~ Multinomial(zq,n)
Where, T is the number of topics, ¢, is the word
probabilities for topic ¢, 6, is the topic probabil-
ity distribution, z4,, is topic assignment and wg ,,
is word assignment for nth word position in docu-
ment d respectively. a; and 3, are topic and word
Dirichlet priors.

The key problem in LDA is posterior inference.
The posterior inference involves the inference of
the hidden topic structure given the observed doc-
uments. However, computing the exact posterior
inference is intractable. In this paper we estimate
approximate posterior inference using collapsed
Gibbs sampling (Griffiths and Steyvers, 2004).

The Gibbs sampling equation used to update the
assignment of a topic ¢ to the word w € W at the
position n in document d, conditioned on «y, 3,
is:

P(Zd,n = t|Zd,ﬁn7 Wd,n = W, at:ﬁw) X
ww,t + Bw -1
Z’UEW w'u,t + ﬂv -1

where 1), . is the count of the word w assigned
to the topic ¢, 2.4 is the count of the topic c
assigned to words in the document d and W is
the vocabulary of the corpus. We use a subscript
d, —n to denote the current token, z4,, is ignored
in the Gibbs sampling update. After performing
collapsed Gibbs sampling using equation 1, we
use word topic assignments to compute a point

X (Qpa+a;—1) (D)



estimate of the distribution over words ¢,, . and

a point estimate of the posterior distribution over

topics for each document d (6y) is:
ww,t + Bw

¢w,t == et,d - T
|: E 7/)1),15 + 617:| |:Z Qi,d + Cli:|
veW i=1
2) 3

Qa+ o

Let Mp =< Z,9,0 > be the hidden topic
structure, where Z is per word per document topic
assignment, ® = {¢;} and © = {6;}.

3.2 Sprinkling

(Chakraborti et al., 2007) propose a simple ap-
proach called “sprinkling” to incorporate class la-
bels of documents into LSI. In sprinkling, a set of
artificial words are appended to a training docu-
ment which are specific to the class label of the
document. Consider a case of binary classification
with classes c¢; and cp. If a document d belongs
to the class ¢; then a set of artificial words which
represent the class c¢; are appended into the doc-
ument d, otherwise a set of artificial words which
represent the class co are appended.

Singular Value Decomposition (SVD) is then
performed on the sprinkled training documents
and a lower rank approximation is constructed
by ignoring dimensions corresponding to lower
singular values. Then, the sprinkled terms are
removed from the lower rank approximation.
(Chakraborti et al., 2007) empirically show that
sprinkled words boost higher order word associ-
ations and projects documents with same class la-
bels close to each other in latent semantic space.

4 Topic Sprinkling in LDA

In our text classification algorithm, we first infer a
set of topics on the given unlabeled document cor-
pus. We then ask a human annotator to assign one
or more class labels to the topics based on their
most probable words. We use these labeled topics
to create a new LDA model as follows. If the topic
assigned to the word w at the position n in docu-
ment d is t, then we replace it by the class label
assigned to the topic ¢. If more than one class la-
bels are assigned to the topic ¢, then we randomly
select one of the class labels assigned to the topic
t. If the annotator is unable to label a topic then
we randomly select a class label from the set of all
class labels. We then update the new LDA model
using collapsed Gibbs sampling.
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We use this new model to infer the probability
distribution of each unlabeled training document
over the class labels. Let, 6. 4 be the probability of
generating document d by class c. We then sprin-
kle s artificial words of class label ¢ to document
d, such that s = K * 0. 4 for some constant K.

We then infer a set of |C| number of topics on
the sprinkled dataset using collapsed Gibbs sam-
pling, where C is the set of class labels of the
training documents. We modify collapsed Gibbs
sampling update in Equation 1 to carry class label
information while inferring topics. If a word in a
document is a sprinkled word then while sampling
a class label for it, we sample the class label asso-
ciated with the sprinkled word, otherwise we sam-
ple a class label for the word using Gibbs update
in Equation 1.

We name this model as Topic Sprinkled LDA
(TS-LDA). While classifying a test document, its
probability distribution over class labels is inferred
using TS-LDA model and it is classified to its most
probable class label. Algorithm for TS-LDA is
summarized in Table 1.

