Peinan Feng


2025

pdf bib
Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation
Yingfeng Luo | Tong Zheng | Yongyu Mu | Bei Li | Qinghong Zhang | Yongqi Gao | Ziqiang Xu | Peinan Feng | Xiaoqian Liu | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics: ACL 2025

The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve 2.4 ∼ 6.5 × inference speedups and a 75% reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks.

2024

pdf bib
Revealing the Parallel Multilingual Learning within Large Language Models
Yongyu Mu | Peinan Feng | Zhiquan Cao | Yuzhang Wu | Bei Li | Chenglong Wang | Tong Xiao | Kai Song | Tongran Liu | Chunliang Zhang | JingBo Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) can handle multilingual and cross-lingual text within a single input; however, previous works leveraging multilingualism in LLMs primarily focus on using English as the pivot language to enhance language understanding and reasoning. Given that multiple languages are a compensation for the losses caused by a single language’s limitations, it’s a natural next step to enrich the model’s learning context through the integration of the original input with its multiple translations. In this paper, we start by revealing that LLMs learn from parallel multilingual input (PMI). Our comprehensive evaluation shows that PMI enhances the model’s comprehension of the input, achieving superior performance than conventional in-context learning (ICL). Furthermore, to explore how multilingual processing affects prediction, we examine the activated neurons in LLMs. Surprisingly, involving more languages in the input activates fewer neurons, leading to more focused and effective neural activation patterns. Also, this neural reaction coincidently mirrors the neuroscience insight about synaptic pruning, highlighting a similarity between artificial and biological ‘brains’.