Ying Wen


2025

pdf bib
Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration
Shao Zhang | Xihuai Wang | Wenhao Zhang | Chaoran Li | Junru Song | Tingyu Li | Lin Qiu | Xuezhi Cao | Xunliang Cai | Wen Yao | Weinan Zhang | Xinbing Wang | Ying Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent *System 1* and *System 2* methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates *System 1* and *System 2* for efficient real-time simultaneous human-AI collaboration. DPT-Agent’s *System 1* uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent’s *System 2* integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.

pdf bib
Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning
Jiachen Zhu | Congmin Zheng | Jianghao Lin | Kounianhua Du | Ying Wen | Yong Yu | Jun Wang | Weinan Zhang
Findings of the Association for Computational Linguistics: ACL 2025

While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies the OOD issues including step OOD, arising from differences in reasoning patterns across model types and sizes, and question OOD, due to dataset shifts between training and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps for PRM as a warmup to stimulate its potential to judge target steps, improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetreivalPRM model, establishing a new standard for PRM performance.

2022

pdf bib
Cross-Utterance Conditioned VAE for Non-Autoregressive Text-to-Speech
Yang Li | Cheng Yu | Guangzhi Sun | Hua Jiang | Fanglei Sun | Weiqin Zu | Ying Wen | Yang Yang | Jun Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Modelling prosody variation is critical for synthesizing natural and expressive speech in end-to-end text-to-speech (TTS) systems. In this paper, a cross-utterance conditional VAE (CUC-VAE) is proposed to estimate a posterior probability distribution of the latent prosody features for each phoneme by conditioning on acoustic features, speaker information, and text features obtained from both past and future sentences. At inference time, instead of the standard Gaussian distribution used by VAE, CUC-VAE allows sampling from an utterance-specific prior distribution conditioned on cross-utterance information, which allows the prosody features generated by the TTS system to be related to the context and is more similar to how humans naturally produce prosody. The performance of CUC-VAE is evaluated via a qualitative listening test for naturalness, intelligibility and quantitative measurements, including word error rates and the standard deviation of prosody attributes. Experimental results on LJ-Speech and LibriTTS data show that the proposed CUC-VAE TTS system improves naturalness and prosody diversity with clear margins.