5 Experimental Evaluation

We determine the effectiveness of our algorithm
in relation to ClassifyLDA algorithm proposed in
(Hingmire et al., 2013). We evaluate and com-
pare our text classification algorithm by comput-
ing Macro averaged F1. As the inference of LDA
is approximate, we repeat all the experiments for
each dataset ten times and report average Macro-
F1. Similar to (Blei et al., 2003) we also learn
supervised SVM classifier (LDA-SVM) for each
dataset using topics as features and report average
Macro-F1.

5.1 Datasets

We use the following datasets in our experiments.
1. 20 Newsgroups: This dataset contains
messages across twenty newsgroups. In our
experiments, we use bydate version of the
20Newsgroup dataset!. This version of the dataset
is divided into training (60%) and test (40%)
datasets. We construct classifiers on training
datasets and evaluate them on test datasets.

2. SRAA: Simulated/Real/Aviation/Auto
UseNet data’: This dataset contains 73,218

'nttp://qwone.com/~jason/20Newsgroups/
http://people.cs.umass.edu/~mccallum/
data.html



Input: unlabeled document corpus-D, number of
topics-T and number of sprinkled terms-K

1. Infer T number of topics on D for LDA using col-
lapsed Gibbs sampling. Let Mp be the hidden
topic structure of this model.

Ask an annotator to assign one or more class labels
¢; € C to a topic based on its 30 most probable
words.

Initialization: For nth word in document d € D
if z4,» = t and the annotator has labeled topic ¢
with ¢; then, zq,n = ¢;

Update Mp using collapsed Gibbs sampling up-
date in Equation 1.

Sprinkling: For each document d € D:

(a) Infer a probability distribution 64 over class
labels using M p using Equation 3.

(b) Let, 6. 4 be probability of generating docu-
ment d by class c.

(c) Insert K x0. 4 distinct words associated with
the class c to the document d.

Infer |C| number of topics on the sprinkled docu-
ment corpus D using collapsed Gibbs sampling up-
date.

Let M, be the new hidden topic structure. Let us
call this hidden structure as TS-LDA.

8. Classification of an unlabled document d
(a) Infer 6/, for document d using Mp,.
(b) k = argmax, 0; 4
(©) Ya =ck

Table 1: Algorithm for sprinkling LDA topics for
text classification

UseNet articles from four discussion groups,
for simulated auto racing (sim_auto), simulated
aviation (sim_aviation), real autos (real_auto), real
aviation (real_aviation). Following are the three
classification tasks associated with this dataset.

1. sim_auto vs sim_aviation vs real_auto vs
real_aviation

2. auto (sim_auto + real_auto) vs aviation
(sim_aviation + real_aviation)

3. simulated (sim_auto + sim_aviation) vs real
(real_auto + real_aviation)

We randomly split SRAA dataset such that 80%
is used as training data and remaining is used as
test data.

3. WebKB: The WebKB dataset® contains 8145
web pages gathered from university computer

http://www.cs.cmu.edu/~webkb/
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science departments. The task is to classify the
webpages as student, course, faculty or project.
We randomly split this dataset such that 80% is
used as training and 20% is used as test data.

We preprocess these datasets by removing
HTML tags and stop-words.

For various subsets of the 20Newsgroups and
WebKB datasets discussed above, we choose
number of topics as twice the number of classes.
For SRAA dataset we infer 8 topics on the train-
ing dataset and label these 8 topics for all the three
classification tasks. While labeling a topic, we
show its 30 most probable words to the human an-
notator.

Similar to (Griffiths and Steyvers, 2004), we set
symmetric Dirichlet word prior (3,,) for each topic
to 0.01 and symmetric Dirichlet topic prior (o)
for each document to 50/7, where T is number of
topics. We set K i.e. maximum number of words
sprinkled per class to 10.

5.2 Results

Table 2 shows experimental results. We can ob-
serve that, TS-LDA performs better than Classi-
fyLDA in 5 of the total 9 subsets. For the comp-
religion-sci dataset TS-LDA and ClassifyLDA
have the same performance. However, Classi-
fyLDA performs better than TS-LDA for the three
classification tasks of SRAA dataset. We can also
observe that, performance of TS-LDA is close to
supervised LDA-SVM. We should note here that
in TS-LDA, the annotator only labels a few topics
and not a single document. Hence, our approach
exerts a low cognitive load on the annotator, at
the same time achieves text classification perfor-
mance close to LDA-SVM which needs labeled
documents.

5.3 Example

Table 3 shows most prominent words of four
topics inferred on the med-space subset of the
20Newsgroup dataset. We can observe here that
most prominent words of the first topic do not rep-
resent a single class, while other topics represent
either med (medical) or space class. We can say
here that, these topics are not “coherent”.

