Helan Hu


2025

pdf bib
Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints
Kaikai An | Shuzheng Si | Helan Hu | Haozhe Zhao | Yuchi Wang | Qingyan Guo | Baobao Chang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Semantic Parsing aims to capture the meaning of a sentence and convert it into a logical, structured form. Previous studies show that semantic parsing enhances the performance of smaller models (e.g., BERT) on downstream tasks. However, it remains unclear whether the improvements extend similarly to LLMs. In this paper, our empirical findings reveal that, unlike smaller models, directly adding semantic parsing results into LLMs reduces their performance. To overcome this, we propose SENSE, a novel prompting approach that embeds semantic hints within the prompt. Experiments show that SENSE consistently improves LLMs’ performance across various tasks, highlighting the potential of integrating semantic information to improve LLM capabilities.

2024

pdf bib
Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning
Shuzheng Si | Helan Hu | Haozhe Zhao | Shuang Zeng | Kaikai An | Zefan Cai | Baobao Chang
Findings of the Association for Computational Linguistics: ACL 2024

Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the burden of annotation, but meanwhile suffers from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, we argue that these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we attempt to mitigate this issue by proposing: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher. This approach further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER denoising methods.