uppdf
bib
Proceedings of the 28th International Conference on Computational Linguistics
Donia Scott
|
Nuria Bel
|
Chengqing Zong
pdf
bib
abs
Exploring Controllable Text Generation Techniques
Shrimai Prabhumoye
|
Alan W Black
|
Ruslan Salakhutdinov
Neural controllable text generation is an important area gaining attention due to its plethora of applications. Although there is a large body of prior work in controllable text generation, there is no unifying theme. In this work, we provide a new schema of the pipeline of the generation process by classifying it into five modules. The control of attributes in the generation process requires modification of these modules. We present an overview of different techniques used to perform the modulation of these modules. We also provide an analysis on the advantages and disadvantages of these techniques. We further pave ways to develop new architectures based on the combination of the modules described in this paper.
pdf
bib
abs
Infusing Sequential Information into Conditional Masked Translation Model with Self-Review Mechanism
Pan Xie
|
Zhi Cui
|
Xiuying Chen
|
XiaoHui Hu
|
Jianwei Cui
|
Bin Wang
Non-autoregressive models generate target words in a parallel way, which achieve a faster decoding speed but at the sacrifice of translation accuracy. To remedy a flawed translation by non-autoregressive models, a promising approach is to train a conditional masked translation model (CMTM), and refine the generated results within several iterations. Unfortunately, such approach hardly considers the sequential dependency among target words, which inevitably results in a translation degradation. Hence, instead of solely training a Transformer-based CMTM, we propose a Self-Review Mechanism to infuse sequential information into it. Concretely, we insert a left-to-right mask to the same decoder of CMTM, and then induce it to autoregressively review whether each generated word from CMTM is supposed to be replaced or kept. The experimental results (WMT14 En ↔ De and WMT16 En ↔ Ro) demonstrate that our model uses dramatically less training computations than the typical CMTM, as well as outperforms several state-of-the-art non-autoregressive models by over 1 BLEU. Through knowledge distillation, our model even surpasses a typical left-to-right Transformer model, while significantly speeding up decoding.
pdf
bib
abs
Building Hierarchically Disentangled Language Models for Text Generation with Named Entities
Yash Agarwal
|
Devansh Batra
|
Ganesh Bagler
Named entities pose a unique challenge to traditional methods of language modeling. While several domains are characterised with a high proportion of named entities, the occurrence of specific entities varies widely. Cooking recipes, for example, contain a lot of named entities — viz. ingredients, cooking techniques (also called processes), and utensils. However, some ingredients occur frequently within the instructions while most occur rarely. In this paper, we build upon the previous work done on language models developed for text with named entities by introducing a Hierarchically Disentangled Model. Training is divided into multiple branches with each branch producing a model with overlapping subsets of vocabulary. We found the existing datasets insufficient to accurately judge the performance of the model. Hence, we have curated 158,473 cooking recipes from several publicly available online sources. To reliably derive the entities within this corpus, we employ a combination of Named Entity Recognition (NER) as well as an unsupervised method of interpretation using dependency parsing and POS tagging, followed by a further cleaning of the dataset. This unsupervised interpretation models instructions as action graphs and is specific to the corpus of cooking recipes, unlike NER which is a general method applicable to all corpora. To delve into the utility of our language model, we apply it to tasks such as graph-to-text generation and ingredients-to-recipe generation, comparing it to previous state-of-the-art baselines. We make our dataset (including annotations and processed action graphs) available for use, considering their potential use cases for language modeling and text generation research.
pdf
bib
abs
CharBERT: Character-aware Pre-trained Language Model
Wentao Ma
|
Yiming Cui
|
Chenglei Si
|
Ting Liu
|
Shijin Wang
|
Guoping Hu
Most pre-trained language models (PLMs) construct word representations at subword level with Byte-Pair Encoding (BPE) or its variations, by which OOV (out-of-vocab) words are almost avoidable. However, those methods split a word into subword units and make the representation incomplete and fragile. In this paper, we propose a character-aware pre-trained language model named CharBERT improving on the previous methods (such as BERT, RoBERTa) to tackle these problems. We first construct the contextual word embedding for each token from the sequential character representations, then fuse the representations of characters and the subword representations by a novel heterogeneous interaction module. We also propose a new pre-training task named NLM (Noisy LM) for unsupervised character representation learning. We evaluate our method on question answering, sequence labeling, and text classification tasks, both on the original datasets and adversarial misspelling test sets. The experimental results show that our method can significantly improve the performance and robustness of PLMs simultaneously.
pdf
bib
abs
A Graph Representation of Semi-structured Data for Web Question Answering
Xingyao Zhang
|
Linjun Shou
|
Jian Pei
|
Ming Gong
|
Lijie Wen
|
Daxin Jiang
The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.
pdf
bib
abs
Catching Attention with Automatic Pull Quote Selection
Tanner Bohn
|
Charles Ling
To advance understanding on how to engage readers, we advocate the novel task of automatic pull quote selection. Pull quotes are a component of articles specifically designed to catch the attention of readers with spans of text selected from the article and given more salient presentation. This task differs from related tasks such as summarization and clickbait identification by several aspects. We establish a spectrum of baseline approaches to the task, ranging from handcrafted features to a neural mixture-of-experts to cross-task models. By examining the contributions of individual features and embedding dimensions from these models, we uncover unexpected properties of pull quotes to help answer the important question of what engages readers. Human evaluation also supports the uniqueness of this task and the suitability of our selection models. The benefits of exploring this problem further are clear: pull quotes increase enjoyment and readability, shape reader perceptions, and facilitate learning. Code to reproduce this work is available at
https://github.com/tannerbohn/AutomaticPullQuoteSelection.
pdf
bib
abs
MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing
Tao Zhang
|
Congying Xia
|
Chun-Ta Lu
|
Philip Yu
Named entity typing (NET) is a classification task of assigning an entity mention in the context with given semantic types. However, with the growing size and granularity of the entity types, few previous researches concern with newly emerged entity types. In this paper, we propose MZET, a novel memory augmented FNET (Fine-grained NET) model, to tackle the unseen types in a zero-shot manner. MZET incorporates character-level, word-level, and contextural-level information to learn the entity mention representation. Besides, MZET considers the semantic meaning and the hierarchical structure into the entity type representation. Finally, through the memory component which models the relationship between the entity mention and the entity type, MZET transfers the knowledge from seen entity types to the zero-shot ones. Extensive experiments on three public datasets show the superior performance obtained by MZET, which surpasses the state-of-the-art FNET neural network models with up to 8% gain in Micro-F1 and Macro-F1 score.
pdf
bib
abs
Span-based Joint Entity and Relation Extraction with Attention-based Span-specific and Contextual Semantic Representations
Bin Ji
|
Jie Yu
|
Shasha Li
|
Jun Ma
|
Qingbo Wu
|
Yusong Tan
|
Huijun Liu
Span-based joint extraction models have shown their efficiency on entity recognition and relation extraction. These models regard text spans as candidate entities and span tuples as candidate relation tuples. Span semantic representations are shared in both entity recognition and relation extraction, while existing models cannot well capture semantics of these candidate entities and relations. To address these problems, we introduce a span-based joint extraction framework with attention-based semantic representations. Specially, attentions are utilized to calculate semantic representations, including span-specific and contextual ones. We further investigate effects of four attention variants in generating contextual semantic representations. Experiments show that our model outperforms previous systems and achieves state-of-the-art results on ACE2005, CoNLL2004 and ADE.
pdf
bib
abs
Hierarchical Chinese Legal event extraction via Pedal Attention Mechanism
Shirong Shen
|
Guilin Qi
|
Zhen Li
|
Sheng Bi
|
Lusheng Wang
Event extraction plays an important role in legal applications, including case push and auxiliary judgment. However, traditional event structure cannot express the connections between arguments, which are extremely important in legal events. Therefore, this paper defines a dynamic event structure for Chinese legal events. To distinguish between similar events, we design hierarchical event features for event detection. Moreover, to address the problem of long-distance semantic dependence and anaphora resolution in argument classification, we propose a novel pedal attention mechanism to extract the semantic relation between two words through their dependent adjacent words. We label a Chinese legal event dataset and evaluate our model on it. Experimental results demonstrate that our model can surpass other state-of-the-art models.
pdf
bib
abs
Is Killed More Significant than Fled? A Contextual Model for Salient Event Detection
Disha Jindal
|
Daniel Deutsch
|
Dan Roth
Identifying the key events in a document is critical to holistically understanding its important information. Although measuring the salience of events is highly contextual, most previous work has used a limited representation of events that omits essential information. In this work, we propose a highly contextual model of event salience that uses a rich representation of events, incorporates document-level information and allows for interactions between latent event encodings. Our experimental results on an event salience dataset demonstrate that our model improves over previous work by an absolute 2-4% on standard metrics, establishing a new state-of-the-art performance for the task. We also propose a new evaluation metric that addresses flaws in previous evaluation methodologies. Finally, we discuss the importance of salient event detection for the downstream task of summarization.
pdf
bib
abs
Appraisal Theories for Emotion Classification in Text
Jan Hofmann
|
Enrica Troiano
|
Kai Sassenberg
|
Roman Klinger
Automatic emotion categorization has been predominantly formulated as text classification in which textual units are assigned to an emotion from a predefined inventory, for instance following the fundamental emotion classes proposed by Paul Ekman (fear, joy, anger, disgust, sadness, surprise) or Robert Plutchik (adding trust, anticipation). This approach ignores existing psychological theories to some degree, which provide explanations regarding the perception of events. For instance, the description that somebody discovers a snake is associated with fear, based on the appraisal as being an unpleasant and non-controllable situation. This emotion reconstruction is even possible without having access to explicit reports of a subjective feeling (for instance expressing this with the words “I am afraid.”). Automatic classification approaches therefore need to learn properties of events as latent variables (for instance that the uncertainty and the mental or physical effort associated with the encounter of a snake leads to fear). With this paper, we propose to make such interpretations of events explicit, following theories of cognitive appraisal of events, and show their potential for emotion classification when being encoded in classification models. Our results show that high quality appraisal dimension assignments in event descriptions lead to an improvement in the classification of discrete emotion categories. We make our corpus of appraisal-annotated emotion-associated event descriptions publicly available.
pdf
bib
abs
A Symmetric Local Search Network for Emotion-Cause Pair Extraction
Zifeng Cheng
|
Zhiwei Jiang
|
Yafeng Yin
|
Hua Yu
|
Qing Gu
Emotion-cause pair extraction (ECPE) is a new task which aims at extracting the potential clause pairs of emotions and corresponding causes in a document. To tackle this task, a two-step method was proposed by previous study which first extracted emotion clauses and cause clauses individually, then paired the emotion and cause clauses, and filtered out the pairs without causality. Different from this method that separated the detection and the matching of emotion and cause into two steps, we propose a Symmetric Local Search Network (SLSN) model to perform the detection and matching simultaneously by local search. SLSN consists of two symmetric subnetworks, namely the emotion subnetwork and the cause subnetwork. Each subnetwork is composed of a clause representation learner and a local pair searcher. The local pair searcher is a specially-designed cross-subnetwork component which can extract the local emotion-cause pairs. Experimental results on the ECPE corpus demonstrate the superiority of our SLSN over existing state-of-the-art methods.
pdf
bib
abs
Jointly Learning Aspect-Focused and Inter-Aspect Relations with Graph Convolutional Networks for Aspect Sentiment Analysis
Bin Liang
|
Rongdi Yin
|
Lin Gui
|
Jiachen Du
|
Ruifeng Xu
In this paper, we explore a novel solution of constructing a heterogeneous graph for each instance by leveraging aspect-focused and inter-aspect contextual dependencies for the specific aspect and propose an Interactive Graph Convolutional Networks (InterGCN) model for aspect sentiment analysis. Specifically, an ordinary dependency graph is first constructed for each sentence over the dependency tree. Then we refine the graph by considering the syntactical dependencies between contextual words and aspect-specific words to derive the aspect-focused graph. Subsequently, the aspect-focused graph and the corresponding embedding matrix are fed into the aspect-focused GCN to capture the key aspect and contextual words. Besides, to interactively extract the inter-aspect relations for the specific aspect, an inter-aspect GCN is adopted to model the representations learned by aspect-focused GCN based on the inter-aspect graph which is constructed by the relative dependencies between the aspect words and other aspects. Hence, the model can be aware of the significant contextual and aspect words when interactively learning the sentiment features for a specific aspect. Experimental results on four benchmark datasets illustrate that our proposed model outperforms state-of-the-art methods and substantially boosts the performance in comparison with BERT.
pdf
bib
abs
METNet: A Mutual Enhanced Transformation Network for Aspect-based Sentiment Analysis
Bin Jiang
|
Jing Hou
|
Wanyue Zhou
|
Chao Yang
|
Shihan Wang
|
Liang Pang
Aspect-based sentiment analysis (ABSA) aims to determine the sentiment polarity of each specific aspect in a given sentence. Existing researches have realized the importance of the aspect for the ABSA task and have derived many interactive learning methods that model context based on specific aspect. However, current interaction mechanisms are ill-equipped to learn complex sentences with multiple aspects, and these methods underestimate the representation learning of the aspect. In order to solve the two problems, we propose a mutual enhanced transformation network (METNet) for the ABSA task. First, the aspect enhancement module in METNet improves the representation learning of the aspect with contextual semantic features, which gives the aspect more abundant information. Second, METNet designs and implements a hierarchical structure, which enhances the representations of aspect and context iteratively. Experimental results on SemEval 2014 Datasets demonstrate the effectiveness of METNet, and we further prove that METNet is outstanding in multi-aspect scenarios.
pdf
bib
abs
Making the Best Use of Review Summary for Sentiment Analysis
Sen Yang
|
Leyang Cui
|
Jun Xie
|
Yue Zhang
Sentiment analysis provides a useful overview of customer review contents. Many review websites allow a user to enter a summary in addition to a full review. Intuitively, summary information may give additional benefit for review sentiment analysis. In this paper, we conduct a study to exploit methods for better use of summary information. We start by finding out that the sentimental signal distribution of a review and that of its corresponding summary are in fact complementary to each other. We thus explore various architectures to better guide the interactions between the two and propose a hierarchically-refined review-centric attention model. Empirical results show that our review-centric model can make better use of user-written summaries for review sentiment analysis, and is also more effective compared to existing methods when the user summary is replaced with summary generated by an automatic summarization system.
pdf
bib
abs
From Sentiment Annotations to Sentiment Prediction through Discourse Augmentation
Patrick Huber
|
Giuseppe Carenini
Sentiment analysis, especially for long documents, plausibly requires methods capturing complex linguistics structures. To accommodate this, we propose a novel framework to exploit task-related discourse for the task of sentiment analysis. More specifically, we are combining the large-scale, sentiment-dependent MEGA-DT treebank with a novel neural architecture for sentiment prediction, based on a hybrid TreeLSTM hierarchical attention model. Experiments show that our framework using sentiment-related discourse augmentations for sentiment prediction enhances the overall performance for long documents, even beyond previous approaches using well-established discourse parsers trained on human annotated data. We show that a simple ensemble approach can further enhance performance by selectively using discourse, depending on the document length.
pdf
bib
abs
End-to-End Emotion-Cause Pair Extraction with Graph Convolutional Network
Ying Chen
|
Wenjun Hou
|
Shoushan Li
|
Caicong Wu
|
Xiaoqiang Zhang
Emotion-cause pair extraction (ECPE), which aims at simultaneously extracting emotion-cause pairs that express emotions and their corresponding causes in a document, plays a vital role in understanding natural languages. Considering that most emotions usually have few causes mentioned in their contexts, we present a novel end-to-end Pair Graph Convolutional Network (PairGCN) to model pair-level contexts so that to capture the dependency information among local neighborhood candidate pairs. Moreover, in the graphical network, contexts are grouped into three types and each type of contexts is propagated by its own way. Experiments on a benchmark Chinese emotion-cause pair extraction corpus demonstrate the effectiveness of the proposed model.
pdf
bib
abs
A Unified Sequence Labeling Model for Emotion Cause Pair Extraction
Xinhong Chen
|
Qing Li
|
Jianping Wang
Emotion-cause pair extraction (ECPE) aims at extracting emotions and causes as pairs from documents, where each pair contains an emotion clause and a set of cause clauses. Existing approaches address the task by first extracting emotion and cause clauses via two binary classifiers separately, and then training another binary classifier to pair them up. However, the extracted emotion-cause pairs of different emotion types cannot be distinguished from each other through simple binary classifiers, which limits the applicability of the existing approaches. Moreover, such two-step approaches may suffer from possible cascading errors. In this paper, to address the first problem, we assign emotion type labels to emotion and cause clauses so that emotion-cause pairs of different emotion types can be easily distinguished. As for the second problem, we reformulate the ECPE task as a unified sequence labeling task, which can extract multiple emotion-cause pairs in an end-to-end fashion. We propose an approach composed of a convolution neural network for encoding neighboring information and two Bidirectional Long-Short Term Memory networks for two auxiliary tasks. Experiment results demonstrate the feasibility and effectiveness of our approaches.
pdf
bib
abs
Regrexit or not Regrexit: Aspect-based Sentiment Analysis in Polarized Contexts
Vorakit Vorakitphan
|
Marco Guerini
|
Elena Cabrio
|
Serena Villata
Emotion analysis in polarized contexts represents a challenge for Natural Language Processing modeling. As a step in the aforementioned direction, we present a methodology to extend the task of Aspect-based Sentiment Analysis (ABSA) toward the affect and emotion representation in polarized settings. In particular, we adopt the three-dimensional model of affect based on Valence, Arousal, and Dominance (VAD). We then present a Brexit scenario that proves how affect varies toward the same aspect when politically polarized stances are presented. Our approach captures aspect-based polarization from newspapers regarding the Brexit scenario of 1.2m entities at sentence-level. We demonstrate how basic constituents of emotions can be mapped to the VAD model, along with their interactions respecting the polarized context in ABSA settings using biased key-concepts (e.g., “stop Brexit” vs. “support Brexit”). Quite intriguingly, the framework achieves to produce coherent aspect evidences of Brexit’s stance from key-concepts, showing that VAD influence the support and opposition aspects.
pdf
bib
abs
Affective and Contextual Embedding for Sarcasm Detection
Nastaran Babanejad
|
Heidar Davoudi
|
Aijun An
|
Manos Papagelis
Automatic sarcasm detection from text is an important classification task that can help identify the actual sentiment in user-generated data, such as reviews or tweets. Despite its usefulness, sarcasm detection remains a challenging task, due to a lack of any vocal intonation or facial gestures in textual data. To date, most of the approaches to addressing the problem have relied on hand-crafted affect features, or pre-trained models of non-contextual word embeddings, such as Word2vec. However, these models inherit limitations that render them inadequate for the task of sarcasm detection. In this paper, we propose two novel deep neural network models for sarcasm detection, namely ACE 1 and ACE 2. Given as input a text passage, the models predict whether it is sarcastic (or not). Our models extend the architecture of BERT by incorporating both affective and contextual features. To the best of our knowledge, this is the first attempt to directly alter BERT’s architecture and train it from scratch to build a sarcasm classifier. Extensive experiments on different datasets demonstrate that the proposed models outperform state-of-the-art models for sarcasm detection with significant margins.
pdf
bib
abs
Understanding Pre-trained BERT for Aspect-based Sentiment Analysis
Hu Xu
|
Lei Shu
|
Philip Yu
|
Bing Liu
This paper analyzes the pre-trained hidden representations learned from reviews on BERT for tasks in aspect-based sentiment analysis (ABSA). Our work is motivated by the recent progress in BERT-based language models for ABSA. However, it is not clear how the general proxy task of (masked) language model trained on unlabeled corpus without annotations of aspects or opinions can provide important features for downstream tasks in ABSA. By leveraging the annotated datasets in ABSA, we investigate both the attentions and the learned representations of BERT pre-trained on reviews. We found that BERT uses very few self-attention heads to encode context words (such as prepositions or pronouns that indicating an aspect) and opinion words for an aspect. Most features in the representation of an aspect are dedicated to the fine-grained semantics of the domain (or product category) and the aspect itself, instead of carrying summarized opinions from its context. We hope this investigation can help future research in improving self-supervised learning, unsupervised learning and fine-tuning for ABSA. The pre-trained model and code can be found at
https://github.com/howardhsu/BERT-for-RRC-ABSA.
pdf
bib
abs
Weighed Domain-Invariant Representation Learning for Cross-domain Sentiment Analysis
Minlong Peng
|
Qi Zhang
Cross-domain sentiment analysis is currently a hot topic in both the research and industrial areas. One of the most popular framework for the task is domain-invariant representation learning (DIRL), which aims to learn a distribution-invariant feature representation across domains. However, in this work, we find out that applying DIRL may degrade domain adaptation performance when the label distribution P(Y) changes across domains. To address this problem, we propose a modification to DIRL, obtaining a novel weighted domain-invariant representation learning (WDIRL) framework. We show that it is easy to transfer existing models of the DIRL framework to the WDIRL framework. Empirical studies on extensive cross-domain sentiment analysis tasks verified our statements and showed the effectiveness of our proposed solution.
pdf
bib
abs
Improving Sentiment Analysis over non-English Tweets using Multilingual Transformers and Automatic Translation for Data-Augmentation
Valentin Barriere
|
Alexandra Balahur
Tweets are specific text data when compared to general text. Although sentiment analysis over tweets has become very popular in the last decade for English, it is still difficult to find huge annotated corpora for non-English languages. The recent rise of the transformer models in Natural Language Processing allows to achieve unparalleled performances in many tasks, but these models need a consequent quantity of text to adapt to the tweet domain. We propose the use of a multilingual transformer model, that we pre-train over English tweets on which we apply data-augmentation using automatic translation to adapt the model to non-English languages. Our experiments in French, Spanish, German and Italian suggest that the proposed technique is an efficient way to improve the results of the transformers over small corpora of tweets in a non-English language.
pdf
bib
abs
Joint Aspect Extraction and Sentiment Analysis with Directional Graph Convolutional Networks
Guimin Chen
|
Yuanhe Tian
|
Yan Song
End-to-end aspect-based sentiment analysis (EASA) consists of two sub-tasks: the first extracts the aspect terms in a sentence and the second predicts the sentiment polarities for such terms. For EASA, compared to pipeline and multi-task approaches, joint aspect extraction and sentiment analysis provides a one-step solution to predict both aspect terms and their sentiment polarities through a single decoding process, which avoid the mismatches in between the results of aspect terms and sentiment polarities, as well as error propagation. Previous studies, especially recent ones, for this task focus on using powerful encoders (e.g., Bi-LSTM and BERT) to model contextual information from the input, with limited efforts paid to using advanced neural architectures (such as attentions and graph convolutional networks) or leveraging extra knowledge (such as syntactic information). To extend such efforts, in this paper, we propose directional graph convolutional networks (D-GCN) to jointly perform aspect extraction and sentiment analysis with encoding syntactic information, where dependency among words are integrated in our model to enhance its ability of representing input sentences and help EASA accordingly. Experimental results on three benchmark datasets demonstrate the effectiveness of our approach, where D-GCN achieves state-of-the-art performance on all datasets.
pdf
bib
abs
Train Once, and Decode As You Like
Chao Tian
|
Yifei Wang
|
Hao Cheng
|
Yijiang Lian
|
Zhihua Zhang
In this paper we propose a unified approach for supporting different generation manners of machine translation, including autoregressive, semi-autoregressive, and refinement-based non-autoregressive models. Our approach works by repeatedly selecting positions and generating tokens at these selected positions. After being trained once, our approach achieves better or competitive translation performance compared with some strong task-specific baseline models in all the settings. This generalization ability benefits mainly from the new training objective that we propose. We validate our approach on the WMT’14 English-German and IWSLT’14 German-English translation tasks. The experimental results are encouraging.
pdf
bib
abs
A Representation Learning Approach to Animal Biodiversity Conservation
Meet Mukadam
|
Mandhara Jayaram
|
Yongfeng Zhang
Generating knowledge from natural language data has aided in solving many artificial intelligence problems. Vector representations of words have been the driving force behind the majority of natural language processing tasks. This paper develops a novel approach for predicting the conservation status of animal species using custom generated scientific name embeddings. We use two different vector embeddings generated using representation learning on Wikipedia text and animal taxonomy data. We generate name embeddings for all species in the animal kingdom using unsupervised learning and build a model on the IUCN Red List dataset to classify species into endangered or least-concern. To our knowledge, this is the first work that makes use of learnt features instead of handcrafted features for this task and achieves competitive results. Based on the high confidence results of our model, we also predict the conservation status of data deficient species whose conservation status is still unknown and thus steering more focus towards them for protection. These embeddings have also been made publicly available here. We believe this will greatly help in solving various downstream tasks and further advance research in the cross-domain involving natural language processing, conservation biology, and life sciences.
pdf
bib
abs
Integrating External Event Knowledge for Script Learning
Shangwen Lv
|
Fuqing Zhu
|
Songlin Hu
Script learning aims to predict the subsequent event according to the existing event chain. Recent studies focus on event co-occurrence to solve this problem. However, few studies integrate external event knowledge to solve this problem. With our observations, external event knowledge can provide additional knowledge like temporal or causal knowledge for understanding event chain better and predicting the right subsequent event. In this work, we integrate event knowledge from ASER (Activities, States, Events and their Relations) knowledge base to help predict the next event. We propose a new approach consisting of knowledge retrieval stage and knowledge integration stage. In the knowledge retrieval stage, we select relevant external event knowledge from ASER. In the knowledge integration stage, we propose three methods to integrate external knowledge into our model and infer final answers. Experiments on the widely-used Multi- Choice Narrative Cloze (MCNC) task show our approach achieves state-of-the-art performance compared to other methods.
pdf
bib
abs
Pointing to Subwords for Generating Function Names in Source Code
Shogo Fujita
|
Hidetaka Kamigaito
|
Hiroya Takamura
|
Manabu Okumura
We tackle the task of automatically generating a function name from source code. Existing generators face difficulties in generating low-frequency or out-of-vocabulary subwords. In this paper, we propose two strategies for copying low-frequency or out-of-vocabulary subwords in inputs. Our best performing model showed an improvement over the conventional method in terms of our modified F1 and accuracy on the Java-small and Java-large datasets.
pdf
bib
abs
Heterogeneous Graph Neural Networks to Predict What Happen Next
Jianming Zheng
|
Fei Cai
|
Yanxiang Ling
|
Honghui Chen
Given an incomplete event chain, script learning aims to predict the missing event, which can support a series of NLP applications. Existing work cannot well represent the heterogeneous relations and capture the discontinuous event segments that are common in the event chain. To address these issues, we introduce a heterogeneous-event (HeterEvent) graph network. In particular, we employ each unique word and individual event as nodes in the graph, and explore three kinds of edges based on realistic relations (e.g., the relations of word-and-word, word-and-event, event-and-event). We also design a message passing process to realize information interactions among homo or heterogeneous nodes. And the discontinuous event segments could be explicitly modeled by finding the specific path between corresponding nodes in the graph. The experimental results on one-step and multi-step inference tasks demonstrate that our ensemble model HeterEvent[W+E] can outperform existing baselines.
pdf
bib
abs
CEREC: A Corpus for Entity Resolution in Email Conversations
Parag Pravin Dakle
|
Dan Moldovan
We present the first large scale corpus for entity resolution in email conversations (CEREC). The corpus consists of 6001 email threads from the Enron Email Corpus containing 36,448 email messages and 38,996 entity coreference chains. The annotation is carried out as a two-step process with minimal manual effort. Experiments are carried out for evaluating different features and performance of four baselines on the created corpus. For the task of mention identification and coreference resolution, a best performance of 54.1 F1 is reported, highlighting the room for improvement. An in-depth qualitative and quantitative error analysis is presented to understand the limitations of the baselines considered.
pdf
bib
abs
SQL Generation via Machine Reading Comprehension
Zeyu Yan
|
Jianqiang Ma
|
Yang Zhang
|
Jianping Shen
Text-to-SQL systems offers natural language interfaces to databases, which can automatically generates SQL queries given natural language questions. On the WikiSQL benchmark, state-of- the-art text-to-SQL systems typically take a slot-filling approach by building several specialized models for each type of slot. Despite being effective, such modularized systems are complex and also fall short in jointly learning for different slots. To solve these problems, this paper proposes a novel approach that formulates the task as a question answering problem, where different slots are predicted by a unified machine reading comprehension (MRC) model. For this purpose, we use a BERT-based MRC model, which can also benefit from intermediate training on other MRC datasets. The proposed method can achieve competitive results on WikiSQL, suggesting it being a promising direction for text-to-SQL.
pdf
bib
abs
Towards Privacy by Design in Learner Corpora Research: A Case of On-the-fly Pseudonymization of Swedish Learner Essays
Elena Volodina
|
Yousuf Ali Mohammed
|
Sandra Derbring
|
Arild Matsson
|
Beata Megyesi
This article reports on an ongoing project aiming at automatization of pseudonymization of learner essays. The process includes three steps: identification of personal information in an unstructured text, labeling for a category, and pseudonymization. We experiment with rule-based methods for detection of 15 categories out of the suggested 19 (Megyesi et al., 2018) that we deem important and/or doable with automatic approaches. For the detection and labeling steps,we use resources covering personal names, geographic names, company and university names and others. For the pseudonymization step, we replace the item using another item of the same type from the above-mentioned resources. Evaluation of the detection and labeling steps are made on a set of manually anonymized essays. The results are promising and show that 89% of the personal information can be successfully identified in learner data, and annotated correctly with an inter-annotator agreement of 86% measured as Fleiss kappa and Krippendorff’s alpha.
pdf
bib
abs
PG-GSQL: Pointer-Generator Network with Guide Decoding for Cross-Domain Context-Dependent Text-to-SQL Generation
Huajie Wang
|
Mei Li
|
Lei Chen
Text-to-SQL is a task of translating utterances to SQL queries, and most existing neural approaches of text-to-SQL focus on the cross-domain context-independent generation task. We pay close attention to the cross-domain context-dependent text-to-SQL generation task, which requires a model to depend on the interaction history and current utterance to generate SQL query. In this paper, we present an encoder-decoder model called PG-GSQL based on the interaction-level encoder and with two effective innovations in decoder to solve cross-domain context-dependent text-to-SQL task. 1) To effectively capture historical information of SQL query and reuse the previous SQL query tokens, we use a hybrid pointer-generator network as decoder to copy tokens from the previous SQL query via pointer, the generator part is utilized to generate new tokens. 2) We propose a guide component to limit the prediction space of vocabulary for avoiding table-column dependency and foreign key dependency errors during decoding phase. In addition, we design a column-table linking mechanism to improve the prediction accuracy of tables. On the challenging cross-domain context-dependent text-to-SQL benchmark SParC, PG-GSQL achieves 34.0% question matching accuracy and 19.0% interaction matching accuracy on the dev set. With BERT augmentation, PG-GSQL obtains 53.1% question matching accuracy and 34.7% interaction matching accuracy on the dev set, outperforms the previous state-of-the-art model by 5.9% question matching accuracy and 5.2% interaction matching accuracy. Our code is publicly available.
pdf
bib
abs
Neural Approaches for Natural Language Interfaces to Databases: A Survey
Radu Cristian Alexandru Iacob
|
Florin Brad
|
Elena-Simona Apostol
|
Ciprian-Octavian Truică
|
Ionel Alexandru Hosu
|
Traian Rebedea
A natural language interface to databases (NLIDB) enables users without technical expertise to easily access information from relational databases. Interest in NLIDBs has resurged in the past years due to the availability of large datasets and improvements to neural sequence-to-sequence models. In this survey we focus on the key design decisions behind current state of the art neural approaches, which we group into encoder and decoder improvements. We highlight the three most important directions, namely linking question tokens to database schema elements (schema linking), better architectures for encoding the textual query taking into account the schema (schema encoding), and improved generation of structured queries using autoregressive neural models (grammar-based decoders). To foster future research, we also present an overview of the most important NLIDB datasets, together with a comparison of the top performing neural models and a short insight into recent non deep learning solutions.
pdf
bib
abs
Predicting Stance Change Using Modular Architectures
Aldo Porco
|
Dan Goldwasser
The ability to change a person’s mind on a given issue depends both on the arguments they are presented with and on their underlying perspectives and biases on that issue. Predicting stance changes require characterizing both aspects and the interaction between them, especially in realistic settings in which stance changes are very rare. In this paper, we suggest a modular learning approach, which decomposes the task into multiple modules, focusing on different aspects of the interaction between users, their beliefs, and the arguments they are exposed to. Our experiments show that our modular approach archives significantly better results compared to the end-to-end approach using BERT over the same inputs.
pdf
bib
abs
Leveraging HTML in Free Text Web Named Entity Recognition
Colin Ashby
|
David Weir
HTML tags are typically discarded in free text Named Entity Recognition from Web pages. We investigate whether these discarded tags might be used to improve NER performance. We compare Text+Tags sentences with their Text-Only equivalents, over five datasets, two free text segmentation granularities and two NER models. We find an increased F1 performance for Text+Tags of between 0.9% and 13.2% over all datasets, variants and models. This performance increase, over datasets of varying entity types, HTML density and construction quality, indicates our method is flexible and adaptable. These findings imply that a similar technique might be of use in other Web-aware NLP tasks, including the enrichment of deep language models.
pdf
bib
abs
Multimodal Review Generation with Privacy and Fairness Awareness
Xuan-Son Vu
|
Thanh-Son Nguyen
|
Duc-Trong Le
|
Lili Jiang
Users express their opinions towards entities (e.g., restaurants) via online reviews which can be in diverse forms such as text, ratings, and images. Modeling reviews are advantageous for user behavior understanding which, in turn, supports various user-oriented tasks such as recommendation, sentiment analysis, and review generation. In this paper, we propose MG-PriFair, a multimodal neural-based framework, which generates personalized reviews with privacy and fairness awareness. Motivated by the fact that reviews might contain personal information and sentiment bias, we propose a novel differentially private (dp)-embedding model for training privacy guaranteed embeddings and an evaluation approach for sentiment fairness in the food-review domain. Experiments on our novel review dataset show that MG-PriFair is capable of generating plausibly long reviews while controlling the amount of exploited user data and using the least sentiment biased word embeddings. To the best of our knowledge, we are the first to bring user privacy and sentiment fairness into the review generation task. The dataset and source codes are available at
https://github.com/ReML-AI/MG-PriFair.
pdf
bib
abs
Generating Equation by Utilizing Operators : GEO model
Kyung Seo Ki
|
Donggeon Lee
|
Bugeun Kim
|
Gahgene Gweon
Math word problem solving is an emerging research topic in Natural Language Processing. Recently, to address the math word problem-solving task, researchers have applied the encoder-decoder architecture, which is mainly used in machine translation tasks. The state-of-the-art neural models use hand-crafted features and are based on generation methods. In this paper, we propose the GEO (Generation of Equations by utilizing Operators) model that does not use hand-crafted features and addresses two issues that are present in existing neural models: 1. missing domain-specific knowledge features and 2. losing encoder-level knowledge. To address missing domain-specific feature issue, we designed two auxiliary tasks: operation group difference prediction and implicit pair prediction. To address losing encoder-level knowledge issue, we added an Operation Feature Feed Forward (OP3F) layer. Experimental results showed that the GEO model outperformed existing state-of-the-art models on two datasets, 85.1% in MAWPS, and 62.5% in DRAW-1K, and reached comparable performance of 82.1% in ALG514 dataset.
pdf
bib
abs
Improving Abstractive Dialogue Summarization with Graph Structures and Topic Words
Lulu Zhao
|
Weiran Xu
|
Jun Guo
Recently, people have been beginning paying more attention to the abstractive dialogue summarization task. Since the information flows are exchanged between at least two interlocutors and key elements about a certain event are often spanned across multiple utterances, it is necessary for researchers to explore the inherent relations and structures of dialogue contents. However, the existing approaches often process the dialogue with sequence-based models, which are hard to capture long-distance inter-sentence relations. In this paper, we propose a Topic-word Guided Dialogue Graph Attention (TGDGA) network to model the dialogue as an interaction graph according to the topic word information. A masked graph self-attention mechanism is used to integrate cross-sentence information flows and focus more on the related utterances, which makes it better to understand the dialogue. Moreover, the topic word features are introduced to assist the decoding process. We evaluate our model on the SAMSum Corpus and Automobile Master Corpus. The experimental results show that our method outperforms most of the baselines.
pdf
bib
abs
Speaker-change Aware CRF for Dialogue Act Classification
Guokan Shang
|
Antoine Tixier
|
Michalis Vazirgiannis
|
Jean-Pierre Lorré
Recent work in Dialogue Act (DA) classification approaches the task as a sequence labeling problem, using neural network models coupled with a Conditional Random Field (CRF) as the last layer. CRF models the conditional probability of the target DA label sequence given the input utterance sequence. However, the task involves another important input sequence, that of speakers, which is ignored by previous work. To address this limitation, this paper proposes a simple modification of the CRF layer that takes speaker-change into account. Experiments on the SwDA corpus show that our modified CRF layer outperforms the original one, with very wide margins for some DA labels. Further, visualizations demonstrate that our CRF layer can learn meaningful, sophisticated transition patterns between DA label pairs conditioned on speaker-change in an end-to-end way. Code is publicly available.
pdf
bib
abs
LAVA: Latent Action Spaces via Variational Auto-encoding for Dialogue Policy Optimization
Nurul Lubis
|
Christian Geishauser
|
Michael Heck
|
Hsien-chin Lin
|
Marco Moresi
|
Carel van Niekerk
|
Milica Gasic
Reinforcement learning (RL) can enable task-oriented dialogue systems to steer the conversation towards successful task completion. In an end-to-end setting, a response can be constructed in a word-level sequential decision making process with the entire system vocabulary as action space. Policies trained in such a fashion do not require expert-defined action spaces, but they have to deal with large action spaces and long trajectories, making RL impractical. Using the latent space of a variational model as action space alleviates this problem. However, current approaches use an uninformed prior for training and optimize the latent distribution solely on the context. It is therefore unclear whether the latent representation truly encodes the characteristics of different actions. In this paper, we explore three ways of leveraging an auxiliary task to shape the latent variable distribution: via pre-training, to obtain an informed prior, and via multitask learning. We choose response auto-encoding as the auxiliary task, as this captures the generative factors of dialogue responses while requiring low computational cost and neither additional data nor labels. Our approach yields a more action-characterized latent representations which support end-to-end dialogue policy optimization and achieves state-of-the-art success rates. These results warrant a more wide-spread use of RL in end-to-end dialogue models.
pdf
bib
abs
Recent Neural Methods on Slot Filling and Intent Classification for Task-Oriented Dialogue Systems: A Survey
Samuel Louvan
|
Bernardo Magnini
In recent years, fostered by deep learning technologies and by the high demand for conversational AI, various approaches have been proposed that address the capacity to elicit and understand user’s needs in task-oriented dialogue systems. We focus on two core tasks, slot filling (SF) and intent classification (IC), and survey how neural based models have rapidly evolved to address natural language understanding in dialogue systems. We introduce three neural architectures: independent models, which model SF and IC separately, joint models, which exploit the mutual benefit of the two tasks simultaneously, and transfer learning models, that scale the model to new domains. We discuss the current state of the research in SF and IC, and highlight challenges that still require attention.
pdf
bib
abs
Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning
Morteza Rohanian
|
Julian Hough
We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance and is beneficial for future use in conversational agents in psychiatric treatment.
pdf
bib
abs
AprilE: Attention with Pseudo Residual Connection for Knowledge Graph Embedding
Yuzhang Liu
|
Peng Wang
|
Yingtai Li
|
Yizhan Shao
|
Zhongkai Xu
Knowledge graph embedding maps entities and relations into low-dimensional vector space. However, it is still challenging for many existing methods to model diverse relational patterns, especially symmetric and antisymmetric relations. To address this issue, we propose a novel model, AprilE, which employs triple-level self-attention and pseudo residual connection to model relational patterns. The triple-level self-attention treats head entity, relation, and tail entity as a sequence and captures the dependency within a triple. At the same time the pseudo residual connection retains primitive semantic features. Furthermore, to deal with symmetric and antisymmetric relations, two schemas of score function are designed via a position-adaptive mechanism. Experimental results on public datasets demonstrate that our model can produce expressive knowledge embedding and significantly outperforms most of the state-of-the-art works.
pdf
bib
abs
Variational Autoencoder with Embedded Student-t Mixture Model for Authorship Attribution
Benedikt Boenninghoff
|
Steffen Zeiler
|
Robert Nickel
|
Dorothea Kolossa
Traditional computational authorship attribution describes a classification task in a closed-set scenario. Given a finite set of candidate authors and corresponding labeled texts, the objective is to determine which of the authors has written another set of anonymous or disputed texts. In this work, we propose a probabilistic autoencoding framework to deal with this supervised classification task. Variational autoencoders (VAEs) have had tremendous success in learning latent representations. However, existing VAEs are currently still bound by limitations imposed by the assumed Gaussianity of the underlying probability distributions in the latent space. In this work, we are extending a VAE with an embedded Gaussian mixture model to a Student-t mixture model, which allows for an independent control of the “heaviness” of the respective tails of the implied probability densities. Experiments over an Amazon review dataset indicate superior performance of the proposed method.
pdf
bib
abs
Knowledge Graph Embeddings in Geometric Algebras
Chengjin Xu
|
Mojtaba Nayyeri
|
Yung-Yu Chen
|
Jens Lehmann
Knowledge graph (KG) embedding aims at embedding entities and relations in a KG into a low dimensional latent representation space. Existing KG embedding approaches model entities and relations in a KG by utilizing real-valued , complex-valued, or hypercomplex-valued (Quaternion or Octonion) representations, all of which are subsumed into a geometric algebra. In this work, we introduce a novel geometric algebra-based KG embedding framework, GeomE, which utilizes multivector representations and the geometric product to model entities and relations. Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns, including (anti-)symmetry, inversion and composition, rich expressiveness with higher degree of freedom as well as good generalization capacity. Experimental results on multiple benchmark knowledge graphs show that the proposed approach outperforms existing state-of-the-art models for link prediction.
pdf
bib
abs
Exploiting Node Content for Multiview Graph Convolutional Network and Adversarial Regularization
Qiuhao Lu
|
Nisansa de Silva
|
Dejing Dou
|
Thien Huu Nguyen
|
Prithviraj Sen
|
Berthold Reinwald
|
Yunyao Li
Network representation learning (NRL) is crucial in the area of graph learning. Recently, graph autoencoders and its variants have gained much attention and popularity among various types of node embedding approaches. Most existing graph autoencoder-based methods aim to minimize the reconstruction errors of the input network while not explicitly considering the semantic relatedness between nodes. In this paper, we propose a novel network embedding method which models the consistency across different views of networks. More specifically, we create a second view from the input network which captures the relation between nodes based on node content and enforce the latent representations from the two views to be consistent by incorporating a multiview adversarial regularization module. The experimental studies on benchmark datasets prove the effectiveness of this method, and demonstrate that our method compares favorably with the state-of-the-art algorithms on challenging tasks such as link prediction and node clustering. We also evaluate our method on a real-world application, i.e., 30-day unplanned ICU readmission prediction, and achieve promising results compared with several baseline methods.
pdf
bib
abs
RatE: Relation-Adaptive Translating Embedding for Knowledge Graph Completion
Hao Huang
|
Guodong Long
|
Tao Shen
|
Jing Jiang
|
Chengqi Zhang
Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especially when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.
pdf
bib
abs
SentiX: A Sentiment-Aware Pre-Trained Model for Cross-Domain Sentiment Analysis
Jie Zhou
|
Junfeng Tian
|
Rui Wang
|
Yuanbin Wu
|
Wenming Xiao
|
Liang He
Pre-trained language models have been widely applied to cross-domain NLP tasks like sentiment analysis, achieving state-of-the-art performance. However, due to the variety of users’ emotional expressions across domains, fine-tuning the pre-trained models on the source domain tends to overfit, leading to inferior results on the target domain. In this paper, we pre-train a sentiment-aware language model (SentiX) via domain-invariant sentiment knowledge from large-scale review datasets, and utilize it for cross-domain sentiment analysis task without fine-tuning. We propose several pre-training tasks based on existing lexicons and annotations at both token and sentence levels, such as emoticons, sentiment words, and ratings, without human interference. A series of experiments are conducted and the results indicate the great advantages of our model. We obtain new state-of-the-art results in all the cross-domain sentiment analysis tasks, and our proposed SentiX can be trained with only 1% samples (18 samples) and it achieves better performance than BERT with 90% samples.
pdf
bib
abs
Bayes-enhanced Lifelong Attention Networks for Sentiment Classification
Hao Wang
|
Shuai Wang
|
Sahisnu Mazumder
|
Bing Liu
|
Yan Yang
|
Tianrui Li
The classic deep learning paradigm learns a model from the training data of a single task and the learned model is also tested on the same task. This paper studies the problem of learning a sequence of tasks (sentiment classification tasks in our case). After each sentiment classification task is learned, its knowledge is retained to help future task learning. Following this setting, we explore attention neural networks and propose a Bayes-enhanced Lifelong Attention Network (BLAN). The key idea is to exploit the generative parameters of naive Bayes to learn attention knowledge. The learned knowledge from each task is stored in a knowledge base and later used to build lifelong attentions. The constructed lifelong attentions are then used to enhance the attention of the network to help new task learning. Experimental results on product reviews from Amazon.com show the effectiveness of the proposed model.
pdf
bib
abs
Arabizi Language Models for Sentiment Analysis
Gaétan Baert
|
Souhir Gahbiche
|
Guillaume Gadek
|
Alexandre Pauchet
Arabizi is a written form of spoken Arabic, relying on Latin characters and digits. It is informal and does not follow any conventional rules, raising many NLP challenges. In particular, Arabizi has recently emerged as the Arabic language in online social networks, becoming of great interest for opinion mining and sentiment analysis. Unfortunately, only few Arabizi resources exist and state-of-the-art language models such as BERT do not consider Arabizi. In this work, we construct and release two datasets: (i) LAD, a corpus of 7.7M tweets written in Arabizi and (ii) SALAD, a subset of LAD, manually annotated for sentiment analysis. Then, a BERT architecture is pre-trained on LAD, in order to create and distribute an Arabizi language model called BAERT. We show that a language model (BAERT) pre-trained on a large corpus (LAD) in the same language (Arabizi) as that of the fine-tuning dataset (SALAD), outperforms a state-of-the-art multi-lingual pretrained model (multilingual BERT) on a sentiment analysis task.
pdf
bib
abs
Author’s Sentiment Prediction
Mohaddeseh Bastan
|
Mahnaz Koupaee
|
Youngseo Son
|
Richard Sicoli
|
Niranjan Balasubramanian
Even though sentiment analysis has been well-studied on a wide range of domains, there hasn’tbeen much work on inferring author sentiment in news articles. To address this gap, we introducePerSenT, a crowd-sourced dataset that captures the sentiment of an author towards the mainentity in a news article. Our benchmarks of multiple strong baselines show that this is a difficultclassification task. BERT performs the best amongst the baselines. However, it only achievesa modest performance overall suggesting that fine-tuning document-level representations aloneisn’t adequate for this task. Making paragraph-level decisions and aggregating over the entiredocument is also ineffective. We present empirical and qualitative analyses that illustrate thespecific challenges posed by this dataset. We release this dataset with 5.3k documents and 38kparagraphs with 3.2k unique entities as a challenge in entity sentiment analysis.