We use these labeled topics and create a TS-
LDA model using the algorithm described in Table
1. Table 4 shows words corresponding to the top
two topics of the TS-LDA model. We can observe
here that these two topics are more coherent than
the topics in Table 3.



Text Classification (Macro-F1)
Dataset # Topics | ClassifyLDA | TS-LDA | LDA-SVM
20Newsgroups
med-space 4 0.892 0.938 0.933
politics-religion 4 0.836 0.897 0.901
politics-sci 4 0.887 0.901 0.910
comp-religion-sci 6 0.853 0.853 0.872
politics-rec-religion-sci 8 0.842 0.858 0.862
SRAA
real_auto-real_aviation-sim_auto- 8 0.766 0.741 0.820
sim_aviation
auto-aviation 8 0.926 0.910 0.934
real-sim 8 0.918 0.902 0.923
WebKB
WebKB [ 8 [ 0.627 [ 0.672 [ 0.730

Table 2: Experimental results of text classification on various datasets.

ID | Most prominent words in the | Class (med
topic / space)

0 science scientific idea large theory | med +
bit pat thought problem isn space

1 information health research medi- | med
cal water cancer hiv aids children
institute newsletter

2 msg food doctor disease pain | med
day treatment blood steve dyer
medicine symptoms

3 space nasa launch earth orbit | space
moon shuttle data lunar satellite

Table 3: Topic labeling on the med-space subset of the
20Newsgroup dataset

ID | Most prominent words in the | Class (med
topic / space)

0 msg medical health food disease | med
years problem information doctor
pain cancer

1 space launch earth data orbit | space
moon program shuttle lunar satel-
lite

Table 4: Topics inferred on the med-space subset of the
20Newsgroup dataset after sprinkling labeled topics from Ta-
ble 3.

Hence, we can say here that, in addition to text
classification, sprinkling improves coherence of
topics.

We should note here that, in ClassifyLDA, the
annotator is able to assign a single class label to
a topic. If the annotator assigns a wrong class la-
bel to a topic representing multiple classes (e.g.
first topic in Table 3), then it may affect the perfor-
mance of the resulting classifier. However, in our
approach the annotator can assign multiple class
labels to a topic, hence our approach is more flexi-
ble for the annotator to encode her domain knowl-
edge efficiently.
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6 Conclusions and Future Work

In this paper we propose a novel algorithm that
classifies documents based on class labels over
few topics. This reduces the need to label a large
collection of documents. We have used the idea
of sprinkling originally proposed in the context
of supervised Latent Semantic Analysis, but the
setting here is quite different. Unlike the work
in (Chakraborti et al., 2007), we do not assume
that we have class labels over the set of training
documents. Instead, to realize our goal of reduc-
ing knowledge acquisition overhead, we propose a
way of propagating knowledge of few topic labels
to the words and inducing a new topic distribu-
tion that has its topics more closely aligned to the
class labels. The results show that the approach
can yield performance comparable to entirely su-
pervised settings. In future work, we also envi-
sion the possibility of sprinkling knowledge from
background knowledge sources like Wikipedia
(Gabrilovich and Markovitch, 2007) to realize an
alignment of topics to Wikipedia concepts. We
would like to study effect of change in number of
topics on the text classification performance. We
will also explore techniques which will help an-
notators to encode their domain knowledge effi-
ciently when the topics are not well aligned to the
class labels.
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Abstract

Tree kernel is an effective technique for rela-
tion extraction. However, the traditional syn-
tactic tree representation is often too coarse or
ambiguous to accurately capture the semantic
relation information between two entities. In
this paper, we propose a new tree kernel,
called feature-enriched tree kernel (FTK),
which can enhance the traditional tree kernel
by: 1) refining the syntactic tree representation
by annotating each tree node with a set of dis-
criminant features; and 2) proposing a new
tree kernel which can better measure the syn-
tactic tree similarity by taking all features into
consideration. Experimental results show that
our method can achieve a 5.4% F-measure im-
provement over the traditional convolution
tree kernel.

