Órla Ní Loinsigh

Also published as: Órla Ní Loinsigh


2025

pdf bib
eSTÓR: Curating Irish Datasets for Machine Translation
Abigail Walsh | Órla Ní Loinsigh | Jane Adkins | Ornait O’Connell | Mark Andrade | Teresa Clifford | Federico Gaspari | Jane Dunne | Brian Davis
Proceedings of Machine Translation Summit XX: Volume 2

Minority languages such as Irish are massively under-resourced, particularly in terms of high-quality domain-relevant data, limiting the capabilities of machine translation (MT) engines, even those integrating large language models (LLMs). The eSTÓR project, described in this paper, focuses on the collection and curation of high-quality Irish text data for diverse domains.

2022

pdf bib
gaHealth: An English–Irish Bilingual Corpus of Health Data
Séamus Lankford | Haithem Afli | Órla Ní Loinsigh | Andy Way
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Machine Translation is a mature technology for many high-resource language pairs. However in the context of low-resource languages, there is a paucity of parallel data datasets available for developing translation models. Furthermore, the development of datasets for low-resource languages often focuses on simply creating the largest possible dataset for generic translation. The benefits and development of smaller in-domain datasets can easily be overlooked. To assess the merits of using in-domain data, a dataset for the specific domain of health was developed for the low-resource English to Irish language pair. Our study outlines the process used in developing the corpus and empirically demonstrates the benefits of using an in-domain dataset for the health domain. In the context of translating health-related data, models developed using the gaHealth corpus demonstrated a maximum BLEU score improvement of 22.2 points (40%) when compared with top performing models from the LoResMT2021 Shared Task. Furthermore, we define linguistic guidelines for developing gaHealth, the first bilingual corpus of health data for the Irish language, which we hope will be of use to other creators of low-resource data sets. gaHealth is now freely available online and is ready to be explored for further research.