pdf
bib
abs
Modeling Local Contexts for Joint Dialogue Act Recognition and Sentiment Classification with Bi-channel Dynamic Convolutions
Jingye Li
|
Hao Fei
|
Donghong Ji
In this paper, we target improving the joint dialogue act recognition (DAR) and sentiment classification (SC) tasks by fully modeling the local contexts of utterances. First, we employ the dynamic convolution network (DCN) as the utterance encoder to capture the dialogue contexts. Further, we propose a novel context-aware dynamic convolution network (CDCN) to better leverage the local contexts when dynamically generating kernels. We extended our frameworks into bi-channel version (i.e., BDCN and BCDCN) under multi-task learning to achieve the joint DAR and SC. Two channels can learn their own feature representations for DAR and SC, respectively, but with latent interaction. Besides, we suggest enhancing the tasks by employing the DiaBERT language model. Our frameworks obtain state-of-the-art performances against all baselines on two benchmark datasets, demonstrating the importance of modeling the local contexts.
pdf
bib
abs
Named Entity Recognition for Chinese biomedical patents
Yuting Hu
|
Suzan Verberne
There is a large body of work on Biomedical Entity Recognition (Bio-NER) for English but there have only been a few attempts addressing NER for Chinese biomedical texts. Because of the growing amount of Chinese biomedical discoveries being patented, and lack of NER models for patent data, we train and evaluate NER models for the analysis of Chinese biomedical patent data, based on BERT. By doing so, we show the value and potential of this domain-specific NER task. For the evaluation of our methods we built our own Chinese biomedical patents NER dataset, and our optimized model achieved an F1 score of 0.54±0.15. Further biomedical analysis indicates that our solution can help detecting meaningful biomedical entities and novel gene-gene interactions, with limited labeled data, training time and computing power.
pdf
bib
abs
Learning Health-Bots from Training Data that was Automatically Created using Paraphrase Detection and Expert Knowledge
Anna Liednikova
|
Philippe Jolivet
|
Alexandre Durand-Salmon
|
Claire Gardent
A key bottleneck for developing dialog models is the lack of adequate training data. Due to privacy issues, dialog data is even scarcer in the health domain. We propose a novel method for creating dialog corpora which we apply to create doctor-patient interaction data. We use this data to learn both a generation and a hybrid classification/retrieval model and find that the generation model consistently outperforms the hybrid model. We show that our data creation method has several advantages. Not only does it allow for the semi-automatic creation of large quantities of training data. It also provides a natural way of guiding learning and a novel method for assessing the quality of human-machine interactions.
pdf
bib
abs
A Joint Learning Approach based on Self-Distillation for Keyphrase Extraction from Scientific Documents
Tuan Lai
|
Trung Bui
|
Doo Soon Kim
|
Quan Hung Tran
Keyphrase extraction is the task of extracting a small set of phrases that best describe a document. Most existing benchmark datasets for the task typically have limited numbers of annotated documents, making it challenging to train increasingly complex neural networks. In contrast, digital libraries store millions of scientific articles online, covering a wide range of topics. While a significant portion of these articles contain keyphrases provided by their authors, most other articles lack such kind of annotations. Therefore, to effectively utilize these large amounts of unlabeled articles, we propose a simple and efficient joint learning approach based on the idea of self-distillation. Experimental results show that our approach consistently improves the performance of baseline models for keyphrase extraction. Furthermore, our best models outperform previous methods for the task, achieving new state-of-the-art results on two public benchmarks: Inspec and SemEval-2017.
pdf
bib
abs
Enhancing Clinical BERT Embedding using a Biomedical Knowledge Base
Boran Hao
|
Henghui Zhu
|
Ioannis Paschalidis
Domain knowledge is important for building Natural Language Processing (NLP) systems for low-resource settings, such as in the clinical domain. In this paper, a novel joint training method is introduced for adding knowledge base information from the Unified Medical Language System (UMLS) into language model pre-training for some clinical domain corpus. We show that in three different downstream clinical NLP tasks, our pre-trained language model outperforms the corresponding model with no knowledge base information and other state-of-the-art models. Specifically, in a natural language inference task applied to clinical texts, our knowledge base pre-training approach improves accuracy by up to 1.7%, whereas in clinical name entity recognition tasks, the F1-score improves by up to 1.0%. The pre-trained models are available at
https://github.com/noc-lab/clinical-kb-bert.
pdf
bib
abs
TIMBERT: Toponym Identifier For The Medical Domain Based on BERT
MohammadReza Davari
|
Leila Kosseim
|
Tien Bui
In this paper, we propose an approach to automate the process of place name detection in the medical domain to enable epidemiologists to better study and model the spread of viruses. We created a family of Toponym Identification Models based on BERT (TIMBERT), in order to learn in an end-to-end fashion the mapping from an input sentence to the associated sentence labeled with toponyms. When evaluated with the SemEval 2019 task 12 test set (Weissenbacher et al., 2019), our best TIMBERT model achieves an F1 score of 90.85%, a significant improvement compared to the state-of-the-art of 89.13% (Wang et al., 2019).
pdf
bib
abs
BioMedBERT: A Pre-trained Biomedical Language Model for QA and IR
Souradip Chakraborty
|
Ekaba Bisong
|
Shweta Bhatt
|
Thomas Wagner
|
Riley Elliott
|
Francesco Mosconi
The SARS-CoV-2 (COVID-19) pandemic spotlighted the importance of moving quickly with biomedical research. However, as the number of biomedical research papers continue to increase, the task of finding relevant articles to answer pressing questions has become significant. In this work, we propose a textual data mining tool that supports literature search to accelerate the work of researchers in the biomedical domain. We achieve this by building a neural-based deep contextual understanding model for Question-Answering (QA) and Information Retrieval (IR) tasks. We also leverage the new BREATHE dataset which is one of the largest available datasets of biomedical research literature, containing abstracts and full-text articles from ten different biomedical literature sources on which we pre-train our BioMedBERT model. Our work achieves state-of-the-art results on the QA fine-tuning task on BioASQ 5b, 6b and 7b datasets. In addition, we observe superior relevant results when BioMedBERT embeddings are used with Elasticsearch for the Information Retrieval task on the intelligently formulated BioASQ dataset. We believe our diverse dataset and our unique model architecture are what led us to achieve the state-of-the-art results for QA and IR tasks.
pdf
bib
abs
Extracting Adherence Information from Electronic Health Records
Jordan Sanders
|
Meghana Gudala
|
Kathleen Hamilton
|
Nishtha Prasad
|
Jordan Stovall
|
Eduardo Blanco
|
Jane E Hamilton
|
Kirk Roberts
Patient adherence is a critical factor in health outcomes. We present a framework to extract adherence information from electronic health records, including both sentence-level information indicating general adherence information (full, partial, none, etc.) and span-level information providing additional information such as adherence type (medication or nonmedication), reasons and outcomes. We annotate and make publicly available a new corpus of 3,000 de-identified sentences, and discuss the language physicians use to document adherence information. We also explore models based on state-of-the-art transformers to automate both tasks.
pdf
bib
abs
Identifying Depressive Symptoms from Tweets: Figurative Language Enabled Multitask Learning Framework
Shweta Yadav
|
Jainish Chauhan
|
Joy Prakash Sain
|
Krishnaprasad Thirunarayan
|
Amit Sheth
|
Jeremiah Schumm
Existing studies on using social media for deriving mental health status of users focus on the depression detection task. However, for case management and referral to psychiatrists, health-care workers require practical and scalable depressive disorder screening and triage system. This study aims to design and evaluate a decision support system (DSS) to reliably determine the depressive triage level by capturing fine-grained depressive symptoms expressed in user tweets through the emulation of the Patient Health Questionnaire-9 (PHQ-9) that is routinely used in clinical practice. The reliable detection of depressive symptoms from tweets is challenging because the 280-character limit on tweets incentivizes the use of creative artifacts in the utterances and figurative usage contributes to effective expression. We propose a novel BERT based robust multi-task learning framework to accurately identify the depressive symptoms using the auxiliary task of figurative usage detection. Specifically, our proposed novel task sharing mechanism,co-task aware attention, enables automatic selection of optimal information across the BERT lay-ers and tasks by soft-sharing of parameters. Our results show that modeling figurative usage can demonstrably improve the model’s robustness and reliability for distinguishing the depression symptoms.
pdf
bib
abs
French Biomedical Text Simplification: When Small and Precise Helps
Rémi Cardon
|
Natalia Grabar
We present experiments on biomedical text simplification in French. We use two kinds of corpora – parallel sentences extracted from existing health comparable corpora in French and WikiLarge corpus translated from English to French – and a lexicon that associates medical terms with paraphrases. Then, we train neural models on these parallel corpora using different ratios of general and specialized sentences. We evaluate the results with BLEU, SARI and Kandel scores. The results point out that little specialized data helps significantly the simplification.
pdf
bib
abs
Summarizing Medical Conversations via Identifying Important Utterances
Yan Song
|
Yuanhe Tian
|
Nan Wang
|
Fei Xia
Summarization is an important natural language processing (NLP) task in identifying key information from text. For conversations, the summarization systems need to extract salient contents from spontaneous utterances by multiple speakers. In a special task-oriented scenario, namely medical conversations between patients and doctors, the symptoms, diagnoses, and treatments could be highly important because the nature of such conversation is to find a medical solution to the problem proposed by the patients. Especially consider that current online medical platforms provide millions of public available conversations between real patients and doctors, where the patients propose their medical problems and the registered doctors offer diagnosis and treatment, a conversation in most cases could be too long and the key information is hard to be located. Therefore, summarizations to the patients’ problems and the doctors’ treatments in the conversations can be highly useful, in terms of helping other patients with similar problems have a precise reference for potential medical solutions. In this paper, we focus on medical conversation summarization, using a dataset of medical conversations and corresponding summaries which were crawled from a well-known online healthcare service provider in China. We propose a hierarchical encoder-tagger model (HET) to generate summaries by identifying important utterances (with respect to problem proposing and solving) in the conversations. For the particular dataset used in this study, we show that high-quality summaries can be generated by extracting two types of utterances, namely, problem statements and treatment recommendations. Experimental results demonstrate that HET outperforms strong baselines and models from previous studies, and adding conversation-related features can further improve system performance.
pdf
bib
abs
Probing Multimodal Embeddings for Linguistic Properties: the Visual-Semantic Case
Adam Dahlgren Lindström
|
Johanna Björklund
|
Suna Bensch
|
Frank Drewes
Semantic embeddings have advanced the state of the art for countless natural language processing tasks, and various extensions to multimodal domains, such as visual-semantic embeddings, have been proposed. While the power of visual-semantic embeddings comes from the distillation and enrichment of information through machine learning, their inner workings are poorly understood and there is a shortage of analysis tools. To address this problem, we generalize the notion ofprobing tasks to the visual-semantic case. To this end, we (i) discuss the formalization of probing tasks for embeddings of image-caption pairs, (ii) define three concrete probing tasks within our general framework, (iii) train classifiers to probe for those properties, and (iv) compare various state-of-the-art embeddings under the lens of the proposed probing tasks. Our experiments reveal an up to 16% increase in accuracy on visual-semantic embeddings compared to the corresponding unimodal embeddings, which suggest that the text and image dimensions represented in the former do complement each other.
pdf
bib
abs
Linguistic Profiling of a Neural Language Model
Alessio Miaschi
|
Dominique Brunato
|
Felice Dell’Orletta
|
Giulia Venturi
In this paper we investigate the linguistic knowledge learned by a Neural Language Model (NLM) before and after a fine-tuning process and how this knowledge affects its predictions during several classification problems. We use a wide set of probing tasks, each of which corresponds to a distinct sentence-level feature extracted from different levels of linguistic annotation. We show that BERT is able to encode a wide range of linguistic characteristics, but it tends to lose this information when trained on specific downstream tasks. We also find that BERT’s capacity to encode different kind of linguistic properties has a positive influence on its predictions: the more it stores readable linguistic information of a sentence, the higher will be its capacity of predicting the expected label assigned to that sentence.
pdf
bib
abs
IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP
Fajri Koto
|
Afshin Rahimi
|
Jey Han Lau
|
Timothy Baldwin
Although the Indonesian language is spoken by almost 200 million people and the 10th most spoken language in the world, it is under-represented in NLP research. Previous work on Indonesian has been hampered by a lack of annotated datasets, a sparsity of language resources, and a lack of resource standardization. In this work, we release the IndoLEM dataset comprising seven tasks for the Indonesian language, spanning morpho-syntax, semantics, and discourse. We additionally release IndoBERT, a new pre-trained language model for Indonesian, and evaluate it over IndoLEM, in addition to benchmarking it against existing resources. Our experiments show that IndoBERT achieves state-of-the-art performance over most of the tasks in IndoLEM.
pdf
bib
abs
A Closer Look at Linguistic Knowledge in Masked Language Models: The Case of Relative Clauses in American English
Marius Mosbach
|
Stefania Degaetano-Ortlieb
|
Marie-Pauline Krielke
|
Badr M. Abdullah
|
Dietrich Klakow
Transformer-based language models achieve high performance on various tasks, but we still lack understanding of the kind of linguistic knowledge they learn and rely on. We evaluate three models (BERT, RoBERTa, and ALBERT), testing their grammatical and semantic knowledge by sentence-level probing, diagnostic cases, and masked prediction tasks. We focus on relative clauses (in American English) as a complex phenomenon needing contextual information and antecedent identification to be resolved. Based on a naturalistic dataset, probing shows that all three models indeed capture linguistic knowledge about grammaticality, achieving high performance. Evaluation on diagnostic cases and masked prediction tasks considering fine-grained linguistic knowledge, however, shows pronounced model-specific weaknesses especially on semantic knowledge, strongly impacting models’ performance. Our results highlight the importance of (a)model comparison in evaluation task and (b) building up claims of model performance and the linguistic knowledge they capture beyond purely probing-based evaluations.
pdf
bib
abs
Modeling language evolution and feature dynamics in a realistic geographic environment
Rhea Kapur
|
Phillip Rogers
Recent, innovative efforts to understand the uneven distribution of languages and linguistic feature values in time and space attest to both the challenge these issues pose and the value in solving them. In this paper, we introduce a model for simulating languages and their features over time in a realistic geographic environment. At its core is a model of language phylogeny and migration whose parameters are chosen to reproduce known language family sizes and geographic dispersions. This foundation in turn is used to explore the dynamics of linguistic features. Languages are assigned feature values that can change randomly or under the influence of nearby languages according to predetermined probabilities. We assess the effects of these settings on resulting geographic and genealogical patterns using homogeneity measures defined in the literature. The resulting model is both flexible and realistic, and it can be employed to answer a wide range of related questions.
pdf
bib
abs
Syntax-Aware Graph Attention Network for Aspect-Level Sentiment Classification
Lianzhe Huang
|
Xin Sun
|
Sujian Li
|
Linhao Zhang
|
Houfeng Wang
Aspect-level sentiment classification aims to distinguish the sentiment polarities over aspect terms in a sentence. Existing approaches mostly focus on modeling the relationship between the given aspect words and their contexts with attention, and ignore the use of more elaborate knowledge implicit in the context. In this paper, we exploit syntactic awareness to the model by the graph attention network on the dependency tree structure and external pre-training knowledge by BERT language model, which helps to model the interaction between the context and aspect words better. And the subwords of BERT are integrated into the dependency tree graphs, which can obtain more accurate representations of words by graph attention. Experiments demonstrate the effectiveness of our model.
pdf
bib
abs
Attention Transfer Network for Aspect-level Sentiment Classification
Fei Zhao
|
Zhen Wu
|
Xinyu Dai
Aspect-level sentiment classification (ASC) aims to detect the sentiment polarity of a given opinion target in a sentence. In neural network-based methods for ASC, most works employ the attention mechanism to capture the corresponding sentiment words of the opinion target, then aggregate them as evidence to infer the sentiment of the target. However, aspect-level datasets are all relatively small-scale due to the complexity of annotation. Data scarcity causes the attention mechanism sometimes to fail to focus on the corresponding sentiment words of the target, which finally weakens the performance of neural models. To address the issue, we propose a novel Attention Transfer Network (ATN) in this paper, which can successfully exploit attention knowledge from resource-rich document-level sentiment classification datasets to improve the attention capability of the aspect-level sentiment classification task. In the ATN model, we design two different methods to transfer attention knowledge and conduct experiments on two ASC benchmark datasets. Extensive experimental results show that our methods consistently outperform state-of-the-art works. Further analysis also validates the effectiveness of ATN.
pdf
bib
abs
Label Correction Model for Aspect-based Sentiment Analysis
Qianlong Wang
|
Jiangtao Ren
Aspect-based sentiment analysis includes opinion aspect extraction and aspect sentiment classification. Researchers have attempted to discover the relationship between these two sub-tasks and have proposed the joint model for solving aspect-based sentiment analysis. However, they ignore a phenomenon: aspect boundary label and sentiment label of the same word can correct each other. To exploit this phenomenon, we propose a novel deep learning model named the label correction model. Specifically, given an input sentence, our model first predicts the aspect boundary label sequence and sentiment label sequence, then re-predicts the aspect boundary (sentiment) label sequence using the embeddings of the previously predicted sentiment (aspect boundary) label. The goal of the re-prediction operation (can be repeated multiple times) is to use the information of the sentiment (aspect boundary) label to correct the wrong aspect boundary (sentiment) label. Moreover, we explore two ways of using label embeddings: add and gate mechanism. We evaluate our model on three benchmark datasets. Experimental results verify that our model achieves state-of-the-art performance compared with several baselines.
pdf
bib
abs
Aspect-Category based Sentiment Analysis with Hierarchical Graph Convolutional Network
Hongjie Cai
|
Yaofeng Tu
|
Xiangsheng Zhou
|
Jianfei Yu
|
Rui Xia
Most of the aspect based sentiment analysis research aims at identifying the sentiment polarities toward some explicit aspect terms while ignores implicit aspects in text. To capture both explicit and implicit aspects, we focus on aspect-category based sentiment analysis, which involves joint aspect category detection and category-oriented sentiment classification. However, currently only a few simple studies have focused on this problem. The shortcomings in the way they defined the task make their approaches difficult to effectively learn the inner-relations between categories and the inter-relations between categories and sentiments. In this work, we re-formalize the task as a category-sentiment hierarchy prediction problem, which contains a hierarchy output structure to first identify multiple aspect categories in a piece of text, and then predict the sentiment for each of the identified categories. Specifically, we propose a Hierarchical Graph Convolutional Network (Hier-GCN), where a lower-level GCN is to model the inner-relations among multiple categories, and the higher-level GCN is to capture the inter-relations between aspect categories and sentiments. Extensive evaluations demonstrate that our hierarchy output structure is superior over existing ones, and the Hier-GCN model can consistently achieve the best results on four benchmarks.
pdf
bib
abs
Constituency Lattice Encoding for Aspect Term Extraction
Yunyi Yang
|
Kun Li
|
Xiaojun Quan
|
Weizhou Shen
|
Qinliang Su
One of the remaining challenges for aspect term extraction in sentiment analysis resides in the extraction of phrase-level aspect terms, which is non-trivial to determine the boundaries of such terms. In this paper, we aim to address this issue by incorporating the span annotations of constituents of a sentence to leverage the syntactic information in neural network models. To this end, we first construct a constituency lattice structure based on the constituents of a constituency tree. Then, we present two approaches to encoding the constituency lattice using BiLSTM-CRF and BERT as the base models, respectively. We experimented on two benchmark datasets to evaluate the two models, and the results confirm their superiority with respective 3.17 and 1.35 points gained in F1-Measure over the current state of the art. The improvements justify the effectiveness of the constituency lattice for aspect term extraction.
pdf
bib
abs
A Corpus for Argumentative Writing Support in German
Thiemo Wambsganss
|
Christina Niklaus
|
Matthias Söllner
|
Siegfried Handschuh
|
Jan Marco Leimeister
In this paper, we present a novel annotation approach to capture claims and premises of arguments and their relations in student-written persuasive peer reviews on business models in German language. We propose an annotation scheme based on annotation guidelines that allows to model claims and premises as well as support and attack relations for capturing the structure of argumentative discourse in student-written peer reviews. We conduct an annotation study with three annotators on 50 persuasive essays to evaluate our annotation scheme. The obtained inter-rater agreement of α = 0.57 for argument components and α = 0.49 for argumentative relations indicates that the proposed annotation scheme successfully guides annotators to moderate agreement. Finally, we present our freely available corpus of 1,000 persuasive student-written peer reviews on business models and our annotation guidelines to encourage future research on the design and development of argumentative writing support systems for students.
pdf
bib
abs
Do Word Embeddings Capture Spelling Variation?
Dong Nguyen
|
Jack Grieve
Analyses of word embeddings have primarily focused on semantic and syntactic properties. However, word embeddings have the potential to encode other properties as well. In this paper, we propose a new perspective on the analysis of word embeddings by focusing on spelling variation. In social media, spelling variation is abundant and often socially meaningful. Here, we analyze word embeddings trained on Twitter and Reddit data. We present three analyses using pairs of word forms covering seven types of spelling variation in English. Taken together, our results show that word embeddings encode spelling variation patterns of various types to some extent, even embeddings trained using the skipgram model which does not take spelling into account. Our results also suggest a link between the intentionality of the variation and the distance of the non-conventional spellings to their conventional spellings.
pdf
bib
abs
Don’t take “nswvtnvakgxpm” for an answer –The surprising vulnerability of automatic content scoring systems to adversarial input
Yuning Ding
|
Brian Riordan
|
Andrea Horbach
|
Aoife Cahill
|
Torsten Zesch
Automatic content scoring systems are widely used on short answer tasks to save human effort. However, the use of these systems can invite cheating strategies, such as students writing irrelevant answers in the hopes of gaining at least partial credit. We generate adversarial answers for benchmark content scoring datasets based on different methods of increasing sophistication and show that even simple methods lead to a surprising decrease in content scoring performance. As an extreme example, up to 60% of adversarial answers generated from random shuffling of words in real answers are accepted by a state-of-the-art scoring system. In addition to analyzing the vulnerabilities of content scoring systems, we examine countermeasures such as adversarial training and show that these measures improve system robustness against adversarial answers considerably but do not suffice to completely solve the problem.
pdf
bib
abs
Automated Prediction of Examinee Proficiency from Short-Answer Questions
Le An Ha
|
Victoria Yaneva
|
Polina Harik
|
Ravi Pandian
|
Amy Morales
|
Brian Clauser
This paper brings together approaches from the fields of NLP and psychometric measurement to address the problem of predicting examinee proficiency from responses to short-answer questions (SAQs). While previous approaches train on manually labeled data to predict the human-ratings assigned to SAQ responses, the approach presented here models examinee proficiency directly and does not require manually labeled data to train on. We use data from a large medical exam where experimental SAQ items are embedded alongside 106 scored multiple-choice questions (MCQs). First, the latent trait of examinee proficiency is measured using the scored MCQs and then a model is trained on the experimental SAQ responses as input, aiming to predict proficiency as its target variable. The predicted value is then used as a “score” for the SAQ response and evaluated in terms of its contribution to the precision of proficiency estimation.
pdf
bib
abs
Exploring Cross-sentence Contexts for Named Entity Recognition with BERT
Jouni Luoma
|
Sampo Pyysalo
Named entity recognition (NER) is frequently addressed as a sequence classification task with each input consisting of one sentence of text. It is nevertheless clear that useful information for NER is often found also elsewhere in text. Recent self-attention models like BERT can both capture long-distance relationships in input and represent inputs consisting of several sentences. This creates opportunities for adding cross-sentence information in natural language processing tasks. This paper presents a systematic study exploring the use of cross-sentence information for NER using BERT models in five languages. We find that adding context as additional sentences to BERT input systematically increases NER performance. Multiple sentences in input samples allows us to study the predictions of the sentences in different contexts. We propose a straightforward method, Contextual Majority Voting (CMV), to combine these different predictions and demonstrate this to further increase NER performance. Evaluation on established datasets, including the CoNLL’02 and CoNLL’03 NER benchmarks, demonstrates that our proposed approach can improve on the state-of-the-art NER results on English, Dutch, and Finnish, achieves the best reported BERT-based results on German, and is on par with other BERT-based approaches in Spanish. We release all methods implemented in this work under open licenses.
pdf
bib
abs
Cross-lingual Annotation Projection in Legal Texts
Andrea Galassi
|
Kasper Drazewski
|
Marco Lippi
|
Paolo Torroni
We study annotation projection in text classification problems where source documents are published in multiple languages and may not be an exact translation of one another. In particular, we focus on the detection of unfair clauses in privacy policies and terms of service. We present the first English-German parallel asymmetric corpus for the task at hand. We study and compare several language-agnostic sentence-level projection methods. Our results indicate that a combination of word embeddings and dynamic time warping performs best.
pdf
bib
abs
Deep Learning Framework for Measuring the Digital Strategy of Companies from Earnings Calls
Ahmed Ghanim Al-Ali
|
Robert Phaal
|
Donald Sull
Companies today are racing to leverage the latest digital technologies, such as artificial intelligence, blockchain, and cloud computing. However, many companies report that their strategies did not achieve the anticipated business results. This study is the first to apply state-of-the-art NLP models on unstructured data to understand the different clusters of digital strategy patterns that companies are Adopting. We achieve this by ana-lyzing earnings calls from Fortune’s Global 500 companies between 2015 and 2019. We use Transformer-based architecture for text classification which show a better understanding of the conversation context. We then investigate digital strategy patterns by applying clustering analysis. Our findings suggest that Fortune 500 companies use four distinct strategies which are product-led, customer experience-led, service-led, and efficiency-led . This work provides an empirical baseline for companies and researchers to enhance our understanding of the field.
pdf
bib
abs
A Dataset and Evaluation Framework for Complex Geographical Description Parsing
Egoitz Laparra
|
Steven Bethard
Much previous work on geoparsing has focused on identifying and resolving individual toponyms in text like Adrano, S.Maria di Licodia or Catania. However, geographical locations occur not only as individual toponyms, but also as compositions of reference geolocations joined and modified by connectives, e.g., “. . . between the towns of Adrano and S.Maria di Licodia, 32 kilometres northwest of Catania”. Ideally, a geoparser should be able to take such text, and the geographical shapes of the toponyms referenced within it, and parse these into a geographical shape, formed by a set of coordinates, that represents the location described. But creating a dataset for this complex geoparsing task is difficult and, if done manually, would require a huge amount of effort to annotate the geographical shapes of not only the geolocation described but also the reference toponyms. We present an approach that automates most of the process by combining Wikipedia and OpenStreetMap. As a result, we have gathered a collection of 360,187 uncurated complex geolocation descriptions, from which we have manually curated 1,000 examples intended to be used as a test set. To accompany the data, we define a new geoparsing evaluation framework along with a scoring methodology and a set of baselines.
pdf
bib
abs
DocBank: A Benchmark Dataset for Document Layout Analysis
Minghao Li
|
Yiheng Xu
|
Lei Cui
|
Shaohan Huang
|
Furu Wei
|
Zhoujun Li
|
Ming Zhou
Document layout analysis usually relies on computer vision models to understand documents while ignoring textual information that is vital to capture. Meanwhile, high quality labeled datasets with both visual and textual information are still insufficient. In this paper, we present DocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis. DocBank is constructed using a simple yet effective way with weak supervision from the LaTeX documents available on the arXiv.com. With DocBank, models from different modalities can be compared fairly and multi-modal approaches will be further investigated and boost the performance of document layout analysis. We build several strong baselines and manually split train/dev/test sets for evaluation. Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents. The DocBank dataset is publicly available at
https://github.com/doc-analysis/DocBank.
pdf
bib
abs
Building Large-Scale English and Korean Datasets for Aspect-Level Sentiment Analysis in Automotive Domain
Dongmin Hyun
|
Junsu Cho
|
Hwanjo Yu
We release large-scale datasets of users’ comments in two languages, English and Korean, for aspect-level sentiment analysis in automotive domain. The datasets consist of 58,000+ commentaspect pairs, which are the largest compared to existing datasets. In addition, this work covers new language (i.e., Korean) along with English for aspect-level sentiment analysis. We build the datasets from automotive domain to enable users (e.g., marketers in automotive companies) to analyze the voice of customers on automobiles. We also provide baseline performances for future work by evaluating recent models on the released datasets.
pdf
bib
abs
A High Precision Pipeline for Financial Knowledge Graph Construction
Sarah Elhammadi
|
Laks V.S. Lakshmanan
|
Raymond Ng
|
Michael Simpson
|
Baoxing Huai
|
Zhefeng Wang
|
Lanjun Wang
Motivated by applications such as question answering, fact checking, and data integration, there is significant interest in constructing knowledge graphs by extracting information from unstructured information sources, particularly text documents. Knowledge graphs have emerged as a standard for structured knowledge representation, whereby entities and their inter-relations are represented and conveniently stored as (subject,predicate,object) triples in a graph that can be used to power various downstream applications. The proliferation of financial news sources reporting on companies, markets, currencies, and stocks presents an opportunity for extracting valuable knowledge about this crucial domain. In this paper, we focus on constructing a knowledge graph automatically by information extraction from a large corpus of financial news articles. For that purpose, we develop a high precision knowledge extraction pipeline tailored for the financial domain. This pipeline combines multiple information extraction techniques with a financial dictionary that we built, all working together to produce over 342,000 compact extractions from over 288,000 financial news articles, with a precision of 78% at the top-100 extractions. The extracted triples are stored in a knowledge graph making them readily available for use in downstream applications.
pdf
bib
abs
Financial Sentiment Analysis: An Investigation into Common Mistakes and Silver Bullets
Frank Xing
|
Lorenzo Malandri
|
Yue Zhang
|
Erik Cambria
The recent dominance of machine learning-based natural language processing methods has fostered the culture of overemphasizing model accuracies rather than studying the reasons behind their errors. Interpretability, however, is a critical requirement for many downstream AI and NLP applications, e.g., in finance, healthcare, and autonomous driving. This study, instead of proposing any “new model”, investigates the error patterns of some widely acknowledged sentiment analysis methods in the finance domain. We discover that (1) those methods belonging to the same clusters are prone to similar error patterns, and (2) there are six types of linguistic features that are pervasive in the common errors. These findings provide important clues and practical considerations for improving sentiment analysis models for financial applications.
pdf
bib
abs
Answering Legal Questions by Learning Neural Attentive Text Representation
Phi Manh Kien
|
Ha-Thanh Nguyen
|
Ngo Xuan Bach
|
Vu Tran
|
Minh Le Nguyen
|
Tu Minh Phuong
Text representation plays a vital role in retrieval-based question answering, especially in the legal domain where documents are usually long and complicated. The better the question and the legal documents are represented, the more accurate they are matched. In this paper, we focus on the task of answering legal questions at the article level. Given a legal question, the goal is to retrieve all the correct and valid legal articles, that can be used as the basic to answer the question. We present a retrieval-based model for the task by learning neural attentive text representation. Our text representation method first leverages convolutional neural networks to extract important information in a question and legal articles. Attention mechanisms are then used to represent the question and articles and select appropriate information to align them in a matching process. Experimental results on an annotated corpus consisting of 5,922 Vietnamese legal questions show that our model outperforms state-of-the-art retrieval-based methods for question answering by large margins in terms of both recall and NDCG.
pdf
bib
abs
Joint Transformer/RNN Architecture for Gesture Typing in Indic Languages
Emil Biju
|
Anirudh Sriram
|
Mitesh M. Khapra
|
Pratyush Kumar
Gesture typing is a method of typing words on a touch-based keyboard by creating a continuous trace passing through the relevant keys. This work is aimed at developing a keyboard that supports gesture typing in Indic languages. We begin by noting that when dealing with Indic languages, one needs to cater to two different sets of users: (i) users who prefer to type in the native Indic script (Devanagari, Bengali, etc.) and (ii) users who prefer to type in the English script but want the transliterated output in the native script. In both cases, we need a model that takes a trace as input and maps it to the intended word. To enable the development of these models, we create and release two datasets. First, we create a dataset containing keyboard traces for 193,658 words from 7 Indic languages. Second, we curate 104,412 English-Indic transliteration pairs from Wikidata across these languages. Using these datasets we build a model that performs path decoding, transliteration and transliteration correction. Unlike prior approaches, our proposed model does not make co-character independence assumptions during decoding. The overall accuracy of our model across the 7 languages varies from 70-95%.
pdf
bib
abs
Automatic Charge Identification from Facts: A Few Sentence-Level Charge Annotations is All You Need
Shounak Paul
|
Pawan Goyal
|
Saptarshi Ghosh
Automatic Charge Identification (ACI) is the task of identifying the relevant charges given the facts of a situation and the statutory laws that define these charges, and is a crucial aspect of the judicial process. Existing works focus on learning charge-side representations by modeling relationships between the charges, but not much effort has been made in improving fact-side representations. We observe that only a small fraction of sentences in the facts actually indicates the charges. We show that by using a very small subset (< 3%) of fact descriptions annotated with sentence-level charges, we can achieve an improvement across a range of different ACI models, as compared to modeling just the main document-level task on a much larger dataset. Additionally, we propose a novel model that utilizes sentence-level charge labels as an auxiliary task, coupled with the main task of document-level charge identification in a multi-task learning framework. The proposed model comprehensively outperforms a large number of recent baselines for ACI. The improvement in performance is particularly noticeable for the rare charges which are known to be especially challenging to identify.
pdf
bib
abs
Context-Aware Text Normalisation for Historical Dialects
Maria Sukhareva
Context-aware historical text normalisation is a severely under-researched area. To fill the gap we propose a context-aware normalisation approach that relies on the state-of-the-art methods in neural machine translation and transfer learning. We propose a multidialect normaliser with a context-aware reranking of the candidates. The reranker relies on a word-level n-gram language model that is applied to the five best normalisation candidates. The results are evaluated on the historical multidialect datasets of German, Spanish, Portuguese and Slovene. We show that incorporating dialectal information into the training leads to an accuracy improvement on all the datasets. The context-aware reranking gives further improvement over the baseline. For three out of six datasets, we reach a significantly higher accuracy than reported in the previous studies. The other three results are comparable with the current state-of-the-art. The code for the reranker is published as open-source.
pdf
bib
abs
RuSemShift: a dataset of historical lexical semantic change in Russian
Julia Rodina
|
Andrey Kutuzov
We present RuSemShift, a large-scale manually annotated test set for the task of semantic change modeling in Russian for two long-term time period pairs: from the pre-Soviet through the Soviet times and from the Soviet through the post-Soviet times. Target words were annotated by multiple crowd-source workers. The annotation process was organized following the DURel framework and was based on sentence contexts extracted from the Russian National Corpus. Additionally, we report the performance of several distributional approaches on RuSemShift, achieving promising results, which at the same time leave room for other researchers to improve.
pdf
bib
abs
Exploring Amharic Sentiment Analysis from Social Media Texts: Building Annotation Tools and Classification Models
Seid Muhie Yimam
|
Hizkiel Mitiku Alemayehu
|
Abinew Ayele
|
Chris Biemann
This paper presents the study of sentiment analysis for Amharic social media texts. As the number of social media users is ever-increasing, social media platforms would like to understand the latent meaning and sentiments of a text to enhance decision-making procedures. However, low-resource languages such as Amharic have received less attention due to several reasons such as lack of well-annotated datasets, unavailability of computing resources, and fewer or no expert researchers in the area. This research addresses three main research questions. We first explore the suitability of existing tools for the sentiment analysis task. Annotation tools are scarce to support large-scale annotation tasks in Amharic. Also, the existing crowdsourcing platforms do not support Amharic text annotation. Hence, we build a social-network-friendly annotation tool called ‘ASAB’ using the Telegram bot. We collect 9.4k tweets, where each tweet is annotated by three Telegram users. Moreover, we explore the suitability of machine learning approaches for Amharic sentiment analysis. The FLAIR deep learning text classifier, based on network embeddings that are computed from a distributional thesaurus, outperforms other supervised classifiers. We further investigate the challenges in building a sentiment analysis system for Amharic and we found that the widespread usage of sarcasm and figurative speech are the main issues in dealing with the problem. To advance the sentiment analysis research in Amharic and other related low-resource languages, we release the dataset, the annotation tool, source code, and models publicly under a permissive.
pdf
bib
abs
Effective Few-Shot Classification with Transfer Learning
Aakriti Gupta
|
Kapil Thadani
|
Neil O’Hare
Few-shot learning addresses the the problem of learning based on a small amount of training data. Although more well-studied in the domain of computer vision, recent work has adapted the Amazon Review Sentiment Classification (ARSC) text dataset for use in the few-shot setting. In this work, we use the ARSC dataset to study a simple application of transfer learning approaches to few-shot classification. We train a single binary classifier to learn all few-shot classes jointly by prefixing class identifiers to the input text. Given the text and class, the model then makes a binary prediction for that text/class pair. Our results show that this simple approach can outperform most published results on this dataset. Surprisingly, we also show that including domain information as part of the task definition only leads to a modest improvement in model accuracy, and zero-shot classification, without further fine-tuning on few-shot domains, performs equivalently to few-shot classification. These results suggest that the classes in the ARSC few-shot task, which are defined by the intersection of domain and rating, are actually very similar to each other, and that a more suitable dataset is needed for the study of few-shot text classification.
pdf
bib
abs
SWAFN: Sentimental Words Aware Fusion Network for Multimodal Sentiment Analysis
Minping Chen
|
Xia Li
Multimodal sentiment analysis aims to predict sentiment of language text with the help of other modalities, such as vision and acoustic features. Previous studies focused on learning the joint representation of multiple modalities, ignoring some useful knowledge contained in language modal. In this paper, we try to incorporate sentimental words knowledge into the fusion network to guide the learning of joint representation of multimodal features. Our method consists of two components: shallow fusion part and aggregation part. For the shallow fusion part, we use crossmodal coattention mechanism to obtain bidirectional context information of each two modals to get the fused shallow representations. For the aggregation part, we design a multitask of sentimental words classification to help and guide the deep fusion of the three modalities and obtain the final sentimental words aware fusion representation. We carry out several experiments on CMU-MOSI, CMU-MOSEI and YouTube datasets. The experimental results show that introducing sentimental words prediction as a multitask can really improve the fusion representation of multiple modalities.
pdf
bib
abs
Multimodal Topic-Enriched Auxiliary Learning for Depression Detection
Minghui An
|
Jingjing Wang
|
Shoushan Li
|
Guodong Zhou
From the perspective of health psychology, human beings with long-term and sustained negativity are highly possible to be diagnosed with depression. Inspired by this, we argue that the global topic information derived from user-generated contents (e.g., texts and images) is crucial to boost the performance of the depression detection task, though this information has been neglected by almost all previous studies on depression detection. To this end, we propose a new Multimodal Topic-enriched Auxiliary Learning (MTAL) approach, aiming at capturing the topic information inside different modalities (i.e., texts and images) for depression detection. Especially, in our approach, a modality-agnostic topic model is proposed to be capable of mining the topical clues from either the discrete textual signals or the continuous visual signals. On this basis, the topic modeling w.r.t. the two modalities are cast as two auxiliary tasks for improving the performance of the primary task (i.e., depression detection). Finally, the detailed evaluation demonstrates the great advantage of our MTAL approach to depression detection over the state-of-the-art baselines. This justifies the importance of the multimodal topic information to depression detection and the effectiveness of our approach in capturing such information.
pdf
bib
abs
Imagining Grounded Conceptual Representations from Perceptual Information in Situated Guessing Games
Alessandro Suglia
|
Antonio Vergari
|
Ioannis Konstas
|
Yonatan Bisk
|
Emanuele Bastianelli
|
Andrea Vanzo
|
Oliver Lemon
In visual guessing games, a Guesser has to identify a target object in a scene by asking questions to an Oracle. An effective strategy for the players is to learn conceptual representations of objects that are both discriminative and expressive enough to ask questions and guess correctly. However, as shown by Suglia et al. (2020), existing models fail to learn truly multi-modal representations, relying instead on gold category labels for objects in the scene both at training and inference time. This provides an unnatural performance advantage when categories at inference time match those at training time, and it causes models to fail in more realistic “zero-shot” scenarios where out-of-domain object categories are involved. To overcome this issue, we introduce a novel “imagination” module based on Regularized Auto-Encoders, that learns context-aware and category-aware latent embeddings without relying on category labels at inference time. Our imagination module outperforms state-of-the-art competitors by 8.26% gameplay accuracy in the CompGuessWhat?! zero-shot scenario (Suglia et al., 2020), and it improves the Oracle and Guesser accuracy by 2.08% and 12.86% in the GuessWhat?! benchmark, when no gold categories are available at inference time. The imagination module also boosts reasoning about object properties and attributes.
pdf
bib
abs
Situated and Interactive Multimodal Conversations
Seungwhan Moon
|
Satwik Kottur
|
Paul Crook
|
Ankita De
|
Shivani Poddar
|
Theodore Levin
|
David Whitney
|
Daniel Difranco
|
Ahmad Beirami
|
Eunjoon Cho
|
Rajen Subba
|
Alborz Geramifard
Next generation virtual assistants are envisioned to handle multimodal inputs (e.g., vision, memories of previous interactions, and the user’s utterances), and perform multimodal actions (, displaying a route while generating the system’s utterance). We introduce Situated Interactive MultiModal Conversations (SIMMC) as a new direction aimed at training agents that take multimodal actions grounded in a co-evolving multimodal input context in addition to the dialog history. We provide two SIMMC datasets totalling ~13K human-human dialogs (~169K utterances) collected using a multimodal Wizard-of-Oz (WoZ) setup, on two shopping domains: (a) furniture – grounded in a shared virtual environment; and (b) fashion – grounded in an evolving set of images. Datasets include multimodal context of the items appearing in each scene, and contextual NLU, NLG and coreference annotations using a novel and unified framework of SIMMC conversational acts for both user and assistant utterances. Finally, we present several tasks within SIMMC as objective evaluation protocols, such as structural API prediction, response generation, and dialog state tracking. We benchmark a collection of existing models on these SIMMC tasks as strong baselines, and demonstrate rich multimodal conversational interactions. Our data, annotations, and models will be made publicly available.
pdf
bib
abs
Meet Changes with Constancy: Learning Invariance in Multi-Source Translation
Jianfeng Liu
|
Ling Luo
|
Xiang Ao
|
Yan Song
|
Haoran Xu
|
Jian Ye
Multi-source neural machine translation aims to translate from parallel sources of information (e.g. languages, images, etc.) to a single target language, which has shown better performance than most one-to-one systems. Despite the remarkable success of existing models, they usually neglect the fact that multiple source inputs may have inconsistencies. Such differences might bring noise to the task and limit the performance of existing multi-source NMT approaches due to their indiscriminate usage of input sources for target word predictions. In this paper, we attempt to leverage the potential complementary information among distinct sources and alleviate the occasional conflicts of them. To accomplish that, we propose a source invariance network to learn the invariant information of parallel sources. Such network can be easily integrated with multi-encoder based multi-source NMT methods (e.g. multi-encoder RNN and transformer) to enhance the translation results. Extensive experiments on two multi-source translation tasks demonstrate that the proposed approach not only achieves clear gains in translation quality but also captures implicit invariance between different sources.
pdf
bib
abs
Enhancing Neural Models with Vulnerability via Adversarial Attack
Rong Zhang
|
Qifei Zhou
|
Bo An
|
Weiping Li
|
Tong Mo
|
Bo Wu
Natural Language Sentence Matching (NLSM) serves as the core of many natural language processing tasks. 1) Most previous work develops a single specific neural model for NLSM tasks. 2) There is no previous work considering adversarial attack to improve the performance of NLSM tasks. 3) Adversarial attack is usually used to generate adversarial samples that can fool neural models. In this paper, we first find a phenomenon that different categories of samples have different vulnerabilities. Vulnerability is the difficulty degree in changing the label of a sample. Considering the phenomenon, we propose a general two-stage training framework to enhance neural models with Vulnerability via Adversarial Attack (VAA). We design criteria to measure the vulnerability which is obtained by adversarial attack. VAA framework can be adapted to various neural models by incorporating the vulnerability. In addition, we prove a theorem and four corollaries to explain the factors influencing vulnerability effectiveness. Experimental results show that VAA significantly improves the performance of neural models on NLSM datasets. The results are also consistent with the theorem and corollaries. The code is released on
https://github.com/rzhangpku/VAA.
pdf
bib
abs
R-VGAE: Relational-variational Graph Autoencoder for Unsupervised Prerequisite Chain Learning
Irene Li
|
Alexander Fabbri
|
Swapnil Hingmire
|
Dragomir Radev
The task of concept prerequisite chain learning is to automatically determine the existence of prerequisite relationships among concept pairs. In this paper, we frame learning prerequisite relationships among concepts as an unsupervised task with no access to labeled concept pairs during training. We propose a model called the Relational-Variational Graph AutoEncoder (R-VGAE) to predict concept relations within a graph consisting of concept and resource nodes. Results show that our unsupervised approach outperforms graph-based semi-supervised methods and other baseline methods by up to 9.77% and 10.47% in terms of prerequisite relation prediction accuracy and F1 score. Our method is notably the first graph-based model that attempts to make use of deep learning representations for the task of unsupervised prerequisite learning. We also expand an existing corpus which totals 1,717 English Natural Language Processing (NLP)-related lecture slide files and manual concept pair annotations over 322 topics.
pdf
bib
abs
Fine-tuning BERT for Low-Resource Natural Language Understanding via Active Learning
Daniel Grießhaber
|
Johannes Maucher
|
Ngoc Thang Vu
Recently, leveraging pre-trained Transformer based language models in down stream, task specific models has advanced state of the art results in natural language understanding tasks. However, only a little research has explored the suitability of this approach in low resource settings with less than 1,000 training data points. In this work, we explore fine-tuning methods of BERT - a pre-trained Transformer based language model - by utilizing pool-based active learning to speed up training while keeping the cost of labeling new data constant. Our experimental results on the GLUE data set show an advantage in model performance by maximizing the approximate knowledge gain of the model when querying from the pool of unlabeled data. Finally, we demonstrate and analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters, making it more suitable for low-resource settings.
pdf
bib
abs
Exploring End-to-End Differentiable Natural Logic Modeling
Yufei Feng
|
Zi’ou Zheng
|
Quan Liu
|
Michael Greenspan
|
Xiaodan Zhu
We explore end-to-end trained differentiable models that integrate natural logic with neural networks, aiming to keep the backbone of natural language reasoning based on the natural logic formalism while introducing subsymbolic vector representations and neural components. The proposed model adapts module networks to model natural logic operations, which is enhanced with a memory component to model contextual information. Experiments show that the proposed framework can effectively model monotonicity-based reasoning, compared to the baseline neural network models without built-in inductive bias for monotonicity-based reasoning. Our proposed model shows to be robust when transferred from upward to downward inference. We perform further analyses on the performance of the proposed model on aggregation, showing the effectiveness of the proposed subcomponents on helping achieve better intermediate aggregation performance.
pdf
bib
abs
A Semantically Consistent and Syntactically Variational Encoder-Decoder Framework for Paraphrase Generation
Wenqing Chen
|
Jidong Tian
|
Liqiang Xiao
|
Hao He
|
Yaohui Jin
Paraphrase generation aims to generate semantically consistent sentences with different syntactic realizations. Most of the recent studies rely on the typical encoder-decoder framework where the generation process is deterministic. However, in practice, the ability to generate multiple syntactically different paraphrases is important. Recent work proposed to cooperate variational inference on a target-related latent variable to introduce the diversity. But the latent variable may be contaminated by the semantic information of other unrelated sentences, and in turn, change the conveyed meaning of generated paraphrases. In this paper, we propose a semantically consistent and syntactically variational encoder-decoder framework, which uses adversarial learning to ensure the syntactic latent variable be semantic-free. Moreover, we adopt another discriminator to improve the word-level and sentence-level semantic consistency. So the proposed framework can generate multiple semantically consistent and syntactically different paraphrases. The experiments show that our model outperforms the baseline models on the metrics based on both n-gram matching and semantic similarity, and our model can generate multiple different paraphrases by assembling different syntactic variables.
pdf
bib
abs
Tiny Word Embeddings Using Globally Informed Reconstruction
Sora Ohashi
|
Mao Isogawa
|
Tomoyuki Kajiwara
|
Yuki Arase
We reduce the model size of pre-trained word embeddings by a factor of 200 while preserving its quality. Previous studies in this direction created a smaller word embedding model by reconstructing pre-trained word representations from those of subwords, which allows to store only a smaller number of subword embeddings in the memory. However, previous studies that train the reconstruction models using only target words cannot reduce the model size extremely while preserving its quality. Inspired by the observation of words with similar meanings having similar embeddings, our reconstruction training learns the global relationships among words, which can be employed in various models for word embedding reconstruction. Experimental results on word similarity benchmarks show that the proposed method improves the performance of the all subword-based reconstruction models.
pdf
bib
abs
Improving Word Embeddings through Iterative Refinement of Word- and Character-level Models
Phong Ha
|
Shanshan Zhang
|
Nemanja Djuric
|
Slobodan Vucetic
Embedding of rare and out-of-vocabulary (OOV) words is an important open NLP problem. A popular solution is to train a character-level neural network to reproduce the embeddings from a standard word embedding model. The trained network is then used to assign vectors to any input string, including OOV and rare words. We enhance this approach and introduce an algorithm that iteratively refines and improves both word- and character-level models. We demonstrate that our method outperforms the existing algorithms on 5 word similarity data sets, and that it can be successfully applied to job title normalization, an important problem in the e-recruitment domain that suffers from the OOV problem.
pdf
bib
abs
Probing Multilingual BERT for Genetic and Typological Signals
Taraka Rama
|
Lisa Beinborn
|
Steffen Eger
We probe the layers in multilingual BERT (mBERT) for phylogenetic and geographic language signals across 100 languages and compute language distances based on the mBERT representations. We 1) employ the language distances to infer and evaluate language trees, finding that they are close to the reference family tree in terms of quartet tree distance, 2) perform distance matrix regression analysis, finding that the language distances can be best explained by phylogenetic and worst by structural factors and 3) present a novel measure for measuring diachronic meaning stability (based on cross-lingual representation variability) which correlates significantly with published ranked lists based on linguistic approaches. Our results contribute to the nascent field of typological interpretability of cross-lingual text representations.
pdf
bib
abs
Learning Efficient Task-Specific Meta-Embeddings with Word Prisms
Jingyi He
|
Kc Tsiolis
|
Kian Kenyon-Dean
|
Jackie Chi Kit Cheung
Word embeddings are trained to predict word cooccurrence statistics, which leads them to possess different lexical properties (syntactic, semantic, etc.) depending on the notion of context defined at training time. These properties manifest when querying the embedding space for the most similar vectors, and when used at the input layer of deep neural networks trained to solve downstream NLP problems. Meta-embeddings combine multiple sets of differently trained word embeddings, and have been shown to successfully improve intrinsic and extrinsic performance over equivalent models which use just one set of source embeddings. We introduce word prisms: a simple and efficient meta-embedding method that learns to combine source embeddings according to the task at hand. Word prisms learn orthogonal transformations to linearly combine the input source embeddings, which allows them to be very efficient at inference time. We evaluate word prisms in comparison to other meta-embedding methods on six extrinsic evaluations and observe that word prisms offer improvements in performance on all tasks.
pdf
bib
abs
Always Keep your Target in Mind: Studying Semantics and Improving Performance of Neural Lexical Substitution
Nikolay Arefyev
|
Boris Sheludko
|
Alexander Podolskiy
|
Alexander Panchenko
Lexical substitution, i.e. generation of plausible words that can replace a particular target word in a given context, is an extremely powerful technology that can be used as a backbone of various NLP applications, including word sense induction and disambiguation, lexical relation extraction, data augmentation, etc. In this paper, we present a large-scale comparative study of lexical substitution methods employing both rather old and most recent language and masked language models (LMs and MLMs), such as context2vec, ELMo, BERT, RoBERTa, XLNet. We show that already competitive results achieved by SOTA LMs/MLMs can be further substantially improved if information about the target word is injected properly. Several existing and new target word injection methods are compared for each LM/MLM using both intrinsic evaluation on lexical substitution datasets and extrinsic evaluation on word sense induction (WSI) datasets. On two WSI datasets we obtain new SOTA results. Besides, we analyze the types of semantic relations between target words and their substitutes generated by different models or given by annotators.
pdf
bib
abs
Word Embedding Binarization with Semantic Information Preservation
Samarth Navali
|
Praneet Sherki
|
Ramesh Inturi
|
Vanraj Vala
With growing applications of Machine Learning in daily lives Natural Language Processing (NLP) has emerged as a heavily researched area. Finding its applications in tasks ranging from simple Q/A chatbots to Fully fledged conversational AI, NLP models are vital. Word and Sentence embedding are one of the most common starting points of any NLP task. A word embedding represents a given word in a predefined vector-space while maintaining vector relations with similar or dis-similar entities. As such different pretrained embedding such as Word2Vec, GloVe, fasttext have been developed. These embedding generated on millions of words are however very large in terms of size. Having embedding with floating point precision also makes the downstream evaluation slow. In this paper we present a novel method to convert continuous embedding to its binary representation, thus reducing the overall size of the embedding while keeping the semantic and relational knowledge intact. This will facilitate an option of porting such big embedding onto devices where space is limited. We also present different approaches suitable for different downstream tasks based on the requirement of contextual and semantic information. Experiments have shown comparable result in downstream tasks with 7 to 15 times reduction in file size and about 5 % change in evaluation parameters.
pdf
bib
abs
How Relevant Are Selectional Preferences for Transformer-based Language Models?