1 Introduction

Relation Extraction (RE) aims to identify a set of
predefined relations between pairs of entities in
text. In recent years, relation extraction has re-
ceived considerable research attention. An effec-
tive technique is the tree kernel (Zelenko et al.,
2003; Zhou et al., 2007; Zhang et al., 2006; Qian
etal., 2008), which can exploit syntactic parse tree
information for relation extraction. Given a pair of
entities in a sentence, the tree kernel-based RE
method first represents the relation information
between them using a proper sub-tree (e.g., SPT —
the sub-tree enclosed by the shortest path linking
the two involved entities). For example, the three
syntactic tree representations in Figure 1. Then the
similarity between two trees are computed using a
tree kernel, e.g., the convolution tree kernel pro-
posed by Collins and Duffy (2001). Finally, new
relation instances are extracted using kernel based
classifiers, e.g., the SVM classifier.
Unfortunately, one main shortcoming of the
traditional tree kernel is that the syntactic tree rep-
resentation usually cannot accurately capture the
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Figure 1. The ambiguity of possessive structure

relation information between two entities. This is
mainly due to the following two reasons:

1) The syntactic tree focuses on representing
syntactic relation/structure, which is often too
coarse or ambiguous to capture the semantic re-
lation information. In a syntactic tree, each node
indicates a clause/phrase/word and is only labeled
with a Treebank tag (Marcus et al., 1993). The
Treebank tag, unfortunately, is usually too coarse
or too general to capture semantic information.
For example, all the three trees in Figure 1 share
the same possessive syntactic structure, but ex-
press quite different semantic relations: where
“Mary’s brothers” expresses PER-SOC Family
relation, “Mary’s toys” expresses Possession rela-
tion, and “New York’s airports” expresses PHYS-
Located relation.

2) Some critical information may lost during
sub-tree representation extraction. For example,
in Figure 2, when extracting SPT representation,
all nodes outside the shortest-path will be pruned,
such as the nodes [NN plants] and [POS ’s/ in tree
T1. In this pruning process, the critical infor-
mation “word town is the possessor of the posses-
sive phrase the town’s plants” will be lost, which
in turn will lead to the misclassification of the
DISC relation between one and town.

This paper proposes a new tree kernel, referred
as feature-enriched tree kernel (FTK), which can
effectively resolve the above problems by enhanc-
ing the traditional tree kernel in following ways:

1)  We refine the syntactic tree representa-
tion by annotating each tree node with a set of dis-
criminant features. These features are utilized to
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better capture the semantic relation information
between two entities. For example, in order to dif-
ferentiate the syntactic tree representations in Fig-
ure 1, FTK will annotate them with several fea-
tures indicating “brother is a male sibling”, “toy
is an artifact”, “New York is a city ”, “airport is
facility”, etc.

2) Based on the refined syntactic tree repre-
sentation, we propose a new tree kernel — feature-
enriched tree kernel, which can better measure the
similarity between two trees by also taking all fea-
tures into consideration.

Figure 2. SPT representation extraction

We have experimented our method on the ACE
2004 RDC corpus. Experimental results show that
our method can achieve a 5.4% F-measure im-
provement over the traditional convolution tree
kernel based method.

This paper is organized as follows. Section 2
describes the feature-enriched tree kernel. Section
3 presents the features we used. Section 4 dis-
cusses the experiments. Section 5 briefly reviews
the related work. Finally Section 6 concludes this

paper.
2

In this section, we describe the proposed feature-
enriched tree kernel (FTK) for relation extraction.

The Feature-Enriched Tree Kernel

2.1

As described in above, syntactic tree is often too
coarse or too ambiguous to represent the semantic
relation information between two entities. To re-
solve this problem, we refine the syntactic tree
representation by annotating each tree node with
a set of discriminant features.

Refining Syntactic Tree Representation
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Feature Vector

PossessivePhrase, RootPath:NP-PP,
Contain_Arg2_GPE, ...

Possessor, Contain_Arg2_GPE,
4 RootPath:NP-PP-NP,
PR EndWithPOS, ...

EntType:GPE, MentionType:NOM,
RootPath:NP-PP-NP-NP, ...

WN:town, WN:district, WN:region,
WN:location, Match_Arg2_GPE ...

PPPhrase, RootPath:NP-PP,
Contain_Arg2_ORG, ..

e
L Contain_Arg2_ORG,..
5

EntType:ORG, MentionType:NOM,
RootPath:NP-PP-NP-NP, ..

‘4 PP_Head, RootPath:NP-PP-NP,

i1
i3

' WN:team, WN:social_unit,
15 N WN:group, WN:organization,
Match_Arg2_ORG ...

Figure 3. Syntactic tree enriched with features

Specifically, for each node n in a syntactic tree
T, we represent it as a tuple:

Rn = (Ln7 Fn)

where L,, is its phrase label (i.e., its Treebank tag),
and F;, is a feature vector which indicates the
characteristics of node n, which is represented as:

F,=A{f1,f2 -, [N}

where fi is a feature and is associated with a weight
w; € (0,1). The feature we used includes charac-
teristics of relation instance, phrase properties and
context information (See Section 3 for details).

For demonstration, Figure 3 shows the feature-
enriched version of tree T2 and tree T4 in Figure
2. We can see that, although T2 and T4 share the
same syntactic structure, the annotated features
can still differentiate them. For example, the NPs
node in tree T2 and the NPs node in tree T4 are
differentiated using their features Possessive-
Phrase and PPPhrase, which indicate that NPs in
T2 is a possessive phrase, meanwhile NPs in T4 is
a preposition phrase.

2.2

This section describes how to take into account
the annotated features for a better tree similarity.

In Collins and Duffy’s convolution tree kernel
(CTK), the similarity between two trees T1 and T»
is the number of their common sub-trees:

KC(T17 T2) = ZtleTl thGTQ 6(t1’ t2)

Using this formula, CTK only considers whether
two enumerated sub-trees have the identical syn-
tactic structure (the indicator 6(¢1,t2) is 1 if the

Feature-Enriched Tree Kernel



two sub-trees ¢1 and ¢ have the identical syntac-
tic structure and 0 otherwise). Such an assumption
makes CTK can only capture the syntactic struc-
ture similarity between two trees, while ignoring
other useful information.

To resolve the above problem, the feature-en-
riched tree kernel (FTK) compute the similarity
between two trees as the sum of the similarities
between their common sub-trees:

Fi(T1, T2) = 32 ey Dospers k(15 t2)

where k(t1,t2) is the similarity between enumer-
ated sub-trees ¢1 and t2, which is computed as:

k(tl,tg) = 5(t1,t2)>( H (l-l-sim(ni,nj))
(ni,n;)EE(t1,t2)

where 6(¢1, t2) is the same indicator functionas in
CTK; (ns,n;)is a pair of aligned nodes between
t1 and t2, where n; and n; are correspondingly in
the same position of tree ¢1 and to; E(t1,t2) is the
set of all aligned node pairs; sim(n;, n;) is the
feature vector similarity between noden; and n;,
computed as the dot product between their feature
vectors Fy,, and Fy;.

Notice that, if all nodes are not annotated with
features, k(t¢1,t2) will be equal to 6(¢1, t2). In this
perspective, we can view k(¢1,t2) as a similarity
adjusted version of 4(¢1,t2), i.e., d(t1,%2) only
considers whether two nodes are equal, in contrast
k(t1,t2) further considers the feature similarity
sim(n;, nj) between two nodes.

The Computation of FTK. As the same as
CTK, FTK can be efficiently computed as:

Fue(T1, T2) = 3o, e Ny ngen, D11, n2)

where N; is the set of nodes in tree Tj, and
A(n1,n2) evaluates the sum of the similarities of
common sub-trees rooted at node 71 and node na,
which is recursively computed as follows:
1) If the production rules of n1 and nq are differ-
ent, A(ni,ng) =0;
2)If both n; and ng is pre-terminal nodes,
A(ny,ng) = (1 4+ sim(ny, n2)) X A;
Otherwise go to step 3;
3) Calculate A(ny,n2) recursively as:
A(ny,ng) = X x (1+ sim(ni,n2))
#ch(n1)
X Z (1+ A(ch(n, k), ch(ng, k))
k=1

3 Features for Relation Extraction

This section presents the features we used to en-
rich the syntactic tree representation.

63

3.1

Relation instances of the same type often share
some common characteristics. In this paper, we
add the following instance features to the root
node of a sub-tree representation:

1) Syntactico-Semantic structure. A fea-
ture indicates whether a relation instance has the
following four syntactico-semantic structures in
(Chan & Roth, 2011) — Premodifiers, Possessive,
Preposition, Formulaic and Verbal.

2) Entity-related information of argu-
ments. Features about the entity information of
arguments, including: a) #TP1-#TP2: the concat
of the major entity types of arguments; b) #ST1-
#ST2: the concat of the sub entity types of argu-
ments; c) #MT1-#MT2: the concat of the mention
types of arguments.

3) Base phrase chunking features. Fea-
tures about the phrase path between two argu-
ments and the phrases’ head before and after the
arguments, which are the same as the phrase
chunking features in (Zhou, et al., 2005).