Eleni Metheniti
|
Tim Van de Cruys
|
Nabil Hathout
Selectional preference is defined as the tendency of a predicate to favor particular arguments within a certain linguistic context, and likewise, reject others that result in conflicting or implausible meanings. The stellar success of contextual word embedding models such as BERT in NLP tasks has led many to question whether these models have learned linguistic information, but up till now, most research has focused on syntactic information. We investigate whether Bert contains information on the selectional preferences of words, by examining the probability it assigns to the dependent word given the presence of a head word in a sentence. We are using word pairs of head-dependent words in five different syntactic relations from the SP-10K corpus of selectional preference (Zhang et al., 2019b), in sentences from the ukWaC corpus, and we are calculating the correlation of the plausibility score (from SP-10K) and the model probabilities. Our results show that overall, there is no strong positive or negative correlation in any syntactic relation, but we do find that certain head words have a strong correlation and that masking all words but the head word yields the most positive correlations in most scenarios –which indicates that the semantics of the predicate is indeed an integral and influential factor for the selection of the argument.
pdf
bib
abs
Embedding Semantic Taxonomies
Alyssa Lees
|
Chris Welty
|
Shubin Zhao
|
Jacek Korycki
|
Sara Mc Carthy
A common step in developing an understanding of a vertical domain, e.g. shopping, dining, movies, medicine, etc., is curating a taxonomy of categories specific to the domain. These human created artifacts have been the subject of research in embeddings that attempt to encode aspects of the partial ordering property of taxonomies. We compare Box Embeddings, a natural containment representation of category taxonomies, to partial-order embeddings and a baseline Bayes Net, in the context of representing the Medical Subject Headings (MeSH) taxonomy given a set of 300K PubMed articles with subject labels from MeSH. We deeply explore the experimental properties of training box embeddings, including preparation of the training data, sampling ratios and class balance, initialization strategies, and propose a fix to the original box objective. We then present first results in using these techniques for representing a bipartite learning problem (i.e. collaborative filtering) in the presence of taxonomic relations within each partition, inferring disease (anatomical) locations from their use as subject labels in journal articles. Our box model substantially outperforms all baselines for taxonomic reconstruction and bipartite relationship experiments. This performance improvement is observed both in overall accuracy and the weighted spread by true taxonomic depth.
pdf
bib
abs
A Retrofitting Model for Incorporating Semantic Relations into Word Embeddings
Sapan Shah
|
Sreedhar Reddy
|
Pushpak Bhattacharyya
We present a novel retrofitting model that can leverage relational knowledge available in a knowledge resource to improve word embeddings. The knowledge is captured in terms of relation inequality constraints that compare similarity of related and unrelated entities in the context of an anchor entity. These constraints are used as training data to learn a non-linear transformation function that maps original word vectors to a vector space respecting these constraints. The transformation function is learned in a similarity metric learning setting using Triplet network architecture. We applied our model to synonymy, antonymy and hypernymy relations in WordNet and observed large gains in performance over original distributional models as well as other retrofitting approaches on word similarity task and significant overall improvement on lexical entailment detection task.
pdf
bib
abs
Lexical Relation Mining in Neural Word Embeddings
Aishwarya Jadhav
|
Yifat Amir
|
Zachary Pardos
Work with neural word embeddings and lexical relations has largely focused on confirmatory experiments which use human-curated examples of semantic and syntactic relations to validate against. In this paper, we explore the degree to which lexical relations, such as those found in popular validation sets, can be derived and extended from a variety of neural embeddings using classical clustering methods. We show that the Word2Vec space of word-pairs (i.e., offset vectors) significantly outperforms other more contemporary methods, even in the presence of a large number of noisy offsets. Moreover, we show that via a simple nearest neighbor approach in the offset space, new examples of known relations can be discovered. Our results speak to the amenability of offset vectors from non-contextual neural embeddings to find semantically coherent clusters. This simple approach has implications for the exploration of emergent regularities and their examples, such as emerging trends on social media and their related posts.
pdf
bib
abs
A BERT-based Dual Embedding Model for Chinese Idiom Prediction
Minghuan Tan
|
Jing Jiang
Chinese idioms are special fixed phrases usually derived from ancient stories, whose meanings are oftentimes highly idiomatic and non-compositional. The Chinese idiom prediction task is to select the correct idiom from a set of candidate idioms given a context with a blank. We propose a BERT-based dual embedding model to encode the contextual words as well as to learn dual embeddings of the idioms. Specifically, we first match the embedding of each candidate idiom with the hidden representation corresponding to the blank in the context. We then match the embedding of each candidate idiom with the hidden representations of all the tokens in the context thorough context pooling. We further propose to use two separate idiom embeddings for the two kinds of matching. Experiments on a recently released Chinese idiom cloze test dataset show that our proposed method performs better than the existing state of the art. Ablation experiments also show that both context pooling and dual embedding contribute to the improvement of performance.
pdf
bib
abs
BERT-based Cohesion Analysis of Japanese Texts
Nobuhiro Ueda
|
Daisuke Kawahara
|
Sadao Kurohashi
The meaning of natural language text is supported by cohesion among various kinds of entities, including coreference relations, predicate-argument structures, and bridging anaphora relations. However, predicate-argument structures for nominal predicates and bridging anaphora relations have not been studied well, and their analyses have been still very difficult. Recent advances in neural networks, in particular, self training-based language models including BERT (Devlin et al., 2019), have significantly improved many natural language processing tasks, making it possible to dive into the study on analysis of cohesion in the whole text. In this study, we tackle an integrated analysis of cohesion in Japanese texts. Our results significantly outperformed existing studies in each task, especially about 10 to 20 point improvement both for zero anaphora and coreference resolution. Furthermore, we also showed that coreference resolution is different in nature from the other tasks and should be treated specially.
pdf
bib
abs
Schema Aware Semantic Reasoning for Interpreting Natural Language Queries in Enterprise Settings
Jaydeep Sen
|
Tanaya Babtiwale
|
Kanishk Saxena
|
Yash Butala
|
Sumit Bhatia
|
Karthik Sankaranarayanan
Natural Language Query interfaces allow the end-users to access the desired information without the need to know any specialized query language, data storage, or schema details. Even with the recent advances in NLP research space, the state-of-the-art QA systems fall short of understanding implicit intents of real-world Business Intelligence (BI) queries in enterprise systems, since Natural Language Understanding still remains an AI-hard problem. We posit that deploying ontology reasoning over domain semantics can help in achieving better natural language understanding for QA systems. In this paper, we specifically focus on building a Schema Aware Semantic Reasoning Framework that translates natural language interpretation as a sequence of solvable tasks by an ontology reasoner. We apply our framework on top of an ontology based, state-of-the-art natural language question-answering system ATHENA, and experiment with 4 benchmarks focused on BI queries. Our experimental numbers empirically show that the Schema Aware Semantic Reasoning indeed helps in achieving significantly better results for handling BI queries with an average accuracy improvement of ~30%
pdf
bib
abs
Multilingual Irony Detection with Dependency Syntax and Neural Models
Alessandra Teresa Cignarella
|
Valerio Basile
|
Manuela Sanguinetti
|
Cristina Bosco
|
Paolo Rosso
|
Farah Benamara
This paper presents an in-depth investigation of the effectiveness of dependency-based syntactic features on the irony detection task in a multilingual perspective (English, Spanish, French and Italian). It focuses on the contribution from syntactic knowledge, exploiting linguistic resources where syntax is annotated according to the Universal Dependencies scheme. Three distinct experimental settings are provided. In the first, a variety of syntactic dependency-based features combined with classical machine learning classifiers are explored. In the second scenario, two well-known types of word embeddings are trained on parsed data and tested against gold standard datasets. In the third setting, dependency-based syntactic features are combined into the Multilingual BERT architecture. The results suggest that fine-grained dependency-based syntactic information is informative for the detection of irony.
pdf
bib
abs
What Can We Learn from Noun Substitutions in Revision Histories?
Talita Anthonio
|
Michael Roth
In community-edited resources such as wikiHow, sentences are subject to revisions on a daily basis. Recent work has shown that resulting improvements over time can be modelled computationally, assuming that each revision contributes to the improvement. We take a closer look at a subset of such revisions, for which we attempt to improve a computational model and validate in how far the assumption that ‘revised means better’ actually holds. The subset of revisions considered here are noun substitutions, which often involve interesting semantic relations, including synonymy, antonymy and hypernymy. Despite the high semantic relatedness, we find that a supervised classifier can distinguish the revised version of a sentence from an original version with an accuracy close to 70%, when taking context into account. In a human annotation study, we observe that annotators identify the revised sentence as the ‘better version’ with similar performance. Our analysis reveals a fair agreement among annotators when a revision improves fluency. In contrast, noun substitutions that involve other lexical-semantic relationships are often perceived as being equally good or tend to cause disagreements. While these findings are also reflected in classification scores, a comparison of results shows that our model fails in cases where humans can resort to factual knowledge or intuitions about the required level of specificity.
pdf
bib
abs
Specializing Unsupervised Pretraining Models for Word-Level Semantic Similarity
Anne Lauscher
|
Ivan Vulić
|
Edoardo Maria Ponti
|
Anna Korhonen
|
Goran Glavaš
Unsupervised pretraining models have been shown to facilitate a wide range of downstream NLP applications. These models, however, retain some of the limitations of traditional static word embeddings. In particular, they encode only the distributional knowledge available in raw text corpora, incorporated through language modeling objectives. In this work, we complement such distributional knowledge with external lexical knowledge, that is, we integrate the discrete knowledge on word-level semantic similarity into pretraining. To this end, we generalize the standard BERT model to a multi-task learning setting where we couple BERT’s masked language modeling and next sentence prediction objectives with an auxiliary task of binary word relation classification. Our experiments suggest that our “Lexically Informed” BERT (LIBERT), specialized for the word-level semantic similarity, yields better performance than the lexically blind “vanilla” BERT on several language understanding tasks. Concretely, LIBERT outperforms BERT in 9 out of 10 tasks of the GLUE benchmark and is on a par with BERT in the remaining one. Moreover, we show consistent gains on 3 benchmarks for lexical simplification, a task where knowledge about word-level semantic similarity is paramount, as well as large gains on lexical reasoning probes.
pdf
bib
abs
Harnessing Cross-lingual Features to Improve Cognate Detection for Low-resource Languages
Diptesh Kanojia
|
Raj Dabre
|
Shubham Dewangan
|
Pushpak Bhattacharyya
|
Gholamreza Haffari
|
Malhar Kulkarni
Cognates are variants of the same lexical form across different languages; for example “fonema” in Spanish and “phoneme” in English are cognates, both of which mean “a unit of sound”. The task of automatic detection of cognates among any two languages can help downstream NLP tasks such as Cross-lingual Information Retrieval, Computational Phylogenetics, and Machine Translation. In this paper, we demonstrate the use of cross-lingual word embeddings for detecting cognates among fourteen Indian Languages. Our approach introduces the use of context from a knowledge graph to generate improved feature representations for cognate detection. We, then, evaluate the impact of our cognate detection mechanism on neural machine translation (NMT), as a downstream task. We evaluate our methods to detect cognates on a challenging dataset of twelve Indian languages, namely, Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil, Telugu, Punjabi, Bengali, Marathi, and Malayalam. Additionally, we create evaluation datasets for two more Indian languages, Konkani and Nepali. We observe an improvement of up to 18% points, in terms of F-score, for cognate detection. Furthermore, we observe that cognates extracted using our method help improve NMT quality by up to 2.76 BLEU. We also release our code, newly constructed datasets and cross-lingual models publicly.
pdf
bib
abs
Bridging the Gap in Multilingual Semantic Role Labeling: a Language-Agnostic Approach
Simone Conia
|
Roberto Navigli
Recent research indicates that taking advantage of complex syntactic features leads to favorable results in Semantic Role Labeling. Nonetheless, an analysis of the latest state-of-the-art multilingual systems reveals the difficulty of bridging the wide gap in performance between high-resource (e.g., English) and low-resource (e.g., German) settings. To overcome this issue, we propose a fully language-agnostic model that does away with morphological and syntactic features to achieve robustness across languages. Our approach outperforms the state of the art in all the languages of the CoNLL-2009 benchmark dataset, especially whenever a scarce amount of training data is available. Our objective is not to reject approaches that rely on syntax, rather to set a strong and consistent language-independent baseline for future innovations in Semantic Role Labeling. We release our model code and checkpoints at
https://github.com/SapienzaNLP/multi-srl.
pdf
bib
abs
On the Helpfulness of Document Context to Sentence Simplification
Renliang Sun
|
Zhe Lin
|
Xiaojun Wan
Most of the research on text simplification is limited to sentence level nowadays. In this paper, we are the first to investigate the helpfulness of document context on sentence simplification and apply it to the sequence-to-sequence model. We firstly construct a sentence simplification dataset in which the contexts for the original sentence are provided by Wikipedia corpus. The new dataset contains approximately 116K sentence pairs with context. We then propose a new model that makes full use of the context information. Our model uses neural networks to learn the different effects of the preceding sentences and the following sentences on the current sentence and applies them to the improved transformer model. Evaluated on the newly constructed dataset, our model achieves 36.52 on SARI value, which outperforms the best performing model in the baselines by 2.46 (7.22%), indicating that context indeed helps improve sentence simplification. In the ablation experiment, we show that using either the preceding sentences or the following sentences as context can significantly improve simplification.
pdf
bib
abs
AutoMeTS: The Autocomplete for Medical Text Simplification
Hoang Van
|
David Kauchak
|
Gondy Leroy
The goal of text simplification (TS) is to transform difficult text into a version that is easier to understand and more broadly accessible to a wide variety of readers. In some domains, such as healthcare, fully automated approaches cannot be used since information must be accurately preserved. Instead, semi-automated approaches can be used that assist a human writer in simplifying text faster and at a higher quality. In this paper, we examine the application of autocomplete to text simplification in the medical domain. We introduce a new parallel medical data set consisting of aligned English Wikipedia with Simple English Wikipedia sentences and examine the application of pretrained neural language models (PNLMs) on this dataset. We compare four PNLMs (BERT, RoBERTa, XLNet, and GPT-2), and show how the additional context of the sentence to be simplified can be incorporated to achieve better results (6.17% absolute improvement over the best individual model). We also introduce an ensemble model that combines the four PNLMs and outperforms the best individual model by 2.1%, resulting in an overall word prediction accuracy of 64.52%.
pdf
bib
abs
Multi-Word Lexical Simplification
Piotr Przybyła
|
Matthew Shardlow
In this work we propose the task of multi-word lexical simplification, in which a sentence in natural language is made easier to understand by replacing its fragment with a simpler alternative, both of which can consist of many words. In order to explore this new direction, we contribute a corpus (MWLS1), including 1462 sentences in English from various sources with 7059 simplifications provided by human annotators. We also propose an automatic solution (Plainifier) based on a purpose-trained neural language model and evaluate its performance, comparing to human and resource-based baselines.
pdf
bib
abs
Exploring the zero-shot limit of FewRel
Alberto Cetoli
This paper proposes a general purpose relation extractor that uses Wikidata descriptions to represent the relation’s surface form. The results are tested on the FewRel 1.0 dataset, which provides an excellent framework for training and evaluating the proposed zero-shot learning system in English. This relation extractor architecture exploits the implicit knowledge of a language model through a question-answering approach.
pdf
bib
abs
A Deep Generative Distance-Based Classifier for Out-of-Domain Detection with Mahalanobis Space
Hong Xu
|
Keqing He
|
Yuanmeng Yan
|
Sihong Liu
|
Zijun Liu
|
Weiran Xu
Detecting out-of-domain (OOD) input intents is critical in the task-oriented dialog system. Different from most existing methods that rely heavily on manually labeled OOD samples, we focus on the unsupervised OOD detection scenario where there are no labeled OOD samples except for labeled in-domain data. In this paper, we propose a simple but strong generative distance-based classifier to detect OOD samples. We estimate the class-conditional distribution on feature spaces of DNNs via Gaussian discriminant analysis (GDA) to avoid over-confidence problems. And we use two distance functions, Euclidean and Mahalanobis distances, to measure the confidence score of whether a test sample belongs to OOD. Experiments on four benchmark datasets show that our method can consistently outperform the baselines.
pdf
bib
abs
Contrastive Zero-Shot Learning for Cross-Domain Slot Filling with Adversarial Attack
Keqing He
|
Jinchao Zhang
|
Yuanmeng Yan
|
Weiran Xu
|
Cheng Niu
|
Jie Zhou
Zero-shot slot filling has widely arisen to cope with data scarcity in target domains. However, previous approaches often ignore constraints between slot value representation and related slot description representation in the latent space and lack enough model robustness. In this paper, we propose a Contrastive Zero-Shot Learning with Adversarial Attack (CZSL-Adv) method for the cross-domain slot filling. The contrastive loss aims to map slot value contextual representations to the corresponding slot description representations. And we introduce an adversarial attack training strategy to improve model robustness. Experimental results show that our model significantly outperforms state-of-the-art baselines under both zero-shot and few-shot settings.
pdf
bib
abs
DoLFIn: Distributions over Latent Features for Interpretability
Phong Le
|
Willem Zuidema
Interpreting the inner workings of neural models is a key step in ensuring the robustness and trustworthiness of the models, but work on neural network interpretability typically faces a trade-off: either the models are too constrained to be very useful, or the solutions found by the models are too complex to interpret. We propose a novel strategy for achieving interpretability that – in our experiments – avoids this trade-off. Our approach builds on the success of using probability as the central quantity, such as for instance within the attention mechanism. In our architecture, DoLFIn (Distributions over Latent Features for Interpretability), we do no determine beforehand what each feature represents, and features go altogether into an unordered set. Each feature has an associated probability ranging from 0 to 1, weighing its importance for further processing. We show that, unlike attention and saliency map approaches, this set-up makes it straight-forward to compute the probability with which an input component supports the decision the neural model makes. To demonstrate the usefulness of the approach, we apply DoLFIn to text classification, and show that DoLFIn not only provides interpretable solutions, but even slightly outperforms the classical CNN and BiLSTM text classifiers on the SST2 and AG-news datasets.
pdf
bib
abs
Contextual Argument Component Classification for Class Discussions
Luca Lugini
|
Diane Litman
Argument mining systems often consider contextual information, i.e. information outside of an argumentative discourse unit, when trained to accomplish tasks such as argument component identification, classification, and relation extraction. However, prior work has not carefully analyzed the utility of different contextual properties in context-aware models. In this work, we show how two different types of contextual information, local discourse context and speaker context, can be incorporated into a computational model for classifying argument components in multi-party classroom discussions. We find that both context types can improve performance, although the improvements are dependent on context size and position.
pdf
bib
abs
On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages
Satwik Bhattamishra
|
Kabir Ahuja
|
Navin Goyal
While recurrent models have been effective in NLP tasks, their performance on context-free languages (CFLs) has been found to be quite weak. Given that CFLs are believed to capture important phenomena such as hierarchical structure in natural languages, this discrepancy in performance calls for an explanation. We study the performance of recurrent models on Dyck-n languages, a particularly important and well-studied class of CFLs. We find that while recurrent models generalize nearly perfectly if the lengths of the training and test strings are from the same range, they perform poorly if the test strings are longer. At the same time, we observe that RNNs are expressive enough to recognize Dyck words of arbitrary lengths in finite precision if their depths are bounded. Hence, we evaluate our models on samples generated from Dyck languages with bounded depth and find that they are indeed able to generalize to much higher lengths. Since natural language datasets have nested dependencies of bounded depth, this may help explain why they perform well in modeling hierarchical dependencies in natural language data despite prior works indicating poor generalization performance on Dyck languages. We perform probing studies to support our results and provide comparisons with Transformers.
pdf
bib
abs
Pre-trained Language Model Based Active Learning for Sentence Matching
Guirong Bai
|
Shizhu He
|
Kang Liu
|
Jun Zhao
|
Zaiqing Nie
Active learning is able to significantly reduce the annotation cost for data-driven techniques. However, previous active learning approaches for natural language processing mainly depend on the entropy-based uncertainty criterion, and ignore the characteristics of natural language. In this paper, we propose a pre-trained language model based active learning approach for sentence matching. Differing from previous active learning, it can provide linguistic criteria from the pre-trained language model to measure instances and help select more effective instances for annotation. Experiments demonstrate our approach can achieve greater accuracy with fewer labeled training instances.
pdf
bib
abs
Event-Guided Denoising for Multilingual Relation Learning
Amith Ananthram
|
Emily Allaway
|
Kathleen McKeown
General purpose relation extraction has recently seen considerable gains in part due to a massively data-intensive distant supervision technique from Soares et al. (2019) that produces state-of-the-art results across many benchmarks. In this work, we present a methodology for collecting high quality training data for relation extraction from unlabeled text that achieves a near-recreation of their zero-shot and few-shot results at a fraction of the training cost. Our approach exploits the predictable distributional structure of date-marked news articles to build a denoised corpus – the extraction process filters out low quality examples. We show that a smaller multilingual encoder trained on this corpus performs comparably to the current state-of-the-art (when both receive little to no fine-tuning) on few-shot and standard relation benchmarks in English and Spanish despite using many fewer examples (50k vs. 300mil+).
pdf
bib
abs
Using a Penalty-based Loss Re-estimation Method to Improve Implicit Discourse Relation Classification
Xiao Li
|
Yu Hong
|
Huibin Ruan
|
Zhen Huang
We tackle implicit discourse relation classification, a task of automatically determining semantic relationships between arguments. The attention-worthy words in arguments are crucial clues for classifying the discourse relations. Attention mechanisms have been proven effective in highlighting the attention-worthy words during encoding. However, our survey shows that some inessential words are unintentionally misjudged as the attention-worthy words and, therefore, assigned heavier attention weights than should be. We propose a penalty-based loss re-estimation method to regulate the attention learning process, integrating penalty coefficients into the computation of loss by means of overstability of attention weight distributions. We conduct experiments on the Penn Discourse TreeBank (PDTB) corpus. The test results show that our loss re-estimation method leads to substantial improvements for a variety of attention mechanisms, and it obtains highly competitive performance compared to the state-of-the-art methods.
pdf
bib
abs
A Review of Dataset and Labeling Methods for Causality Extraction
Jinghang Xu
|
Wanli Zuo
|
Shining Liang
|
Xianglin Zuo
Causality represents the most important kind of correlation between events. Extracting causali-ty from text has become a promising hot topic in NLP. However, there is no mature research systems and datasets for public evaluation. Moreover, there is a lack of unified causal sequence label methods, which constitute the key factors that hinder the progress of causality extraction research. We survey the limitations and shortcomings of existing causality research field com-prehensively from the aspects of basic concepts, extraction methods, experimental data, and la-bel methods, so as to provide reference for future research on causality extraction. We summa-rize the existing causality datasets, explore their practicability and extensibility from multiple perspectives and create a new causal dataset ESC. Aiming at the problem of causal sequence labeling, we analyse the existing methods with a summarization of its regulation and propose a new causal label method of core word. Multiple candidate causal label sequences are put for-ward according to label controversy to explore the optimal label method through experiments, and suggestions are provided for selecting label method.
pdf
bib
abs
Knowledge Graph Embedding with Atrous Convolution and Residual Learning
Feiliang Ren
|
Juchen Li
|
Huihui Zhang
|
Shilei Liu
|
Bochao Li
|
Ruicheng Ming
|
Yujia Bai
Knowledge graph embedding is an important task and it will benefit lots of downstream applications. Currently, deep neural networks based methods achieve state-of-the-art performance. However, most of these existing methods are very complex and need much time for training and inference. To address this issue, we propose a simple but effective atrous convolution based knowledge graph embedding method. Compared with existing state-of-the-art methods, our method has following main characteristics. First, it effectively increases feature interactions by using atrous convolutions. Second, to address the original information forgotten issue and vanishing/exploding gradient issue, it uses the residual learning method. Third, it has simpler structure but much higher parameter efficiency. We evaluate our method on six benchmark datasets with different evaluation metrics. Extensive experiments show that our model is very effective. On these diverse datasets, it achieves better results than the compared state-of-the-art methods on most of evaluation metrics. The source codes of our model could be found at
https://github.com/neukg/AcrE.
pdf
bib
abs
KnowDis: Knowledge Enhanced Data Augmentation for Event Causality Detection via Distant Supervision
Xinyu Zuo
|
Yubo Chen
|
Kang Liu
|
Jun Zhao
Modern models of event causality detection (ECD) are mainly based on supervised learning from small hand-labeled corpora. However, hand-labeled training data is expensive to produce, low coverage of causal expressions, and limited in size, which makes supervised methods hard to detect causal relations between events. To solve this data lacking problem, we investigate a data augmentation framework for ECD, dubbed as Knowledge Enhanced Distant Data Augmentation (KnowDis). Experimental results on two benchmark datasets EventStoryLine corpus and Causal-TimeBank show that 1) KnowDis can augment available training data assisted with the lexical and causal commonsense knowledge for ECD via distant supervision, and 2) our method outperforms previous methods by a large margin assisted with automatically labeled training data.
pdf
bib
abs
Graph Enhanced Dual Attention Network for Document-Level Relation Extraction
Bo Li
|
Wei Ye
|
Zhonghao Sheng
|
Rui Xie
|
Xiangyu Xi
|
Shikun Zhang
Document-level relation extraction requires inter-sentence reasoning capabilities to capture local and global contextual information for multiple relational facts. To improve inter-sentence reasoning, we propose to characterize the complex interaction between sentences and potential relation instances via a Graph Enhanced Dual Attention network (GEDA). In GEDA, sentence representation generated by the sentence-to-relation (S2R) attention is refined and synthesized by a Heterogeneous Graph Convolutional Network before being fed into the relation-to-sentence (R2S) attention . We further design a simple yet effective regularizer based on the natural duality of the S2R and R2S attention, whose weights are also supervised by the supporting evidence of relation instances during training. An extensive set of experiments on an existing large-scale dataset show that our model achieve competitive performance, especially for the inter-sentence relation extraction, while the neural predictions can also be interpretable and easily observed.
pdf
bib
abs
Joint Entity and Relation Extraction for Legal Documents with Legal Feature Enhancement
Yanguang Chen
|
Yuanyuan Sun
|
Zhihao Yang
|
Hongfei Lin
In recent years, the plentiful information contained in Chinese legal documents has attracted a great deal of attention because of the large-scale release of the judgment documents on China Judgments Online. It is in great need of enabling machines to understand the semantic information stored in the documents which are transcribed in the form of natural language. The technique of information extraction provides a way of mining the valuable information implied in the unstructured judgment documents. We propose a Legal Triplet Extraction System for drug-related criminal judgment documents. The system extracts the entities and the semantic relations jointly and benefits from the proposed legal lexicon feature and multi-task learning framework. Furthermore, we manually annotate a dataset for Named Entity Recognition and Relation Extraction in Chinese legal domain, which contributes to training supervised triplet extraction models and evaluating the model performance. Our experimental results show that the legal feature introduction and multi-task learning framework are feasible and effective for the Legal Triplet Extraction System. The F1 score of triplet extraction finally reaches 0.836 on the legal dataset.
pdf
bib
abs
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking
Yucheng Wang
|
Bowen Yu
|
Yueyang Zhang
|
Tingwen Liu
|
Hongsong Zhu
|
Limin Sun
Extracting entities and relations from unstructured text has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in identifying overlapping relations with shared entities. Prior works show that joint learning can result in a noticeable performance gain. However, they usually involve sequential interrelated steps and suffer from the problem of exposure bias. At training time, they predict with the ground truth conditions while at inference it has to make extraction from scratch. This discrepancy leads to error accumulation. To mitigate the issue, we propose in this paper a one-stage joint extraction model, namely, TPLinker, which is capable of discovering overlapping relations sharing one or both entities while being immune from the exposure bias. TPLinker formulates joint extraction as a token pair linking problem and introduces a novel handshaking tagging scheme that aligns the boundary tokens of entity pairs under each relation type. Experiment results show that TPLinker performs significantly better on overlapping and multiple relation extraction, and achieves state-of-the-art performance on two public datasets.
pdf
bib
abs
TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation
Chengjin Xu
|
Mojtaba Nayyeri
|
Fouad Alkhoury
|
Hamed Shariat Yazdi
|
Jens Lehmann
In the last few years, there has been a surge of interest in learning representations of entities and relations in knowledge graph (KG). However, the recent availability of temporal knowledge graphs (TKGs) that contain time information for each fact created the need for reasoning over time in such TKGs. In this regard, we present a new approach of TKG embedding, TeRo, which defines the temporal evolution of entity embedding as a rotation from the initial time to the current time in the complex vector space. Specially, for facts involving time intervals, each relation is represented as a pair of dual complex embeddings to handle the beginning and the end of the relation, respectively. We show our proposed model overcomes the limitations of the existing KG embedding models and TKG embedding models and has the ability of learning and inferring various relation patterns over time. Experimental results on three different TKGs show that TeRo significantly outperforms existing state-of-the-art models for link prediction. In addition, we analyze the effect of time granularity on link prediction over TKGs, which as far as we know has not been investigated in previous literature.
pdf
bib
abs
Meta-Information Guided Meta-Learning for Few-Shot Relation Classification
Bowen Dong
|
Yuan Yao
|
Ruobing Xie
|
Tianyu Gao
|
Xu Han
|
Zhiyuan Liu
|
Fen Lin
|
Leyu Lin
|
Maosong Sun
Few-shot classification requires classifiers to adapt to new classes with only a few training instances. State-of-the-art meta-learning approaches such as MAML learn how to initialize and fast adapt parameters from limited instances, which have shown promising results in few-shot classification. However, existing meta-learning models solely rely on implicit instance-based statistics, and thus suffer from instance unreliability and weak interpretability. To solve this problem, we propose a novel meta-information guided meta-learning (MIML) framework, where semantic concepts of classes provide strong guidance for meta-learning in both initialization and adaptation. In effect, our model can establish connections between instance-based information and semantic-based information, which enables more effective initialization and faster adaptation. Comprehensive experimental results on few-shot relation classification demonstrate the effectiveness of the proposed framework. Notably, MIML achieves comparable or superior performance to humans with only one shot on FewRel evaluation.
pdf
bib
abs
Unsupervised Deep Language and Dialect Identification for Short Texts
Koustava Goswami
|
Rajdeep Sarkar
|
Bharathi Raja Chakravarthi
|
Theodorus Fransen
|
John P. McCrae
Automatic Language Identification (LI) or Dialect Identification (DI) of short texts of closely related languages or dialects, is one of the primary steps in many natural language processing pipelines. Language identification is considered a solved task in many cases; however, in the case of very closely related languages, or in an unsupervised scenario (where the languages are not known in advance), performance is still poor. In this paper, we propose the Unsupervised Deep Language and Dialect Identification (UDLDI) method, which can simultaneously learn sentence embeddings and cluster assignments from short texts. The UDLDI model understands the sentence constructions of languages by applying attention to character relations which helps to optimize the clustering of languages. We have performed our experiments on three short-text datasets for different language families, each consisting of closely related languages or dialects, with very minimal training sets. Our experimental evaluations on these datasets have shown significant improvement over state-of-the-art unsupervised methods and our model has outperformed state-of-the-art LI and DI systems in supervised settings.
pdf
bib
abs
A Two-phase Prototypical Network Model for Incremental Few-shot Relation Classification
Haopeng Ren
|
Yi Cai
|
Xiaofeng Chen
|
Guohua Wang
|
Qing Li
Relation Classification (RC) plays an important role in natural language processing (NLP). Current conventional supervised and distantly supervised RC models always make a closed-world assumption which ignores the emergence of novel relations in open environment. To incrementally recognize the novel relations, current two solutions (i.e, re-training and lifelong learning) are designed but suffer from the lack of large-scale labeled data for novel relations. Meanwhile, prototypical network enjoys better performance on both fields of deep supervised learning and few-shot learning. However, it still suffers from the incompatible feature embedding problem when the novel relations come in. Motivated by them, we propose a two-phase prototypical network with prototype attention alignment and triplet loss to dynamically recognize the novel relations with a few support instances meanwhile without catastrophic forgetting. Extensive experiments are conducted to evaluate the effectiveness of our proposed model.
pdf
bib
abs
Document-level Relation Extraction with Dual-tier Heterogeneous Graph
Zhenyu Zhang
|
Bowen Yu
|
Xiaobo Shu
|
Tingwen Liu
|
Hengzhu Tang
|
Wang Yubin
|
Li Guo
Document-level relation extraction (RE) poses new challenges over its sentence-level counterpart since it requires an adequate comprehension of the whole document and the multi-hop reasoning ability across multiple sentences to reach the final result. In this paper, we propose a novel graph-based model with Dual-tier Heterogeneous Graph (DHG) for document-level RE. In particular, DHG is composed of a structure modeling layer followed by a relation reasoning layer. The major advantage is that it is capable of not only capturing both the sequential and structural information of documents but also mixing them together to benefit for multi-hop reasoning and final decision-making. Furthermore, we employ Graph Neural Networks (GNNs) based message propagation strategy to accumulate information on DHG. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on two widely used datasets, and further analyses suggest that all the modules in our model are indispensable for document-level RE.
pdf
bib
abs
Biased TextRank: Unsupervised Graph-Based Content Extraction
Ashkan Kazemi
|
Verónica Pérez-Rosas
|
Rada Mihalcea
We introduce Biased TextRank, a graph-based content extraction method inspired by the popular TextRank algorithm that ranks text spans according to their importance for language processing tasks and according to their relevance to an input “focus.” Biased TextRank enables focused content extraction for text by modifying the random restarts in the execution of TextRank. The random restart probabilities are assigned based on the relevance of the graph nodes to the focus of the task. We present two applications of Biased TextRank: focused summarization and explanation extraction, and show that our algorithm leads to improved performance on two different datasets by significant ROUGE-N score margins. Much like its predecessor, Biased TextRank is unsupervised, easy to implement and orders of magnitude faster and lighter than current state-of-the-art Natural Language Processing methods for similar tasks.
pdf
bib
abs
Improving Long-Tail Relation Extraction with Collaborating Relation-Augmented Attention
Yang Li
|
Tao Shen
|
Guodong Long
|
Jing Jiang
|
Tianyi Zhou
|
Chengqi Zhang
Wrong labeling problem and long-tail relations are two main challenges caused by distant supervision in relation extraction. Recent works alleviate the wrong labeling by selective attention via multi-instance learning, but cannot well handle long-tail relations even if hierarchies of the relations are introduced to share knowledge. In this work, we propose a novel neural network, Collaborating Relation-augmented Attention (CoRA), to handle both the wrong labeling and long-tail relations. Particularly, we first propose relation-augmented attention network as base model. It operates on sentence bag with a sentence-to-relation attention to minimize the effect of wrong labeling. Then, facilitated by the proposed base model, we introduce collaborating relation features shared among relations in the hierarchies to promote the relation-augmenting process and balance the training data for long-tail relations. Besides the main training objective to predict the relation of a sentence bag, an auxiliary objective is utilized to guide the relation-augmenting process for a more accurate bag-level representation. In the experiments on the popular benchmark dataset NYT, the proposed CoRA improves the prior state-of-the-art performance by a large margin in terms of Precision@N, AUC and Hits@K. Further analyses verify its superior capability in handling long-tail relations in contrast to the competitors.
pdf
bib
abs
ToHRE: A Top-Down Classification Strategy with Hierarchical Bag Representation for Distantly Supervised Relation Extraction
Erxin Yu
|
Wenjuan Han
|
Yuan Tian
|
Yi Chang
Distantly Supervised Relation Extraction (DSRE) has proven to be effective to find relational facts from texts, but it still suffers from two main problems: the wrong labeling problem and the long-tail problem. Most of the existing approaches address these two problems through flat classification, which lacks hierarchical information of relations. To leverage the informative relation hierarchies, we formulate DSRE as a hierarchical classification task and propose a novel hierarchical classification framework, which extracts the relation in a top-down manner. Specifically, in our proposed framework, 1) we use a hierarchically-refined representation method to achieve hierarchy-specific representation; 2) a top-down classification strategy is introduced instead of training a set of local classifiers. The experiments on NYT dataset demonstrate that our approach significantly outperforms other state-of-the-art approaches, especially for the long-tail problem.
pdf
bib
abs
Unsupervised Fact Checking by Counter-Weighted Positive and Negative Evidential Paths in A Knowledge Graph
Jiseong Kim
|
Key-sun Choi
Misinformation spreads across media, community, and knowledge graphs in the Web by not only human agents but also information extraction algorithms that extract factual statements from unstructured textual data to populate the existing knowledge graphs. Traditional fact checking by experts or crowds is increasingly difficult to keep pace with the volume of newly created misinformation in the Web. Therefore, it is important and necessary to enhance the computational ability to determine whether a given factual statement is truthful or not. We view this problem as a truth scoring task in a knowledge graph. We present a novel rule-based approach that finds positive and negative evidential paths in a knowledge graph for a given factual statement and calculates a truth score for the given statement by unsupervised ensemble of the found positive and negative evidential paths. For example, we can determine the factual statement “United States is the birth place of Barack Obama” as truthful if there is the positive evidential path (Barack Obama, birthPlace, Hawaii) ∧ (Hawaii, country, United States) in a knowledge graph. For another example, we can determine the factual statement “Canada is the nationality of Barack Obama” as untruthful if there is the negative evidential path (Barack Obama, nationality, United States) ∧ (United States, ≠, Canada) in a knowledge graph. For evaluating on a real-world situation, we constructed an evaluation dataset by labeling truth or untruth label on factual statements that were extracted from Wikipedia texts by using the state-of-the-art BERT-based information extraction system. Our evaluation results show that our approach outperforms the state-of-the-art unsupervised approaches significantly by up to 0.12 AUC-ROC and even outperforms the supervised approach by up to 0.05 AUC-ROC not only in our dataset but also in the two different standard datasets.
pdf
bib
abs
Improving Relation Extraction with Relational Paraphrase Sentences
Junjie Yu
|
Tong Zhu
|
Wenliang Chen
|
Wei Zhang
|
Min Zhang
Supervised models for Relation Extraction (RE) typically require human-annotated training data. Due to the limited size, the human-annotated data is usually incapable of covering diverse relation expressions, which could limit the performance of RE. To increase the coverage of relation expressions, we may enlarge the labeled data by hiring annotators or applying Distant Supervision (DS). However, the human-annotated data is costly and non-scalable while the distantly supervised data contains many noises. In this paper, we propose an alternative approach to improve RE systems via enriching diverse expressions by relational paraphrase sentences. Based on an existing labeled data, we first automatically build a task-specific paraphrase data. Then, we propose a novel model to learn the information of diverse relation expressions. In our model, we try to capture this information on the paraphrases via a joint learning framework. Finally, we conduct experiments on a widely used dataset and the experimental results show that our approach is effective to improve the performance on relation extraction, even compared with a strong baseline.
pdf
bib
abs
Autoencoding Improves Pre-trained Word Embeddings
Masahiro Kaneko
|
Danushka Bollegala
Prior works investigating the geometry of pre-trained word embeddings have shown that word embeddings to be distributed in a narrow cone and by centering and projecting using principal component vectors one can increase the accuracy of a given set of pre-trained word embeddings. However, theoretically, this post-processing step is equivalent to applying a linear autoencoder to minimize the squared L2 reconstruction error. This result contradicts prior work (Mu and Viswanath, 2018) that proposed to remove the top principal components from pre-trained embeddings. We experimentally verify our theoretical claims and show that retaining the top principal components is indeed useful for improving pre-trained word embeddings, without requiring access to additional linguistic resources or labeled data.
pdf
bib
abs
PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction
Yichun Yin
|
Chenguang Wang
|
Ming Zhang
Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.
pdf
bib
abs
Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis
Michael Lepori
We present a new approach for detecting human-like social biases in word embeddings using representational similarity analysis. Specifically, we probe contextualized and non-contextualized embeddings for evidence of intersectional biases against Black women. We show that these embeddings represent Black women as simultaneously less feminine than White women, and less Black than Black men. This finding aligns with intersectionality theory, which argues that multiple identity categories (such as race or sex) layer on top of each other in order to create unique modes of discrimination that are not shared by any individual category.
pdf
bib
abs
Vec2Sent: Probing Sentence Embeddings with Natural Language Generation
Martin Kerscher
|
Steffen Eger
We introspect black-box sentence embeddings by conditionally generating from them with the objective to retrieve the underlying discrete sentence. We perceive of this as a new unsupervised probing task and show that it correlates well with downstream task performance. We also illustrate how the language generated from different encoders differs. We apply our approach to generate sentence analogies from sentence embeddings.
pdf
bib
abs
Multi-Task Learning for Knowledge Graph Completion with Pre-trained Language Models
Bosung Kim
|
Taesuk Hong
|
Youngjoong Ko
|
Jungyun Seo
As research on utilizing human knowledge in natural language processing has attracted considerable attention in recent years, knowledge graph (KG) completion has come into the spotlight. Recently, a new knowledge graph completion method using a pre-trained language model, such as KG-BERT, is presented and showed high performance. However, its scores in ranking metrics such as Hits@k are still behind state-of-the-art models. We claim that there are two main reasons: 1) failure in sufficiently learning relational information in knowledge graphs, and 2) difficulty in picking out the correct answer from lexically similar candidates. In this paper, we propose an effective multi-task learning method to overcome the limitations of previous works. By combining relation prediction and relevance ranking tasks with our target link prediction, the proposed model can learn more relational properties in KGs and properly perform even when lexical similarity occurs. Experimental results show that we not only largely improve the ranking performances compared to KG-BERT but also achieve the state-of-the-art performances in Mean Rank and Hits@10 on the WN18RR dataset.
pdf
bib
abs
comp-syn: Perceptually Grounded Word Embeddings with Color
Bhargav Srinivasa Desikan
|
Tasker Hull
|
Ethan Nadler
|
Douglas Guilbeault
|
Aabir Abubakar Kar
|
Mark Chu
|
Donald Ruggiero Lo Sardo
Popular approaches to natural language processing create word embeddings based on textual co-occurrence patterns, but often ignore embodied, sensory aspects of language. Here, we introduce the Python package comp-syn, which provides grounded word embeddings based on the perceptually uniform color distributions of Google Image search results. We demonstrate that comp-syn significantly enriches models of distributional semantics. In particular, we show that(1) comp-syn predicts human judgments of word concreteness with greater accuracy and in a more interpretable fashion than word2vec using low-dimensional word–color embeddings ,and (2) comp-syn performs comparably to word2vec on a metaphorical vs. literal word-pair classification task. comp-syn is open-source on PyPi and is compatible with mainstream machine-learning Python packages. Our package release includes word–color embeddings forover 40,000 English words, each associated with crowd-sourced word concreteness judgments.
pdf
bib
abs
Try to Substitute: An Unsupervised Chinese Word Sense Disambiguation Method Based on HowNet
Bairu Hou
|
Fanchao Qi
|
Yuan Zang
|
Xurui Zhang
|
Zhiyuan Liu
|
Maosong Sun
Word sense disambiguation (WSD) is a fundamental natural language processing task. Unsupervised knowledge-based WSD only relies on a lexical knowledge base as the sense inventory and has wider practical use than supervised WSD that requires a mass of sense-annotated data. HowNet is the most widely used lexical knowledge base in Chinese WSD. Because of its uniqueness, however, most of existing unsupervised WSD methods cannot work for HowNet-based WSD, and the tailor-made methods have not obtained satisfying results. In this paper, we propose a new unsupervised method for HowNet-based Chinese WSD, which exploits the masked language model task of pre-trained language models. In experiments, considering existing evaluation dataset is small and out-of-date, we build a new and larger HowNet-based WSD dataset. Experimental results demonstrate that our model achieves significantly better performance than all the baseline methods. All the code and data of this paper are available at
https://github.com/thunlp/SememeWSD.
pdf
bib
abs
Combining Event Semantics and Degree Semantics for Natural Language Inference
Izumi Haruta
|
Koji Mineshima
|
Daisuke Bekki
In formal semantics, there are two well-developed semantic frameworks: event semantics, which treats verbs and adverbial modifiers using the notion of event, and degree semantics, which analyzes adjectives and comparatives using the notion of degree. However, it is not obvious whether these frameworks can be combined to handle cases in which the phenomena in question are interacting with each other. Here, we study this issue by focusing on natural language inference (NLI). We implement a logic-based NLI system that combines event semantics and degree semantics and their interaction with lexical knowledge. We evaluate the system on various NLI datasets containing linguistically challenging problems. The results show that the system achieves high accuracies on these datasets in comparison with previous logic-based systems and deep-learning-based systems. This suggests that the two semantic frameworks can be combined consistently to handle various combinations of linguistic phenomena without compromising the advantage of either framework.
pdf
bib
abs
Complaint Identification in Social Media with Transformer Networks
Mali Jin
|
Nikolaos Aletras
Complaining is a speech act extensively used by humans to communicate a negative inconsistency between reality and expectations. Previous work on automatically identifying complaints in social media has focused on using feature-based and task-specific neural network models. Adapting state-of-the-art pre-trained neural language models and their combinations with other linguistic information from topics or sentiment for complaint prediction has yet to be explored. In this paper, we evaluate a battery of neural models underpinned by transformer networks which we subsequently combine with linguistic information. Experiments on a publicly available data set of complaints demonstrate that our models outperform previous state-of-the-art methods by a large margin achieving a macro F1 up to 87.
pdf
bib
abs
Syntactically Aware Cross-Domain Aspect and Opinion Terms Extraction
Oren Pereg
|
Daniel Korat
|
Moshe Wasserblat
A fundamental task of fine-grained sentiment analysis is aspect and opinion terms extraction. Supervised-learning approaches have shown good results for this task; however, they fail to scale across domains where labeled data is lacking. Non pre-trained unsupervised domain adaptation methods that incorporate external linguistic knowledge have proven effective in transferring aspect and opinion knowledge from a labeled source domain to un-labeled target domains; however, pre-trained transformer-based models like BERT and RoBERTa already exhibit substantial syntactic knowledge. In this paper, we propose a method for incorporating external linguistic information into a self-attention mechanism coupled with the BERT model. This enables leveraging the intrinsic knowledge existing within BERT together with externally introduced syntactic information, to bridge the gap across domains. We successfully demonstrate enhanced results on three benchmark datasets.
pdf
bib
abs
A Deep Generative Approach to Native Language Identification
Ehsan Lotfi
|
Ilia Markov
|
Walter Daelemans
Native language identification (NLI) – identifying the native language (L1) of a person based on his/her writing in the second language (L2) – is useful for a variety of purposes, including marketing, security, and educational applications. From a traditional machine learning perspective,NLI is usually framed as a multi-class classification task, where numerous designed features are combined in order to achieve the state-of-the-art results. We introduce a deep generative language modelling (LM) approach to NLI, which consists in fine-tuning a GPT-2 model separately on texts written by the authors with the same L1, and assigning a label to an unseen text based on the minimum LM loss with respect to one of these fine-tuned GPT-2 models. Our method outperforms traditional machine learning approaches and currently achieves the best results on the benchmark NLI datasets.
pdf
bib
abs
Modeling Event Salience in Narratives via Barthes’ Cardinal Functions
Takaki Otake
|
Sho Yokoi
|
Naoya Inoue
|
Ryo Takahashi
|
Tatsuki Kuribayashi
|
Kentaro Inui
Events in a narrative differ in salience: some are more important to the story than others. Estimating event salience is useful for tasks such as story generation, and as a tool for text analysis in narratology and folkloristics. To compute event salience without any annotations, we adopt Barthes’ definition of event salience and propose several unsupervised methods that require only a pre-trained language model. Evaluating the proposed methods on folktales with event salience annotation, we show that the proposed methods outperform baseline methods and find fine-tuning a language model on narrative texts is a key factor in improving the proposed methods.
pdf
bib
abs
Medical Knowledge-enriched Textual Entailment Framework
Shweta Yadav
|
Vishal Pallagani
|
Amit Sheth
One of the cardinal tasks in achieving robust medical question answering systems is textual entailment. The existing approaches make use of an ensemble of pre-trained language models or data augmentation, often to clock higher numbers on the validation metrics. However, two major shortcomings impede higher success in identifying entailment: (1) understanding the focus/intent of the question and (2) ability to utilize the real-world background knowledge to capture the con-text beyond the sentence. In this paper, we present a novel Medical Knowledge-Enriched Textual Entailment framework that allows the model to acquire a semantic and global representation of the input medical text with the help of a relevant domain-specific knowledge graph. We evaluate our framework on the benchmark MEDIQA-RQE dataset and manifest that the use of knowledge-enriched dual-encoding mechanism help in achieving an absolute improvement of 8.27% over SOTA language models.
pdf
bib
abs
Predicting Personal Opinion on Future Events with Fingerprints
Fan Yang
|
Eduard Dragut
|
Arjun Mukherjee
Predicting users’ opinions in their response to social events has important real-world applications, many of which political and social impacts. Existing approaches derive a population’s opinion on a going event from large scores of user generated content. In certain scenarios, we may not be able to acquire such content and thus cannot infer an unbiased opinion on those emerging events. To address this problem, we propose to explore opinion on unseen articles based on one’s fingerprinting: the prior reading and commenting history. This work presents a focused study on modeling and leveraging fingerprinting techniques to predict a user’s future opinion. We introduce a recurrent neural network based model that integrates fingerprinting. We collect a large dataset that consists of event-comment pairs from six news websites. We evaluate the proposed model on this dataset. The results show substantial performance gains demonstrating the effectiveness of our approach.
pdf
bib
abs
Detecting de minimis Code-Switching in Historical German Books
Shijia Liu
|
David Smith
Code-switching has long interested linguists, with computational work in particular focusing on speech and social media data (Sitaram et al., 2019). This paper contrasts these informal instances of code-switching to its appearance in more formal registers, by examining the mixture of languages in the Deutsches Textarchiv (DTA), a corpus of 1406 primarily German books from the 17th to 19th centuries. We automatically annotate and manually inspect spans of six embedded languages (Latin, French, English, Italian, Spanish, and Greek) in the corpus. We quantitatively analyze the differences between code-switching patterns in these books and those in more typically studied speech and social media corpora. Furthermore, we address the practical task of predicting code-switching from features of the matrix language alone in the DTA corpus. Such classifiers can help reduce errors when optical character recognition or speech transcription is applied to a large corpus with rare embedded languages.
pdf
bib
abs
Lin: Unsupervised Extraction of Tasks from Textual Communication
Parth Diwanji
|
Hui Guo
|
Munindar Singh
|
Anup Kalia
Commitments and requests are a hallmark of collaborative communication, especially in team settings. Identifying specific tasks being committed to or request from emails and chat messages can enable important downstream tasks, such as producing todo lists, reminders, and calendar entries. State-of-the-art approaches for task identification rely on large annotated datasets, which are not always available, especially for domain-specific tasks. Accordingly, we propose Lin, an unsupervised approach of identifying tasks that leverages dependency parsing and VerbNet. Our evaluations show that Lin yields comparable or more accurate results than supervised models on domains with large training sets, and maintains its excellent performance on unseen domains.
pdf
bib
abs
Connecting the Dots Between Fact Verification and Fake News Detection
Qifei Li
|
Wangchunshu Zhou
Fact verification models have enjoyed a fast advancement in the last two years with the development of pre-trained language models like BERT and the release of large scale datasets such as FEVER. However, the challenging problem of fake news detection has not benefited from the improvement of fact verification models, which is closely related to fake news detection. In this paper, we propose a simple yet effective approach to connect the dots between fact verification and fake news detection. Our approach first employs a text summarization model pre-trained on news corpora to summarize the long news article into a short claim. Then we use a fact verification model pre-trained on the FEVER dataset to detect whether the input news article is real or fake. Our approach makes use of the recent success of fact verification models and enables zero-shot fake news detection, alleviating the need of large scale training data to train fake news detection models. Experimental results on FakenewsNet, a benchmark dataset for fake news detection, demonstrate the effectiveness of our proposed approach.
pdf
bib
abs
Personalized Multimodal Feedback Generation in Education
Haochen Liu
|
Zitao Liu
|
Zhongqin Wu
|
Jiliang Tang
The automatic feedback of school assignments is an important application of AI in education. In this work, we focus on the task of personalized multimodal feedback generation, which aims to generate personalized feedback for teachers to evaluate students’ assignments involving multimodal inputs such as images, audios, and texts. This task involves the representation and fusion of multimodal information and natural language generation, which presents the challenges from three aspects: (1) how to encode and integrate multimodal inputs; (2) how to generate feedback specific to each modality; and (3) how to fulfill personalized feedback generation. In this paper, we propose a novel Personalized Multimodal Feedback Generation Network (PMFGN) armed with a modality gate mechanism and a personalized bias mechanism to address these challenges. Extensive experiments on real-world K-12 education data show that our model significantly outperforms baselines by generating more accurate and diverse feedback. In addition, detailed ablation experiments are conducted to deepen our understanding of the proposed framework.
pdf
bib
abs
Reasoning Step-by-Step: Temporal Sentence Localization in Videos via Deep Rectification-Modulation Network
Daizong Liu
|
Xiaoye Qu
|
Jianfeng Dong
|
Pan Zhou
Temporal sentence localization in videos aims to ground the best matched segment in an untrimmed video according to a given sentence query. Previous works in this field mainly rely on attentional frameworks to align the temporal boundaries by a soft selection. Although they focus on the visual content relevant to the query, these single-step attention are insufficient to model complex video contents and restrict the higher-level reasoning demand for this task. In this paper, we propose a novel deep rectification-modulation network (RMN), transforming this task into a multi-step reasoning process by repeating rectification and modulation. In each rectification-modulation layer, unlike existing methods directly conducting the cross-modal interaction, we first devise a rectification module to correct implicit attention misalignment which focuses on the wrong position during the cross-interaction process. Then, a modulation module is developed to capture the frame-to-frame relation with the help of sentence information for better correlating and composing the video contents over time. With multiple such layers cascaded in depth, our RMN progressively refines video and query interactions, thus enabling a further precise localization. Experimental evaluations on three public datasets show that the proposed method achieves state-of-the-art performance. Extensive ablation studies are carried out for the comprehensive analysis of the proposed method.
pdf
bib
abs
RIVA: A Pre-trained Tweet Multimodal Model Based on Text-image Relation for Multimodal NER
Lin Sun
|
Jiquan Wang
|
Yindu Su
|
Fangsheng Weng
|
Yuxuan Sun
|
Zengwei Zheng
|
Yuanyi Chen
Multimodal named entity recognition (MNER) for tweets has received increasing attention recently. Most of the multimodal methods used attention mechanisms to capture the text-related visual information. However, unrelated or weakly related text-image pairs account for a large proportion in tweets. Visual clues unrelated to the text would incur uncertain or even negative effects for multimodal model learning. In this paper, we propose a novel pre-trained multimodal model based on Relationship Inference and Visual Attention (RIVA) for tweets. The RIVA model controls the attention-based visual clues with a gate regarding the role of image to the semantics of text. We use a teacher-student semi-supervised paradigm to leverage a large unlabeled multimodal tweet corpus with a labeled data set for text-image relation classification. In the multimodal NER task, the experimental results show the significance of text-related visual features for the visual-linguistic model and our approach achieves SOTA performance on the MNER datasets.
pdf
bib
abs
Towards Knowledge-Augmented Visual Question Answering
Maryam Ziaeefard
|
Freddy Lecue
Visual Question Answering (VQA) remains algorithmically challenging while it is effortless for humans. Humans combine visual observations with general and commonsense knowledge to answer questions about a given image. In this paper, we address the problem of incorporating general knowledge into VQA models while leveraging the visual information. We propose a model that captures the interactions between objects in a visual scene and entities in an external knowledge source. Our model is a graph-based approach that combines scene graphs with concept graphs, which learns a question-adaptive graph representation of related knowledge instances. We use Graph Attention Networks to set higher importance to key knowledge instances that are mostly relevant to each question. We exploit ConceptNet as the source of general knowledge and evaluate the performance of our model on the challenging OK-VQA dataset.
pdf
bib
abs
Visual-Textual Alignment for Graph Inference in Visual Dialog
Tianling Jiang
|
Yi Ji
|
Chunping Liu
|
Hailin Shao
As a conversational intelligence task, visual dialog entails answering a series of questions grounded in an image, using the dialog history as context. To generate correct answers, the comprehension of the semantic dependencies among implicit visual and textual contents is critical. Prior works usually ignored the underlying relation and failed to infer it reasonably. In this paper, we propose a Visual-Textual Alignment for Graph Inference (VTAGI) network. Compared with other approaches, it makes up the lack of structural inference in visual dialog. The whole system consists of two modules, Visual and Textual Alignment (VTA) and Visual Graph Attended by Text (VGAT). Specially, the VTA module aims at representing an image with a set of integrated visual regions and corresponding textual concepts, reflecting certain semantics. The VGAT module views the visual features with semantic information as observed nodes and each node learns the relationship with others in visual graph. We also qualitatively and quantitatively evaluate the model on VisDial v1.0 dataset, showing our VTAGI outperforms previous state-of-the-art models.
pdf
bib
abs
Ad Lingua: Text Classification Improves Symbolism Prediction in Image Advertisements
Andrey Savchenko
|
Anton Alekseev
|
Sejeong Kwon
|
Elena Tutubalina
|
Evgeny Myasnikov
|
Sergey Nikolenko
Understanding image advertisements is a challenging task, often requiring non-literal interpretation. We argue that standard image-based predictions are insufficient for symbolism prediction. Following the intuition that texts and images are complementary in advertising, we introduce a multimodal ensemble of a state of the art image-based classifier, a classifier based on an object detection architecture, and a fine-tuned language model applied to texts extracted from ads by OCR. The resulting system establishes a new state of the art in symbolism prediction.
pdf
bib
abs
Humans Meet Models on Object Naming: A New Dataset and Analysis
Carina Silberer
|
Sina Zarrieß
|
Matthijs Westera
|
Gemma Boleda
We release ManyNames v2 (MN v2), a verified version of an object naming dataset that contains dozens of valid names per object for 25K images. We analyze issues in the data collection method originally employed, standard in Language & Vision (L&V), and find that the main source of noise in the data comes from simulating a naming context solely from an image with a target object marked with a bounding box, which causes subjects to sometimes disagree regarding which object is the target. We also find that both the degree of this uncertainty in the original data and the amount of true naming variation in MN v2 differs substantially across object domains. We use MN v2 to analyze a popular L&V model and demonstrate its effectiveness on the task of object naming. However, our fine-grained analysis reveals that what appears to be human-like model behavior is not stable across domains, e.g., the model confuses people and clothing objects much more frequently than humans do. We also find that standard evaluations underestimate the actual effectiveness of the naming model: on the single-label names of the original dataset (Visual Genome), it obtains −27% accuracy points than on MN v2, that includes all valid object names.
pdf
bib
abs
Encoding Lexico-Semantic Knowledge using Ensembles of Feature Maps from Deep Convolutional Neural Networks
Steven Derby
|
Paul Miller
|
Barry Devereux
Semantic models derived from visual information have helped to overcome some of the limitations of solely text-based distributional semantic models. Researchers have demonstrated that text and image-based representations encode complementary semantic information, which when combined provide a more complete representation of word meaning, in particular when compared with data on human conceptual knowledge. In this work, we reveal that these vision-based representations, whilst quite effective, do not make use of all the semantic information available in the neural network that could be used to inform vector-based models of semantic representation. Instead, we build image-based meta-embeddings from computer vision models, which can incorporate information from all layers of the network, and show that they encode a richer set of semantic attributes and yield a more complete representation of human conceptual knowledge.
pdf
bib
abs
Language-Driven Region Pointer Advancement for Controllable Image Captioning
Annika Lindh
|
Robert Ross
|
John Kelleher
Controllable Image Captioning is a recent sub-field in the multi-modal task of Image Captioning wherein constraints are placed on which regions in an image should be described in the generated natural language caption. This puts a stronger focus on producing more detailed descriptions, and opens the door for more end-user control over results. A vital component of the Controllable Image Captioning architecture is the mechanism that decides the timing of attending to each region through the advancement of a region pointer. In this paper, we propose a novel method for predicting the timing of region pointer advancement by treating the advancement step as a natural part of the language structure via a NEXT-token, motivated by a strong correlation to the sentence structure in the training data. We find that our timing agrees with the ground-truth timing in the Flickr30k Entities test data with a precision of 86.55% and a recall of 97.92%. Our model implementing this technique improves the state-of-the-art on standard captioning metrics while additionally demonstrating a considerably larger effective vocabulary size.
pdf
bib
abs
Offensive Language Detection on Video Live Streaming Chat
Zhiwei Gao
|
Shuntaro Yada
|
Shoko Wakamiya
|
Eiji Aramaki
This paper presents a prototype of a chat room that detects offensive expressions in a video live streaming chat in real time. Focusing on Twitch, one of the most popular live streaming platforms, we created a dataset for the task of detecting offensive expressions. We collected 2,000 chat posts across four popular game titles with genre diversity (e.g., competitive, violent, peaceful). To make use of the similarity in offensive expressions among different social media platforms, we adopted state-of-the-art models trained on offensive expressions from Twitter for our Twitch data (i.e., transfer learning). We investigated two similarity measurements to predict the transferability, textual similarity, and game-genre similarity. Our results show that the transfer of features from social media to live streaming is effective. However, the two measurements show less correlation in the transferability prediction.
pdf
bib
abs
Image Caption Generation for News Articles
Zhishen Yang
|
Naoaki Okazaki
In this paper, we address the task of news-image captioning, which generates a description of an image given the image and its article body as input. This task is more challenging than the conventional image captioning, because it requires a joint understanding of image and text. We present a Transformer model that integrates text and image modalities and attends to textual features from visual features in generating a caption. Experiments based on automatic evaluation metrics and human evaluation show that an article text provides primary information to reproduce news-image captions written by journalists. The results also demonstrate that the proposed model outperforms the state-of-the-art model. In addition, we also confirm that visual features contribute to improving the quality of news-image captions.
pdf
bib
abs
CoNAN: A Complementary Neighboring-based Attention Network for Referring Expression Generation
Jungjun Kim
|
Hanbin Ko
|
Jialin Wu
Daily scenes are complex in the real world due to occlusion, undesired lighting conditions, etc. Although humans handle those complicated environments well, they evoke challenges for machine learning systems to identify and describe the target without ambiguity. Most previous research focuses on mining discriminating features within the same category for the target object. One the other hand, as the scene becomes more complicated, human frequently uses the neighbor objects as complementary information to describe the target one. Motivated by that, we propose a novel Complementary Neighboring-based Attention Network (CoNAN) that explicitly utilizes the visual differences between the target object and its highly-related neighbors. These highly-related neighbors are determined by an attentional ranking module, as complementary features, highlighting the discriminating aspects for the target object. The speaker module then takes the visual difference features as an additional input to generate the expression. Our qualitative and quantitative results on the dataset RefCOCO, RefCOCO+, and RefCOCOg demonstrate that our generated expressions outperform other state-of-the-art models by a clear margin.
pdf
bib
abs
Mark-Evaluate: Assessing Language Generation using Population Estimation Methods
Gonçalo Mordido
|
Christoph Meinel
We propose a family of metrics to assess language generation derived from population estimation methods widely used in ecology. More specifically, we use mark-recapture and maximum-likelihood methods that have been applied over the past several decades to estimate the size of closed populations in the wild. We propose three novel metrics: MEPetersen and MECAPTURE, which retrieve a single-valued assessment, and MESchnabel which returns a double-valued metric to assess the evaluation set in terms of quality and diversity, separately. In synthetic experiments, our family of methods is sensitive to drops in quality and diversity. Moreover, our methods show a higher correlation to human evaluation than existing metrics on several challenging tasks, namely unconditional language generation, machine translation, and text summarization.
pdf
bib
abs
TableGPT: Few-shot Table-to-Text Generation with Table Structure Reconstruction and Content Matching
Heng Gong
|
Yawei Sun
|
Xiaocheng Feng
|
Bing Qin
|
Wei Bi
|
Xiaojiang Liu
|
Ting Liu
Although neural table-to-text models have achieved remarkable progress with the help of large-scale datasets, they suffer insufficient learning problem with limited training data. Recently, pre-trained language models show potential in few-shot learning with linguistic knowledge learnt from pretraining on large-scale corpus. However, benefiting table-to-text generation in few-shot setting with the powerful pretrained language model faces three challenges, including (1) the gap between the task’s structured input and the natural language input for pretraining language model. (2) The lack of modeling for table structure and (3) improving text fidelity with less incorrect expressions that are contradicting to the table. To address aforementioned problems, we propose TableGPT for table-to-text generation. At first, we utilize table transformation module with template to rewrite structured table in natural language as input for GPT-2. In addition, we exploit multi-task learning with two auxiliary tasks that preserve table’s structural information by reconstructing the structure from GPT-2’s representation and improving the text’s fidelity with content matching task aligning the table and information in the generated text. By experimenting on Humans, Songs and Books, three few-shot table-to-text datasets in different domains, our model outperforms existing systems on most few-shot settings.
pdf
bib
abs
The ApposCorpus: a new multilingual, multi-domain dataset for factual appositive generation
Yova Kementchedjhieva
|
Di Lu
|
Joel Tetreault
News articles, image captions, product reviews and many other texts mention people and organizations whose name recognition could vary for different audiences. In such cases, background information about the named entities could be provided in the form of an appositive noun phrase, either written by a human or generated automatically. We expand on the previous work in appositive generation with a new, more realistic, end-to-end definition of the task, instantiated by a dataset that spans four languages (English, Spanish, German and Polish), two entity types (person and organization) and two domains (Wikipedia and News). We carry out an extensive analysis of the data and the task, pointing to the various modeling challenges it poses. The results we obtain with standard language generation methods show that the task is indeed non-trivial, and leaves plenty of room for improvement.
pdf
bib
abs
Generalized Shortest-Paths Encoders for AMR-to-Text Generation
Lisa Jin
|
Daniel Gildea
For text generation from semantic graphs, past neural models encoded input structure via gated convolutions along graph edges. Although these operations provide local context, the distance messages can travel is bounded by the number of encoder propagation steps. We adopt recent efforts of applying Transformer self-attention to graphs to allow global feature propagation. Instead of feeding shortest paths to the vertex self-attention module, we train a model to learn them using generalized shortest-paths algorithms. This approach widens the receptive field of a graph encoder by exposing it to all possible graph paths. We explore how this path diversity affects performance across levels of AMR connectivity, demonstrating gains on AMRs of higher reentrancy counts and diameters. Analysis of generated sentences also supports high semantic coherence of our models for reentrant AMRs. Our best model achieves a 1.4 BLEU and 1.8 chrF++ margin over a baseline that encodes only pairwise-unique shortest paths.
pdf
bib
abs
An Enhanced Knowledge Injection Model for Commonsense Generation
Zhihao Fan
|
Yeyun Gong
|
Zhongyu Wei
|
Siyuan Wang
|
Yameng Huang
|
Jian Jiao
|
Xuanjing Huang
|
Nan Duan
|
Ruofei Zhang
Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assist the understanding of the scenario for better description generation. We integrate two additional modules into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, experimental results show that our method significantly improves the performance on all the metrics.
pdf
bib
abs
Multi-grained Chinese Word Segmentation with Weakly Labeled Data
Chen Gong
|
Zhenghua Li
|
Bowei Zou
|
Min Zhang
In contrast with the traditional single-grained word segmentation (SWS), where a sentence corresponds to a single word sequence, multi-grained Chinese word segmentation (MWS) aims to segment a sentence into multiple word sequences to preserve all words of different granularities. Due to the lack of manually annotated MWS data, previous work train and tune MWS models only on automatically generated pseudo MWS data. In this work, we further take advantage of the rich word boundary information in existing SWS data and naturally annotated data from dictionary example (DictEx) sentences, to advance the state-of-the-art MWS model based on the idea of weak supervision. Particularly, we propose to accommodate two types of weakly labeled data for MWS, i.e., SWS data and DictEx data by employing a simple yet competitive graph-based parser with local loss. Besides, we manually annotate a high-quality MWS dataset according to our newly compiled annotation guideline, consisting of over 9,000 sentences from two types of texts, i.e., canonical newswire (NEWS) and non-canonical web (BAIKE) data for better evaluation. Detailed evaluation shows that our proposed model with weakly labeled data significantly outperforms the state-of-the-art MWS model by 1.12 and 5.97 on NEWS and BAIKE data in F1.
pdf
bib
abs
KeyGames: A Game Theoretic Approach to Automatic Keyphrase Extraction
Arnav Saxena
|
Mudit Mangal
|
Goonjan Jain
In this paper, we introduce two advancements in the automatic keyphrase extraction (AKE) space - KeyGames and pke+. KeyGames is an unsupervised AKE framework that employs the concept of evolutionary game theory and consistent labelling problem to ensure consistent classification of candidates into keyphrase and non-keyphrase. Pke+ is a python based pipeline built on top of the existing pke library to standardize various AKE steps, namely candidate extraction and evaluation, to ensure truly systematic and comparable performance analysis of AKE models. In the experiments section, we compare the performance of KeyGames across three publicly available datasets (Inspec 2001, SemEval 2010, DUC 2001) against the results quoted by the existing state-of-the-art models as well as their performance when reproduced using pke+. The results show that KeyGames outperforms most of the state-of-the-art systems while generalizing better on input documents with different domains and length. Further, pke+’s pre-processing brings out improvement in several other system’s quoted performance as well.
pdf
bib
abs
Parsers Know Best: German PP Attachment Revisited
Bich-Ngoc Do
|
Ines Rehbein
In the paper, we revisit the PP attachment problem which has been identified as one of the major sources for parser errors and discuss shortcomings of recent work. In particular, we show that using gold information for the extraction of attachment candidates as well as a missing comparison of the system’s output to the output of a full syntactic parser leads to an overly optimistic assessment of the results. We address these issues by presenting a realistic evaluation of the potential of different PP attachment systems, using fully predicted information as system input. We compare our results against the output of a strong neural parser and show that the full parsing approach is superior to modeling PP attachment disambiguation as a separate task.
pdf
bib
abs
Towards Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria Learning
Weipeng Huang
|
Xingyi Cheng
|
Kunlong Chen
|
Taifeng Wang
|
Wei Chu
The ambiguous annotation criteria lead to divergence of Chinese Word Segmentation (CWS) datasets in various granularities. Multi-criteria Chinese word segmentation aims to capture various annotation criteria among datasets and leverage their common underlying knowledge. In this paper, we propose a domain adaptive segmenter to exploit diverse criteria of various datasets. Our model is based on Bidirectional Encoder Representations from Transformers (BERT), which is responsible for introducing open-domain knowledge. Private and shared projection layers are proposed to capture domain-specific knowledge and common knowledge, respectively. We also optimize computational efficiency via distillation, quantization, and compiler optimization. Experiments show that our segmenter outperforms the previous state of the art (SOTA) models on 10 CWS datasets with superior efficiency.
pdf
bib
abs
Joint Chinese Word Segmentation and Part-of-speech Tagging via Multi-channel Attention of Character N-grams
Yuanhe Tian
|
Yan Song
|
Fei Xia
Chinese word segmentation (CWS) and part-of-speech (POS) tagging are two fundamental tasks for Chinese language processing. Previous studies have demonstrated that jointly performing them can be an effective one-step solution to both tasks and this joint task can benefit from a good modeling of contextual features such as n-grams. However, their work on modeling such contextual features is limited to concatenating the features or their embeddings directly with the input embeddings without distinguishing whether the contextual features are important for the joint task in the specific context. Therefore, their models for the joint task could be misled by unimportant contextual information. In this paper, we propose a character-based neural model for the joint task enhanced by multi-channel attention of n-grams. In the attention module, n-gram features are categorized into different groups according to several criteria, and n-grams in each group are weighted and distinguished according to their importance for the joint task in the specific context. To categorize n-grams, we try two criteria in this study, i.e., n-gram frequency and length, so that n-grams having different capabilities of carrying contextual information are discriminatively learned by our proposed attention module. Experimental results on five benchmark datasets for CWS and POS tagging demonstrate that our approach outperforms strong baseline models and achieves state-of-the-art performance on all five datasets.
pdf
bib
abs
Taking the Correction Difficulty into Account in Grammatical Error Correction Evaluation
Takumi Gotou
|
Ryo Nagata
|
Masato Mita
|
Kazuaki Hanawa
This paper presents performance measures for grammatical error correction which take into account the difficulty of error correction. To the best of our knowledge, no conventional measure has such functionality despite the fact that some errors are easy to correct and others are not. The main purpose of this work is to provide a way of determining the difficulty of error correction and to motivate researchers in the domain to attack such difficult errors. The performance measures are based on the simple idea that the more systems successfully correct an error, the easier it is considered to be. This paper presents a set of algorithms to implement this idea. It evaluates the performance measures quantitatively and qualitatively on a wide variety of corpora and systems, revealing that they agree with our intuition of correction difficulty. A scorer and difficulty weight data based on the algorithms have been made available on the web.
pdf
bib
abs
Automatic Distractor Generation for Multiple Choice Questions in Standard Tests
Zhaopeng Qiu
|
Xian Wu
|
Wei Fan
To assess knowledge proficiency of a learner, multiple choice question is an efficient and widespread form in standard tests. However, the composition of the multiple choice question, especially the construction of distractors is quite challenging. The distractors are required to both incorrect and plausible enough to confuse the learners who did not master the knowledge. Currently, the distractors are generated by domain experts which are both expensive and time-consuming. This urges the emergence of automatic distractor generation, which can benefit various standard tests in a wide range of domains. In this paper, we propose a question and answer guided distractor generation (EDGE) framework to automate distractor generation. EDGE consists of three major modules: (1) the Reforming Question Module and the Reforming Passage Module apply gate layers to guarantee the inherent incorrectness of the generated distractors; (2) the Distractor Generator Module applies attention mechanism to control the level of plausibility. Experimental results on a large-scale public dataset demonstrate that our model significantly outperforms existing models and achieves a new state-of-the-art.
pdf
bib
abs
Towards A Friendly Online Community: An Unsupervised Style Transfer Framework for Profanity Redaction
Minh Tran
|
Yipeng Zhang
|
Mohammad Soleymani
Offensive and abusive language is a pressing problem on social media platforms. In this work, we propose a method for transforming offensive comments, statements containing profanity or offensive language, into non-offensive ones. We design a Retrieve, Generate and Edit unsupervised style transfer pipeline to redact the offensive comments in a word-restricted manner while maintaining a high level of fluency and preserving the content of the original text. We extensively evaluate our method’s performance and compare it to previous style transfer models using both automatic metrics and human evaluations. Experimental results show that our method outperforms other models on human evaluations and is the only approach that consistently performs well on all automatic evaluation metrics.
pdf
bib
abs
How Positive Are You: Text Style Transfer using Adaptive Style Embedding
Heejin Kim
|
Kyung-Ah Sohn
The prevalent approach for unsupervised text style transfer is disentanglement between content and style. However, it is difficult to completely separate style information from the content. Other approaches allow the latent text representation to contain style and the target style to affect the generated output more than the latent representation does. In both approaches, however, it is impossible to adjust the strength of the style in the generated output. Moreover, those previous approaches typically perform both the sentence reconstruction and style control tasks in a single model, which complicates the overall architecture. In this paper, we address these issues by separating the model into a sentence reconstruction module and a style module. We use the Transformer-based autoencoder model for sentence reconstruction and the adaptive style embedding is learned directly in the style module. Because of this separation, each module can better focus on its own task. Moreover, we can vary the style strength of the generated sentence by changing the style of the embedding expression. Therefore, our approach not only controls the strength of the style, but also simplifies the model architecture. Experimental results show that our approach achieves better style transfer performance and content preservation than previous approaches.
pdf
bib
abs
Neural text normalization leveraging similarities of strings and sounds
Riku Kawamura
|
Tatsuya Aoki
|
Hidetaka Kamigaito
|
Hiroya Takamura
|
Manabu Okumura
We propose neural models that can normalize text by considering the similarities of word strings and sounds. We experimentally compared a model that considers the similarities of both word strings and sounds, a model that considers only the similarity of word strings or of sounds, and a model without the similarities as a baseline. Results showed that leveraging the word string similarity succeeded in dealing with misspellings and abbreviations, and taking into account the sound similarity succeeded in dealing with phonetic substitutions and emphasized characters. So that the proposed models achieved higher F1 scores than the baseline.
pdf
bib
abs
Generating Diverse Corrections with Local Beam Search for Grammatical Error Correction
Kengo Hotate
|
Masahiro Kaneko
|
Mamoru Komachi
In this study, we propose a beam search method to obtain diverse outputs in a local sequence transduction task where most of the tokens in the source and target sentences overlap, such as in grammatical error correction (GEC). In GEC, it is advisable to rewrite only the local sequences that must be rewritten while leaving the correct sequences unchanged. However, existing methods of acquiring various outputs focus on revising all tokens of a sentence. Therefore, existing methods may either generate ungrammatical sentences because they force the entire sentence to be changed or produce non-diversified sentences by weakening the constraints to avoid generating ungrammatical sentences. Considering these issues, we propose a method that does not rewrite all the tokens in a text, but only rewrites those parts that need to be diversely corrected. Our beam search method adjusts the search token in the beam according to the probability that the prediction is copied from the source sentence. The experimental results show that our proposed method generates more diverse corrections than existing methods without losing accuracy in the GEC task.
pdf
bib
abs
A Neural Local Coherence Analysis Model for Clarity Text Scoring
Panitan Muangkammuen
|
Sheng Xu
|
Fumiyo Fukumoto
|
Kanda Runapongsa Saikaew
|
Jiyi Li
Local coherence relation between two phrases/sentences such as cause-effect and contrast gives a strong influence of whether a text is well-structured or not. This paper follows the assumption and presents a method for scoring text clarity by utilizing local coherence between adjacent sentences. We hypothesize that the contextual features of coherence relations learned by utilizing different data from the target training data are also possible to discriminate well-structured of the target text and thus help to score the text clarity. We propose a text clarity scoring method that utilizes local coherence analysis with an out-domain setting, i.e. the training data for the source and target tasks are different from each other. The method with language model pre-training BERT firstly trains the local coherence model as an auxiliary manner and then re-trains it together with clarity text scoring model. The experimental results by using the PeerRead benchmark dataset show the improvement compared with a single model, scoring text clarity model. Our source codes are available online.
pdf
bib
abs
Grammatical error detection in transcriptions of spoken English
Andrew Caines
|
Christian Bentz
|
Kate Knill
|
Marek Rei
|
Paula Buttery
We describe the collection of transcription corrections and grammatical error annotations for the CrowdED Corpus of spoken English monologues on business topics. The corpus recordings were crowdsourced from native speakers of English and learners of English with German as their first language. The new transcriptions and annotations are obtained from different crowdworkers: we analyse the 1108 new crowdworker submissions and propose that they can be used for automatic transcription post-editing and grammatical error correction for speech. To further explore the data we train grammatical error detection models with various configurations including pre-trained and contextual word representations as input, additional features and auxiliary objectives, and extra training data from written error-annotated corpora. We find that a model concatenating pre-trained and contextual word representations as input performs best, and that additional information does not lead to further performance gains.
pdf
bib
abs
Automatic Assistance for Academic Word Usage
Dariush Saberi
|
John Lee
|
Jonathan James Webster
This paper describes a writing assistance system that helps students improve their academic writing. Given an input text, the system suggests lexical substitutions that aim to incorporate more academic vocabulary. The substitution candidates are drawn from an academic word list and ranked by a masked language model. Experimental results show that lexical formality analysis can improve the quality of the suggestions, in comparison to a baseline that relies on the masked language model only.
pdf
bib
abs
Style versus Content: A distinction without a (learnable) difference?
Somayeh Jafaritazehjani
|
Gwénolé Lecorvé
|
Damien Lolive
|
John Kelleher
Textual style transfer involves modifying the style of a text while preserving its content. This assumes that it is possible to separate style from content. This paper investigates whether this separation is possible. We use sentiment transfer as our case study for style transfer analysis. Our experimental methodology frames style transfer as a multi-objective problem, balancing style shift with content preservation and fluency. Due to the lack of parallel data for style transfer we employ a variety of adversarial encoder-decoder networks in our experiments. Also, we use of a probing methodology to analyse how these models encode style-related features in their latent spaces. The results of our experiments which are further confirmed by a human evaluation reveal the inherent trade-off between the multiple style transfer objectives which indicates that style cannot be usefully separated from content within these style-transfer systems.
pdf
bib
abs
Contextualized Embeddings for Enriching Linguistic Analyses on Politeness
Ahmad Aljanaideh
|
Eric Fosler-Lussier
|
Marie-Catherine de Marneffe
Linguistic analyses in natural language processing (NLP) have often been performed around the static notion of words where the context (surrounding words) is not considered. For example, previous analyses on politeness have focused on comparing the use of static words such as personal pronouns across (im)polite requests without taking the context of those words into account. Current word embeddings in NLP do capture context and thus can be leveraged to enrich linguistic analyses. In this work, we introduce a model which leverages the pre-trained BERT model to cluster contextualized representations of a word based on (1) the context in which the word appears and (2) the labels of items the word occurs in. Using politeness as case study, this model is able to automatically discover interpretable, fine-grained context patterns of words, some of which align with existing theories on politeness. Our model further discovers novel finer-grained patterns associated with (im)polite language. For example, the word please can occur in impolite contexts that are predictable from BERT clustering. The approach proposed here is validated by showing that features based on fine-grained patterns inferred from the clustering improve over politeness-word baselines.
pdf
bib
abs
Heterogeneous Recycle Generation for Chinese Grammatical Error Correction
Charles Hinson
|
Hen-Hsen Huang
|
Hsin-Hsi Chen
Most recent works in the field of grammatical error correction (GEC) rely on neural machine translation-based models. Although these models boast impressive performance, they require a massive amount of data to properly train. Furthermore, NMT-based systems treat GEC purely as a translation task and overlook the editing aspect of it. In this work we propose a heterogeneous approach to Chinese GEC, composed of a NMT-based model, a sequence editing model, and a spell checker. Our methodology not only achieves a new state-of-the-art performance for Chinese GEC, but also does so without relying on data augmentation or GEC-specific architecture changes. We further experiment with all possible configurations of our system with respect to model composition order and number of rounds of correction. A detailed analysis of each model and their contributions to the correction process is performed by adapting the ERRANT scorer to be able to score Chinese sentences.
pdf
bib
abs
Improving Grammatical Error Correction with Data Augmentation by Editing Latent Representation
Zhaohong Wan
|
Xiaojun Wan
|
Wenguang Wang
The incorporation of data augmentation method in grammatical error correction task has attracted much attention. However, existing data augmentation methods mainly apply noise to tokens, which leads to the lack of diversity of generated errors. In view of this, we propose a new data augmentation method that can apply noise to the latent representation of a sentence. By editing the latent representations of grammatical sentences, we can generate synthetic samples with various error types. Combining with some pre-defined rules, our method can greatly improve the performance and robustness of existing grammatical error correction models. We evaluate our method on public benchmarks of GEC task and it achieves the state-of-the-art performance on CoNLL-2014 and FCE benchmarks.
pdf
bib
abs
Cycle-Consistent Adversarial Autoencoders for Unsupervised Text Style Transfer
Yufang Huang
|
Wentao Zhu
|
Deyi Xiong
|
Yiye Zhang
|
Changjian Hu
|
Feiyu Xu
Unsupervised text style transfer is full of challenges due to the lack of parallel data and difficulties in content preservation. In this paper, we propose a novel neural approach to unsupervised text style transfer which we refer to as Cycle-consistent Adversarial autoEncoders (CAE) trained from non-parallel data. CAE consists of three essential components: (1) LSTM autoencoders that encode a text in one style into its latent representation and decode an encoded representation into its original text or a transferred representation into a style-transferred text, (2) adversarial style transfer networks that use an adversarially trained generator to transform a latent representation in one style into a representation in another style, and (3) a cycle-consistent constraint that enhances the capacity of the adversarial style transfer networks in content preservation. The entire CAE with these three components can be trained end-to-end. Extensive experiments and in-depth analyses on two widely-used public datasets consistently validate the effectiveness of proposed CAE in both style transfer and content preservation against several strong baselines in terms of four automatic evaluation metrics and human evaluation.
pdf
bib
abs
Ask to Learn: A Study on Curiosity-driven Question Generation
Thomas Scialom
|
Jacopo Staiano
We propose a novel text generation task, namely Curiosity-driven Question Generation. We start from the observation that the Question Generation task has traditionally been considered as the dual problem of Question Answering, hence tackling the problem of generating a question given the text that contains its answer. Such questions can be used to evaluate machine reading comprehension. However, in real life, and especially in conversational settings, humans tend to ask questions with the goal of enriching their knowledge and/or clarifying aspects of previously gathered information. We refer to these inquisitive questions as Curiosity-driven: these questions are generated with the goal of obtaining new information (the answer) which is not present in the input text. In this work, we experiment on this new task using a conversational Question Answering (QA) dataset; further, since the majority of QA dataset are not built in a conversational manner, we describe a methodology to derive data for this novel task from non-conversational QA data. We investigate several automated metrics to measure the different properties of Curious Questions, and experiment different approaches on the Curiosity-driven Question Generation task, including model pre-training and reinforcement learning. Finally, we report a qualitative evaluation of the generated outputs.
pdf
bib
abs
Formality Style Transfer with Shared Latent Space
Yunli Wang
|
Yu Wu
|
Lili Mou
|
Zhoujun Li
|
WenHan Chao
Conventional approaches for formality style transfer borrow models from neural machine translation, which typically requires massive parallel data for training. However, the dataset for formality style transfer is considerably smaller than translation corpora. Moreover, we observe that informal and formal sentences closely resemble each other, which is different from the translation task where two languages have different vocabularies and grammars. In this paper, we present a new approach, Sequence-to-Sequence with Shared Latent Space (S2S-SLS), for formality style transfer, where we propose two auxiliary losses and adopt joint training of bi-directional transfer and auto-encoding. Experimental results show that S2S-SLS (with either RNN or Transformer architectures) consistently outperforms baselines in various settings, especially when we have limited data.
pdf
bib
abs
Keep it Consistent: Topic-Aware Storytelling from an Image Stream via Iterative Multi-agent Communication
Ruize Wang
|
Zhongyu Wei
|
Ying Cheng
|
Piji Li
|
Haijun Shan
|
Ji Zhang
|
Qi Zhang
|
Xuanjing Huang
Visual storytelling aims to generate a narrative paragraph from a sequence of images automatically. Existing approaches construct text description independently for each image and roughly concatenate them as a story, which leads to the problem of generating semantically incoherent content. In this paper, we propose a new way for visual storytelling by introducing a topic description task to detect the global semantic context of an image stream. A story is then constructed with the guidance of the topic description. In order to combine the two generation tasks, we propose a multi-agent communication framework that regards the topic description generator and the story generator as two agents and learn them simultaneously via iterative updating mechanism. We validate our approach on VIST dataset, where quantitative results, ablations, and human evaluation demonstrate our method’s good ability in generating stories with higher quality compared to state-of-the-art methods.
pdf
bib
abs
Referring to what you know and do not know: Making Referring Expression Generation Models Generalize To Unseen Entities
Rossana Cunha
|
Thiago Castro Ferreira
|
Adriana Pagano
|
Fabio Alves
Data-to-text Natural Language Generation (NLG) is the computational process of generating natural language in the form of text or voice from non-linguistic data. A core micro-planning task within NLG is referring expression generation (REG), which aims to automatically generate noun phrases to refer to entities mentioned as discourse unfolds. A limitation of novel REG models is not being able to generate referring expressions to entities not encountered during the training process. To solve this problem, we propose two extensions to NeuralREG, a state-of-the-art encoder-decoder REG model. The first is a copy mechanism, whereas the second consists of representing the gender and type of the referent as inputs to the model. Drawing on the results of automatic and human evaluation as well as an ablation study using the WebNLG corpus, we contend that our proposal contributes to the generation of more meaningful referring expressions to unseen entities than the original system and related work. Code and all produced data are publicly available.
pdf
bib
abs
Topic-driven Ensemble for Online Advertising Generation
Egor Nevezhin
|
Nikolay Butakov
|
Maria Khodorchenko
|
Maxim Petrov
|
Denis Nasonov
Online advertising is one of the most widespread ways to reach and increase a target audience for those selling products. Usually having a form of a banner, advertising engages users into visiting a corresponding webpage. Professional generation of banners requires creative and writing skills and a basic understanding of target products. The great variety of goods presented in the online market enforce professionals to spend more and more time creating new advertisements different from existing ones. In this paper, we propose a neural network-based approach for the automatic generation of online advertising using texts from given webpages as sources. The important part of the approach is training on open data available online, which allows avoiding costly procedures of manual labeling. Collected open data consist of multiple subdomains with high data heterogeneity. The subdomains belong to different topics and vary in used vocabularies, phrases, styles that lead to reduced quality in adverts generation. We try to solve the problem of identifying existed subdomains and proposing a new ensemble approach based on exploiting multiple instances of a seq2seq model. Our experimental study on a dataset in the Russian language shows that our approach can significantly improve the quality of adverts generation.
pdf
bib
abs
Retrieval-Augmented Controllable Review Generation
Jihyeok Kim
|
Seungtaek Choi
|
Reinald Kim Amplayo
|
Seung-won Hwang
In this paper, we study review generation given a set of attribute identifiers which are user ID, product ID and rating. This is a difficult subtask of natural language generation since models are limited to the given identifiers, without any specific descriptive information regarding the inputs, when generating the text. The capacity of these models is thus confined and dependent to how well the models can capture vector representations of attributes. We thus propose to additionally leverage references, which are selected from a large pool of texts labeled with one of the attributes, as textual information that enriches inductive biases of given attributes. With these references, we can now pose the problem as an instance of text-to-text generation, which makes the task easier since texts that are syntactically, semantically similar with the output text are provided as input. Using this framework, we address issues such as selecting references from a large candidate set without textual context and improving the model complexity for generation. Our experiments show that our models improve over previous approaches on both automatic and human evaluation metrics.
pdf
bib
abs
Automatic Detection of Machine Generated Text: A Critical Survey
Ganesh Jawahar
|
Muhammad Abdul-Mageed
|
Laks Lakshmanan, V.S.