3.2

As discussed in above, the Treebank tag is too
coarse to capture the property of a phrase node.
Therefore, we enrich each phrase node with fea-
tures about its lexical pattern, its content infor-
mation, and its lexical semantics:

1) Lexical Pattern. We capture the lexical
pattern of a phrase node using the following fea-
tures: a) LP_Poss: A feature indicates the node is
a possessive phrase; b) LP_PP: A feature indi-
cates the node is a preposition phrase; ¢) LP_CC:
A feature indicates the node is a conjunction
phrase; d) LP_EndWithPUNC: A feature indicates
the node ends with a punctuation; €) LP_EndWith-
POSS: A feature indicates the node ends with a
possessive word.

2) Content Information. We capture the
property of a node’s content using the following
features: a) MB_#Num: The number of mentions
contained in the phrase; b) MB_C #Type: A fea-
ture indicates that the phrase contains a mention
with major entity type #Type; ¢) MW_#Num: The
number of words within the phrase.

3) Lexical Semantics. If the node is a pre-
terminal node, we capture its lexical semantic by
adding features indicating its WordNet sense in-
formation. Specifically, the first WordNet sense
of the terminal word, and all this sense’s hyponym
senses will be added as features. For example,
WordNet senses {New York#1, city#1, district#1,

Instance Feature

Phrase Feature



region#l, ...} will be added as features to the [NN
New York] node in Figure 1.

3.3

The context information of a phrase node is criti-
cal for identifying the role and the importance of
a sub-tree in the whole relation instance. This pa-
per captures the following context information:

1) Contextual path from sub-tree root to
the phrase node. As shown in Zhou et al. (2007),
the context path from root to the phrase node is an
effective context information feature. Inthis paper,
we use the same settings in (Zhou et al., 2007), i.e.,
each phrase node is enriched with its context paths
of length 1, 2, 3.

2) Relative position with arguments. We
observed that a phrase’s relative position with the
relation’s arguments is useful for identifying the
role of the phrase node in the whole relation in-
stance. To capture the relative position infor-
mation, we define five possible relative positions
between a phrase node and an argument, corre-
sponding match, cover, within, overlap and other.
Using these five relative positions, we capture the
context information using the following features:

a) #RP_ArglHead_#ArglType: a feature in-
dicates the relative position of a phrase node with
argument 1’s head phrase, where #RP is the rela-
tive position (one of match, cover, within, overlap,
other), and #Arg1Type is the major entity type of
argument 1. One example feature may be
Match_ArglHead LOC.

b) #RP_Arg2Head_#Arg2Type: The relative
position with argument 2’s head phrase;

c) #RP_ArglExtend #ArglType: The rela-
tive position with argument 1°s extended phrase;

d) #PR_Arg2Extend #Arg2Type: The rela-
tive position with argument 2’s extended phrase.

Feature weighting. Currently, we set all fea-
tures with an uniform weight w € (0, 1), which is
used to control the relative importance of the fea-
ture in the final tree similarity: the larger the fea-
ture weight, the more important the feature in the
final tree similarity.

Context Information Feature

4

4.1

To assess the feature-enriched tree kernel, we
evaluate our method on the ACE RDC 2004 cor-
pus using the same experimental settings as (Qian
et al., 2008). That is, we parse all sentences using
the Charniak’s parser (Charniak, 2001), relation
instances are generated by iterating over all pairs
of entity mentions occurring in the same sentence.

Experiments

Experimental Setting
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In our experiments, we implement the feature-en-
riched tree kernel by extending the SVM'" (Joa-
chims, 1998) with the proposed tree kernel func-
tion (Moschitti, 2004). We apply the one vs. oth-
ers strategy for multiple classification using SVM.
For SVM training, the parameter C is set to 2.4 for
all experiments, and the tree kernel parameter A is
tuned to 0.2 for FTK and 0.4 (the optimal param-
eter setting used in Qian et al.(2008)) for CTK.

4.2  Experimental Results
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We compare our method with the standard convo-
lution tree kernel (CTK) on the state-of-the-art
context sensitive shortest path-enclosed tree rep-
resentation (CSPT, Zhou et al., 2007). We exper-
iment our method with four different feature set-
tings, correspondingly: 1) FTK with only instance
features — FTK(instance); 2) FTK with only
phrase features — FTK(phrase); 3) FTK with only
context information features — FTK(context); and
4) FTK with all features — FTK. The overall per-
formance of CTK and FTK is shown in Table 1,
the F-measure improvements over CTK are also
shown inside the parentheses. The detailed perfor-
mance of FTK on the 7 major relation types of
ACE 2004 is shown in Table 2.