Text generative models (TGMs) excel in producing text that matches the style of human language reasonably well. Such TGMs can be misused by adversaries, e.g., by automatically generating fake news and fake product reviews that can look authentic and fool humans. Detectors that can distinguish text generated by TGM from human written text play a vital role in mitigating such misuse of TGMs. Recently, there has been a flurry of works from both natural language processing (NLP) and machine learning (ML) communities to build accurate detectors for English. Despite the importance of this problem, there is currently no work that surveys this fast-growing literature and introduces newcomers to important research challenges. In this work, we fill this void by providing a critical survey and review of this literature to facilitate a comprehensive understanding of this problem. We conduct an in-depth error analysis of the state-of-the-art detector and discuss research directions to guide future work in this exciting area.
pdf
bib
abs
A Learning-Exploring Method to Generate Diverse Paraphrases with Multi-Objective Deep Reinforcement Learning
Mingtong Liu
|
Erguang Yang
|
Deyi Xiong
|
Yujie Zhang
|
Yao Meng
|
Changjian Hu
|
Jinan Xu
|
Yufeng Chen
Paraphrase generation (PG) is of great importance to many downstream tasks in natural language processing. Diversity is an essential nature to PG for enhancing generalization capability and robustness of downstream applications. Recently, neural sequence-to-sequence (Seq2Seq) models have shown promising results in PG. However, traditional model training for PG focuses on optimizing model prediction against single reference and employs cross-entropy loss, which objective is unable to encourage model to generate diverse paraphrases. In this work, we present a novel approach with multi-objective learning to PG. We propose a learning-exploring method to generate sentences as learning objectives from the learned data distribution, and employ reinforcement learning to combine these new learning objectives for model training. We first design a sample-based algorithm to explore diverse sentences. Then we introduce several reward functions to evaluate the sampled sentences as learning signals in terms of expressive diversity and semantic fidelity, aiming to generate diverse and high-quality paraphrases. To effectively optimize model performance satisfying different evaluating aspects, we use a GradNorm-based algorithm that automatically balances these training objectives. Experiments and analyses on Quora and Twitter datasets demonstrate that our proposed method not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines.
pdf
bib
abs
Curious Case of Language Generation Evaluation Metrics: A Cautionary Tale
Ozan Caglayan
|
Pranava Madhyastha
|
Lucia Specia
Automatic evaluation of language generation systems is a well-studied problem in Natural Language Processing. While novel metrics are proposed every year, a few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation, despite their known limitations. This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them. In this paper, we urge the community for more careful consideration of how they automatically evaluate their models by demonstrating important failure cases on multiple datasets, language pairs and tasks. Our experiments show that metrics (i) usually prefer system outputs to human-authored texts, (ii) can be insensitive to correct translations of rare words, (iii) can yield surprisingly high scores when given a single sentence as system output for the entire test set.
pdf
bib
abs
Facts2Story: Controlling Text Generation by Key Facts
Eyal Orbach
|
Yoav Goldberg
Recent advancements in self-attention neural network architectures have raised the bar for open-ended text generation. Yet, while current methods are capable of producing a coherent text which is several hundred words long, attaining control over the content that is being generated—as well as evaluating it—are still open questions. We propose a controlled generation task which is based on expanding a sequence of facts, expressed in natural language, into a longer narrative. We introduce human-based evaluation metrics for this task, as well as a method for deriving a large training dataset. We evaluate three methods on this task, based on fine-tuning pre-trained models. We show that while auto-regressive, unidirectional Language Models such as GPT2 produce better fluency, they struggle to adhere to the requested facts. We propose a plan-and-cloze model (using fine-tuned XLNet) which produces competitive fluency while adhering to the requested content.
pdf
bib
abs
Story Generation with Rich Details
Fangzhou Zhai
|
Vera Demberg
|
Alexander Koller
Automatically generated stories need to be not only coherent, but also interesting. Apart from realizing a story line, the text also needs to include rich details to engage the readers. We propose a model that features two different generation components: an outliner, which proceeds the main story line to realize global coherence; a detailer, which supplies relevant details to the story in a locally coherent manner. Human evaluations show our model substantially improves the informativeness of generated text while retaining its coherence, outperforming various baselines.
pdf
bib
abs
Learning with Contrastive Examples for Data-to-Text Generation
Yui Uehara
|
Tatsuya Ishigaki
|
Kasumi Aoki
|
Hiroshi Noji
|
Keiichi Goshima
|
Ichiro Kobayashi
|
Hiroya Takamura
|
Yusuke Miyao
Existing models for data-to-text tasks generate fluent but sometimes incorrect sentences e.g., “Nikkei gains” is generated when “Nikkei drops” is expected. We investigate models trained on contrastive examples i.e., incorrect sentences or terms, in addition to correct ones to reduce such errors. We first create rules to produce contrastive examples from correct ones by replacing frequent crucial terms such as “gain” or “drop”. We then use learning methods with several losses that exploit contrastive examples. Experiments on the market comment generation task show that 1) exploiting contrastive examples improves the capability of generating sentences with better lexical choice, without degrading the fluency, 2) the choice of the loss function is an important factor because the performances on different metrics depend on the types of loss functions, and 3) the use of the examples produced by some specific rules further improves performance. Human evaluation also supports the effectiveness of using contrastive examples.
pdf
bib
abs
MedWriter: Knowledge-Aware Medical Text Generation
Youcheng Pan
|
Qingcai Chen
|
Weihua Peng
|
Xiaolong Wang
|
Baotian Hu
|
Xin Liu
|
Junying Chen
|
Wenxiu Zhou
To exploit the domain knowledge to guarantee the correctness of generated text has been a hot topic in recent years, especially for high professional domains such as medical. However, most of recent works only consider the information of unstructured text rather than structured information of the knowledge graph. In this paper, we focus on the medical topic-to-text generation task and adapt a knowledge-aware text generation model to the medical domain, named MedWriter, which not only introduces the specific knowledge from the external MKG but also is capable of learning graph-level representation. We conduct experiments on a medical literature dataset collected from medical journals, each of which has a set of topic words, an abstract of medical literature and a corresponding knowledge graph from CMeKG. Experimental results demonstrate incorporating knowledge graph into generation model can improve the quality of the generated text and has robust superiority over the competitor methods.
pdf
bib
abs
Dynamic Topic Tracker for KB-to-Text Generation
Zihao Fu
|
Lidong Bing
|
Wai Lam
|
Shoaib Jameel
Recently, many KB-to-text generation tasks have been proposed to bridge the gap between knowledge bases and natural language by directly converting a group of knowledge base triples into human-readable sentences. However, most of the existing models suffer from the off-topic problem, namely, the models are prone to generate some unrelated clauses that are somehow involved with certain input terms regardless of the given input data. This problem seriously degrades the quality of the generation results. In this paper, we propose a novel dynamic topic tracker for solving this problem. Different from existing models, our proposed model learns a global hidden representation for topics and recognizes the corresponding topic during each generation step. The recognized topic is used as additional information to guide the generation process and thus alleviates the off-topic problem. The experimental results show that our proposed model can enhance the performance of sentence generation and the off-topic problem is significantly mitigated.
pdf
bib
abs
Improving Variational Autoencoder for Text Modelling with Timestep-Wise Regularisation
Ruizhe Li
|
Xiao Li
|
Guanyi Chen
|
Chenghua Lin
The Variational Autoencoder (VAE) is a popular and powerful model applied to text modelling to generate diverse sentences. However, an issue known as posterior collapse (or KL loss vanishing) happens when the VAE is used in text modelling, where the approximate posterior collapses to the prior, and the model will totally ignore the latent variables and be degraded to a plain language model during text generation. Such an issue is particularly prevalent when RNN-based VAE models are employed for text modelling. In this paper, we propose a simple, generic architecture called Timestep-Wise Regularisation VAE (TWR-VAE), which can effectively avoid posterior collapse and can be applied to any RNN-based VAE models. The effectiveness and versatility of our model are demonstrated in different tasks, including language modelling and dialogue response generation.
pdf
bib
abs
GenWiki: A Dataset of 1.3 Million Content-Sharing Text and Graphs for Unsupervised Graph-to-Text Generation
Zhijing Jin
|
Qipeng Guo
|
Xipeng Qiu
|
Zheng Zhang
Data collection for the knowledge graph-to-text generation is expensive. As a result, research on unsupervised models has emerged as an active field recently. However, most unsupervised models have to use non-parallel versions of existing small supervised datasets, which largely constrain their potential. In this paper, we propose a large-scale, general-domain dataset, GenWiki. Our unsupervised dataset has 1.3M text and graph examples, respectively. With a human-annotated test set, we provide this new benchmark dataset for future research on unsupervised text generation from knowledge graphs.
pdf
bib
abs
Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity
Hamza Harkous
|
Isabel Groves
|
Amir Saffari
End-to-end neural data-to-text (D2T) generation has recently emerged as an alternative to pipeline-based architectures. However, it has faced challenges generalizing to new domains and generating semantically consistent text. In this work, we present DataTuner, a neural, end-to-end data-to-text generation system that makes minimal assumptions about the data representation and target domain. We take a two-stage generation-reranking approach, combining a fine-tuned language model with a semantic fidelity classifier. Each component is learnt end-toe-nd without needing dataset-specific heuristics, entity delexicalization, or post-processing. We show that DataTuner achieves state of the art results on automated metrics across four major D2T datasets (LDC2017T10, WebNLG, ViGGO, and Cleaned E2E), with fluency assessed by human annotators as nearing or exceeding the human-written reference texts. Our generated text has better semantic fidelity than the state of the art on these datasets. We further demonstrate that our model-based semantic fidelity scorer is a better assessment tool compared to traditional heuristic-based measures of semantic accuracy.
pdf
bib
abs
Graph-Based Knowledge Integration for Question Answering over Dialogue
Jian Liu
|
Dianbo Sui
|
Kang Liu
|
Jun Zhao
Question answering over dialogue, a specialized machine reading comprehension task, aims to comprehend a dialogue and to answer specific questions. Despite many advances, existing approaches for this task did not consider dialogue structure and background knowledge (e.g., relationships between speakers). In this paper, we introduce a new approach for the task, featured by its novelty in structuring dialogue and integrating background knowledge for reasoning. Specifically, different from previous “structure-less” approaches, our method organizes a dialogue as a “relational graph”, using edges to represent relationships between entities. To encode this relational graph, we devise a relational graph convolutional network (R-GCN), which can traverse the graph’s topological structure and effectively encode multi-relational knowledge for reasoning. The extensive experiments have justified the effectiveness of our approach over competitive baselines. Moreover, a deeper analysis shows that our model is better at tackling complex questions requiring relational reasoning and defending adversarial attacks with distracting sentences.
pdf
bib
abs
A hierarchical approach to vision-based language generation: from simple sentences to complex natural language
Simion-Vlad Bogolin
|
Ioana Croitoru
|
Marius Leordeanu
Automatically describing videos in natural language is an ambitious problem, which could bridge our understanding of vision and language. We propose a hierarchical approach, by first generating video descriptions as sequences of simple sentences, followed at the next level by a more complex and fluent description in natural language. While the simple sentences describe simple actions in the form of (subject, verb, object), the second-level paragraph descriptions, indirectly using information from the first-level description, presents the visual content in a more compact, coherent and semantically rich manner. To this end, we introduce the first video dataset in the literature that is annotated with captions at two levels of linguistic complexity. We perform extensive tests that demonstrate that our hierarchical linguistic representation, from simple to complex language, allows us to train a two-stage network that is able to generate significantly more complex paragraphs than current one-stage approaches.
pdf
bib
abs
Sentiment Forecasting in Dialog
Zhongqing Wang
|
Xiujun Zhu
|
Yue Zhang
|
Shoushan Li
|
Guodong Zhou
Sentiment forecasting in dialog aims to predict the polarity of next utterance to come, and can help speakers revise their utterances in sentimental utterances generation. However, the polarity of next utterance is normally hard to predict, due to the lack of content of next utterance (yet to come). In this study, we propose a Neural Sentiment Forecasting (NSF) model to address inherent challenges. In particular, we employ a neural simulation model to simulate the next utterance based on the context (previous utterances encountered). Moreover, we employ a sequence influence model to learn both pair-wise and seq-wise influence. Empirical studies illustrate the importance of proposed sentiment forecasting task, and justify the effectiveness of our NSF model over several strong baselines.
pdf
bib
abs
I Know What You Asked: Graph Path Learning using AMR for Commonsense Reasoning
Jungwoo Lim
|
Dongsuk Oh
|
Yoonna Jang
|
Kisu Yang
|
Heuiseok Lim
CommonsenseQA is a task in which a correct answer is predicted through commonsense reasoning with pre-defined knowledge. Most previous works have aimed to improve the performance with distributed representation without considering the process of predicting the answer from the semantic representation of the question. To shed light upon the semantic interpretation of the question, we propose an AMR-ConceptNet-Pruned (ACP) graph. The ACP graph is pruned from a full integrated graph encompassing Abstract Meaning Representation (AMR) graph generated from input questions and an external commonsense knowledge graph, ConceptNet (CN). Then the ACP graph is exploited to interpret the reasoning path as well as to predict the correct answer on the CommonsenseQA task. This paper presents the manner in which the commonsense reasoning process can be interpreted with the relations and concepts provided by the ACP graph. Moreover, ACP-based models are shown to outperform the baselines.
pdf
bib
abs
Bracketing Encodings for 2-Planar Dependency Parsing
Michalina Strzyz
|
David Vilares
|
Carlos Gómez-Rodríguez
We present a bracketing-based encoding that can be used to represent any 2-planar dependency tree over a sentence of length n as a sequence of n labels, hence providing almost total coverage of crossing arcs in sequence labeling parsing. First, we show that existing bracketing encodings for parsing as labeling can only handle a very mild extension of projective trees. Second, we overcome this limitation by taking into account the well-known property of 2-planarity, which is present in the vast majority of dependency syntactic structures in treebanks, i.e., the arcs of a dependency tree can be split into two planes such that arcs in a given plane do not cross. We take advantage of this property to design a method that balances the brackets and that encodes the arcs belonging to each of those planes, allowing for almost unrestricted non-projectivity (∼99.9% coverage) in sequence labeling parsing. The experiments show that our linearizations improve over the accuracy of the original bracketing encoding in highly non-projective treebanks (on average by 0.4 LAS), while achieving a similar speed. Also, they are especially suitable when PoS tags are not used as input parameters to the models.
pdf
bib
abs
Semi-Supervised Dependency Parsing with Arc-Factored Variational Autoencoding
Ge Wang
|
Kewei Tu
Mannual annotation for dependency parsing is both labourious and time costly, resulting in the difficulty to learn practical dependency parsers for many languages due to the lack of labelled training corpora. To compensate for the scarcity of labelled data, semi-supervised dependency parsing methods are developed to utilize unlabelled data in the training procedure of dependency parsers. In previous work, the autoencoder framework is a prevalent approach for the utilization of unlabelled data. In this framework, training sentences are reconstructed from a decoder conditioned on dependency trees predicted by an encoder. The tree structure requirement brings challenges for both the encoder and the decoder. Sophisticated techniques are employed to tackle these challenges at the expense of model complexity and approximations in encoding and decoding. In this paper, we propose a model based on the variational autoencoder framework. By relaxing the tree constraint in both the encoder and the decoder during training, we make the learning of our model fully arc-factored and thus circumvent the challenges brought by the tree constraint. We evaluate our model on datasets across several languages and the results demonstrate the advantage of our model over previous approaches in both parsing accuracy and speed.
pdf
bib
abs
Multitask Easy-First Dependency Parsing: Exploiting Complementarities of Different Dependency Representations
Yash Kankanampati
|
Joseph Le Roux
|
Nadi Tomeh
|
Dima Taji
|
Nizar Habash
In this paper we present a parsing model for projective dependency trees which takes advantage of the existence of complementary dependency annotations which is the case in Arabic, with the availability of CATiB and UD treebanks. Our system performs syntactic parsing according to both annotation types jointly as a sequence of arc-creating operations, and partially created trees for one annotation are also available to the other as features for the score function. This method gives error reduction of 9.9% on CATiB and 6.1% on UD compared to a strong baseline, and ablation tests show that the main contribution of this reduction is given by sharing tree representation between tasks, and not simply sharing BiLSTM layers as is often performed in NLP multitask systems.
pdf
bib
abs
Context Dependent Semantic Parsing: A Survey
Zhuang Li
|
Lizhen Qu
|
Gholamreza Haffari
Semantic parsing is the task of translating natural language utterances into machine-readable meaning representations. Currently, most semantic parsing methods are not able to utilize the contextual information (e.g. dialogue and comments history), which has a great potential to boost the semantic parsing systems. To address this issue, context dependent semantic parsing has recently drawn a lot of attention. In this survey, we investigate progress on the methods for the context dependent semantic parsing, together with the current datasets and tasks. We then point out open problems and challenges for future research in this area.
pdf
bib
abs
A Survey of Unsupervised Dependency Parsing
Wenjuan Han
|
Yong Jiang
|
Hwee Tou Ng
|
Kewei Tu
Syntactic dependency parsing is an important task in natural language processing. Unsupervised dependency parsing aims to learn a dependency parser from sentences that have no annotation of their correct parse trees. Despite its difficulty, unsupervised parsing is an interesting research direction because of its capability of utilizing almost unlimited unannotated text data. It also serves as the basis for other research in low-resource parsing. In this paper, we survey existing approaches to unsupervised dependency parsing, identify two major classes of approaches, and discuss recent trends. We hope that our survey can provide insights for researchers and facilitate future research on this topic.
pdf
bib
abs
Exploring Question-Specific Rewards for Generating Deep Questions
Yuxi Xie
|
Liangming Pan
|
Dongzhe Wang
|
Min-Yen Kan
|
Yansong Feng
Recent question generation (QG) approaches often utilize the sequence-to-sequence framework (Seq2Seq) to optimize the log likelihood of ground-truth questions using teacher forcing. However, this training objective is inconsistent with actual question quality, which is often reflected by certain global properties such as whether the question can be answered by the document. As such, we directly optimize for QG-specific objectives via reinforcement learning to improve question quality. We design three different rewards that target to improve the fluency, relevance, and answerability of generated questions. We conduct both automatic and human evaluations in addition to thorough analysis to explore the effect of each QG-specific reward. We find that optimizing on question-specific rewards generally leads to better performance in automatic evaluation metrics. However, only the rewards that correlate well with human judgement (e.g., relevance) lead to real improvement in question quality. Optimizing for the others, especially answerability, introduces incorrect bias to the model, resulting in poorer question quality. The code is publicly available at
https://github.com/YuxiXie/RL-for-Question-Generation.
pdf
bib
abs
CHIME: Cross-passage Hierarchical Memory Network for Generative Review Question Answering
Junru Lu
|
Gabriele Pergola
|
Lin Gui
|
Binyang Li
|
Yulan He
We introduce CHIME, a cross-passage hierarchical memory network for question answering (QA) via text generation. It extends XLNet introducing an auxiliary memory module consisting of two components: the context memory collecting cross-passage evidences, and the answer memory working as a buffer continually refining the generated answers. Empirically, we show the efficacy of the proposed architecture in the multi-passage generative QA, outperforming the state-of-the-art baselines with better syntactically well-formed answers and increased precision in addressing the questions of the AmazonQA review dataset. An additional qualitative analysis revealed the interpretability introduced by the memory module.
pdf
bib
abs
Improving Conversational Question Answering Systems after Deployment using Feedback-Weighted Learning
Jon Ander Campos
|
Kyunghyun Cho
|
Arantxa Otegi
|
Aitor Soroa
|
Eneko Agirre
|
Gorka Azkune
The interaction of conversational systems with users poses an exciting opportunity for improving them after deployment, but little evidence has been provided of its feasibility. In most applications, users are not able to provide the correct answer to the system, but they are able to provide binary (correct, incorrect) feedback. In this paper we propose feedback-weighted learning based on importance sampling to improve upon an initial supervised system using binary user feedback. We perform simulated experiments on document classification (for development) and Conversational Question Answering datasets like QuAC and DoQA, where binary user feedback is derived from gold annotations. The results show that our method is able to improve over the initial supervised system, getting close to a fully-supervised system that has access to the same labeled examples in in-domain experiments (QuAC), and even matching in out-of-domain experiments (DoQA). Our work opens the prospect to exploit interactions with real users and improve conversational systems after deployment.
pdf
bib
abs
Modelling Long-distance Node Relations for KBQA with Global Dynamic Graph
Xu Wang
|
Shuai Zhao
|
Jiale Han
|
Bo Cheng
|
Hao Yang
|
Jianchang Ao
|
Zhenzi Li
The structural information of Knowledge Bases (KBs) has proven effective to Question Answering (QA). Previous studies rely on deep graph neural networks (GNNs) to capture rich structural information, which may not model node relations in particularly long distance due to oversmoothing issue. To address this challenge, we propose a novel framework GlobalGraph, which models long-distance node relations from two views: 1) Node type similarity: GlobalGraph assigns each node a global type label and models long-distance node relations through the global type label similarity; 2) Correlation between nodes and questions: we learn similarity scores between nodes and the question, and model long-distance node relations through the sum score of two nodes. We conduct extensive experiments on two widely used multi-hop KBQA datasets to prove the effectiveness of our method.
pdf
bib
abs
Improving Commonsense Question Answering by Graph-based Iterative Retrieval over Multiple Knowledge Sources
Qianglong Chen
|
Feng Ji
|
Haiqing Chen
|
Yin Zhang
In order to facilitate natural language understanding, the key is to engage commonsense or background knowledge. However, how to engage commonsense effectively in question answering systems is still under exploration in both research academia and industry. In this paper, we propose a novel question-answering method by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and the Cambridge Dictionary, to boost the performance. More concretely, we first introduce a novel graph-based iterative knowledge retrieval module, which iteratively retrieves concepts and entities related to the given question and its choices from multiple knowledge sources. Afterward, we use a pre-trained language model to encode the question, retrieved knowledge and choices, and propose an answer choice-aware attention mechanism to fuse all hidden representations of the previous modules. Finally, the linear classifier for specific tasks is used to predict the answer. Experimental results on the CommonsenseQA dataset show that our method significantly outperforms other competitive methods and achieves the new state-of-the-art. In addition, further ablation studies demonstrate the effectiveness of our graph-based iterative knowledge retrieval module and the answer choice-aware attention module in retrieving and synthesizing background knowledge from multiple knowledge sources.
pdf
bib
abs
A Vietnamese Dataset for Evaluating Machine Reading Comprehension
Kiet Van Nguyen
|
Duc-Vu Nguyen
|
Anh Gia-Tuan Nguyen
|
Ngan Luu-Thuy Nguyen
Over 97 million inhabitants speak Vietnamese as the native language in the world. However, there are few research studies on machine reading comprehension (MRC) in Vietnamese, the task of understanding a document or text, and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands complicate reasoning such as single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods in English and Chinese as the first experimental models on UIT-ViQuAD, which will be compared to further models. We also estimate human performances on the dataset and compare it to the experimental results of several powerful machine models. As a result, the substantial differences between humans and the best model performances on the dataset indicate that improvements can be explored on UIT-ViQuAD through future research. Our dataset is freely available to encourage the research community to overcome challenges in Vietnamese MRC.
pdf
bib
abs
Improving Spoken Language Understanding by Wisdom of Crowds
Koichiro Yoshino
|
Kana Ikeuchi
|
Katsuhito Sudoh
|
Satoshi Nakamura
Spoken language understanding (SLU), which converts user requests in natural language to machine-interpretable expressions, is becoming an essential task. The lack of training data is an important problem, especially for new system tasks, because existing SLU systems are based on statistical approaches. In this paper, we proposed to use two sources of the “wisdom of crowds,” crowdsourcing and knowledge community website, for improving the SLU system. We firstly collected paraphrasing variations for new system tasks through crowdsourcing as seed data, and then augmented them using similar questions from a knowledge community website. We investigated the effects of the proposed data augmentation method in SLU task, even with small seed data. In particular, the proposed architecture augmented more than 120,000 samples to improve SLU accuracies.
pdf
bib
abs
Bi-directional CognitiveThinking Network for Machine Reading Comprehension
Wei Peng
|
Yue Hu
|
Luxi Xing
|
Yuqiang Xie
|
Jing Yu
|
Yajing Sun
|
Xiangpeng Wei
We propose a novel Bi-directional Cognitive Knowledge Framework (BCKF) for reading comprehension from the perspective of complementary learning systems theory. It aims to simulate two ways of thinking in the brain to answer questions, including reverse thinking and inertial thinking. To validate the effectiveness of our framework, we design a corresponding Bi-directional Cognitive Thinking Network (BCTN) to encode the passage and generate a question (answer) given an answer (question) and decouple the bi-directional knowledge. The model has the ability to reverse reasoning questions which can assist inertial thinking to generate more accurate answers. Competitive improvement is observed in DuReader dataset, confirming our hypothesis that bi-directional knowledge helps the QA task. The novel framework shows an interesting perspective on machine reading comprehension and cognitive science.
pdf
bib
abs
Learn with Noisy Data via Unsupervised Loss Correction for Weakly Supervised Reading Comprehension
Xuemiao Zhang
|
Kun Zhou
|
Sirui Wang
|
Fuzheng Zhang
|
Zhongyuan Wang
|
Junfei Liu
Weakly supervised machine reading comprehension (MRC) task is practical and promising for its easily available and massive training data, but inevitablely introduces noise. Existing related methods usually incorporate extra submodels to help filter noise before the noisy data is input to main models. However, these multistage methods often make training difficult, and the qualities of submodels are hard to be controlled. In this paper, we first explore and analyze the essential characteristics of noise from the perspective of loss distribution, and find that in the early stage of training, noisy samples usually lead to significantly larger loss values than clean ones. Based on the observation, we propose a hierarchical loss correction strategy to avoid fitting noise and enhance clean supervision signals, including using an unsupervisedly fitted Gaussian mixture model to calculate the weight factors for all losses to correct the loss distribution, and employ a hard bootstrapping loss to modify loss function. Experimental results on different weakly supervised MRC datasets show that the proposed methods can help improve models significantly.
pdf
bib
abs
Incorporating Syntax and Frame Semantics in Neural Network for Machine Reading Comprehension
Shaoru Guo
|
Yong Guan
|
Ru Li
|
Xiaoli Li
|
Hongye Tan
Machine reading comprehension (MRC) is one of the most critical yet challenging tasks in natural language understanding(NLU), where both syntax and semantics information of text are essential components for text understanding. It is surprising that jointly considering syntax and semantics in neural networks was never formally reported in literature. This paper makes the first attempt by proposing a novel Syntax and Frame Semantics model for Machine Reading Comprehension (SS-MRC), which takes full advantage of syntax and frame semantics to get richer text representation. Our extensive experimental results demonstrate that SS-MRC performs better than ten state-of-the-art technologies on machine reading comprehension task.
pdf
bib
abs
Molweni: A Challenge Multiparty Dialogues-based Machine Reading Comprehension Dataset with Discourse Structure
Jiaqi Li
|
Ming Liu
|
Min-Yen Kan
|
Zihao Zheng
|
Zekun Wang
|
Wenqiang Lei
|
Ting Liu
|
Bing Qin
Research into the area of multiparty dialog has grown considerably over recent years. We present the Molweni dataset, a machine reading comprehension (MRC) dataset with discourse structure built over multiparty dialog. Molweni’s source samples from the Ubuntu Chat Corpus, including 10,000 dialogs comprising 88,303 utterances. We annotate 30,066 questions on this corpus, including both answerable and unanswerable questions. Molweni also uniquely contributes discourse dependency annotations in a modified Segmented Discourse Representation Theory (SDRT; Asher et al., 2016) style for all of its multiparty dialogs, contributing large-scale (78,245 annotated discourse relations) data to bear on the task of multiparty dialog discourse parsing. Our experiments show that Molweni is a challenging dataset for current MRC models: BERT-wwm, a current, strong SQuAD 2.0 performer, achieves only 67.7% F1 on Molweni’s questions, a 20+% significant drop as compared against its SQuAD 2.0 performance.
pdf
bib
abs
Joint Event Extraction with Hierarchical Policy Network
Peixin Huang
|
Xiang Zhao
|
Ryuichi Takanobu
|
Zhen Tan
|
Weidong Xiao
Most existing work on event extraction (EE) either follows a pipelined manner or uses a joint structure but is pipelined in essence. As a result, these efforts fail to utilize information interactions among event triggers, event arguments, and argument roles, which causes information redundancy. In view of this, we propose to exploit the role information of the arguments in an event and devise a Hierarchical Policy Network (HPNet) to perform joint EE. The whole EE process is fulfilled through a two-level hierarchical structure consisting of two policy networks for event detection and argument detection. The deep information interactions among the subtasks are realized, and it is more natural to deal with multiple events issue. Extensive experiments on ACE2005 and TAC2015 demonstrate the superiority of HPNet, leading to state-of-the-art performance and is more powerful for sentences with multiple events.
pdf
bib
abs
Automated Graph Generation at Sentence Level for Reading Comprehension Based on Conceptual Graphs
Wan-Hsuan Lin
|
Chun-Shien Lu
This paper proposes a novel miscellaneous-context-based method to convert a sentence into a knowledge embedding in the form of a directed graph. We adopt the idea of conceptual graphs to frame for the miscellaneous textual information into conceptual compactness. We first empirically observe that this graph representation method can (1) accommodate the slot-filling challenges in typical question answering and (2) access to the sentence-level graph structure in order to explicitly capture the neighbouring connections of reference concept nodes. Secondly, we propose a task-agnostic semantics-measured module, which cooperates with the graph representation method, in order to (3) project an edge of a sentence-level graph to the space of semantic relevance with respect to the corresponding concept nodes. As a result of experiments on the QA-type relation extraction, the combination of the graph representation and the semantics-measured module achieves the high accuracy of answer prediction and offers human-comprehensible graphical interpretation for every well-formed sample. To our knowledge, our approach is the first towards the interpretable process of learning vocabulary representations with the experimental evidence.
pdf
bib
abs
ForceReader: a BERT-based Interactive Machine Reading Comprehension Model with Attention Separation
Zheng Chen
|
Kangjian Wu
The release of BERT revolutionized the development of NLP. Various BERT-based reading comprehension models have been proposed, thus updating the performance ranking of reading comprehension tasks. However, the above BERT-based models inherently employ BERT’s combined input method, representing the input question and paragraph as a single packed sequence, without further modification for reading comprehension. This paper makes an in-depth analysis of this input method, proposes a problem of this approach. We call it attention deconcentration. Accordingly, this paper proposes ForceReader, a BERT-based interactive machine reading comprehension model. First, ForceReader proposes a novel solution called the Attention Separation Representation to respond to attention deconcentration. Moreover, starting from the logical nature of reading comprehension tasks, ForceReader adopts Multi-mode Reading and Interactive Reasoning strategy. For the calculation of attention, ForceReader employs Conditional Background Attention to solve the lack of the overall context semantic after the separation of attention. As an integral model, ForceReader shows a significant improvement in reading comprehension tasks compared to BERT. Moreover, this paper makes detailed visual analyses of the attention and propose strategies accordingly. This may be another argument to the explanations of the attention.
pdf
bib
abs
NUT-RC: Noisy User-generated Text-oriented Reading Comprehension
Rongtao Huang
|
Bowei Zou
|
Yu Hong
|
Wei Zhang
|
AiTi Aw
|
Guodong Zhou
Reading comprehension (RC) on social media such as Twitter is a critical and challenging task due to its noisy, informal, but informative nature. Most existing RC models are developed on formal datasets such as news articles and Wikipedia documents, which severely limit their performances when directly applied to the noisy and informal texts in social media. Moreover, these models only focus on a certain type of RC, extractive or generative, but ignore the integration of them. To well address these challenges, we come up with a noisy user-generated text-oriented RC model. In particular, we first introduce a set of text normalizers to transform the noisy and informal texts to the formal ones. Then, we integrate the extractive and the generative RC model by a multi-task learning mechanism and an answer selection module. Experimental results on TweetQA demonstrate that our NUT-RC model significantly outperforms the state-of-the-art social media-oriented RC models.
pdf
bib
abs
To What Degree Can Language Borders Be Blurred In BERT-based Multilingual Spoken Language Understanding?
Quynh Do
|
Judith Gaspers
|
Tobias Roeding
|
Melanie Bradford
This paper addresses the question as to what degree a BERT-based multilingual Spoken Language Understanding (SLU) model can transfer knowledge across languages. Through experiments we will show that, although it works substantially well even on distant language groups, there is still a gap to the ideal multilingual performance. In addition, we propose a novel BERT-based adversarial model architecture to learn language-shared and language-specific representations for multilingual SLU. Our experimental results prove that the proposed model is capable of narrowing the gap to the ideal multilingual performance.
pdf
bib
abs
Cross-lingual Machine Reading Comprehension with Language Branch Knowledge Distillation
Junhao Liu
|
Linjun Shou
|
Jian Pei
|
Ming Gong
|
Min Yang
|
Daxin Jiang
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the model’s cross-lingual ability. Meanwhile, the produced single multilingual model can apply to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.
pdf
bib
abs
Neural Networks approaches focused on French Spoken Language Understanding: application to the MEDIA Evaluation Task
Sahar Ghannay
|
Christophe Servan
|
Sophie Rosset
In this paper, we present a study on a French Spoken Language Understanding (SLU) task: the MEDIA task. Many works and studies have been proposed for many tasks, but most of them are focused on English language and tasks. The exploration of a richer language like French within the framework of a SLU task implies to recent approaches to handle this difficulty. Since the MEDIA task seems to be one of the most difficult, according several previous studies, we propose to explore Neural Networks approaches focusing of three aspects: firstly, the Neural Network inputs and more specifically the word embeddings; secondly, we compared French version of BERT against the best setup through different ways; Finally, the comparison against State-of-the-Art approaches. Results show that the word embeddings trained on a small corpus need to be updated during SLU model training. Furthermore, the French BERT fine-tuned approaches outperform the classical Neural Network Architectures and achieves state of the art results. However, the contextual embeddings extracted from one of the French BERT approaches achieve comparable results in comparison to word embedding, when integrated into the proposed neural architecture.
pdf
bib
abs
Syntactic Graph Convolutional Network for Spoken Language Understanding
Keqing He
|
Shuyu Lei
|
Yushu Yang
|
Huixing Jiang
|
Zhongyuan Wang
Slot filling and intent detection are two major tasks for spoken language understanding. In most existing work, these two tasks are built as joint models with multi-task learning with no consideration of prior linguistic knowledge. In this paper, we propose a novel joint model that applies a graph convolutional network over dependency trees to integrate the syntactic structure for learning slot filling and intent detection jointly. Experimental results show that our proposed model achieves state-of-the-art performance on two public benchmark datasets and outperforms existing work. At last, we apply the BERT model to further improve the performance on both slot filling and intent detection.
pdf
bib
abs
Conversational Machine Comprehension: a Literature Review
Somil Gupta
|
Bhanu Pratap Singh Rawat
|
Hong Yu
Conversational Machine Comprehension (CMC), a research track in conversational AI, expects the machine to understand an open-domain natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA), multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models such as BERT and the introduction of large-scale conversational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review attempts at providing a holistic overview of CMC with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. The review synthesizes a generic framework for CMC models while highlighting the differences in recent approaches and intends to serve as a compendium of CMC for future researchers.
pdf
bib
abs
Robust Machine Reading Comprehension by Learning Soft labels
Zhenyu Zhao
|
Shuangzhi Wu
|
Muyun Yang
|
Kehai Chen
|
Tiejun Zhao
Neural models have achieved great success on the task of machine reading comprehension (MRC), which are typically trained on hard labels. We argue that hard labels limit the model capability on generalization due to the label sparseness problem. In this paper, we propose a robust training method for MRC models to address this problem. Our method consists of three strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help to train models on soft labels. We validate our approach on the representative architecture - ALBERT. Experimental results show that our method can greatly boost the baseline with 1% improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.
pdf
bib
abs
Reinforced Multi-task Approach for Multi-hop Question Generation
Deepak Gupta
|
Hardik Chauhan
|
Ravi Tej Akella
|
Asif Ekbal
|
Pushpak Bhattacharyya
Question generation (QG) attempts to solve the inverse of question answering (QA) problem by generating a natural language question given a document and an answer. While sequence to sequence neural models surpass rule-based systems for QG, they are limited in their capacity to focus on more than one supporting fact. For QG, we often require multiple supporting facts to generate high-quality questions. Inspired by recent works on multi-hop reasoning in QA, we take up Multi-hop question generation, which aims at generating relevant questions based on supporting facts in the context. We employ multitask learning with the auxiliary task of answer-aware supporting fact prediction to guide the question generator. In addition, we also proposed a question-aware reward function in a Reinforcement Learning (RL) framework to maximize the utilization of the supporting facts. We demonstrate the effectiveness of our approach through experiments on the multi-hop question answering dataset, HotPotQA. Empirical evaluation shows our model to outperform the single-hop neural question generation models on both automatic evaluation metrics such as BLEU, METEOR, and ROUGE and human evaluation metrics for quality and coverage of the generated questions.
pdf
bib
abs
Knowledge-enriched, Type-constrained and Grammar-guided Question Generation over Knowledge Bases
Sheng Bi
|
Xiya Cheng
|
Yuan-Fang Li
|
Yongzhen Wang
|
Guilin Qi
Question generation over knowledge bases (KBQG) aims at generating natural-language questions about a subgraph, i.e. a set of triples. Two main challenges still face the current crop of encoder-decoder-based methods, especially on small subgraphs: (1) low diversity and poor fluency due to the limited information contained in the subgraphs, and (2) semantic drift due to the decoder’s oblivion of the semantics of the answer entity. We propose an innovative knowledge-enriched, type-constrained and grammar-guided KBQG model, named KTG, to addresses the above challenges. In our model, the encoder is equipped with auxiliary information from the KB, and the decoder is constrained with word types during QG. Specifically, entity domain and description, as well as relation hierarchy information are considered to construct question contexts, while a conditional copy mechanism is incorporated to modulate question semantics according to current word types. Besides, a novel reward function featuring grammatical similarity is designed to improve both generative richness and syntactic correctness via reinforcement learning. Extensive experiments show that our proposed model outperforms existing methods by a significant margin on two widely-used benchmark datasets SimpleQuestion and PathQuestion.
pdf
bib
abs
Adapting a Language Model for Controlled Affective Text Generation
Tushar Goswamy
|
Ishika Singh
|
Ahsan Barkati
|
Ashutosh Modi
Human use language not just to convey information but also to express their inner feelings and mental states. In this work, we adapt the state-of-the-art language generation models to generate affective (emotional) text. We posit a model capable of generating affect-driven and topic focused sentences without losing grammatical correctness as the affect intensity increases. We propose to incorporate emotion as prior for the probabilistic state-of-the-art text generation model such as GPT-2. The model gives a user the flexibility to control the category and intensity of emotion as well as the topic of the generated text. Previous attempts at modelling fine-grained emotions fall out on grammatical correctness at extreme intensities, but our model is resilient to this and delivers robust results at all intensities. We conduct automated evaluations and human studies to test the performance of our model, and provide a detailed comparison of the results with other models. In all evaluations, our model outperforms existing affective text generation models.
pdf
bib
abs
Generating Instructions at Different Levels of Abstraction
Arne Köhn
|
Julia Wichlacz
|
Álvaro Torralba
|
Daniel Höller
|
Jörg Hoffmann
|
Alexander Koller
When generating technical instructions, it is often convenient to describe complex objects in the world at different levels of abstraction. A novice user might need an object explained piece by piece, while for an expert, talking about the complex object (e.g. a wall or railing) directly may be more succinct and efficient. We show how to generate building instructions at different levels of abstraction in Minecraft. We introduce the use of hierarchical planning to this end, a method from AI planning which can capture the structure of complex objects neatly. A crowdsourcing evaluation shows that the choice of abstraction level matters to users, and that an abstraction strategy which balances low-level and high-level object descriptions compares favorably to ones which don’t.
pdf
bib
abs
“Judge me by my size (noun), do you?” YodaLib: A Demographic-Aware Humor Generation Framework
Aparna Garimella
|
Carmen Banea
|
Nabil Hossain
|
Rada Mihalcea
The subjective nature of humor makes computerized humor generation a challenging task. We propose an automatic humor generation framework for filling the blanks in Mad Libs® stories, while accounting for the demographic backgrounds of the desired audience. We collect a dataset consisting of such stories, which are filled in and judged by carefully selected workers on Amazon Mechanical Turk. We build upon the BERT platform to predict location-biased word fillings in incomplete sentences, and we fine-tune BERT to classify location-specific humor in a sentence. We leverage these components to produce YodaLib, a fully-automated Mad Libs style humor generation framework, which selects and ranks appropriate candidate words and sentences in order to generate a coherent and funny story tailored to certain demographics. Our experimental results indicate that YodaLib outperforms a previous semi-automated approach proposed for this task, while also surpassing human annotators in both qualitative and quantitative analyses.
pdf
bib
abs
Does Chinese BERT Encode Word Structure?
Yile Wang
|
Leyang Cui
|
Yue Zhang
Contextualized representations give significantly improved results for a wide range of NLP tasks. Much work has been dedicated to analyzing the features captured by representative models such as BERT. Existing work finds that syntactic, semantic and word sense knowledge are encoded in BERT. However, little work has investigated word features for character languages such as Chinese. We investigate Chinese BERT using both attention weight distribution statistics and probing tasks, finding that (1) word information is captured by BERT; (2) word-level features are mostly in the middle representation layers; (3) downstream tasks make different use of word features in BERT, with POS tagging and chunking relying the most on word features, and natural language inference relying the least on such features.
pdf
bib
abs
Noise Isn’t Always Negative: Countering Exposure Bias in Sequence-to-Sequence Inflection Models
Garrett Nicolai
|
Miikka Silfverberg
Morphological inflection, like many sequence-to-sequence tasks, sees great performance from recurrent neural architectures when data is plentiful, but performance falls off sharply in lower-data settings. We investigate one aspect of neural seq2seq models that we hypothesize contributes to overfitting - teacher forcing. By creating different training and test conditions, exposure bias increases the likelihood that a system too closely models its training data. Experiments show that teacher-forced models struggle to recover when they enter unknown territory. However, a simple modification to the training algorithm to more closely mimic test conditions creates models that are better able to generalize to unseen environments.
pdf
bib
abs
Morphologically Aware Word-Level Translation
Paula Czarnowska
|
Sebastian Ruder
|
Ryan Cotterell
|
Ann Copestake
We propose a novel morphologically aware probability model for bilingual lexicon induction, which jointly models lexeme translation and inflectional morphology in a structured way. Our model exploits the basic linguistic intuition that the lexeme is the key lexical unit of meaning, while inflectional morphology provides additional syntactic information. This approach leads to substantial performance improvements—19% average improvement in accuracy across 6 language pairs over the state of the art in the supervised setting and 16% in the weakly supervised setting. As another contribution, we highlight issues associated with modern BLI that stem from ignoring inflectional morphology, and propose three suggestions for improving the task.
pdf
bib
abs
Analogy Models for Neural Word Inflection
Ling Liu
|
Mans Hulden
Analogy is assumed to be the cognitive mechanism speakers resort to in order to inflect an unknown form of a lexeme based on knowledge of other words in a language. In this process, an analogy is formed between word forms within an inflectional paradigm but also across paradigms. As neural network models for inflection are typically trained only on lemma-target form pairs, we propose three new ways to provide neural models with additional source forms to strengthen analogy-formation, and compare our methods to other approaches in the literature. We show that the proposed methods of providing a Transformer sequence-to-sequence model with additional analogy sources in the input are consistently effective, and improve upon recent state-of-the-art results on 46 languages, particularly in low-resource settings. We also propose a method to combine the analogy-motivated approach with data hallucination or augmentation. We find that the two approaches are complementary to each other and combining the two approaches is especially helpful when the training data is extremely limited.
pdf
bib
abs
Computational Modeling of Affixoid Behavior in Chinese Morphology
Yu-Hsiang Tseng
|
Shu-Kai Hsieh
|
Pei-Yi Chen
|
Sara Court
The morphological status of affixes in Chinese has long been a matter of debate. How one might apply the conventional criteria of free/bound and content/function features to distinguish word-forming affixes from bound roots in Chinese is still far from clear. Issues involving polysemy and diachronic dynamics further blur the boundaries. In this paper, we propose three quantitative features in a computational model of affixoid behavior in Mandarin Chinese. The results show that, except for in a very few cases, there are no clear criteria that can be used to identify an affix’s status in an isolating language like Chinese. A diachronic check using contextualized embeddings with the WordNet Sense Inventory also demonstrates the possible role of the polysemy of lexical roots across diachronic settings.
pdf
bib
abs
One Comment from One Perspective: An Effective Strategy for Enhancing Automatic Music Comment
Tengfei Huo
|
Zhiqiang Liu
|
Jinchao Zhang
|
Jie Zhou
The automatic generation of music comments is of great significance for increasing the popularity of music and the music platform’s activity. In human music comments, there exists high distinction and diverse perspectives for the same song. In other words, for a song, different comments stem from different musical perspectives. However, to date, this characteristic has not been considered well in research on automatic comment generation. The existing methods tend to generate common and meaningless comments. In this paper, we propose an effective multi-perspective strategy to enhance the diversity of the generated comments. The experiment results on two music comment datasets show that our proposed model can effectively generate a series of diverse music comments based on different perspectives, which outperforms state-of-the-art baselines by a substantial margin.
pdf
bib
abs
A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing
Sanxing Chen
|
Aidan San
|
Xiaodong Liu
|
Yangfeng Ji
In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effectiveness of these two linking processes changes based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network-based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our proposed method helps to enhance the structure of the model output when generating complicated SQL queries and offers more explainable predictions.
pdf
bib
abs
Autoregressive Affective Language Forecasting: A Self-Supervised Task
Matthew Matero
|
H. Andrew Schwartz
Human natural language is mentioned at a specific point in time while human emotions change over time. While much work has established a strong link between language use and emotional states, few have attempted to model emotional language in time. Here, we introduce the task of affective language forecasting – predicting future change in language based on past changes of language, a task with real-world applications such as treating mental health or forecasting trends in consumer confidence. We establish some of the fundamental autoregressive characteristics of the task (necessary history size, static versus dynamic length, varying time-step resolutions) and then build on popular sequence models for words to instead model sequences of language-based emotion in time. Over a novel Twitter dataset of 1,900 users and weekly + daily scores for 6 emotions and 2 additional linguistic attributes, we find a novel dual-sequence GRU model with decayed hidden states achieves best results (r = .66) significantly out-predicting, e.g., a moving averaging based on the past time-steps (r = .49). We make our anonymized dataset as well as task setup and evaluation code available for others to build on.
pdf
bib
abs
Solving Math Word Problems with Multi-Encoders and Multi-Decoders
Yibin Shen
|
Cheqing Jin
Math word problems solving remains a challenging task where potential semantic and mathematical logic need to be mined from natural language. Although previous researches employ the Seq2Seq technique to transform text descriptions into equation expressions, most of them achieve inferior performance due to insufficient consideration in the design of encoder and decoder. Specifically, these models only consider input/output objects as sequences, ignoring the important structural information contained in text descriptions and equation expressions. To overcome those defects, a model with multi-encoders and multi-decoders is proposed in this paper, which combines sequence-based encoder and graph-based encoder to enhance the representation of text descriptions, and generates different equation expressions via sequence-based decoder and tree-based decoder. Experimental results on the dataset Math23K show that our model outperforms existing state-of-the-art methods.
pdf
bib
abs
End to End Chinese Lexical Fusion Recognition with Sememe Knowledge
Yijiang Liu
|
Meishan Zhang
|
Donghong Ji
In this paper, we present Chinese lexical fusion recognition, a new task which could be regarded as one kind of coreference recognition. First, we introduce the task in detail, showing the relationship with coreference recognition and differences from the existing tasks. Second, we propose an end-to-end model for the task, handling mentions as well as coreference relationship jointly. The model exploits the state-of-the-art contextualized BERT representations as an encoder, and is further enhanced with the sememe knowledge from HowNet by graph attention networks. We manually annotate a benchmark dataset for the task and then conduct experiments on it. Results demonstrate that our final model is effective and competitive for the task. Detailed analysis is offered for comprehensively understanding the new task and our proposed model.
pdf
bib
abs
Comparison by Conversion: Reverse-Engineering UCCA from Syntax and Lexical Semantics
Daniel Hershcovich
|
Nathan Schneider
|
Dotan Dvir
|
Jakob Prange
|
Miryam de Lhoneux
|
Omri Abend
Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other. To perform a systematic comparative analysis, we evaluate the mapping between meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized parser that parses to one framework using only information from the other as features. We apply these methods to convert the STREUSLE corpus (with syntactic and lexical semantic annotations) to UCCA (a graph-structured full-sentence meaning representation). Both methods yield surprisingly accurate target representations, close to fully supervised UCCA parser quality—indicating that UCCA annotations are partially redundant with STREUSLE annotations. Despite this substantial convergence between frameworks, we find several important areas of divergence.
pdf
bib
abs
Logic-guided Semantic Representation Learning for Zero-Shot Relation Classification
Juan Li
|
Ruoxu Wang
|
Ningyu Zhang
|
Wen Zhang
|
Fan Yang
|
Huajun Chen
Relation classification aims to extract semantic relations between entity pairs from the sentences. However, most existing methods can only identify seen relation classes that occurred during training. To recognize unseen relations at test time, we explore the problem of zero-shot relation classification. Previous work regards the problem as reading comprehension or textual entailment, which have to rely on artificial descriptive information to improve the understandability of relation types. Thus, rich semantic knowledge of the relation labels is ignored. In this paper, we propose a novel logic-guided semantic representation learning model for zero-shot relation classification. Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules. Extensive experimental results demonstrate that our method can generalize to unseen relation types and achieve promising improvements.
pdf
bib
abs
Semantic Role Labeling with Heterogeneous Syntactic Knowledge
Qingrong Xia
|
Rui Wang
|
Zhenghua Li
|
Yue Zhang
|
Min Zhang
Recently, due to the interplay between syntax and semantics, incorporating syntactic knowledge into neural semantic role labeling (SRL) has achieved much attention. Most of the previous syntax-aware SRL works focus on explicitly modeling homogeneous syntactic knowledge over tree outputs. In this work, we propose to encode heterogeneous syntactic knowledge for SRL from both explicit and implicit representations. First, we introduce graph convolutional networks to explicitly encode multiple heterogeneous dependency parse trees. Second, we extract the implicit syntactic representations from syntactic parser trained with heterogeneous treebanks. Finally, we inject the two types of heterogeneous syntax-aware representations into the base SRL model as extra inputs. We conduct experiments on two widely-used benchmark datasets, i.e., Chinese Proposition Bank 1.0 and English CoNLL-2005 dataset. Experimental results show that incorporating heterogeneous syntactic knowledge brings significant improvements over strong baselines. We further conduct detailed analysis to gain insights on the usefulness of heterogeneous (vs. homogeneous) syntactic knowledge and the effectiveness of our proposed approaches for modeling such knowledge.
pdf
bib
abs
Normalizing Compositional Structures Across Graphbanks
Lucia Donatelli
|
Jonas Groschwitz
|
Matthias Lindemann
|
Alexander Koller
|
Pia Weißenhorn
The emergence of a variety of graph-based meaning representations (MRs) has sparked an important conversation about how to adequately represent semantic structure. MRs exhibit structural differences that reflect different theoretical and design considerations, presenting challenges to uniform linguistic analysis and cross-framework semantic parsing. Here, we ask the question of which design differences between MRs are meaningful and semantically-rooted, and which are superficial. We present a methodology for normalizing discrepancies between MRs at the compositional level (Lindemann et al., 2019), finding that we can normalize the majority of divergent phenomena using linguistically-grounded rules. Our work significantly increases the match in compositional structure between MRs and improves multi-task learning (MTL) in a low-resource setting, serving as a proof of concept for future broad-scale cross-MR normalization.
pdf
bib
abs
Leveraging WordNet Paths for Neural Hypernym Prediction
Yejin Cho
|
Juan Diego Rodriguez
|
Yifan Gao
|
Katrin Erk
We formulate the problem of hypernym prediction as a sequence generation task, where the sequences are taxonomy paths in WordNet. Our experiments with encoder-decoder models show that training to generate taxonomy paths can improve the performance of direct hypernym prediction. As a simple but powerful model, the hypo2path model achieves state-of-the-art performance, outperforming the best benchmark by 4.11 points in hit-at-one (H@1).
pdf
bib
abs
When Beards Start Shaving Men: A Subject-object Resolution Test Suite for Morpho-syntactic and Semantic Model Introspection
Patricia Fischer
|
Daniël de Kok
|
Erhard Hinrichs
In this paper, we introduce the SORTS Subject-Object Resolution Test Suite of German minimal sentence pairs for model introspection. The full test suite consists of 18,502 transitive clauses with manual annotations of 8 word order patterns, 5 morphological and syntactic and 11 semantic property classes. The test suite has been constructed such that sentences are minimal pairs with respect to a property class. Each property has been selected with a particular focus on its effect on subject-object resolution, the second-most error-prone task within syntactic parsing of German after prepositional phrase attachment (Fischer et al., 2019). The size and detail of annotations make the test suite a valuable resource for natural language processing applications with syntactic and semantic tasks. We use dependency parsing to demonstrate how the test suite allows insights into the process of subject-object resolution. Based on the test suite annotations, word order and case syncretism can be identified as most important factors that affect subject-object resolution.
pdf
bib
abs
Modality Enriched Neural Network for Metaphor Detection
Mingyu Wan
|
Baixi Xing
Metaphor as a cognitive mechanism in human’s conceptual system manifests itself an effective way for language communication. Although being intuitively sensible for human, metaphor detection is still a challenging task due to the subtle ontological differences between metaphorical and non-metaphorical expressions. This work proposes a modality enriched deep learning model for tackling this unsolved issue. It provides a new perspective for understanding metaphor as a modality shift, as in ‘sweet voice’. It also attempts to enhance metaphor detection by combining deep learning with effective linguistic insight. Extending the work at Wan et al. (2020), we concatenate word sensorimotor scores (Lynott et al., 2019) with word vectors as the input of attention-based Bi-LSTM using a benchmark dataset–the VUA corpus. The experimental results show great F1 improvement (above 0.5%) of the proposed model over other methods in record, demonstrating the usefulness of leveraging modality norms for metaphor detection.
pdf
bib
abs
Coordination Boundary Identification without Labeled Data for Compound Terms Disambiguation
Yuya Sawada
|
Takashi Wada
|
Takayoshi Shibahara
|
Hiroki Teranishi
|
Shuhei Kondo
|
Hiroyuki Shindo
|
Taro Watanabe
|
Yuji Matsumoto
We propose a simple method for nominal coordination boundary identification. As the main strength of our method, it can identify the coordination boundaries without training on labeled data, and can be applied even if coordination structure annotations are not available. Our system employs pre-trained word embeddings to measure the similarities of words and detects the span of coordination, assuming that conjuncts share syntactic and semantic similarities. We demonstrate that our method yields good results in identifying coordinated noun phrases in the GENIA corpus and is comparable to a recent supervised method for the case when the coordinator conjoins simple noun phrases.
pdf
bib
abs
Learning Semantic Correspondences from Noisy Data-text Pairs by Local-to-Global Alignments
Feng Nie
|
Jinpeng Wang
|
Chin-Yew Lin
Learning semantic correspondences between structured input data (e.g., slot-value pairs) and associated texts is a core problem for many downstream NLP applications, e.g., data-to-text generation. Large-scale datasets recently proposed for generation contain loosely corresponding data text pairs, where part of spans in text cannot be aligned to its incomplete paired input. To learn semantic correspondences from such datasets, we propose a two-stage local-to-global alignment (L2GA) framework. First, a local model based on multi-instance learning is applied to build alignments for texts spans that can be directly grounded to its paired structured input. Then, a novel global model built upon a memory-guided conditional random field (CRF) layer aims to infer missing alignments for text spans which not supported by paired incomplete inputs, where the memory is designed to leverage alignment clues provided by the local model to strengthen the global model. In this way, the local model and global model can work jointly to learn semantic correspondences in the same framework. Experimental results show that our proposed method can be generalized to both restaurant and computer domains and improve the alignment accuracy.
pdf
bib
abs
Definition Frames: Using Definitions for Hybrid Concept Representations
Evangelia Spiliopoulou
|
Artidoro Pagnoni
|
Eduard Hovy
Advances in word representations have shown tremendous improvements in downstream NLP tasks, but lack semantic interpretability. In this paper, we introduce Definition Frames (DF), a matrix distributed representation extracted from definitions, where each dimension is semantically interpretable. DF dimensions correspond to the Qualia structure relations: a set of relations that uniquely define a term. Our results show that DFs have competitive performance with other distributional semantic approaches on word similarity tasks.
pdf
bib
abs
QANom: Question-Answer driven SRL for Nominalizations
Ayal Klein
|
Jonathan Mamou
|
Valentina Pyatkin
|
Daniela Stepanov
|
Hangfeng He
|
Dan Roth
|
Luke Zettlemoyer
|
Ido Dagan
We propose a new semantic scheme for capturing predicate-argument relations for nominalizations, termed QANom. This scheme extends the QA-SRL formalism (He et al., 2015), modeling the relations between nominalizations and their arguments via natural language question-answer pairs. We construct the first QANom dataset using controlled crowdsourcing, analyze its quality and compare it to expertly annotated nominal-SRL annotations, as well as to other QA-driven annotations. In addition, we train a baseline QANom parser for identifying nominalizations and labeling their arguments with question-answer pairs. Finally, we demonstrate the extrinsic utility of our annotations for downstream tasks using both indirect supervision and zero-shot settings.
pdf
bib
abs
Event Coreference Resolution with their Paraphrases and Argument-aware Embeddings
Yutao Zeng
|
Xiaolong Jin
|
Saiping Guan
|
Jiafeng Guo
|
Xueqi Cheng
Event coreference resolution aims to classify all event mentions that refer to the same real-world event into the same group, which is necessary to information aggregation and many downstream applications. To resolve event coreference, existing methods usually calculate the similarities between event mentions and between specific kinds of event arguments. However, they fail to accurately identify paraphrase relations between events and may suffer from error propagation while extracting event components (i.e., event mentions and their arguments). Therefore, we propose a new model based on Event-specific Paraphrases and Argument-aware Semantic Embeddings, thus called EPASE, for event coreference resolution. EPASE recognizes deep paraphrase relations in an event-specific context of sentences and can cover event paraphrases of more situations, bringing about a better generalization. Additionally, the embeddings of argument roles are encoded into event embedding without relying on a fixed number and type of arguments, which results in the better scalability of EPASE. Experiments on both within- and cross-document event coreference demonstrate its consistent and significant superiority compared to existing methods.
pdf
bib
abs
Studying Taxonomy Enrichment on Diachronic WordNet Versions
Irina Nikishina
|
Varvara Logacheva
|
Alexander Panchenko
|
Natalia Loukachevitch
Ontologies, taxonomies, and thesauri have always been in high demand in a large number of NLP tasks. However, most studies are focused on the creation of lexical resources rather than the maintenance of the existing ones and keeping them up-to-date. In this paper, we address the problem of taxonomy enrichment. Namely, we explore the possibilities of taxonomy extension in a resource-poor setting and present several methods which are applicable to a large number of languages. We also create novel English and Russian datasets for training and evaluating taxonomy enrichment systems and describe a technique of creating such datasets for other languages.
pdf
bib
abs
VICTR: Visual Information Captured Text Representation for Text-to-Vision Multimodal Tasks
Caren Han
|
Siqu Long
|
Siwen Luo
|
Kunze Wang
|
Josiah Poon
Text-to-image multimodal tasks, generating/retrieving an image from a given text description, are extremely challenging tasks since raw text descriptions cover quite limited information in order to fully describe visually realistic images. We propose a new visual contextual text representation for text-to-image multimodal tasks, VICTR, which captures rich visual semantic information of objects from the text input. First, we use the text description as initial input and conduct dependency parsing to extract the syntactic structure and analyse the semantic aspect, including object quantities, to extract the scene graph. Then, we train the extracted objects, attributes, and relations in the scene graph and the corresponding geometric relation information using Graph Convolutional Networks, and it generates text representation which integrates textual and visual semantic information. The text representation is aggregated with word-level and sentence-level embedding to generate both visual contextual word and sentence representation. For the evaluation, we attached VICTR to the state-of-the-art models in text-to-image generation.VICTR is easily added to existing models and improves across both quantitative and qualitative aspects.
pdf
bib
abs
Finding the Evidence: Localization-aware Answer Prediction for Text Visual Question Answering
Wei Han
|
Hantao Huang
|
Tao Han
Image text carries essential information to understand the scene and perform reasoning. Text-based visual question answering (text VQA) task focuses on visual questions that require reading text in images. Existing text VQA systems generate an answer by selecting from optical character recognition (OCR) texts or a fixed vocabulary. Positional information of text is underused and there is a lack of evidence for the generated answer. As such, this paper proposes a localization-aware answer prediction network (LaAP-Net) to address this challenge. Our LaAP-Net not only generates the answer to the question but also predicts a bounding box as evidence of the generated answer. Moreover, a context-enriched OCR representation (COR) for multimodal fusion is proposed to facilitate the localization task. Our proposed LaAP-Net outperforms existing approaches on three benchmark datasets for the text VQA task by a noticeable margin.
pdf
bib
abs
Interactive Key-Value Memory-augmented Attention for Image Paragraph Captioning
Chunpu Xu
|
Yu Li
|
Chengming Li
|
Xiang Ao
|
Min Yang
|
Jinwen Tian
Image paragraph captioning (IPC) aims to generate a fine-grained paragraph to describe the visual content of an image. Significant progress has been made by deep neural networks, in which the attention mechanism plays an essential role. However, conventional attention mechanisms tend to ignore the past alignment information, which often results in problems of repetitive captioning and incomplete captioning. In this paper, we propose an Interactive key-value Memory- augmented Attention model for image Paragraph captioning (IMAP) to keep track of the attention history (salient objects coverage information) along with the update-chain of the decoder state and therefore avoid generating repetitive or incomplete image descriptions. In addition, we employ an adaptive attention mechanism to realize adaptive alignment from image regions to caption words, where an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. Extensive experiments on a benchmark dataset (i.e., Stanford) demonstrate the effectiveness of our IMAP model.
pdf
bib
abs
Geo-Aware Image Caption Generation
Sofia Nikiforova
|
Tejaswini Deoskar
|
Denis Paperno
|
Yoad Winter
Standard image caption generation systems produce generic descriptions of images and do not utilize any contextual information or world knowledge. In particular, they are unable to generate captions that contain references to the geographic context of an image, for example, the location where a photograph is taken or relevant geographic objects around an image location. In this paper, we develop a geo-aware image caption generation system, which incorporates geographic contextual information into a standard image captioning pipeline. We propose a way to build an image-specific representation of the geographic context and adapt the caption generation network to produce appropriate geographic names in the image descriptions. We evaluate our system on a novel captioning dataset that contains contextualized captions and geographic metadata and achieve substantial improvements in BLEU, ROUGE, METEOR and CIDEr scores. We also introduce a new metric to assess generated geographic references directly and empirically demonstrate our system’s ability to produce captions with relevant and factually accurate geographic referencing.
pdf
bib
abs
Bridge the Gap: High-level Semantic Planning for Image Captioning
Chenxi Yuan
|
Yang Bai
|
Chun Yuan
Recent image captioning models have made much progress for exploring the multi-modal interaction, such as attention mechanisms. Though these mechanisms can boost the interaction, there are still two gaps between the visual and language domains: (1) the gap between the visual features and textual semantics, (2) the gap between the disordering of visual features and the ordering of texts. To bridge the gaps we propose a high-level semantic planning (HSP) mechanism that incorporates both a semantic reconstruction and an explicit order planning. We integrate the planning mechanism to the attention based caption model and propose the High-level Semantic PLanning based Attention Network (HS-PLAN). First, an attention based reconstruction module is designed to reconstruct the visual features with high-level semantic information. Then we apply a pointer network to serialize the features and obtain the explicit order plan to guide the generation. Experiments conducted on MS COCO show that our model outperforms previous methods and achieves the state-of-the-art performance of 133.4% CIDEr-D score.
pdf
bib
abs
Interactively-Propagative Attention Learning for Implicit Discourse Relation Recognition
Huibin Ruan
|
Yu Hong
|
Yang Xu
|
Zhen Huang
|
Guodong Zhou
|
Min Zhang
We tackle implicit discourse relation recognition. Both self-attention and interactive-attention mechanisms have been applied for attention-aware representation learning, which improves the current discourse analysis models. To take advantages of the two attention mechanisms simultaneously, we develop a propagative attention learning model using a cross-coupled two-channel network. We experiment on Penn Discourse Treebank. The test results demonstrate that our model yields substantial improvements over the baselines (BiLSTM and BERT).
pdf
bib
abs
Dual Attention Model for Citation Recommendation
Yang Zhang
|
Qiang Ma
Based on an exponentially increasing number of academic articles, discovering and citing comprehensive and appropriate resources has become a non-trivial task. Conventional citation recommender methods suffer from severe information loss. For example, they do not consider the section of the paper that the user is writing and for which they need to find a citation, the relatedness between the words in the local context (the text span that describes a citation), or the importance on each word from the local context. These shortcomings make such methods insufficient for recommending adequate citations to academic manuscripts. In this study, we propose a novel embedding-based neural network called “dual attention model for citation recommendation (DACR)” to recommend citations during manuscript preparation. Our method adapts embedding of three semantic information: words in the local context, structural contexts, and the section on which a user is working. A neural network model is designed to maximize the similarity between the embedding of the three input (local context words, section and structural contexts) and the target citation appearing in the context. The core of the neural network model is composed of self-attention and additive attention, where the former aims to capture the relatedness between the contextual words and structural context, and the latter aims to learn the importance of them. The experiments on real-world datasets demonstrate the effectiveness of the proposed approach.
pdf
bib
abs
Dual Attention Network for Cross-lingual Entity Alignment
Jian Sun
|
Yu Zhou
|
Chengqing Zong
Cross-lingual Entity alignment is an essential part of building a knowledge graph, which can help integrate knowledge among different language knowledge graphs. In the real KGs, there exists an imbalance among the information in the same hierarchy of corresponding entities, which results in the heterogeneity of neighborhood structure, making this task challenging. To tackle this problem, we propose a dual attention network for cross-lingual entity alignment (DAEA). Specifically, our dual attention consists of relation-aware graph attention and hierarchical attention. The relation-aware graph attention aims at selectively aggregating multi-hierarchy neighborhood information to alleviate the difference of heterogeneity among counterpart entities. The hierarchical attention adaptively aggregates the low-hierarchy and the high-hierarchy information, which is beneficial to balance the neighborhood information of counterpart entities and distinguish non-counterpart entities with similar structures. Finally, we treat cross-lingual entity alignment as a process of linking prediction. Experimental results on three real-world cross-lingual entity alignment datasets have shown the effectiveness of DAEA.
pdf
bib
abs
Task-Aware Representation of Sentences for Generic Text Classification
Kishaloy Halder
|
Alan Akbik
|
Josip Krapac
|
Roland Vollgraf
State-of-the-art approaches for text classification leverage a transformer architecture with a linear layer on top that outputs a class distribution for a given prediction problem. While effective, this approach suffers from conceptual limitations that affect its utility in few-shot or zero-shot transfer learning scenarios. First, the number of classes to predict needs to be pre-defined. In a transfer learning setting, in which new classes are added to an already trained classifier, all information contained in a linear layer is therefore discarded, and a new layer is trained from scratch. Second, this approach only learns the semantics of classes implicitly from training examples, as opposed to leveraging the explicit semantic information provided by the natural language names of the classes. For instance, a classifier trained to predict the topics of news articles might have classes like “business” or “sports” that themselves carry semantic information. Extending a classifier to predict a new class named “politics” with only a handful of training examples would benefit from both leveraging the semantic information in the name of a new class and using the information contained in the already trained linear layer. This paper presents a novel formulation of text classification that addresses these limitations. It imbues the notion of the task at hand into the transformer model itself by factorizing arbitrary classification problems into a generic binary classification problem. We present experiments in few-shot and zero-shot transfer learning that show that our approach significantly outperforms previous approaches on small training data and can even learn to predict new classes with no training examples at all. The implementation of our model is publicly available at:
https://github.com/flairNLP/flair.
pdf
bib
abs
RANCC: Rationalizing Neural Networks via Concept Clustering
Housam Khalifa Bashier
|
Mi-Young Kim
|
Randy Goebel
We propose a new self-explainable model for Natural Language Processing (NLP) text classification tasks. Our approach constructs explanations concurrently with the formulation of classification predictions. To do so, we extract a rationale from the text, then use it to predict a concept of interest as the final prediction. We provide three types of explanations: 1) rationale extraction, 2) a measure of feature importance, and 3) clustering of concepts. In addition, we show how our model can be compressed without applying complicated compression techniques. We experimentally demonstrate our explainability approach on a number of well-known text classification datasets.
pdf
bib
abs
LadaBERT: Lightweight Adaptation of BERT through Hybrid Model Compression
Yihuan Mao
|
Yujing Wang
|
Chufan Wu
|
Chen Zhang
|
Yang Wang
|
Quanlu Zhang
|
Yaming Yang
|
Yunhai Tong
|
Jing Bai
BERT is a cutting-edge language representation model pre-trained by a large corpus, which achieves superior performances on various natural language understanding tasks. However, a major blocking issue of applying BERT to online services is that it is memory-intensive and leads to unsatisfactory latency of user requests, raising the necessity of model compression. Existing solutions leverage the knowledge distillation framework to learn a smaller model that imitates the behaviors of BERT. However, the training procedure of knowledge distillation is expensive itself as it requires sufficient training data to imitate the teacher model. In this paper, we address this issue by proposing a tailored solution named LadaBERT (Lightweight adaptation of BERT through hybrid model compression), which combines the advantages of different model compression methods, including weight pruning, matrix factorization and knowledge distillation. LadaBERT achieves state-of-the-art accuracy on various public datasets while the training overheads can be reduced by an order of magnitude.
pdf
bib
abs
Emotion Classification by Jointly Learning to Lexiconize and Classify
Deyu Zhou
|
Shuangzhi Wu
|
Qing Wang
|
Jun Xie
|
Zhaopeng Tu
|
Mu Li
Emotion lexicons have been shown effective for emotion classification (Baziotis et al., 2018). Previous studies handle emotion lexicon construction and emotion classification separately. In this paper, we propose an emotional network (EmNet) to jointly learn sentence emotions and construct emotion lexicons which are dynamically adapted to a given context. The dynamic emotion lexicons are useful for handling words with multiple emotions based on different context, which can effectively improve the classification accuracy. We validate the approach on two representative architectures – LSTM and BERT, demonstrating its superiority on identifying emotions in Tweets. Our model outperforms several approaches proposed in previous studies and achieves new state-of-the-art on the benchmark Twitter dataset.
pdf
bib
abs
Multi-level Alignment Pretraining for Multi-lingual Semantic Parsing
Bo Shao
|
Yeyun Gong
|
Weizhen Qi
|
Nan Duan
|
Xiaola Lin
In this paper, we present a multi-level alignment pretraining method in a unified architecture formulti-lingual semantic parsing. In this architecture, we use an adversarial training method toalign the space of different languages and use sentence level and word level parallel corpus assupervision information to align the semantic of different languages. Finally, we jointly train themulti-level alignment and semantic parsing tasks. We conduct experiments on a publicly avail-able multi-lingual semantic parsing dataset ATIS and a newly constructed dataset. Experimentalresults show that our model outperforms state-of-the-art methods on both datasets.
pdf
bib
abs
Transformation of Dense and Sparse Text Representations
Wenpeng Hu
|
Mengyu Wang
|
Bing Liu
|
Feng Ji
|
Jinwen Ma
|
Dongyan Zhao
Sparsity is regarded as a desirable property of representations, especially in terms of explanation. However, its usage has been limited due to the gap with dense representations. Most research progresses in NLP in recent years are based on dense representations. Thus the desirable property of sparsity cannot be leveraged. Inspired by Fourier Transformation, in this paper, we propose a novel Semantic Transformation method to bridge the dense and sparse spaces, which can facilitate the NLP research to shift from dense spaces to sparse spaces or to jointly use both spaces. Experiments using classification tasks and natural language inference task show that the proposed Semantic Transformation is effective.
pdf
bib
abs
Conception: Multilingually-Enhanced, Human-Readable Concept Vector Representations
Simone Conia
|
Roberto Navigli
To date, the most successful word, word sense, and concept modelling techniques have used large corpora and knowledge resources to produce dense vector representations that capture semantic similarities in a relatively low-dimensional space. Most current approaches, however, suffer from a monolingual bias, with their strength depending on the amount of data available across languages. In this paper we address this issue and propose Conception, a novel technique for building language-independent vector representations of concepts which places multilinguality at its core while retaining explicit relationships between concepts. Our approach results in high-coverage representations that outperform the state of the art in multilingual and cross-lingual Semantic Word Similarity and Word Sense Disambiguation, proving particularly robust on low-resource languages. Conception – its software and the complete set of representations – is available at
https://github.com/SapienzaNLP/conception.
pdf
bib
abs
What Does This Acronym Mean? Introducing a New Dataset for Acronym Identification and Disambiguation
Amir Pouran Ben Veyseh
|
Franck Dernoncourt
|
Quan Hung Tran
|
Thien Huu Nguyen
Acronyms are the short forms of phrases that facilitate conveying lengthy sentences in documents and serve as one of the mainstays of writing. Due to their importance, identifying acronyms and corresponding phrases (i.e., acronym identification (AI)) and finding the correct meaning of each acronym (i.e., acronym disambiguation (AD)) are crucial for text understanding. Despite the recent progress on this task, there are some limitations in the existing datasets which hinder further improvement. More specifically, limited size of manually annotated AI datasets or noises in the automatically created acronym identification datasets obstruct designing advanced high-performing acronym identification models. Moreover, the existing datasets are mostly limited to the medical domain and ignore other domains. In order to address these two limitations, we first create a manually annotated large AI dataset for scientific domain. This dataset contains 17,506 sentences which is substantially larger than previous scientific AI datasets. Next, we prepare an AD dataset for scientific domain with 62,441 samples which is significantly larger than previous scientific AD dataset. Our experiments show that the existing state-of-the-art models fall far behind human-level performance on both datasets proposed by this work. In addition, we propose a new deep learning model which utilizes the syntactical structure of the sentence to expand an ambiguous acronym in a sentence. The proposed model outperforms the state-of-the-art models on the new AD dataset, providing a strong baseline for future research on this dataset.
pdf
bib
abs
Sentence Matching with Syntax- and Semantics-Aware BERT
Tao Liu
|
Xin Wang
|
Chengguo Lv
|
Ranran Zhen
|
Guohong Fu
Sentence matching aims to identify the special relationship between two sentences, and plays a key role in many natural language processing tasks. However, previous studies mainly focused on exploiting either syntactic or semantic information for sentence matching, and no studies consider integrating both of them. In this study, we propose integrating syntax and semantics into BERT with sentence matching. In particular, we use an implicit syntax and semantics integration method that is less sensitive to the output structure information. Thus the implicit integration can alleviate the error propagation problem. The experimental results show that our approach has achieved state-of-the-art or competitive performance on several sentence matching datasets, demonstrating the benefits of implicitly integrating syntactic and semantic features in sentence matching.
pdf
bib
abs
Temporal Relations Annotation and Extrapolation Based on Semi-intervals and Boundig Relations
Alejandro Pimentel
|
Gemma Bel Enguix
|
Gerardo Sierra Martínez
|
Azucena Montes
The computational treatment of temporal relations is based on the work of Allen, who establishes 13 different types, and Freksa, who designs a cognitive procedure to manage them. Freksa’s notation is not widely used because, although it has cognitive and expressive advantages, it is too complex from the computational perspective. This paper proposes a system for the annotation and management of temporal relations that combines the richness and expressiveness of Freksa’s approach with the simplicity of Allen’s notation. Our method is summarized in the application of bounding relations, thanks to which it is possible to obtain the temporary representation of complete neighborhoods capable of representing vague temporal relations such as those that can be frequently found in a text. Such advantages are obtained without the need to greatly increase the complexity of the labeling process since the markup language is almost the same as TimeML, to which only a second temporary “relType”’ type label relationship is added. Our experiments show that the temporal relationships that present vagueness are in fact much more common than those in which a single relationship can be established precisely. For these reasons, our new labeling system achieves a more agreeable representation of temporal relations.
pdf
bib
abs
Homonym normalisation by word sense clustering: a case in Japanese
Yo Sato
|
Kevin Heffernan
This work presents a method of word sense clustering that differentiates homonyms and merge homophones, taking Japanese as an example, where orthographical variation causes problem for language processing. It uses contextualised embeddings (BERT) to cluster tokens into distinct sense groups, and we use these groups to normalise synonymous instances to a single representative form. We see the benefit of this normalisation in language model, as well as in transliteration.
pdf
bib
abs
Verbal Multiword Expression Identification: Do We Need a Sledgehammer to Crack a Nut?
Caroline Pasquer
|
Agata Savary
|
Carlos Ramisch
|
Jean-Yves Antoine
Automatic identification of multiword expressions (MWEs), like ‘to cut corners’ (to do an incomplete job), is a pre-requisite for semantically-oriented downstream applications. This task is challenging because MWEs, especially verbal ones (VMWEs), exhibit surface variability. This paper deals with a subproblem of VMWE identification: the identification of occurrences of previously seen VMWEs. A simple language-independent system based on a combination of filters competes with the best systems from a recent shared task: it obtains the best averaged F-score over 11 languages (0.6653) and even the best score for both seen and unseen VMWEs due to the high proportion of seen VMWEs in texts. This highlights the fact that focusing on the identification of seen VMWEs could be a strategy to improve VMWE identification in general.
pdf
bib
abs
An Unsupervised Method for Learning Representations of Multi-word Expressions for Semantic Classification
Robert Vacareanu
|
Marco A. Valenzuela-Escárcega
|
Rebecca Sharp
|
Mihai Surdeanu
This paper explores an unsupervised approach to learning a compositional representation function for multi-word expressions (MWEs), and evaluates it on the Tratz dataset, which associates two-word expressions with the semantic relation between the compound constituents (e.g. the label employer is associated with the noun compound government agency) (Tratz, 2011). The composition function is based on recurrent neural networks, and is trained using the Skip-Gram objective to predict the words in the context of MWEs. Thus our approach can naturally leverage large unlabeled text sources. Further, our method can make use of provided MWEs when available, but can also function as a completely unsupervised algorithm, using MWE boundaries predicted by a single, domain-agnostic part-of-speech pattern. With pre-defined MWE boundaries, our method outperforms the previous state-of-the-art performance on the coarse-grained evaluation of the Tratz dataset (Tratz, 2011), with an F1 score of 50.4%. The unsupervised version of our method approaches the performance of the supervised one, and even outperforms it in some configurations.
pdf
bib
abs
SLICE: Supersense-based Lightweight Interpretable Contextual Embeddings
Cindy Aloui
|
Carlos Ramisch
|
Alexis Nasr
|
Lucie Barque
Contextualised embeddings such as BERT have become de facto state-of-the-art references in many NLP applications, thanks to their impressive performances. However, their opaqueness makes it hard to interpret their behaviour. SLICE is a hybrid model that combines supersense labels with contextual embeddings. We introduce a weakly supervised method to learn interpretable embeddings from raw corpora and small lists of seed words. Our model is able to represent both a word and its context as embeddings into the same compact space, whose dimensions correspond to interpretable supersenses. We assess the model in a task of supersense tagging for French nouns. The little amount of supervision required makes it particularly well suited for low-resourced scenarios. Thanks to its interpretability, we perform linguistic analyses about the predicted supersenses in terms of input word and context representations.
pdf
bib
abs
An Empirical Study of the Downstream Reliability of Pre-Trained Word Embeddings
Anthony Rios
|
Brandon Lwowski
While pre-trained word embeddings have been shown to improve the performance of downstream tasks, many questions remain regarding their reliability: Do the same pre-trained word embeddings result in the best performance with slight changes to the training data? Do the same pre-trained embeddings perform well with multiple neural network architectures? Do imputation strategies for unknown words impact reliability? In this paper, we introduce two new metrics to understand the downstream reliability of word embeddings. We find that downstream reliability of word embeddings depends on multiple factors, including, the evaluation metric, the handling of out-of-vocabulary words, and whether the embeddings are fine-tuned.
pdf
bib
abs
Sentence Analogies: Linguistic Regularities in Sentence Embeddings
Xunjie Zhu
|
Gerard de Melo
While important properties of word vector representations have been studied extensively, far less is known about the properties of sentence vector representations. Word vectors are often evaluated by assessing to what degree they exhibit regularities with regard to relationships of the sort considered in word analogies. In this paper, we investigate to what extent commonly used sentence vector representation spaces as well reflect certain kinds of regularities. We propose a number of schemes to induce evaluation data, based on lexical analogy data as well as semantic relationships between sentences. Our experiments consider a wide range of sentence embedding methods, including ones based on BERT-style contextual embeddings. We find that different models differ substantially in their ability to reflect such regularities.
pdf
bib
abs
Manifold Learning-based Word Representation Refinement Incorporating Global and Local Information
Wenyu Zhao
|
Dong Zhou
|
Lin Li
|
Jinjun Chen
Recent studies show that word embedding models often underestimate similarities between similar words and overestimate similarities between distant words. This results in word similarity results obtained from embedding models inconsistent with human judgment. Manifold learning-based methods are widely utilized to refine word representations by re-embedding word vectors from the original embedding space to a new refined semantic space. These methods mainly focus on preserving local geometry information through performing weighted locally linear combination between words and their neighbors twice. However, these reconstruction weights are easily influenced by different selections of neighboring words and the whole combination process is time-consuming. In this paper, we propose two novel word representation refinement methods leveraging isometry feature mapping and local tangent space respectively. Unlike previous methods, our first method corrects pre-trained word embeddings by preserving global geometry information of all words instead of local geometry information between words and their neighbors. Our second method refines word representations by aligning original and re-fined embedding spaces based on local tangent space instead of performing weighted locally linear combination twice. Experimental results obtained from standard semantic relatedness and semantic similarity tasks show that our methods outperform various state-of-the-art baselines for word representation refinement.
pdf
bib
abs
Collective Wisdom: Improving Low-resource Neural Machine Translation using Adaptive Knowledge Distillation
Fahimeh Saleh
|
Wray Buntine
|
Gholamreza Haffari
Scarcity of parallel sentence-pairs poses a significant hurdle for training high-quality Neural Machine Translation (NMT) models in bilingually low-resource scenarios. A standard approach is transfer learning, which involves taking a model trained on a high-resource language-pair and fine-tuning it on the data of the low-resource MT condition of interest. However, it is not clear generally which high-resource language-pair offers the best transfer learning for the target MT setting. Furthermore, different transferred models may have complementary semantic and/or syntactic strengths, hence using only one model may be sub-optimal. In this paper, we tackle this problem using knowledge distillation, where we propose to distill the knowledge of ensemble of teacher models to a single student model. As the quality of these teacher models varies, we propose an effective adaptive knowledge distillation approach to dynamically adjust the contribution of the teacher models during the distillation process. Experiments on transferring from a collection of six language pairs from IWSLT to five low-resource language-pairs from TED Talks demonstrate the effectiveness of our approach, achieving up to +0.9 BLEU score improvements compared to strong baselines.
pdf
bib
abs
Enabling Interactive Transcription in an Indigenous Community
Eric Le Ferrand
|
Steven Bird
|
Laurent Besacier
We propose a novel transcription workflow which combines spoken term detection and human-in-the-loop, together with a pilot experiment. This work is grounded in an almost zero-resource scenario where only a few terms have so far been identified, involving two endangered languages. We show that in the early stages of transcription, when the available data is insufficient to train a robust ASR system, it is possible to take advantage of the transcription of a small number of isolated words in order to bootstrap the transcription of a speech collection.
pdf
bib
abs
Optimizing Transformer for Low-Resource Neural Machine Translation
Ali Araabi
|
Christof Monz
Language pairs with limited amounts of parallel data, also known as low-resource languages, remain a challenge for neural machine translation. While the Transformer model has achieved significant improvements for many language pairs and has become the de facto mainstream architecture, its capability under low-resource conditions has not been fully investigated yet. Our experiments on different subsets of the IWSLT14 training data show that the effectiveness of Transformer under low-resource conditions is highly dependent on the hyper-parameter settings. Our experiments show that using an optimized Transformer for low-resource conditions improves the translation quality up to 7.3 BLEU points compared to using the Transformer default settings.
pdf
bib
abs
Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks
Lichao Sun
|
Congying Xia
|
Wenpeng Yin
|
Tingting Liang
|
Philip Yu
|
Lifang He
Mixup is a latest data augmentation technique that linearly interpolates input examples and the corresponding labels. It has shown strong effectiveness in image classification by interpolating images at the pixel level. Inspired by this line of research, in this paper, we explore i) how to apply mixup to natural language processing tasks since text data can hardly be mixed in the raw format; ii) if mixup is still effective in transformer-based learning models,e.g., BERT.To achieve the goal, we incorporate mixup to transformer-based pre-trained architecture, named“mixup-transformer”, for a wide range of NLP tasks while keeping the whole end-to-end training system. We evaluate the proposed framework by running extensive experiments on the GLUEbenchmark. Furthermore, we also examine the performance of mixup-transformer in low-resource scenarios by reducing the training data with a certain ratio. Our studies show that mixup is a domain-independent data augmentation technique to pre-trained language models, resulting in significant performance improvement for transformer-based models.
pdf
bib
abs
Handling Anomalies of Synthetic Questions in Unsupervised Question Answering
Giwon Hong
|
Junmo Kang
|
Doyeon Lim
|
Sung-Hyon Myaeng
Advances in Question Answering (QA) research require additional datasets for new domains, languages, and types of questions, as well as for performance increases. Human creation of a QA dataset like SQuAD, however, is expensive. As an alternative, an unsupervised QA approach has been proposed so that QA training data can be generated automatically. However, the performance of unsupervised QA is much lower than that of supervised QA models. We identify two anomalies in the automatically generated questions and propose how they can be mitigated. We show our approach helps improve unsupervised QA significantly across a number of QA tasks.
pdf
bib
abs
Designing Templates for Eliciting Commonsense Knowledge from Pretrained Sequence-to-Sequence Models
Jheng-Hong Yang
|
Sheng-Chieh Lin
|
Rodrigo Nogueira
|
Ming-Feng Tsai
|
Chuan-Ju Wang
|
Jimmy Lin
While internalized “implicit knowledge” in pretrained transformers has led to fruitful progress in many natural language understanding tasks, how to most effectively elicit such knowledge remains an open question. Based on the text-to-text transfer transformer (T5) model, this work explores a template-based approach to extract implicit knowledge for commonsense reasoning on multiple-choice (MC) question answering tasks. Experiments on three representative MC datasets show the surprisingly good performance of our simple template, coupled with a logit normalization technique for disambiguation. Furthermore, we verify that our proposed template can be easily extended to other MC tasks with contexts such as supporting facts in open-book question answering settings. Starting from the MC task, this work initiates further research to find generic natural language templates that can effectively leverage stored knowledge in pretrained models.
pdf
bib
abs
Towards the First Machine Translation System for Sumerian Transliterations
Ravneet Punia
|
Niko Schenk
|
Christian Chiarcos
|
Émilie Pagé-Perron
The Sumerian cuneiform script was invented more than 5,000 years ago and represents one of the oldest in history. We present the first attempt to translate Sumerian texts into English automatically. We publicly release high-quality corpora for standardized training and evaluation and report results on experiments with supervised, phrase-based, and transfer learning techniques for machine translation. Quantitative and qualitative evaluations indicate the usefulness of the translations. Our proposed methodology provides a broader audience of researchers with novel access to the data, accelerates the costly and time-consuming manual translation process, and helps them better explore the relationships between Sumerian cuneiform and Mesopotamian culture.
pdf
bib
abs
Using Bilingual Patents for Translation Training
John Lee
|
Benjamin Tsou
|
Tianyuan Cai
While bilingual corpora have been instrumental for machine translation, their utility for training translators has been less explored. We investigate the use of bilingual corpora as pedagogical tools for translation in the technical domain. In a user study, novice translators revised Chinese translations of English patents through bilingual concordancing. Results show that concordancing with an in-domain bilingual corpus can yield greater improvement in translation quality of technical terms than a general-domain bilingual corpus.
pdf
bib
abs
Federated Learning for Spoken Language Understanding
Zhiqi Huang
|
Fenglin Liu
|
Yuexian Zou
Recently, spoken language understanding (SLU) has attracted extensive research interests, and various SLU datasets have been proposed to promote the development. However, most of the existing methods focus on a single individual dataset, the efforts to improve the robustness of models and obtain better performance by combining the merits of various datasets are not well studied. In this paper, we argue that if these SLU datasets are considered together, different knowledge from different datasets could be learned jointly, and there are high chances to promote the performance of each dataset. At the same time, we further attempt to prevent data leakage when unifying multiple datasets which, arguably, is more useful in an industry setting. To this end, we propose a federated learning framework, which could unify various types of datasets as well as tasks to learn and fuse various types of knowledge, i.e., text representations, from different datasets and tasks, without the sharing of downstream task data. The fused text representations merge useful features from different SLU datasets and tasks and are thus much more powerful than the original text representations alone in individual tasks. At last, in order to provide multi-granularity text representations for our framework, we propose a novel Multi-view Encoder (MV-Encoder) as the backbone of our federated learning framework. Experiments on two SLU benchmark datasets, including two tasks (intention detection and slot filling) and federated learning settings (horizontal federated learning, vertical federated learning and federated transfer learning), demonstrate the effectiveness and universality of our approach. Specifically, we are able to get 1.53% improvement on the intent detection metric accuracy. And we could also boost the performance of a strong baseline by up to 5.29% on the slot filling metric F1. Furthermore, by leveraging BERT as an additional encoder, we establish new state-of-the-art results on SNIPS and ATIS datasets, where we get 99.33% and 98.28% in terms of accuracy on intent detection task as well as 97.20% and 96.41% in terms of F1 score on slot filling task, respectively.
pdf
bib
abs
Attentively Embracing Noise for Robust Latent Representation in BERT
Gwenaelle Cunha Sergio
|
Dennis Singh Moirangthem
|
Minho Lee
Modern digital personal assistants interact with users through voice. Therefore, they heavily rely on automatic speech recognition (ASR) in order to convert speech to text and perform further tasks. We introduce EBERT, which stands for EmbraceBERT, with the goal of extracting more robust latent representations for the task of noisy ASR text classification. Conventionally, BERT is fine-tuned for downstream classification tasks using only the [CLS] starter token, with the remaining tokens being discarded. We propose using all encoded transformer tokens and further encode them using a novel attentive embracement layer and multi-head attention layer. This approach uses the otherwise discarded tokens as a source of additional information and the multi-head attention in conjunction with the attentive embracement layer to select important features from clean data during training. This allows for the extraction of a robust latent vector resulting in improved classification performance during testing when presented with noisy inputs. We show the impact of our model on both the Chatbot and Snips corpora for intent classification with ASR error. Results, in terms of F1-score and mean between 10 runs, show that our model significantly outperforms the baseline model.