Overall performance

P(%) [ R(%) F
CTK 771 | 613 | 68.3(——)
FTK(instance) 78.5 64.6 70.9 (+2.6%)
FTK(phrase) 78.3 64.2 | 70.5(+2.2%)
FTK(context) 80.1 67.5 73.2 (+4.9%)
FTK 81.2 67.4 | 73.7 (+5.4%)
Table 1. Overall Performance
Relation Type P(%) R(%) F Impr
EMP-ORG 84.7 82.4 83.5| 5.8%
PER-SOC 79.9 70.7 75.0| 1.0%
PHYS 73.3 64.4 68.6| 7.0%
ART 83.6 575 68.2| 1.7%
GPE-AFF 74.7 56.6 64.4| 4.3%
DISC 81.6 480 60.5| 6.6%
OTHER-AFF 74.2 36.8 49.2| 1.0%

Table 2. FTK on the 7 major relation types and
their F-measure improvement over CTK

From Table 1 and 2, we can see that:

1) By refining the syntactic tree with discri-
minant features and incorporating these features
into the final tree similarity, FTK can significantly
improve the relation extraction performance:
compared with the convolution tree kernel base-
line CTK, our method can achieve a 5.4% F-meas-
ure improvement.



2) All types of features can improve the per-
formance of relation extraction: FTK can corre-
spondingly get 2.6%, 2.2% and 4.9% F-measure
improvements using instance features, phrase fea-
tures and context information features.

3) Within the three types of features, context
information feature can achieve the highest F-
measure improvement. We believe this may be-
cause: @ The context information is useful in
providing clues for identifying the role and the im-
portance of a sub-tree; and @ The context-free as-
sumption of CTK is too strong, some critical in-
formation will lost in the CTK computation.

4) The performance improvement of FTK
varies significantly on different relation types: in
Table 2, most performance improvement gains
from the EMP-ORG, PHYS, GPE-AFF and DISC
relation types. We believe this may because the
discriminant features will better complement the
syntactic tree for capturing EMP-ORG, PHYS,
GPE-AFF and DISC relation. On contrast the fea-
tures may be redundant to the syntactic infor-
mation for other relation types.

System P(%) R(%0) F
Qian et al., (2008): composite kernel | 83.0 72.0 77.1
Zhou et al., (2007): composite kernel | 82.2 70.2 75.8
Ours: FTK with CSPT 812 67.4 737
Zhou et al., (2007): context sensitive | 81.1 66.7 73.2
CTK with CSPT

Ours: FTK with SPT 81.1 66.2 729
Jiang & Zhai (2007): MaxEnt classi- | 74.6 713 72.9
fier with features

Zhang et al., (2006): composite kernel | 76.1 68.4 72.1
Zhao & Grishman, (2005): Composite | 69.2 70.5 70.4
kernel

Zhang et al., (2006): CTK with SPT | 741 62.4 67.7

Table 3. Comparison of different systems on the
ACE RDC 2004 corpus

4.2.2 Comparison with other systems

Finally, Table 3 compares the performance of our
method with several other systems. From Table 3,
we can see that FTK can achieve competitive per-
formance: @ It achieves a 0.8% F-measure im-
provement over the feature-based system of Jiang
& Zhai (2007); @ It achieves a 0.5% F-measure
improvement over a state-of-the-art tree kernel:
context sensitive CTK with CSPT of Zhou et al.,
(2007); ® The F-measure of our system is slightly
lower than the current best performance on ACE
2004 (Qian et al., 2008) — 73.7 vs. 77.1, we believe
this is because the system of (Qian et al., 2008)
adopts two extra techniques: composing tree ker-
nel with a state-of-the-art feature-based kernel and
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using a more proper sub-tree representation. We
believe these two techniques can also be used to
further improve the performance of our system.

5 Related Work

This section briefly reviews the related work. A
classical technique for relation extraction is to
model the task as a feature-based classification
problem (Kambhatla, 2004; Zhou et al., 2005;
Jiang & Zhai, 2007; Chan & Roth, 2010; Chan &
Roth, 2011), and feature engineering is obviously
the key for performance improvement. As an al-
ternative, tree kernel-based method implicitly de-
fines features by directly measuring the similarity
between two structures (Bunescu and Mooney,
2005; Bunescu and Mooney, 2006; Zelenko et al,
2003; Culotta and Sorensen, 2004; Zhang et al.,
2006). Composite kernels were also be used (Zhao
and Grishman, 2005; Zhang et al., 2006).