pdf
bib
abs
A Comprehensive Evaluation of Incremental Speech Recognition and Diarization for Conversational AI
Angus Addlesee
|
Yanchao Yu
|
Arash Eshghi
Automatic Speech Recognition (ASR) systems are increasingly powerful and more accurate, but also more numerous with several options existing currently as a service (e.g. Google, IBM, and Microsoft). Currently the most stringent standards for such systems are set within the context of their use in, and for, Conversational AI technology. These systems are expected to operate incrementally in real-time, be responsive, stable, and robust to the pervasive yet peculiar characteristics of conversational speech such as disfluencies and overlaps. In this paper we evaluate the most popular of such systems with metrics and experiments designed with these standards in mind. We also evaluate the speaker diarization (SD) capabilities of the same systems which will be particularly important for dialogue systems designed to handle multi-party interaction. We found that Microsoft has the leading incremental ASR system which preserves disfluent materials and IBM has the leading incremental SD system in addition to the ASR that is most robust to speech overlaps. Google strikes a balance between the two but none of these systems are yet suitable to reliably handle natural spontaneous conversations in real-time.
pdf
bib
abs
Decolonising Speech and Language Technology
Steven Bird
After generations of exploitation, Indigenous people often respond negatively to the idea that their languages are data ready for the taking. By treating Indigenous knowledge as a commodity, speech and language technologists risk disenfranchising local knowledge authorities, reenacting the causes of language endangerment. Scholars in related fields have responded to calls for decolonisation, and we in the speech and language technology community need to follow suit, and explore what this means for our practices that involve Indigenous languages and the communities who own them. This paper reviews colonising discourses in speech and language technology, and suggests new ways of working with Indigenous communities, and seeks to open a discussion of a postcolonial approach to computational methods for supporting language vitality.
pdf
bib
abs
Dual-decoder Transformer for Joint Automatic Speech Recognition and Multilingual Speech Translation
Hang Le
|
Juan Pino
|
Changhan Wang
|
Jiatao Gu
|
Didier Schwab
|
Laurent Besacier
We introduce dual-decoder Transformer, a new model architecture that jointly performs automatic speech recognition (ASR) and multilingual speech translation (ST). Our models are based on the original Transformer architecture (Vaswani et al., 2017) but consist of two decoders, each responsible for one task (ASR or ST). Our major contribution lies in how these decoders interact with each other: one decoder can attend to different information sources from the other via a dual-attention mechanism. We propose two variants of these architectures corresponding to two different levels of dependencies between the decoders, called the parallel and cross dual-decoder Transformers, respectively. Extensive experiments on the MuST-C dataset show that our models outperform the previously-reported highest translation performance in the multilingual settings, and outperform as well bilingual one-to-one results. Furthermore, our parallel models demonstrate no trade-off between ASR and ST compared to the vanilla multi-task architecture. Our code and pre-trained models are available at
https://github.com/formiel/speech-translation.
pdf
bib
abs
Multitask Learning-Based Neural Bridging Reference Resolution
Juntao Yu
|
Massimo Poesio
We propose a multi task learning-based neural model for resolving bridging references tackling two key challenges. The first challenge is the lack of large corpora annotated with bridging references. To address this, we use multi-task learning to help bridging reference resolution with coreference resolution. We show that substantial improvements of up to 8 p.p. can be achieved on full bridging resolution with this architecture. The second challenge is the different definitions of bridging used in different corpora, meaning that hand-coded systems or systems using special features designed for one corpus do not work well with other corpora. Our neural model only uses a small number of corpus independent features, thus can be applied to different corpora. Evaluations with very different bridging corpora (ARRAU, ISNOTES, BASHI and SCICORP) suggest that our architecture works equally well on all corpora, and achieves the SoTA results on full bridging resolution for all corpora, outperforming the best reported results by up to 36.3 p.p..
pdf
bib
abs
Improving Human-Labeled Data through Dynamic Automatic Conflict Resolution
David Q. Sun
|
Hadas Kotek
|
Christopher Klein
|
Mayank Gupta
|
William Li
|
Jason D. Williams
This paper develops and implements a scalable methodology for (a) estimating the noisiness of labels produced by a typical crowdsourcing semantic annotation task, and (b) reducing the resulting error of the labeling process by as much as 20-30% in comparison to other common labeling strategies. Importantly, this new approach to the labeling process, which we name Dynamic Automatic Conflict Resolution (DACR), does not require a ground truth dataset and is instead based on inter-project annotation inconsistencies. This makes DACR not only more accurate but also available to a broad range of labeling tasks. In what follows we present results from a text classification task performed at scale for a commercial personal assistant, and evaluate the inherent ambiguity uncovered by this annotation strategy as compared to other common labeling strategies.
pdf
bib
abs
Automatic Discovery of Heterogeneous Machine Learning Pipelines: An Application to Natural Language Processing
Suilan Estevez-Velarde
|
Yoan Gutiérrez
|
Andres Montoyo
|
Yudivián Almeida Cruz
This paper presents AutoGOAL, a system for automatic machine learning (AutoML) that uses heterogeneous techniques. In contrast with existing AutoML approaches, our contribution can automatically build machine learning pipelines that combine techniques and algorithms from different frameworks, including shallow classifiers, natural language processing tools, and neural networks. We define the heterogeneous AutoML optimization problem as the search for the best sequence of algorithms that transforms specific input data into the desired output. This provides a novel theoretical and practical approach to AutoML. Our proposal is experimentally evaluated in diverse machine learning problems and compared with alternative approaches, showing that it is competitive with other AutoML alternatives in standard benchmarks. Furthermore, it can be applied to novel scenarios, such as several NLP tasks, where existing alternatives cannot be directly deployed. The system is freely available and includes in-built compatibility with a large number of popular machine learning frameworks, which makes our approach useful for solving practical problems with relative ease and effort.
pdf
bib
abs
Distill and Replay for Continual Language Learning
Jingyuan Sun
|
Shaonan Wang
|
Jiajun Zhang
|
Chengqing Zong
Accumulating knowledge to tackle new tasks without necessarily forgetting the old ones is a hallmark of human-like intelligence. But the current dominant paradigm of machine learning is still to train a model that works well on static datasets. When learning tasks in a stream where data distribution may fluctuate, fitting on new tasks often leads to forgetting on the previous ones. We propose a simple yet effective framework that continually learns natural language understanding tasks with one model. Our framework distills knowledge and replays experience from previous tasks when fitting on a new task, thus named DnR (distill and replay). The framework is based on language models and can be smoothly built with different language model architectures. Experimental results demonstrate that DnR outperfoms previous state-of-the-art models in continually learning tasks of the same type but from different domains, as well as tasks of different types. With the distillation method, we further show that it’s possible for DnR to incrementally compress the model size while still outperforming most of the baselines. We hope that DnR could promote the empirical application of continual language learning, and contribute to building human-level language intelligence minimally bothered by catastrophic forgetting.
pdf
bib
abs
Incorporating Noisy Length Constraints into Transformer with Length-aware Positional Encodings
Yui Oka
|
Katsuki Chousa
|
Katsuhito Sudoh
|
Satoshi Nakamura
Neural Machine Translation often suffers from an under-translation problem due to its limited modeling of output sequence lengths. In this work, we propose a novel approach to training a Transformer model using length constraints based on length-aware positional encoding (PE). Since length constraints with exact target sentence lengths degrade translation performance, we add random noise within a certain window size to the length constraints in the PE during the training. In the inference step, we predict the output lengths using input sequences and a BERT-based length prediction model. Experimental results in an ASPEC English-to-Japanese translation showed the proposed method produced translations with lengths close to the reference ones and outperformed a vanilla Transformer (especially in short sentences) by 3.22 points in BLEU. The average translation results using our length prediction model were also better than another baseline method using input lengths for the length constraints. The proposed noise injection improved robustness for length prediction errors, especially within the window size.
pdf
bib
abs
Rethinking Skip Connection with Layer Normalization
Fenglin Liu
|
Xuancheng Ren
|
Zhiyuan Zhang
|
Xu Sun
|
Yuexian Zou
Skip connection is a widely-used technique to improve the performance and the convergence of deep neural networks, which is believed to relieve the difficulty in optimization due to non-linearity by propagating a linear component through the neural network layers. However, from another point of view, it can also be seen as a modulating mechanism between the input and the output, with the input scaled by a pre-defined value one. In this work, we investigate how the scale factors in the effectiveness of the skip connection and reveal that a trivial adjustment of the scale will lead to spurious gradient exploding or vanishing in line with the deepness of the models, which could by addressed by normalization, in particular, layer normalization, which induces consistent improvements over the plain skip connection. Inspired by the findings, we further propose to adaptively adjust the scale of the input by recursively applying skip connection with layer normalization, which promotes the performance substantially and generalizes well across diverse tasks including both machine translation and image classification datasets.
pdf
bib
abs
Specializing Word Vectors by Spectral Decomposition on Heterogeneously Twisted Graphs
Yuanhang Ren
|
Ye Du
Traditional word vectors, such as word2vec and glove, have a well-known inclination to conflate the semantic similarity with other semantic relations. A retrofitting procedure may be needed to solve this issue. In this work, we propose a new retrofitting method called Heterogeneously Retrofitted Spectral Word Embedding. It heterogeneously twists the similarity matrix of word pairs with lexical constraints. A new set of word vectors is generated by a spectral decomposition of the similarity matrix, which has a linear algebraic analytic form. Our method has a competitive performance compared with the state-of-the-art retrofitting method such as AR (CITATION). In addition, since our embedding has a clear linear algebraic relationship with the similarity matrix, we carefully study the contribution of each component in our model. Last but not least, our method is very efficient to execute.
pdf
bib
abs
Deep Inside-outside Recursive Autoencoder with All-span Objective
Ruyue Hong
|
Jiong Cai
|
Kewei Tu
Deep inside-outside recursive autoencoder (DIORA) is a neural-based model designed for unsupervised constituency parsing. During its forward computation, it provides phrase and contextual representations for all spans in the input sentence. By utilizing the contextual representation of each leaf-level span, the span of length 1, to reconstruct the word inside the span, the model is trained without labeled data. In this work, we extend the training objective of DIORA by making use of all spans instead of only leaf-level spans. We test our new training objective on datasets of two languages: English and Japanese, and empirically show that our method achieves improvement in parsing accuracy over the original DIORA.
pdf
bib
abs
Cross-Lingual Document Retrieval with Smooth Learning
Jiapeng Liu
|
Xiao Zhang
|
Dan Goldwasser
|
Xiao Wang
Cross-lingual document search is an information retrieval task in which the queries’ language and the documents’ language are different. In this paper, we study the instability of neural document search models and propose a novel end-to-end robust framework that achieves improved performance in cross-lingual search with different documents’ languages. This framework includes a novel measure of the relevance, smooth cosine similarity, between queries and documents, and a novel loss function, Smooth Ordinal Search Loss, as the objective function. We further provide theoretical guarantee on the generalization error bound for the proposed framework. We conduct experiments to compare our approach with other document search models, and observe significant gains under commonly used ranking metrics on the cross-lingual document retrieval task in a variety of languages.
pdf
bib
abs
Increasing Learning Efficiency of Self-Attention Networks through Direct Position Interactions, Learnable Temperature, and Convoluted Attention
Philipp Dufter
|
Martin Schmitt
|
Hinrich Schütze
Self-Attention Networks (SANs) are an integral part of successful neural architectures such as Transformer (Vaswani et al., 2017), and thus of pretrained language models such as BERT (Devlin et al., 2019) or GPT-3 (Brown et al., 2020). Training SANs on a task or pretraining them on language modeling requires large amounts of data and compute resources. We are searching for modifications to SANs that enable faster learning, i.e., higher accuracies after fewer update steps. We investigate three modifications to SANs: direct position interactions, learnable temperature, and convoluted attention. When evaluating them on part-of-speech tagging, we find that direct position interactions are an alternative to position embeddings, and convoluted attention has the potential to speed up the learning process.
pdf
bib
abs
Picking BERT’s Brain: Probing for Linguistic Dependencies in Contextualized Embeddings Using Representational Similarity Analysis
Michael Lepori
|
R. Thomas McCoy
As the name implies, contextualized representations of language are typically motivated by their ability to encode context. Which aspects of context are captured by such representations? We introduce an approach to address this question using Representational Similarity Analysis (RSA). As case studies, we investigate the degree to which a verb embedding encodes the verb’s subject, a pronoun embedding encodes the pronoun’s antecedent, and a full-sentence representation encodes the sentence’s head word (as determined by a dependency parse). In all cases, we show that BERT’s contextualized embeddings reflect the linguistic dependency being studied, and that BERT encodes these dependencies to a greater degree than it encodes less linguistically-salient controls. These results demonstrate the ability of our approach to adjudicate between hypotheses about which aspects of context are encoded in representations of language.
pdf
bib
abs
The Devil is in the Details: Evaluating Limitations of Transformer-based Methods for Granular Tasks
Brihi Joshi
|
Neil Shah
|
Francesco Barbieri
|
Leonardo Neves
Contextual embeddings derived from transformer-based neural language models have shown state-of-the-art performance for various tasks such as question answering, sentiment analysis, and textual similarity in recent years. Extensive work shows how accurately such models can represent abstract, semantic information present in text. In this expository work, we explore a tangent direction and analyze such models’ performance on tasks that require a more granular level of representation. We focus on the problem of textual similarity from two perspectives: matching documents on a granular level (requiring embeddings to capture fine-grained attributes in the text), and an abstract level (requiring embeddings to capture overall textual semantics). We empirically demonstrate, across two datasets from different domains, that despite high performance in abstract document matching as expected, contextual embeddings are consistently (and at times, vastly) outperformed by simple baselines like TF-IDF for more granular tasks. We then propose a simple but effective method to incorporate TF-IDF into models that use contextual embeddings, achieving relative improvements of up to 36% on granular tasks.
pdf
bib
abs
CoLAKE: Contextualized Language and Knowledge Embedding
Tianxiang Sun
|
Yunfan Shao
|
Xipeng Qiu
|
Qipeng Guo
|
Yaru Hu
|
Xuanjing Huang
|
Zheng Zhang
With the emerging branch of incorporating factual knowledge into pre-trained language models such as BERT, most existing models consider shallow, static, and separately pre-trained entity embeddings, which limits the performance gains of these models. Few works explore the potential of deep contextualized knowledge representation when injecting knowledge. In this paper, we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly learns contextualized representation for both language and knowledge with the extended MLM objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge context and language context, we integrate them in a unified data structure, word-knowledge graph (WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks. Experimental results show that CoLAKE outperforms previous counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance on our synthetic task called word-knowledge graph completion, which shows the superiority of simultaneously contextualizing language and knowledge representation.
pdf
bib
abs
Invertible Tree Embeddings using a Cryptographic Role Embedding Scheme
Coleman Haley
|
Paul Smolensky
We present a novel method for embedding trees in a vector space based on Tensor-Product Representations (TPRs) which allows for inversion: the retrieval of the original tree structure and nodes from the vectorial embedding. Unlike previous attempts, this does not come at the cost of intractable representation size; we utilize a method for non-exact inversion, showing that it works well when there is sufficient randomness in the representation scheme for simple data and providing an upper bound on its error. To handle the huge number of possible tree positions without memoizing position representation vectors, we present a method (Cryptographic Role Embedding) using cryptographic hashing algorithms that allows for the representation of unboundedly many positions. Through experiments on parse tree data, we show a 30,000-dimensional Cryptographic Role Embedding of trees can provide invertibility with error < 1% that previous methods would require 8.6 × 1057 dimensions to represent.
pdf
bib
abs
Synonym Knowledge Enhanced Reader for Chinese Idiom Reading Comprehension
Siyu Long
|
Ran Wang
|
Kun Tao
|
Jiali Zeng
|
Xinyu Dai
Machine reading comprehension (MRC) is the task that asks a machine to answer questions based on a given context. For Chinese MRC, due to the non-literal and non-compositional semantic characteristics, Chinese idioms pose unique challenges for machines to understand. Previous studies tend to treat idioms separately without fully exploiting the relationship among them. In this paper, we first define the concept of literal meaning coverage to measure the consistency between semantics and literal meanings for Chinese idioms. With the definition, we prove that the literal meanings of many idioms are far from their semantics, and we also verify that the synonymic relationship can mitigate this inconsistency, which would be beneficial for idiom comprehension. Furthermore, to fully utilize the synonymic relationship, we propose the synonym knowledge enhanced reader. Specifically, for each idiom, we first construct a synonym graph according to the annotations from the high-quality synonym dictionary or the cosine similarity between the pre-trained idiom embeddings and then incorporate the graph attention network and gate mechanism to encode the graph. Experimental results on ChID, a large-scale Chinese idiom reading comprehension dataset, show that our model achieves state-of-the-art performance.
pdf
bib
abs
Target Word Masking for Location Metonymy Resolution
Haonan Li
|
Maria Vasardani
|
Martin Tomko
|
Timothy Baldwin
Existing metonymy resolution approaches rely on features extracted from external resources like dictionaries and hand-crafted lexical resources. In this paper, we propose an end-to-end word-level classification approach based only on BERT, without dependencies on taggers, parsers, curated dictionaries of place names, or other external resources. We show that our approach achieves the state-of-the-art on 5 datasets, surpassing conventional BERT models and benchmarks by a large margin. We also show that our approach generalises well to unseen data.
pdf
bib
abs
Bridging Resolution: A Survey of the State of the Art
Hideo Kobayashi
|
Vincent Ng
Bridging reference resolution is an anaphora resolution task that is arguably more challenging and less studied than entity coreference resolution. Given that significant progress has been made on coreference resolution in recent years, we believe that bridging resolution will receive increasing attention in the NLP community. Nevertheless, progress on bridging resolution is currently hampered in part by the scarcity of large annotated corpora for model training as well as the lack of standardized evaluation protocols. This paper presents a survey of the current state of research on bridging reference resolution and discusses future research directions.
pdf
bib
abs
An analysis of language models for metaphor recognition
Arthur Neidlein
|
Philip Wiesenbach
|
Katja Markert
We conduct a linguistic analysis of recent metaphor recognition systems, all of which are based on language models. We show that their performance, although reaching high F-scores, has considerable gaps from a linguistic perspective. First, they perform substantially worse on unconventional metaphors than on conventional ones. Second, they struggle with handling rarer word types. These two findings together suggest that a large part of the systems’ success is due to optimising the disambiguation of conventionalised, metaphoric word senses for specific words instead of modelling general properties of metaphors. As a positive result, the systems show increasing capabilities to recognise metaphoric readings of unseen words if synonyms or morphological variations of these words have been seen before, leading to enhanced generalisation beyond word sense disambiguation.
pdf
bib
abs
What Meaning-Form Correlation Has to Compose With: A Study of MFC on Artificial and Natural Language
Timothee Mickus
|
Timothée Bernard
|
Denis Paperno
Compositionality is a widely discussed property of natural languages, although its exact definition has been elusive. We focus on the proposal that compositionality can be assessed by measuring meaning-form correlation. We analyze meaning-form correlation on three sets of languages: (i) artificial toy languages tailored to be compositional, (ii) a set of English dictionary definitions, and (iii) a set of English sentences drawn from literature. We find that linguistic phenomena such as synonymy and ungrounded stop-words weigh on MFC measurements, and that straightforward methods to mitigate their effects have widely varying results depending on the dataset they are applied to. Data and code are made publicly available.
pdf
bib
abs
Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition
Cedric Lothritz
|
Kevin Allix
|
Lisa Veiber
|
Tegawendé F. Bissyandé
|
Jacques Klein
Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task and has remained an active research field. In recent years, transformer models and more specifically the BERT model developed at Google revolutionised the field of NLP. While the performance of transformer-based approaches such as BERT has been studied for NER, there has not yet been a study for the fine-grained Named Entity Recognition (FG-NER) task. In this paper, we compare three transformer-based models (BERT, RoBERTa, and XLNet) to two non-transformer-based models (CRF and BiLSTM-CNN-CRF). Furthermore, we apply each model to a multitude of distinct domains. We find that transformer-based models incrementally outperform the studied non-transformer-based models in most domains with respect to the F1 score. Furthermore, we find that the choice of domains significantly influenced the performance regardless of the respective data size or the model chosen.
pdf
bib
abs
Seeing Both the Forest and the Trees: Multi-head Attention for Joint Classification on Different Compositional Levels
Miruna Pislar
|
Marek Rei
In natural languages, words are used in association to construct sentences. It is not words in isolation, but the appropriate use of hierarchical structures that conveys the meaning of the whole sentence. Neural networks have the ability to capture expressive language features; however, insights into the link between words and sentences are difficult to acquire automatically. In this work, we design a deep neural network architecture that explicitly wires lower and higher linguistic components; we then evaluate its ability to perform the same task at different hierarchical levels. Settling on broad text classification tasks, we show that our model, MHAL, learns to simultaneously solve them at different levels of granularity by fluidly transferring knowledge between hierarchies. Using a multi-head attention mechanism to tie the representations between single words and full sentences, MHAL systematically outperforms equivalent models that are not incentivized towards developing compositional representations. Moreover, we demonstrate that, with the proposed architecture, the sentence information flows naturally to individual words, allowing the model to behave like a sequence labeler (which is a lower, word-level task) even without any word supervision, in a zero-shot fashion.
pdf
bib
abs
A Unifying Theory of Transition-based and Sequence Labeling Parsing
Carlos Gómez-Rodríguez
|
Michalina Strzyz
|
David Vilares
We define a mapping from transition-based parsing algorithms that read sentences from left to right to sequence labeling encodings of syntactic trees. This not only establishes a theoretical relation between transition-based parsing and sequence-labeling parsing, but also provides a method to obtain new encodings for fast and simple sequence labeling parsing from the many existing transition-based parsers for different formalisms. Applying it to dependency parsing, we implement sequence labeling versions of four algorithms, showing that they are learnable and obtain comparable performance to existing encodings.
pdf
bib
abs
Unleashing the Power of Neural Discourse Parsers - A Context and Structure Aware Approach Using Large Scale Pretraining
Grigorii Guz
|
Patrick Huber
|
Giuseppe Carenini
RST-based discourse parsing is an important NLP task with numerous downstream applications, such as summarization, machine translation and opinion mining. In this paper, we demonstrate a simple, yet highly accurate discourse parser, incorporating recent contextual language models. Our parser establishes the new state-of-the-art (SOTA) performance for predicting structure and nuclearity on two key RST datasets, RST-DT and Instr-DT. We further demonstrate that pretraining our parser on the recently available large-scale “silver-standard” discourse treebank MEGA-DT provides even larger performance benefits, suggesting a novel and promising research direction in the field of discourse analysis.
pdf
bib
abs
Semi-supervised Domain Adaptation for Dependency Parsing via Improved Contextualized Word Representations
Ying Li
|
Zhenghua Li
|
Min Zhang
In recent years, parsing performance is dramatically improved on in-domain texts thanks to the rapid progress of deep neural network models. The major challenge for current parsing research is to improve parsing performance on out-of-domain texts that are very different from the in-domain training data when there is only a small-scale out-domain labeled data. To deal with this problem, we propose to improve the contextualized word representations via adversarial learning and fine-tuning BERT processes. Concretely, we apply adversarial learning to three representative semi-supervised domain adaption methods, i.e., direct concatenation (CON), feature augmentation (FA), and domain embedding (DE) with two useful strategies, i.e., fused target-domain word representations and orthogonality constraints, thus enabling to model more pure yet effective domain-specific and domain-invariant representations. Simultaneously, we utilize a large-scale target-domain unlabeled data to fine-tune BERT with only the language model loss, thus obtaining reliable contextualized word representations that benefit for the cross-domain dependency parsing. Experiments on a benchmark dataset show that our proposed adversarial approaches achieve consistent improvement, and fine-tuning BERT further boosts parsing accuracy by a large margin. Our single model achieves the same state-of-the-art performance as the top submitted system in the NLPCC-2019 shared task, which uses ensemble models and BERT.
pdf
bib
abs
Data Augmentation via Subtree Swapping for Dependency Parsing of Low-Resource Languages
Mathieu Dehouck
|
Carlos Gómez-Rodríguez
The lack of annotated data is a big issue for building reliable NLP systems for most of the world’s languages. But this problem can be alleviated by automatic data generation. In this paper, we present a new data augmentation method for artificially creating new dependency-annotated sentences. The main idea is to swap subtrees between annotated sentences while enforcing strong constraints on those trees to ensure maximal grammaticality of the new sentences. We also propose a method to perform low-resource experiments using resource-rich languages by mimicking low-resource languages by sampling sentences under a low-resource distribution. In a series of experiments, we show that our newly proposed data augmentation method outperforms previous proposals using the same basic inputs.
pdf
bib
abs
Porous Lattice Transformer Encoder for Chinese NER
Xue Mengge
|
Bowen Yu
|
Tingwen Liu
|
Yue Zhang
|
Erli Meng
|
Bin Wang
Incorporating lexicons into character-level Chinese NER by lattices is proven effective to exploitrich word boundary information. Previous work has extended RNNs to consume lattice inputsand achieved great success. However, due to the DAG structure and the inherently unidirectionalsequential nature, this method precludes batched computation and sufficient semantic interaction. In this paper, we propose PLTE, an extension of transformer encoder that is tailored for ChineseNER, which models all the characters and matched lexical words in parallel with batch process-ing. PLTE augments self-attention with positional relation representations to incorporate latticestructure. It also introduces a porous mechanism to augment localness modeling and maintainthe strength of capturing the rich long-term dependencies. Experimental results show that PLTEperforms up to 11.4 times faster than state-of-the-art methods while realizing better performance. We also demonstrate that using BERT representations further substantially boosts the performanceand brings out the best in PLTE.
pdf
bib
abs
Learning to Prune Dependency Trees with Rethinking for Neural Relation Extraction
Bowen Yu
|
Xue Mengge
|
Zhenyu Zhang
|
Tingwen Liu
|
Wang Yubin
|
Bin Wang
Dependency trees have been shown to be effective in capturing long-range relations between target entities. Nevertheless, how to selectively emphasize target-relevant information and remove irrelevant content from the tree is still an open problem. Existing approaches employing pre-defined rules to eliminate noise may not always yield optimal results due to the complexity and variability of natural language. In this paper, we present a novel architecture named Dynamically Pruned Graph Convolutional Network (DP-GCN), which learns to prune the dependency tree with rethinking in an end-to-end scheme. In each layer of DP-GCN, we employ a selection module to concentrate on nodes expressing the target relation by a set of binary gates, and then augment the pruned tree with a pruned semantic graph to ensure the connectivity. After that, we introduce a rethinking mechanism to guide and refine the pruning operation by feeding back the high-level learned features repeatedly. Extensive experimental results demonstrate that our model achieves impressive results compared to strong competitors.
pdf
bib
abs
How Far Does BERT Look At: Distance-based Clustering and Analysis of BERT’s Attention
Yue Guan
|
Jingwen Leng
|
Chao Li
|
Quan Chen
|
Minyi Guo
Recent research on the multi-head attention mechanism, especially that in pre-trained models such as BERT, has shown us heuristics and clues in analyzing various aspects of the mechanism. As most of the research focus on probing tasks or hidden states, previous works have found some primitive patterns of attention head behavior by heuristic analytical methods, but a more systematic analysis specific on the attention patterns still remains primitive. In this work, we clearly cluster the attention heatmaps into significantly different patterns through unsupervised clustering on top of a set of proposed features, which corroborates with previous observations. We further study their corresponding functions through analytical study. In addition, our proposed features can be used to explain and calibrate different attention heads in Transformer models.
pdf
bib
abs
An Analysis of Simple Data Augmentation for Named Entity Recognition
Xiang Dai
|
Heike Adel
Simple yet effective data augmentation techniques have been proposed for sentence-level and sentence-pair natural language processing tasks. Inspired by these efforts, we design and compare data augmentation for named entity recognition, which is usually modeled as a token-level sequence labeling problem. Through experiments on two data sets from the biomedical and materials science domains (i2b2-2010 and MaSciP), we show that simple augmentation can boost performance for both recurrent and transformer-based models, especially for small training sets.
pdf
bib
abs
Semi-supervised Autoencoding Projective Dependency Parsing
Xiao Zhang
|
Dan Goldwasser
We describe two end-to-end autoencoding models for semi-supervised graph-based projective dependency parsing. The first model is a Locally Autoencoding Parser (LAP) encoding the input using continuous latent variables in a sequential manner; The second model is a Globally Autoencoding Parser (GAP) encoding the input into dependency trees as latent variables, with exact inference. Both models consist of two parts: an encoder enhanced by deep neural networks (DNN) that can utilize the contextual information to encode the input into latent variables, and a decoder which is a generative model able to reconstruct the input. Both LAP and GAP admit a unified structure with different loss functions for labeled and unlabeled data with shared parameters. We conducted experiments on WSJ and UD dependency parsing data sets, showing that our models can exploit the unlabeled data to improve the performance given a limited amount of labeled data, and outperform a previously proposed semi-supervised model.
pdf
bib
abs
Towards Instance-Level Parser Selection for Cross-Lingual Transfer of Dependency Parsers
Robert Litschko
|
Ivan Vulić
|
Željko Agić
|
Goran Glavaš
Current methods of cross-lingual parser transfer focus on predicting the best parser for a low-resource target language globally, that is, “at treebank level”. In this work, we propose and argue for a novel cross-lingual transfer paradigm: instance-level parser selection (ILPS), and present a proof-of-concept study focused on instance-level selection in the framework of delexicalized parser transfer. Our work is motivated by an empirical observation that different source parsers are the best choice for different Universal POS-sequences (i.e., UPOS sentences) in the target language. We then propose to predict the best parser at the instance level. To this end, we train a supervised regression model, based on the Transformer architecture, to predict parser accuracies for individual POS-sequences. We compare ILPS against two strong single-best parser selection baselines (SBPS): (1) a model that compares POS n-gram distributions between the source and target languages (KL) and (2) a model that selects the source based on the similarity between manually created language vectors encoding syntactic properties of languages (L2V). The results from our extensive evaluation, coupling 42 source parsers and 20 diverse low-resource test languages, show that ILPS outperforms KL and L2V on 13/20 and 14/20 test languages, respectively. Further, we show that by predicting the best parser “at treebank level” (SBPS), using the aggregation of predictions from our instance-level model, we outperform the same baselines on 17/20 and 16/20 test languages.
pdf
bib
abs
Learning from Non-Binary Constituency Trees via Tensor Decomposition
Daniele Castellana
|
Davide Bacciu
Processing sentence constituency trees in binarised form is a common and popular approach in literature. However, constituency trees are non-binary by nature. The binarisation procedure changes deeply the structure, furthering constituents that instead are close. In this work, we introduce a new approach to deal with non-binary constituency trees which leverages tensor-based models. In particular, we show how a powerful composition function based on the canonical tensor decomposition can exploit such a rich structure. A key point of our approach is the weight sharing constraint imposed on the factor matrices, which allows limiting the number of model parameters. Finally, we introduce a Tree-LSTM model which takes advantage of this composition function and we experimentally assess its performance on different NLP tasks.
pdf
bib
abs
Second-Order Unsupervised Neural Dependency Parsing
Songlin Yang
|
Yong Jiang
|
Wenjuan Han
|
Kewei Tu
Most of the unsupervised dependency parsers are based on first-order probabilistic generative models that only consider local parent-child information. Inspired by second-order supervised dependency parsing, we proposed a second-order extension of unsupervised neural dependency models that incorporate grandparent-child or sibling information. We also propose a novel design of the neural parameterization and optimization methods of the dependency models. In second-order models, the number of grammar rules grows cubically with the increase of vocabulary size, making it difficult to train lexicalized models that may contain thousands of words. To circumvent this problem while still benefiting from both second-order parsing and lexicalization, we use the agreement-based learning framework to jointly train a second-order unlexicalized model and a first-order lexicalized model. Experiments on multiple datasets show the effectiveness of our second-order models compared with recent state-of-the-art methods. Our joint model achieves a 10% improvement over the previous state-of-the-art parser on the full WSJ test set.
pdf
bib
abs
Integrating Domain Terminology into Neural Machine Translation
Elise Michon
|
Josep Crego
|
Jean Senellart
This paper extends existing work on terminology integration into Neural Machine Translation, a common industrial practice to dynamically adapt translation to a specific domain. Our method, based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps into the ability of the neural network to deal with symbolic knowledge to surpass the surface generalization shown by alternative techniques. We compare our approach to state-of-the-art systems and benchmark them through a well-defined evaluation framework, focusing on actual application of terminology and not just on the overall performance. Results indicate the suitability of our method in the use-case where terminology is used in a system trained on generic data only.
pdf
bib
abs
Understanding the effects of word-level linguistic annotations in under-resourced neural machine translation
Víctor M. Sánchez-Cartagena
|
Juan Antonio Pérez-Ortiz
|
Felipe Sánchez-Martínez
This paper studies the effects of word-level linguistic annotations in under-resourced neural machine translation, for which there is incomplete evidence in the literature. The study covers eight language pairs, different training corpus sizes, two architectures, and three types of annotation: dummy tags (with no linguistic information at all), part-of-speech tags, and morpho-syntactic description tags, which consist of part of speech and morphological features. These linguistic annotations are interleaved in the input or output streams as a single tag placed before each word. In order to measure the performance under each scenario, we use automatic evaluation metrics and perform automatic error classification. Our experiments show that, in general, source-language annotations are helpful and morpho-syntactic descriptions outperform part of speech for some language pairs. On the contrary, when words are annotated in the target language, part-of-speech tags systematically outperform morpho-syntactic description tags in terms of automatic evaluation metrics, even though the use of morpho-syntactic description tags improves the grammaticality of the output. We provide a detailed analysis of the reasons behind this result.
pdf
bib
abs
Breeding Gender-aware Direct Speech Translation Systems
Marco Gaido
|
Beatrice Savoldi
|
Luisa Bentivogli
|
Matteo Negri
|
Marco Turchi
In automatic speech translation (ST), traditional cascade approaches involving separate transcription and translation steps are giving ground to increasingly competitive and more robust direct solutions. In particular, by translating speech audio data without intermediate transcription, direct ST models are able to leverage and preserve essential information present in the input (e.g.speaker’s vocal characteristics) that is otherwise lost in the cascade framework. Although such ability proved to be useful for gender translation, direct ST is nonetheless affected by gender bias just like its cascade counterpart, as well as machine translation and numerous other natural language processing applications. Moreover, direct ST systems that exclusively rely on vocal biometric features as a gender cue can be unsuitable or even potentially problematic for certain users. Going beyond speech signals, in this paper we compare different approaches to inform direct ST models about the speaker’s gender and test their ability to handle gender translation from English into Italian and French. To this aim, we manually annotated large datasets with speak-ers’ gender information and used them for experiments reflecting different possible real-world scenarios. Our results show that gender-aware direct ST solutions can significantly outperform strong – but gender-unaware – direct ST models. In particular, the translation of gender-marked words can increase up to 30 points in accuracy while preserving overall translation quality.
pdf
bib
abs
Neural Machine Translation Models with Back-Translation for the Extremely Low-Resource Indigenous Language Bribri
Isaac Feldman
|
Rolando Coto-Solano
This paper presents a neural machine translation model and dataset for the Chibchan language Bribri, with an average performance of BLEU 16.9±1.7. This was trained on an extremely small dataset (5923 Bribri-Spanish pairs), providing evidence for the applicability of NMT in extremely low-resource environments. We discuss the challenges entailed in managing training input from languages without standard orthographies, we provide evidence of successful learning of Bribri grammar, and also examine the translations of structures that are infrequent in major Indo-European languages, such as positional verbs, ergative markers, numerical classifiers and complex demonstrative systems. In addition to this, we perform an experiment of augmenting the dataset through iterative back-translation (Sennrich et al., 2016a; Hoang et al., 2018) by using Spanish sentences to create synthetic Bribri sentences. This improves the score by an average of 1.0 BLEU, but only when the new Spanish sentences belong to the same domain as the other Spanish examples. This contributes to the small but growing body of research on Chibchan NLP.
pdf
bib
abs
Dynamic Curriculum Learning for Low-Resource Neural Machine Translation
Chen Xu
|
Bojie Hu
|
Yufan Jiang
|
Kai Feng
|
Zeyang Wang
|
Shen Huang
|
Qi Ju
|
Tong Xiao
|
Jingbo Zhu
Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT’16 En-De.
pdf
bib
abs
Real-Valued Logics for Typological Universals: Framework and Application
Tillmann Dönicke
|
Xiang Yu
|
Jonas Kuhn
This paper proposes a framework for the expression of typological statements which uses real-valued logics to capture the empirical truth value (truth degree) of a formula on a given data source, e.g. a collection of multilingual treebanks with comparable annotation. The formulae can be arbitrarily complex expressions of propositional logic. To illustrate the usefulness of such a framework, we present experiments on the Universal Dependencies treebanks for two use cases: (i) empirical (re-)evaluation of established formulae against the spectrum of available treebanks and (ii) evaluating new formulae (i.e. potential candidates for universals) generated by a search algorithm.
pdf
bib
abs
Comparative Probing of Lexical Semantics Theories for Cognitive Plausibility and Technological Usefulness
António Branco
|
João António Rodrigues
|
Malgorzata Salawa
|
Ruben Branco
|
Chakaveh Saedi
Lexical semantics theories differ in advocating that the meaning of words is represented as an inference graph, a feature mapping or a cooccurrence vector, thus raising the question: is it the case that one of these approaches is superior to the others in representing lexical semantics appropriately? Or in its non antagonistic counterpart: could there be a unified account of lexical semantics where these approaches seamlessly emerge as (partial) renderings of (different) aspects of a core semantic knowledge base? In this paper, we contribute to these research questions with a number of experiments that systematically probe different lexical semantics theories for their levels of cognitive plausibility and of technological usefulness. The empirical findings obtained from these experiments advance our insight on lexical semantics as the feature-based approach emerges as superior to the other ones, and arguably also move us closer to finding answers to the research questions above.
pdf
bib
abs
CxGBERT: BERT meets Construction Grammar
Harish Tayyar Madabushi
|
Laurence Romain
|
Dagmar Divjak
|
Petar Milin
While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been argued that they do not capture all information contained in text. This assumption is central to constructionist approaches to language which argue that language consists of constructions, learned pairings of a form and a function or meaning that are either frequent or have a meaning that cannot be predicted from its component parts. BERT’s training objectives give it access to a tremendous amount of lexico-semantic information, and while BERTology has shown that BERT captures certain important linguistic dimensions, there have been no studies exploring the extent to which BERT might have access to constructional information. In this work we design several probes and conduct extensive experiments to answer this question. Our results allow us to conclude that BERT does indeed have access to a significant amount of information, much of which linguists typically call constructional information. The impact of this observation is potentially far-reaching as it provides insights into what deep learning methods learn from text, while also showing that information contained in constructions is redundantly encoded in lexico-semantics.
pdf
bib
abs
How LSTM Encodes Syntax: Exploring Context Vectors and Semi-Quantization on Natural Text
Chihiro Shibata
|
Kei Uchiumi
|
Daichi Mochihashi
Long Short-Term Memory recurrent neural network (LSTM) is widely used and known to capture informative long-term syntactic dependencies. However, how such information are reflected in its internal vectors for natural text has not yet been sufficiently investigated. We analyze them by learning a language model where syntactic structures are implicitly given. We empirically show that the context update vectors, i.e. outputs of internal gates, are approximately quantized to binary or ternary values to help the language model to count the depth of nesting accurately, as Suzgun et al. (2019) recently show for synthetic Dyck languages. For some dimensions in the context vector, we show that their activations are highly correlated with the depth of phrase structures, such as VP and NP. Moreover, with an L1 regularization, we also found that it can accurately predict whether a word is inside a phrase structure or not from a small number of components of the context vector. Even for the case of learning from raw text, context vectors are shown to still correlate well with the phrase structures. Finally, we show that natural clusters of the functional words and the part of speeches that trigger phrases are represented in a small but principal subspace of the context-update vector of LSTM.
pdf
bib
abs
Corpus-based Identification of Verbs Participating in Verb Alternations Using Classification and Manual Annotation
Esther Seyffarth
|
Laura Kallmeyer
English verb alternations allow participating verbs to appear in a set of syntactically different constructions whose associated semantic frames are systematically related. We use ENCOW and VerbNet data to train classifiers to predict the instrument subject alternation and the causative-inchoative alternation, relying on count-based and vector-based features as well as perplexity-based language model features, which are intended to reflect each alternation’s felicity by simulating it. Beyond the prediction task, we use the classifier results as a source for a manual annotation step in order to identify new, unseen instances of each alternation. This is possible because existing alternation datasets contain positive, but no negative instances and are not comprehensive. Over several sequences of classification-annotation steps, we iteratively extend our sets of alternating verbs. Our hybrid approach to the identification of new alternating verbs reduces the required annotation effort by only presenting annotators with the highest-scoring candidates from the previous classification. Due to the success of semi-supervised and unsupervised features, our approach can easily be transferred to further alternations.
pdf
bib
abs
When and Who? Conversation Transition Based on Bot-Agent Symbiosis Learning Network
Yipeng Yu
|
Ran Guan
|
Jie Ma
|
Zhuoxuan Jiang
|
Jingchang Huang
In online customer service applications, multiple chatbots that are specialized in various topics are typically developed separately and are then merged with other human agents to a single platform, presenting to the users with a unified interface. Ideally the conversation can be transparently transferred between different sources of customer support so that domain-specific questions can be answered timely and this is what we coined as a Bot-Agent symbiosis. Conversation transition is a major challenge in such online customer service and our work formalises the challenge as two core problems, namely, when to transfer and which bot or agent to transfer to and introduces a deep neural networks based approach that addresses these problems. Inspired by the net promoter score (NPS), our research reveals how the problems can be effectively solved by providing user feedback and developing deep neural networks that predict the conversation category distribution and the NPS of the dialogues. Experiments on realistic data generated from an online service support platform demonstrate that the proposed approach outperforms state-of-the-art methods and shows promising perspective for transparent conversation transition.
pdf
bib
abs
Topic-relevant Response Generation using Optimal Transport for an Open-domain Dialog System
Shuying Zhang
|
Tianyu Zhao
|
Tatsuya Kawahara
Conventional neural generative models tend to generate safe and generic responses which have little connection with previous utterances semantically and would disengage users in a dialog system. To generate relevant responses, we propose a method that employs two types of constraints - topical constraint and semantic constraint. Under the hypothesis that a response and its context have higher relevance when they share the same topics, the topical constraint encourages the topics of a response to match its context by conditioning response decoding on topic words’ embeddings. The semantic constraint, which encourages a response to be semantically related to its context by regularizing the decoding objective function with semantic distance, is proposed. Optimal transport is applied to compute a weighted semantic distance between the representation of a response and the context. Generated responses are evaluated by automatic metrics, as well as human judgment, showing that the proposed method can generate more topic-relevant and content-rich responses than conventional models.
pdf
bib
abs
An Iterative Emotion Interaction Network for Emotion Recognition in Conversations
Xin Lu
|
Yanyan Zhao
|
Yang Wu
|
Yijian Tian
|
Huipeng Chen
|
Bing Qin
Emotion recognition in conversations (ERC) has received much attention recently in the natural language processing community. Considering that the emotions of the utterances in conversations are interactive, previous works usually implicitly model the emotion interaction between utterances by modeling dialogue context, but the misleading emotion information from context often interferes with the emotion interaction. We noticed that the gold emotion labels of the context utterances can provide explicit and accurate emotion interaction, but it is impossible to input gold labels at inference time. To address this problem, we propose an iterative emotion interaction network, which uses iteratively predicted emotion labels instead of gold emotion labels to explicitly model the emotion interaction. This approach solves the above problem, and can effectively retain the performance advantages of explicit modeling. We conduct experiments on two datasets, and our approach achieves state-of-the-art performance.
pdf
bib
abs
PEDNet: A Persona Enhanced Dual Alternating Learning Network for Conversational Response Generation
Bin Jiang
|
Wanyue Zhou
|
Jingxu Yang
|
Chao Yang
|
Shihan Wang
|
Liang Pang
Endowing a chatbot with a personality is essential to deliver more realistic conversations. Various persona-based dialogue models have been proposed to generate personalized and diverse responses by utilizing predefined persona information. However, generating personalized responses is still a challenging task since the leverage of predefined persona information is often insufficient. To alleviate this problem, we propose a novel Persona Enhanced Dual Alternating Learning Network (PEDNet) aiming at producing more personalized responses in various open-domain conversation scenarios. PEDNet consists of a Context-Dominate Network (CDNet) and a Persona-Dominate Network (PDNet), which are built upon a common encoder-decoder backbone. CDNet learns to select a proper persona as well as ensure the contextual relevance of the predicted response, while PDNet learns to enhance the utilization of persona information when generating the response by weakening the disturbance of specific content in the conversation context. CDNet and PDNet are trained alternately using a multi-task training approach to equip PEDNet with the both capabilities they have learned. Both automatic and human evaluations on a newly released dialogue dataset Persona-chat demonstrate that our method could deliver more personalized responses than baseline methods.
pdf
bib
abs
Dual Dynamic Memory Network for End-to-End Multi-turn Task-oriented Dialog Systems
Jian Wang
|
Junhao Liu
|
Wei Bi
|
Xiaojiang Liu
|
Kejing He
|
Ruifeng Xu
|
Min Yang
Existing end-to-end task-oriented dialog systems struggle to dynamically model long dialog context for interactions and effectively incorporate knowledge base (KB) information into dialog generation. To conquer these limitations, we propose a Dual Dynamic Memory Network (DDMN) for multi-turn dialog generation, which maintains two core components: dialog memory manager and KB memory manager. The dialog memory manager dynamically expands the dialog memory turn by turn and keeps track of dialog history with an updating mechanism, which encourages the model to filter irrelevant dialog history and memorize important newly coming information. The KB memory manager shares the structural KB triples throughout the whole conversation, and dynamically extracts KB information with a memory pointer at each turn. Experimental results on three benchmark datasets demonstrate that DDMN significantly outperforms the strong baselines in terms of both automatic evaluation and human evaluation. Our code is available at
https://github.com/siat-nlp/DDMN.
pdf
bib
abs
Translation vs. Dialogue: A Comparative Analysis of Sequence-to-Sequence Modeling
Wenpeng Hu
|
Ran Le
|
Bing Liu
|
Jinwen Ma
|
Dongyan Zhao
|
Rui Yan
Understanding neural models is a major topic of interest in the deep learning community. In this paper, we propose to interpret a general neural model comparatively. Specifically, we study the sequence-to-sequence (Seq2Seq) model in the contexts of two mainstream NLP tasks–machine translation and dialogue response generation–as they both use the seq2seq model. We investigate how the two tasks are different and how their task difference results in major differences in the behaviors of the resulting translation and dialogue generation systems. This study allows us to make several interesting observations and gain valuable insights, which can be used to help develop better translation and dialogue generation models. To our knowledge, no such comparative study has been done so far.
pdf
bib
abs
Diverse dialogue generation with context dependent dynamic loss function
Ayaka Ueyama
|
Yoshinobu Kano
Dialogue systems using deep learning have achieved generation of fluent response sentences to user utterances. Nevertheless, they tend to produce responses that are not diverse and which are less context-dependent. To address these shortcomings, we propose a new loss function, an Inverse N-gram loss (INF), which incorporates contextual fluency and diversity at the same time by a simple formula. Our INF loss can adjust its loss dynamically by a weight using the inverse frequency of the tokens’ n-gram applied to Softmax Cross-Entropy loss, so that rare tokens appear more likely while retaining the fluency of the generated sentences. We trained Transformer using English and Japanese Twitter replies as single-turn dialogues using different loss functions. Our INF loss model outperformed the baselines of SCE loss and ITF loss models in automatic evaluations such as DIST-N and ROUGE, and also achieved higher scores on our human evaluations of coherence and richness.