The main drawback of the current tree kernel is
that the syntactic tree representation often cannot
accurately capture the relation information. To re-
solve this problem, Zhou et al. (2007) took the an-
cestral information of sub-trees into consideration;
Reichartz and Korte (2010) incorporated depend-
ency type information into a tree kernel; Plank and
Moschitti (2013) and Liu et al. (2013) embedded
semantic information into tree kernel. Bloehdorn
and Moschitti (2007a, 2007b) proposed Syntactic
Semantic Tree Kernels (SSTK), which can cap-
ture the semantic similarity between leaf nodes.
Moschitti (2009) proposed a tree kernel which
specify a kernel function over any pair of nodes
between two trees, and it was further extended and
applied in other tasks in (Croce et al., 2011; Croce
et al., 2012; Mehdad et al., 2010).

6

This paper proposes a feature-enriched tree kernel,
which can: 1) refine the syntactic tree representa-
tion; and 2) better measure the similarity between
two trees. For future work, we want to develop a
feature weighting algorithm which can accurately
measure the relevance of a feature to a relation in-
stance for better RE performance.

Conclusions and Future Work
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Abstract

Relation extraction suffers from a perfor-
mance loss when a model is applied to
out-of-domain data. This has fostered the
development of domain adaptation tech-
niques for relation extraction. This paper
evaluates word embeddings and clustering
on adapting feature-based relation extrac-
tion systems. We systematically explore
various ways to apply word embeddings
and show the best adaptation improvement
by combining word cluster and word em-
bedding information. Finally, we demon-
strate the effectiveness of regularization
for the adaptability of relation extractors.

1 Introduction

The goal of Relation Extraction (RE) is to detect
and classify relation mentions between entity pairs
into predefined relation types such as Employ-
ment or Citizenship relationships. Recent research
in this area, whether feature-based (Kambhatla,
2004; Boschee et al., 2005; Zhou et al., 2005;
Grishman et al., 2005; Jiang and Zhai, 2007a;
Chan and Roth, 2010; Sun et al., 2011) or kernel-
based (Zelenko et al., 2003; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006; Qian et al., 2008; Nguyen et al., 2009), at-
tempts to improve the RE performance by enrich-
ing the feature sets from multiple sentence anal-
yses and knowledge resources. The fundamental
assumption of these supervised systems is that the
training data and the data to which the systems are
applied are sampled independently and identically
from the same distribution. When there is a mis-
match between data distributions, the RE perfor-
mance of these systems tends to degrade dramat-
ically (Plank and Moschitti, 2013). This is where
we need to resort to domain adaptation techniques
(DA) to adapt a model trained on one domain (the
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source domain) into a new model which can per-

form well on new domains (the target domains).
The consequences of linguistic variation be-

tween training and testing data on NLP tools have
been studied extensively in the last couple of years
for various NLP tasks such as Part-of-Speech tag-
ging (Blitzer et al., 2006; Huang and Yates, 2010;
Schnabel and Schiitze, 2014), named entity recog-
nition (Daumé III, 2007) and sentiment analysis
(Blitzer et al., 2007; Daumé III, 2007; Daumé
IIT et al., 2010; Blitzer et al., 2011), etc. Un-
fortunately, there is very little work on domain
adaptation for RE. The only study explicitly tar-
geting this problem so far is by Plank and Mos-
chitti (2013) who find that the out-of-domain per-
formance of kernel-based relation extractors can
be improved by embedding semantic similarity in-
formation generated from word clustering and la-
tent semantic analysis (LSA) into syntactic tree
kernels. Although this idea is interesting, it suf-
fers from two major limitations:

+ It does not incorporate word cluster informa-
tion at different levels of granularity. In fact, Plank
and Moschitti (2013) only use the 10-bit cluster
prefix in their study. We will demonstrate later
that the adaptability of relation extractors can ben-
efit significantly from the addition of word cluster

features at various granularities.
+ It is unclear if this approach can encode real-

valued features of words (such as word embed-
dings (Mnih and Hinton, 2007; Collobert and We-
ston, 2008)) effectively. As the real-valued fea-
tures are able to capture latent yet useful proper-
ties of words, the augmentation of lexical terms
with these features is desirable to provide a more
general representation, potentially helping relation

extractors perform more robustly across domains.
In this work, we propose to avoid these limita-

tions by applying