pdf
bib
abs
Towards Topic-Guided Conversational Recommender System
Kun Zhou
|
Yuanhang Zhou
|
Wayne Xin Zhao
|
Xiaoke Wang
|
Ji-Rong Wen
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. To develop an effective CRS, the support of high-quality datasets is essential. Existing CRS datasets mainly focus on immediate requests from users, while lack proactive guidance to the recommendation scenario. In this paper, we contribute a new CRS dataset named
TG-ReDial (
Recommendation through
Topic-
Guided
Dialog). Our dataset has two major features. First, it incorporates topic threads to enforce natural semantic transitions towards the recommendation scenario. Second, it is created in a semi-automatic way, hence human annotation is more reasonable and controllable. Based on TG-ReDial, we present the task of topic-guided conversational recommendation, and propose an effective approach to this task. Extensive experiments have demonstrated the effectiveness of our approach on three sub-tasks, namely topic prediction, item recommendation and response generation. TG-ReDial is available at blue
https://github.com/RUCAIBox/TG-ReDial.
pdf
bib
abs
Intent Mining from past conversations for Conversational Agent
Ajay Chatterjee
|
Shubhashis Sengupta
Conversational systems are of primary interest in the AI community. Organizations are increasingly using chatbot to provide round-the-clock support and to increase customer engagement. Many commercial bot building frameworks follow a standard approach that requires one to build and train an intent model to recognize user input. These frameworks require a collection of user utterances and corresponding intent to train an intent model. Collecting a substantial coverage of training data is a bottleneck in the bot building process. In cases where past conversation data is available, the cost of labeling hundreds of utterances with intent labels is time-consuming and laborious. In this paper, we present an intent discovery framework that can mine a vast amount of conversational logs and to generate labeled data sets for training intent models. We have introduced an extension to the DBSCAN algorithm and presented a density-based clustering algorithm ITER-DBSCAN for unbalanced data clustering. Empirical evaluation on one conversation dataset, six different intent dataset, and one short text clustering dataset show the effectiveness of our hypothesis.
pdf
bib
abs
Summarize before Aggregate: A Global-to-local Heterogeneous Graph Inference Network for Conversational Emotion Recognition
Dongming Sheng
|
Dong Wang
|
Ying Shen
|
Haitao Zheng
|
Haozhuang Liu
Conversational Emotion Recognition (CER) is a crucial task in Natural Language Processing (NLP) with wide applications. Prior works in CER generally focus on modeling emotion influences solely with utterance-level features, with little attention paid on phrase-level semantic connection between utterances. Phrases carry sentiments when they are referred to emotional events under certain topics, providing a global semantic connection between utterances throughout the entire conversation. In this work, we propose a two-stage Summarization and Aggregation Graph Inference Network (SumAggGIN), which seamlessly integrates inference for topic-related emotional phrases and local dependency reasoning over neighbouring utterances in a global-to-local fashion. Topic-related emotional phrases, which constitutes the global topic-related emotional connections, are recognized by our proposed heterogeneous Summarization Graph. Local dependencies, which captures short-term emotional effects between neighbouring utterances, are further injected via an Aggregation Graph to distinguish the subtle differences between utterances containing emotional phrases. The two steps of graph inference are tightly-coupled for a comprehensively understanding of emotional fluctuation. Experimental results on three CER benchmark datasets verify the effectiveness of our proposed model, which outperforms the state-of-the-art approaches.
pdf
bib
abs
Deconstruct to Reconstruct a Configurable Evaluation Metric for Open-Domain Dialogue Systems
Vitou Phy
|
Yang Zhao
|
Akiko Aizawa
Many automatic evaluation metrics have been proposed to score the overall quality of a response in open-domain dialogue. Generally, the overall quality is comprised of various aspects, such as relevancy, specificity, and empathy, and the importance of each aspect differs according to the task. For instance, specificity is mandatory in a food-ordering dialogue task, whereas fluency is preferred in a language-teaching dialogue system. However, existing metrics are not designed to cope with such flexibility. For example, BLEU score fundamentally relies only on word overlapping, whereas BERTScore relies on semantic similarity between reference and candidate response. Thus, they are not guaranteed to capture the required aspects, i.e., specificity. To design a metric that is flexible to a task, we first propose making these qualities manageable by grouping them into three groups: understandability, sensibleness, and likability, where likability is a combination of qualities that are essential for a task. We also propose a simple method to composite metrics of each aspect to obtain a single metric called USL-H, which stands for Understandability, Sensibleness, and Likability in Hierarchy. We demonstrated that USL-H score achieves good correlations with human judgment and maintains its configurability towards different aspects and metrics.
pdf
bib
abs
Suggest me a movie for tonight: Leveraging Knowledge Graphs for Conversational Recommendation
Rajdeep Sarkar
|
Koustava Goswami
|
Mihael Arcan
|
John P. McCrae
Conversational recommender systems focus on the task of suggesting products to users based on the conversation flow. Recently, the use of external knowledge in the form of knowledge graphs has shown to improve the performance in recommendation and dialogue systems. Information from knowledge graphs aids in enriching those systems by providing additional information such as closely related products and textual descriptions of the items. However, knowledge graphs are incomplete since they do not contain all factual information present on the web. Furthermore, when working on a specific domain, knowledge graphs in its entirety contribute towards extraneous information and noise. In this work, we study several subgraph construction methods and compare their performance across the recommendation task. We incorporate pre-trained embeddings from the subgraphs along with positional embeddings in our models. Extensive experiments show that our method has a relative improvement of at least 5.62% compared to the state-of-the-art on multiple metrics on the recommendation task.
pdf
bib
abs
HiTrans: A Transformer-Based Context- and Speaker-Sensitive Model for Emotion Detection in Conversations
Jingye Li
|
Donghong Ji
|
Fei Li
|
Meishan Zhang
|
Yijiang Liu
Emotion detection in conversations (EDC) is to detect the emotion for each utterance in conversations that have multiple speakers. Different from the traditional non-conversational emotion detection, the model for EDC should be context-sensitive (e.g., understanding the whole conversation rather than one utterance) and speaker-sensitive (e.g., understanding which utterance belongs to which speaker). In this paper, we propose a transformer-based context- and speaker-sensitive model for EDC, namely HiTrans, which consists of two hierarchical transformers. We utilize BERT as the low-level transformer to generate local utterance representations, and feed them into another high-level transformer so that utterance representations could be sensitive to the global context of the conversation. Moreover, we exploit an auxiliary task to make our model speaker-sensitive, called pairwise utterance speaker verification (PUSV), which aims to classify whether two utterances belong to the same speaker. We evaluate our model on three benchmark datasets, namely EmoryNLP, MELD and IEMOCAP. Results show that our model outperforms previous state-of-the-art models.
pdf
bib
abs
A Co-Attentive Cross-Lingual Neural Model for Dialogue Breakdown Detection
Qian Lin
|
Souvik Kundu
|
Hwee Tou Ng
Ensuring smooth communication is essential in a chat-oriented dialogue system, so that a user can obtain meaningful responses through interactions with the system. Most prior work on dialogue research does not focus on preventing dialogue breakdown. One of the major challenges is that a dialogue system may generate an undesired utterance leading to a dialogue breakdown, which degrades the overall interaction quality. Hence, it is crucial for a machine to detect dialogue breakdowns in an ongoing conversation. In this paper, we propose a novel dialogue breakdown detection model that jointly incorporates a pretrained cross-lingual language model and a co-attention network. Our proposed model leverages effective word embeddings trained on one hundred different languages to generate contextualized representations. Co-attention aims to capture the interaction between the latest utterance and the conversation history, and thereby determines whether the latest utterance causes a dialogue breakdown. Experimental results show that our proposed model outperforms all previous approaches on all evaluation metrics in both the Japanese and English tracks in Dialogue Breakdown Detection Challenge 4 (DBDC4 at IWSDS2019).
pdf
bib
abs
Integrating User History into Heterogeneous Graph for Dialogue Act Recognition
Dong Wang
|
Ziran Li
|
Haitao Zheng
|
Ying Shen
Dialogue Act Recognition (DAR) is a challenging problem in Natural Language Understanding, which aims to attach Dialogue Act (DA) labels to each utterance in a conversation. However, previous studies cannot fully recognize the specific expressions given by users due to the informality and diversity of natural language expressions. To solve this problem, we propose a Heterogeneous User History (HUH) graph convolution network, which utilizes the user’s historical answers grouped by DA labels as additional clues to recognize the DA label of utterances. To handle the noise caused by introducing the user’s historical answers, we design sets of denoising mechanisms, including a History Selection process, a Similarity Re-weighting process, and an Edge Re-weighting process. We evaluate the proposed method on two benchmark datasets MSDialog and MRDA. The experimental results verify the effectiveness of integrating user’s historical answers, and show that our proposed model outperforms the state-of-the-art methods.
pdf
bib
abs
A Two-Level Interpretation of Modality in Human-Robot Dialogue
Lucia Donatelli
|
Kenneth Lai
|
James Pustejovsky
We analyze the use and interpretation of modal expressions in a corpus of situated human-robot dialogue and ask how to effectively represent these expressions for automatic learning. We present a two-level annotation scheme for modality that captures both content and intent, integrating a logic-based, semantic representation and a task-oriented, pragmatic representation that maps to our robot’s capabilities. Data from our annotation task reveals that the interpretation of modal expressions in human-robot dialogue is quite diverse, yet highly constrained by the physical environment and asymmetrical speaker/addressee relationship. We sketch a formal model of human-robot common ground in which modality can be grounded and dynamically interpreted.
pdf
bib
abs
Robust Unsupervised Neural Machine Translation with Adversarial Denoising Training
Haipeng Sun
|
Rui Wang
|
Kehai Chen
|
Xugang Lu
|
Masao Utiyama
|
Eiichiro Sumita
|
Tiejun Zhao
Unsupervised neural machine translation (UNMT) has recently attracted great interest in the machine translation community. The main advantage of the UNMT lies in its easy collection of required large training text sentences while with only a slightly worse performance than supervised neural machine translation which requires expensive annotated translation pairs on some translation tasks. In most studies, the UMNT is trained with clean data without considering its robustness to the noisy data. However, in real-world scenarios, there usually exists noise in the collected input sentences which degrades the performance of the translation system since the UNMT is sensitive to the small perturbations of the input sentences. In this paper, we first time explicitly take the noisy data into consideration to improve the robustness of the UNMT based systems. First of all, we clearly defined two types of noises in training sentences, i.e., word noise and word order noise, and empirically investigate its effect in the UNMT, then we propose adversarial training methods with denoising process in the UNMT. Experimental results on several language pairs show that our proposed methods substantially improved the robustness of the conventional UNMT systems in noisy scenarios.
pdf
bib
abs
Understanding Pure Character-Based Neural Machine Translation: The Case of Translating Finnish into English
Gongbo Tang
|
Rico Sennrich
|
Joakim Nivre
Recent work has shown that deeper character-based neural machine translation (NMT) models can outperform subword-based models. However, it is still unclear what makes deeper character-based models successful. In this paper, we conduct an investigation into pure character-based models in the case of translating Finnish into English, including exploring the ability to learn word senses and morphological inflections and the attention mechanism. We demonstrate that word-level information is distributed over the entire character sequence rather than over a single character, and characters at different positions play different roles in learning linguistic knowledge. In addition, character-based models need more layers to encode word senses which explains why only deeper models outperform subword-based models. The attention distribution pattern shows that separators attract a lot of attention and we explore a sparse word-level attention to enforce character hidden states to capture the full word-level information. Experimental results show that the word-level attention with a single head results in 1.2 BLEU points drop.
pdf
bib
abs
Improving Low-Resource NMT through Relevance Based Linguistic Features Incorporation
Abhisek Chakrabarty
|
Raj Dabre
|
Chenchen Ding
|
Masao Utiyama
|
Eiichiro Sumita
In this study, linguistic knowledge at different levels are incorporated into the neural machine translation (NMT) framework to improve translation quality for language pairs with extremely limited data. Integrating manually designed or automatically extracted features into the NMT framework is known to be beneficial. However, this study emphasizes that the relevance of the features is crucial to the performance. Specifically, we propose two methods, 1) self relevance and 2) word-based relevance, to improve the representation of features for NMT. Experiments are conducted on translation tasks from English to eight Asian languages, with no more than twenty thousand sentences for training. The proposed methods improve translation quality for all tasks by up to 3.09 BLEU points. Discussions with visualization provide the explainability of the proposed methods where we show that the relevance methods provide weights to features thereby enhancing their impact on low-resource machine translation.
pdf
bib
abs
Layer-Wise Multi-View Learning for Neural Machine Translation
Qiang Wang
|
Changliang Li
|
Yue Zhang
|
Tong Xiao
|
Jingbo Zhu
Traditional neural machine translation is limited to the topmost encoder layer’s context representation and cannot directly perceive the lower encoder layers. Existing solutions usually rely on the adjustment of network architecture, making the calculation more complicated or introducing additional structural restrictions. In this work, we propose layer-wise multi-view learning to solve this problem, circumventing the necessity to change the model structure. We regard each encoder layer’s off-the-shelf output, a by-product in layer-by-layer encoding, as the redundant view for the input sentence. In this way, in addition to the topmost encoder layer (referred to as the primary view), we also incorporate an intermediate encoder layer as the auxiliary view. We feed the two views to a partially shared decoder to maintain independent prediction. Consistency regularization based on KL divergence is used to encourage the two views to learn from each other. Extensive experimental results on five translation tasks show that our approach yields stable improvements over multiple strong baselines. As another bonus, our method is agnostic to network architectures and can maintain the same inference speed as the original model.
pdf
bib
abs
Bilingual Subword Segmentation for Neural Machine Translation
Hiroyuki Deguchi
|
Masao Utiyama
|
Akihiro Tamura
|
Takashi Ninomiya
|
Eiichiro Sumita
This paper proposed a new subword segmentation method for neural machine translation, “Bilingual Subword Segmentation,” which tokenizes sentences to minimize the difference between the number of subword units in a sentence and that of its translation. While existing subword segmentation methods tokenize a sentence without considering its translation, the proposed method tokenizes a sentence by using subword units induced from bilingual sentences; this method could be more favorable to machine translation. Evaluations on WAT Asian Scientific Paper Excerpt Corpus (ASPEC) English-to-Japanese and Japanese-to-English translation tasks and WMT14 English-to-German and German-to-English translation tasks show that our bilingual subword segmentation improves the performance of Transformer neural machine translation (up to +0.81 BLEU).
pdf
bib
abs
Token Drop mechanism for Neural Machine Translation
Huaao Zhang
|
Shigui Qiu
|
Xiangyu Duan
|
Min Zhang
Neural machine translation with millions of parameters is vulnerable to unfamiliar inputs. We propose Token Drop to improve generalization and avoid overfitting for the NMT model. Similar to word dropout, whereas we replace dropped token with a special token instead of setting zero to words. We further introduce two self-supervised objectives: Replaced Token Detection and Dropped Token Prediction. Our method aims to force model generating target translation with less information, in this way the model can learn textual representation better. Experiments on Chinese-English and English-Romanian benchmark demonstrate the effectiveness of our approach and our model achieves significant improvements over a strong Transformer baseline.
pdf
bib
abs
Supervised Visual Attention for Multimodal Neural Machine Translation
Tetsuro Nishihara
|
Akihiro Tamura
|
Takashi Ninomiya
|
Yutaro Omote
|
Hideki Nakayama
This paper proposed a supervised visual attention mechanism for multimodal neural machine translation (MNMT), trained with constraints based on manual alignments between words in a sentence and their corresponding regions of an image. The proposed visual attention mechanism captures the relationship between a word and an image region more precisely than a conventional visual attention mechanism trained through MNMT in an unsupervised manner. Our experiments on English-German and German-English translation tasks using the Multi30k dataset and on English-Japanese and Japanese-English translation tasks using the Flickr30k Entities JP dataset show that a Transformer-based MNMT model can be improved by incorporating our proposed supervised visual attention mechanism and that further improvements can be achieved by combining it with a supervised cross-lingual attention mechanism (up to +1.61 BLEU, +1.7 METEOR).
pdf
bib
abs
Investigating Catastrophic Forgetting During Continual Training for Neural Machine Translation
Shuhao Gu
|
Yang Feng
Neural machine translation (NMT) models usually suffer from catastrophic forgetting during continual training where the models tend to gradually forget previously learned knowledge and swing to fit the newly added data which may have a different distribution, e.g. a different domain. Although many methods have been proposed to solve this problem, we cannot get to know what causes this phenomenon yet. Under the background of domain adaptation, we investigate the cause of catastrophic forgetting from the perspectives of modules and parameters (neurons). The investigation on the modules of the NMT model shows that some modules have tight relation with the general-domain knowledge while some other modules are more essential in the domain adaptation. And the investigation on the parameters shows that some parameters are important for both the general-domain and in-domain translation and the great change of them during continual training brings about the performance decline in general-domain. We conducted experiments across different language pairs and domains to ensure the validity and reliability of our findings.
pdf
bib
abs
The Two Shades of Dubbing in Neural Machine Translation
Alina Karakanta
|
Supratik Bhattacharya
|
Shravan Nayak
|
Timo Baumann
|
Matteo Negri
|
Marco Turchi
Dubbing has two shades; synchronisation constraints are applied only when the actor’s mouth is visible on screen, while the translation is unconstrained for off-screen dubbing. Consequently, different synchronisation requirements, and therefore translation strategies, are applied depending on the type of dubbing. In this work, we manually annotate an existing dubbing corpus (Heroes) for this dichotomy. We show that, even though we did not observe distinctive features between on- and off-screen dubbing at the textual level, on-screen dubbing is more difficult for MT (-4 BLEU points). Moreover, synchronisation constraints dramatically decrease translation quality for off-screen dubbing. We conclude that, distinguishing between on-screen and off-screen dubbing is necessary for determining successful strategies for dubbing-customised Machine Translation.
pdf
bib
abs
Filtering Back-Translated Data in Unsupervised Neural Machine Translation
Jyotsana Khatri
|
Pushpak Bhattacharyya
Unsupervised neural machine translation (NMT) utilizes only monolingual data for training. The quality of back-translated data plays an important role in the performance of NMT systems. In back-translation, all generated pseudo parallel sentence pairs are not of the same quality. Taking inspiration from domain adaptation where in-domain sentences are given more weight in training, in this paper we propose an approach to filter back-translated data as part of the training process of unsupervised NMT. Our approach gives more weight to good pseudo parallel sentence pairs in the back-translation phase. We calculate the weight of each pseudo parallel sentence pair using sentence-wise round-trip BLEU score which is normalized batch-wise. We compare our approach with the current state of the art approaches for unsupervised NMT.
pdf
bib
abs
Lost in Back-Translation: Emotion Preservation in Neural Machine Translation
Enrica Troiano
|
Roman Klinger
|
Sebastian Padó
Machine translation provides powerful methods to convert text between languages, and is therefore a technology enabling a multilingual world. An important part of communication, however, takes place at the non-propositional level (e.g., politeness, formality, emotions), and it is far from clear whether current MT methods properly translate this information. This paper investigates the specific hypothesis that the non-propositional level of emotions is at least partially lost in MT. We carry out a number of experiments in a back-translation setup and establish that (1) emotions are indeed partially lost during translation; (2) this tendency can be reversed almost completely with a simple re-ranking approach informed by an emotion classifier, taking advantage of diversity in the n-best list; (3) the re-ranking approach can also be applied to change emotions, obtaining a model for emotion style transfer. An in-depth qualitative analysis reveals that there are recurring linguistic changes through which emotions are toned down or amplified, such as change of modality.
pdf
bib
abs
Intermediate Self-supervised Learning for Machine Translation Quality Estimation
Raphael Rubino
|
Eiichiro Sumita
Pre-training sentence encoders is effective in many natural language processing tasks including machine translation (MT) quality estimation (QE), due partly to the scarcity of annotated QE data required for supervised learning. In this paper, we investigate the use of an intermediate self-supervised learning task for sentence encoder aiming at improving QE performances at the sentence and word levels. Our approach is motivated by a problem inherent to QE: mistakes in translation caused by wrongly inserted and deleted tokens. We modify the translation language model (TLM) training objective of the cross-lingual language model (XLM) to orientate the pre-trained model towards the target task. The proposed method does not rely on annotated data and is complementary to QE methods involving pre-trained sentence encoders and domain adaptation. Experiments on English-to-German and English-to-Russian translation directions show that intermediate learning improves over domain adaptated models. Additionally, our method reaches results in par with state-of-the-art QE models without requiring the combination of several approaches and outperforms similar methods based on pre-trained sentence encoders.
pdf
bib
abs
Unifying Input and Output Smoothing in Neural Machine Translation
Yingbo Gao
|
Baohao Liao
|
Hermann Ney
Soft contextualized data augmentation is a recent method that replaces one-hot representation of words with soft posterior distributions of an external language model, smoothing the input of neural machine translation systems. Label smoothing is another effective method that penalizes over-confident model outputs by discounting some probability mass from the true target word, smoothing the output of neural machine translation systems. Having the benefit of updating all word vectors in each optimization step and better regularizing the models, the two smoothing methods are shown to bring significant improvements in translation performance. In this work, we study how to best combine the methods and stack the improvements. Specifically, we vary the prior distributions to smooth with, the hyperparameters that control the smoothing strength, and the token selection procedures. We conduct extensive experiments on small datasets, evaluate the recipes on larger datasets, and examine the implications when back-translation is further used. Our results confirm cumulative improvements when input and output smoothing are used in combination, giving up to +1.9 BLEU scores on standard machine translation tasks and reveal reasons why these smoothing methods should be preferred.
pdf
bib
abs
Neural Transduction for Multilingual Lexical Translation
Dylan Lewis
|
Winston Wu
|
Arya D. McCarthy
|
David Yarowsky
We present a method for completing multilingual translation dictionaries. Our probabilistic approach can synthesize new word forms, allowing it to operate in settings where correct translations have not been observed in text (cf. cross-lingual embeddings). In addition, we propose an approximate Maximum Mutual Information (MMI) decoding objective to further improve performance in both many-to-one and one-to-one word level translation tasks where we use either multiple input languages for a single target language or more typical single language pair translation. The model is trained in a many-to-many setting, where it can leverage information from related languages to predict words in each of its many target languages. We focus on 6 languages: French, Spanish, Italian, Portuguese, Romanian, and Turkish. When indirect multilingual information is available, ensembling with mixture-of-experts as well as incorporating related languages leads to a 27% relative improvement in whole-word accuracy of predictions over a single-source baseline. To seed the completion when multilingual data is unavailable, it is better to decode with an MMI objective.
pdf
bib
abs
A Document-Level Neural Machine Translation Model with Dynamic Caching Guided by Theme-Rheme Information
Yiqi Tong
|
Jiangbin Zheng
|
Hongkang Zhu
|
Yidong Chen
|
Xiaodong Shi
Research on document-level Neural Machine Translation (NMT) models has attracted increasing attention in recent years. Although the proposed works have proved that the inter-sentence information is helpful for improving the performance of the NMT models, what information should be regarded as context remains ambiguous. To solve this problem, we proposed a novel cache-based document-level NMT model which conducts dynamic caching guided by theme-rheme information. The experiments on NIST evaluation sets demonstrate that our proposed model achieves substantial improvements over the state-of-the-art baseline NMT models. As far as we know, we are the first to introduce theme-rheme theory into the field of machine translation.
pdf
bib
abs
Context-Aware Cross-Attention for Non-Autoregressive Translation
Liang Ding
|
Longyue Wang
|
Di Wu
|
Dacheng Tao
|
Zhaopeng Tu
Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting the entire target sequence. However, due to the lack of target dependency modelling in the decoder, the conditional generation process heavily depends on the cross-attention. In this paper, we reveal a localness perception problem in NAT cross-attention, for which it is difficult to adequately capture source context. To alleviate this problem, we propose to enhance signals of neighbour source tokens into conventional cross-attention. Experimental results on several representative datasets show that our approach can consistently improve translation quality over strong NAT baselines. Extensive analyses demonstrate that the enhanced cross-attention achieves better exploitation of source contexts by leveraging both local and global information.
pdf
bib
abs
Does Gender Matter? Towards Fairness in Dialogue Systems
Haochen Liu
|
Jamell Dacon
|
Wenqi Fan
|
Hui Liu
|
Zitao Liu
|
Jiliang Tang
Recently there are increasing concerns about the fairness of Artificial Intelligence (AI) in real-world applications such as computer vision and recommendations. For example, recognition algorithms in computer vision are unfair to black people such as poorly detecting their faces and inappropriately identifying them as “gorillas”. As one crucial application of AI, dialogue systems have been extensively applied in our society. They are usually built with real human conversational data; thus they could inherit some fairness issues which are held in the real world. However, the fairness of dialogue systems has not been well investigated. In this paper, we perform a pioneering study about the fairness issues in dialogue systems. In particular, we construct a benchmark dataset and propose quantitative measures to understand fairness in dialogue models. Our studies demonstrate that popular dialogue models show significant prejudice towards different genders and races. Besides, to mitigate the bias in dialogue systems, we propose two simple but effective debiasing methods. Experiments show that our methods can reduce the bias in dialogue systems significantly. The dataset and the implementation are released to foster fairness research in dialogue systems.
pdf
bib
abs
Combining Cognitive Modeling and Reinforcement Learning for Clarification in Dialogue
Baber Khalid
|
Malihe Alikhani
|
Matthew Stone
In many domains, dialogue systems need to work collaboratively with users to successfully reconstruct the meaning the user had in mind. In this paper, we show how cognitive models of users’ communicative strategies can be leveraged in a reinforcement learning approach to dialogue planning to enable interactive systems to give targeted, effective feedback about the system’s understanding. We describe a prototype system that collaborates on reference tasks that distinguish arbitrarily varying color patches from similar distractors, and use experiments with crowd workers and analyses of our learned policies to document that our approach leads to context-sensitive clarification strategies that focus on key missing information, elicit correct answers that the system understands, and contribute to increasing dialogue success.
pdf
bib
abs
Knowledge Aware Emotion Recognition in Textual Conversations via Multi-Task Incremental Transformer
Duzhen Zhang
|
Xiuyi Chen
|
Shuang Xu
|
Bo Xu
Emotion recognition in textual conversations (ERTC) plays an important role in a wide range of applications, such as opinion mining, recommender systems, and so on. ERTC, however, is a challenging task. For one thing, speakers often rely on the context and commonsense knowledge to express emotions; for another, most utterances contain neutral emotion in conversations, as a result, the confusion between a few non-neutral utterances and much more neutral ones restrains the emotion recognition performance. In this paper, we propose a novel Knowledge Aware Incremental Transformer with Multi-task Learning (KAITML) to address these challenges. Firstly, we devise a dual-level graph attention mechanism to leverage commonsense knowledge, which augments the semantic information of the utterance. Then we apply the Incremental Transformer to encode multi-turn contextual utterances. Moreover, we are the first to introduce multi-task learning to alleviate the aforementioned confusion and thus further improve the emotion recognition performance. Extensive experimental results show that our KAITML model outperforms the state-of-the-art models across five benchmark datasets.
pdf
bib
abs
MEISD: A Multimodal Multi-Label Emotion, Intensity and Sentiment Dialogue Dataset for Emotion Recognition and Sentiment Analysis in Conversations
Mauajama Firdaus
|
Hardik Chauhan
|
Asif Ekbal
|
Pushpak Bhattacharyya
Emotion and sentiment classification in dialogues is a challenging task that has gained popularity in recent times. Humans tend to have multiple emotions with varying intensities while expressing their thoughts and feelings. Emotions in an utterance of dialogue can either be independent or dependent on the previous utterances, thus making the task complex and interesting. Multi-label emotion detection in conversations is a significant task that provides the ability to the system to understand the various emotions of the users interacting. Sentiment analysis in dialogue/conversation, on the other hand, helps in understanding the perspective of the user with respect to the ongoing conversation. Along with text, additional information in the form of audio and video assist in identifying the correct emotions with the appropriate intensity and sentiments in an utterance of a dialogue. Lately, quite a few datasets have been made available for dialogue emotion and sentiment classification, but these datasets are imbalanced in representing different emotions and consist of an only single emotion. Hence, we present at first a large-scale balanced Multimodal Multi-label Emotion, Intensity, and Sentiment Dialogue dataset (MEISD), collected from different TV series that has textual, audio and visual features, and then establish a baseline setup for further research.
pdf
bib
abs
EmpDG: Multi-resolution Interactive Empathetic Dialogue Generation
Qintong Li
|
Hongshen Chen
|
Zhaochun Ren
|
Pengjie Ren
|
Zhaopeng Tu
|
Zhumin Chen
A humanized dialogue system is expected to generate empathetic replies, which should be sensitive to the users’ expressed emotion. The task of empathetic dialogue generation is proposed to address this problem. The essential challenges lie in accurately capturing the nuances of human emotion and considering the potential of user feedback, which are overlooked by the majority of existing work. In response to this problem, we propose a multi-resolution adversarial model – EmpDG, to generate more empathetic responses. EmpDG exploits both the coarse-grained dialogue-level and fine-grained token-level emotions, the latter of which helps to better capture the nuances of user emotion. In addition, we introduce an interactive adversarial learning framework which exploits the user feedback, to identify whether the generated responses evoke emotion perceptivity in dialogues. Experimental results show that the proposed approach significantly outperforms the state-of-the-art baselines in both content quality and emotion perceptivity.
pdf
bib
abs
Leveraging Discourse Rewards for Document-Level Neural Machine Translation
Inigo Jauregi Unanue
|
Nazanin Esmaili
|
Gholamreza Haffari
|
Massimo Piccardi
Document-level machine translation focuses on the translation of entire documents from a source to a target language. It is widely regarded as a challenging task since the translation of the individual sentences in the document needs to retain aspects of the discourse at document level. However, document-level translation models are usually not trained to explicitly ensure discourse quality. Therefore, in this paper we propose a training approach that explicitly optimizes two established discourse metrics, lexical cohesion and coherence, by using a reinforcement learning objective. Experiments over four different language pairs and three translation domains have shown that our training approach has been able to achieve more cohesive and coherent document translations than other competitive approaches, yet without compromising the faithfulness to the reference translation. In the case of the Zh-En language pair, our method has achieved an improvement of 2.46 percentage points (pp) in LC and 1.17 pp in COH over the runner-up, while at the same time improving 0.63 pp in BLEU score and 0.47 pp in F-BERT.
pdf
bib
abs
Effective Use of Target-side Context for Neural Machine Translation
Hideya Mino
|
Hitoshi Ito
|
Isao Goto
|
Ichiro Yamada
|
Takenobu Tokunaga
In this paper, we deal with two problems in Japanese-English machine translation of news articles. The first problem is the quality of parallel corpora. Neural machine translation (NMT) systems suffer degraded performance when trained with noisy data. Because there is no clean Japanese-English parallel data for news articles, we build a novel parallel news corpus consisting of Japanese news articles translated into English in a content-equivalent manner. This is the first content-equivalent Japanese-English news corpus translated specifically for training NMT systems. The second problem involves the domain-adaptation technique. NMT systems suffer degraded performance when trained with mixed data having different features, such as noisy data and clean data. Though the existing methods try to overcome this problem by using tags for distinguishing the differences between corpora, it is not sufficient. We thus extend a domain-adaptation method using multi-tags to train an NMT model effectively with the clean corpus and existing parallel news corpora with some types of noise. Experimental results show that our corpus increases the translation quality, and that our domain-adaptation method is more effective for learning with the multiple types of corpora than existing domain-adaptation methods are.
pdf
bib
abs
Knowledge Graph Enhanced Neural Machine Translation via Multi-task Learning on Sub-entity Granularity
Yang Zhao
|
Lu Xiang
|
Junnan Zhu
|
Jiajun Zhang
|
Yu Zhou
|
Chengqing Zong
Previous studies combining knowledge graph (KG) with neural machine translation (NMT) have two problems: i) Knowledge under-utilization: they only focus on the entities that appear in both KG and training sentence pairs, making much knowledge in KG unable to be fully utilized. ii) Granularity mismatch: the current KG methods utilize the entity as the basic granularity, while NMT utilizes the sub-word as the granularity, making the KG different to be utilized in NMT. To alleviate above problems, we propose a multi-task learning method on sub-entity granularity. Specifically, we first split the entities in KG and sentence pairs into sub-entity granularity by using joint BPE. Then we utilize the multi-task learning to combine the machine translation task and knowledge reasoning task. The extensive experiments on various translation tasks have demonstrated that our method significantly outperforms the baseline models in both translation quality and handling the entities.
pdf
bib
abs
Is MAP Decoding All You Need? The Inadequacy of the Mode in Neural Machine Translation
Bryan Eikema
|
Wilker Aziz
Recent studies have revealed a number of pathologies of neural machine translation (NMT) systems. Hypotheses explaining these mostly suggest there is something fundamentally wrong with NMT as a model or its training algorithm, maximum likelihood estimation (MLE). Most of this evidence was gathered using maximum a posteriori (MAP) decoding, a decision rule aimed at identifying the highest-scoring translation, i.e. the mode. We argue that the evidence corroborates the inadequacy of MAP decoding more than casts doubt on the model and its training algorithm. In this work, we show that translation distributions do reproduce various statistics of the data well, but that beam search strays from such statistics. We show that some of the known pathologies and biases of NMT are due to MAP decoding and not to NMT’s statistical assumptions nor MLE. In particular, we show that the most likely translations under the model accumulate so little probability mass that the mode can be considered essentially arbitrary. We therefore advocate for the use of decision rules that take into account the translation distribution holistically. We show that an approximation to minimum Bayes risk decoding gives competitive results confirming that NMT models do capture important aspects of translation well in expectation.
pdf
bib
abs
Domain Transfer based Data Augmentation for Neural Query Translation
Liang Yao
|
Baosong Yang
|
Haibo Zhang
|
Boxing Chen
|
Weihua Luo
Query translation (QT) serves as a critical factor in successful cross-lingual information retrieval (CLIR). Due to the lack of parallel query samples, neural-based QT models are usually optimized with synthetic data which are derived from large-scale monolingual queries. Nevertheless, such kind of pseudo corpus is mostly produced by a general-domain translation model, making it be insufficient to guide the learning of QT model. In this paper, we extend the data augmentation with a domain transfer procedure, thus to revise synthetic candidates to search-aware examples. Specifically, the domain transfer model is built upon advanced Transformer, in which layer coordination and mixed attention are exploited to speed up the refining process and leverage parameters from a pre-trained cross-lingual language model. In order to examine the effectiveness of the proposed method, we collected French-to-English and Spanish-to-English QT test sets, each of which consists of 10,000 parallel query pairs with careful manual-checking. Qualitative and quantitative analyses reveal that our model significantly outperforms strong baselines and the related domain transfer methods on both translation quality and retrieval accuracy.
pdf
bib
abs
Living Machines: A study of atypical animacy
Mariona Coll Ardanuy
|
Federico Nanni
|
Kaspar Beelen
|
Kasra Hosseini
|
Ruth Ahnert
|
Jon Lawrence
|
Katherine McDonough
|
Giorgia Tolfo
|
Daniel CS Wilson
|
Barbara McGillivray
This paper proposes a new approach to animacy detection, the task of determining whether an entity is represented as animate in a text. In particular, this work is focused on atypical animacy and examines the scenario in which typically inanimate objects, specifically machines, are given animate attributes. To address it, we have created the first dataset for atypical animacy detection, based on nineteenth-century sentences in English, with machines represented as either animate or inanimate. Our method builds on recent innovations in language modeling, specifically BERT contextualized word embeddings, to better capture fine-grained contextual properties of words. We present a fully unsupervised pipeline, which can be easily adapted to different contexts, and report its performance on an established animacy dataset and our newly introduced resource. We show that our method provides a substantially more accurate characterization of atypical animacy, especially when applied to highly complex forms of language use.
pdf
bib
abs
Aspectuality Across Genre: A Distributional Semantics Approach
Thomas Kober
|
Malihe Alikhani
|
Matthew Stone
|
Mark Steedman
The interpretation of the lexical aspect of verbs in English plays a crucial role in tasks such as recognizing textual entailment and learning discourse-level inferences. We show that two elementary dimensions of aspectual class, states vs. events, and telic vs. atelic events, can be modelled effectively with distributional semantics. We find that a verb’s local context is most indicative of its aspectual class, and we demonstrate that closed class words tend to be stronger discriminating contexts than content words. Our approach outperforms previous work on three datasets. Further, we present a new dataset of human-human conversations annotated with lexical aspects and present experiments that show the correlation of telicity with genre and discourse goals.
pdf
bib
abs
Rhetoric, Logic, and Dialectic: Advancing Theory-based Argument Quality Assessment in Natural Language Processing
Anne Lauscher
|
Lily Ng
|
Courtney Napoles
|
Joel Tetreault
Though preceding work in computational argument quality (AQ) mostly focuses on assessing overall AQ, researchers agree that writers would benefit from feedback targeting individual dimensions of argumentation theory. However, a large-scale theory-based corpus and corresponding computational models are missing. We fill this gap by conducting an extensive analysis covering three diverse domains of online argumentative writing and presenting GAQCorpus: the first large-scale English multi-domain (community Q&A forums, debate forums, review forums) corpus annotated with theory-based AQ scores. We then propose the first computational approaches to theory-based assessment, which can serve as strong baselines for future work. We demonstrate the feasibility of large-scale AQ annotation, show that exploiting relations between dimensions yields performance improvements, and explore the synergies between theory-based prediction and practical AQ assessment.
pdf
bib
abs
A Linguistic Perspective on Reference: Choosing a Feature Set for Generating Referring Expressions in Context
Fahime Same
|
Kees van Deemter
This paper reports on a structured evaluation of feature-based Machine Learning algorithms for selecting the form of a referring expression in discourse context. Based on this evaluation, we selected seven feature sets from the literature, amounting to 65 distinct linguistic features. The features were then grouped into 9 broad classes. After building Random Forest models, we used Feature Importance Ranking and Sequential Forward Search methods to assess the “importance” of the features. Combining the results of the two methods, we propose a consensus feature set. The 6 features in our consensus set come from 4 different classes, namely grammatical role, inherent features of the referent, antecedent form and recency.
pdf
bib
abs
Coreference information guides human expectations during natural reading
Evan Jaffe
|
Cory Shain
|
William Schuler
Models of human sentence processing effort tend to focus on costs associated with retrieving structures and discourse referents from memory (memory-based) and/or on costs associated with anticipating upcoming words and structures based on contextual cues (expectation-based) (Levy,2008). Although evidence suggests that expectation and memory may play separable roles in language comprehension (Levy et al., 2013), theories of coreference processing have largely focused on memory: how comprehenders identify likely referents of linguistic expressions. In this study, we hypothesize that coreference tracking also informs human expectations about upcoming words, and we test this hypothesis by evaluating the degree to which incremental surprisal measures generated by a novel coreference-aware semantic parser explain human response times in a naturalistic self-paced reading experiment. Results indicate (1) that coreference information indeed guides human expectations and (2) that coreference effects on memory retrieval may exist independently of coreference effects on expectations. Together, these findings suggest that the language processing system exploits coreference information both to retrieve referents from memory and to anticipate upcoming material.
pdf
bib
abs
Interactive Word Completion for Morphologically Complex Languages
William Lane
|
Steven Bird
Text input technologies for low-resource languages support literacy, content authoring, and language learning. However, tasks such as word completion pose a challenge for morphologically complex languages thanks to the combinatorial explosion of possible words. We have developed a method for morphologically-aware text input in Kunwinjku, a polysynthetic language of northern Australia. We modify an existing finite state recognizer to map input morph prefixes to morph completions, respecting the morphosyntax and morphophonology of the language. We demonstrate the portability of the method by applying it to Turkish. We show that the space of proximal morph completions is many orders of magnitude smaller than the space of full word completions for Kunwinjku. We provide a visualization of the morph completion space to enable the text completion parameters to be fine-tuned. Finally, we report on a web services deployment, along with a web interface which helps users enter morphologically complex words and which retrieves corresponding entries from the lexicon.
pdf
bib
abs
Joint Persian Word Segmentation Correction and Zero-Width Non-Joiner Recognition Using BERT
Ehsan Doostmohammadi
|
Minoo Nassajian
|
Adel Rahimi
Words are properly segmented in the Persian writing system; in practice, however, these writing rules are often neglected, resulting in single words being written disjointedly and multiple words written without any white spaces between them. This paper addresses the problems of word segmentation and zero-width non-joiner (ZWNJ) recognition in Persian, which we approach jointly as a sequence labeling problem. We achieved a macro-averaged F1-score of 92.40% on a carefully collected corpus of 500 sentences with a high level of difficulty.
pdf
bib
abs
Syllable-based Neural Thai Word Segmentation
Pattarawat Chormai
|
Ponrawee Prasertsom
|
Jin Cheevaprawatdomrong
|
Attapol Rutherford
Word segmentation is a challenging pre-processing step for Thai Natural Language Processing due to the lack of explicit word boundaries. The previous systems rely on powerful neural network architecture alone and ignore linguistic substructures of Thai words. We utilize the linguistic observation that Thai strings can be segmented into syllables, which should narrow down the search space for the word boundaries and provide helpful features. Here, we propose a neural Thai Word Segmenter that uses syllable embeddings to capture linguistic constraints and uses dilated CNN filters to capture the environment of each character. Within this goal, we develop the first ML-based Thai orthographical syllable segmenter, which yields syllable embeddings to be used as features by the word segmenter. Our word segmentation system outperforms the previous state-of-the-art system in both speed and accuracy on both in-domain and out-domain datasets.
pdf
bib
abs
Incorporating Inner-word and Out-word Features for Mongolian Morphological Segmentation
Na Liu
|
Xiangdong Su
|
Haoran Zhang
|
Guanglai Gao
|
Feilong Bao
Mongolian morphological segmentation is regarded as a crucial preprocessing step in many Mongolian related NLP applications and has received extensive attention. Recently, end-to-end segmentation approaches with long short-term memory networks (LSTM) have achieved excellent results. However, the inner-word features among characters in the word and the out-word features from context are not well utilized in the segmentation process. In this paper, we propose a neural network incorporating inner-word and out-word features for Mongolian morphological segmentation. The network consists of two encoders and one decoder. The inner-word encoder uses the self-attention mechanisms to capture the inner-word features of the target word. The out-word encoder employs a two layers BiLSTM network to extract out-word features in the sentence. Then, the decoder adopts a multi-head double attention layer to fuse the inner-word features and out-word features and produces the segmentation result. The evaluation experiment compares the proposed network with the baselines and explores the effectiveness of the sub-modules.
pdf
bib
abs
Morphological disambiguation from stemming data
Antoine Nzeyimana
Morphological analysis and disambiguation is an important task and a crucial preprocessing step in natural language processing of morphologically rich languages. Kinyarwanda, a morphologically rich language, currently lacks tools for automated morphological analysis. While linguistically curated finite state tools can be easily developed for morphological analysis, the morphological richness of the language allows many ambiguous analyses to be produced, requiring effective disambiguation. In this paper, we propose learning to morphologically disambiguate Kinyarwanda verbal forms from a new stemming dataset collected through crowd-sourcing. Using feature engineering and a feed-forward neural network based classifier, we achieve about 89% non-contextualized disambiguation accuracy. Our experiments reveal that inflectional properties of stems and morpheme association rules are the most discriminative features for disambiguation.
pdf
bib
abs
Revitalization of Indigenous Languages through Pre-processing and Neural Machine Translation: The case of Inuktitut
Tan Ngoc Le
|
Fatiha Sadat
Indigenous languages have been very challenging when dealing with NLP tasks and applications because of multiple reasons. These languages, in linguistic typology, are polysynthetic and highly inflected with rich morphophonemics and variable dialectal-dependent spellings; which affected studies on any NLP task in the recent years. Moreover, Indigenous languages have been considered as low-resource and/or endangered; which poses a great challenge for research related to Artificial Intelligence and its fields, such as NLP and machine learning. In this paper, we propose a study on the Inuktitut language through pre-processing and neural machine translation, in order to revitalize the language which belongs to the Inuit family, a type of polysynthetic languages spoken in Northern Canada. Our focus is concentrated on: (1) the preprocessing phase, and (2) applications on specific NLP tasks such as morphological analysis and neural machine translation, both for Indigenous languages of Canada. Our evaluations in the context of lowresource Inuktitut-English Neural Machine Translation, showed significant improvements of the proposed approach compared to the state-of-the-art.
pdf
bib
abs
Semi-supervised URL Segmentation with Recurrent Neural Networks Pre-trained on Knowledge Graph Entities
Hao Zhang
|
Jae Ro
|
Richard Sproat
Breaking domain names such as openresearch into component words open and research is important for applications like Text-to-Speech synthesis and web search. We link this problem to the classic problem of Chinese word segmentation and show the effectiveness of a tagging model based on Recurrent Neural Networks (RNNs) using characters as input. To compensate for the lack of training data, we propose a pre-training method on concatenated entity names in a large knowledge database. Pre-training improves the model by 33% and brings the sequence accuracy to 85%.
pdf
bib
abs
Utilizing Subword Entities in Character-Level Sequence-to-Sequence Lemmatization Models
Nasser Zalmout
|
Nizar Habash
In this paper we present a character-level sequence-to-sequence lemmatization model, utilizing several subword features in multiple configurations. In addition to generic n-gram embeddings (using FastText), we experiment with concatenative (stems) and templatic (roots and patterns) morphological subwords. We present several architectures that embed these features directly at the encoder side, or learn them jointly at the decoder side with a multitask learning architecture. The results indicate that using the generic n-gram embeddings (through FastText) outperform the other linguistically-driven subwords. We use Modern Standard Arabic and Egyptian Arabic as test cases, with up to 22% and 13% relative error reduction, respectively, from a strong baseline. An error analysis shows that our best system is even able to handle word/lemma pairs that are both unseen in the training data.
pdf
bib
abs
Wiktionary Normalization of Translations and Morphological Information
Winston Wu
|
David Yarowsky
We extend the Yawipa Wiktionary Parser (Wu and Yarowsky, 2020) to extract and normalize translations from etymology glosses, and morphological form-of relations, resulting in 300K unique translations and over 4 million instances of 168 annotated morphological relations. We propose a method to identify typos in translation annotations. Using the extracted morphological data, we develop multilingual neural models for predicting three types of word formation—clipping, contraction, and eye dialect—and improve upon a standard attention baseline by using copy attention.
pdf
bib
abs
Detecting Urgency Status of Crisis Tweets: A Transfer Learning Approach for Low Resource Languages
Efsun Sarioglu Kayi
|
Linyong Nan
|
Bohan Qu
|
Mona Diab
|
Kathleen McKeown
We release an urgency dataset that consists of English tweets relating to natural crises, along with annotations of their corresponding urgency status. Additionally, we release evaluation datasets for two low-resource languages, i.e. Sinhala and Odia, and demonstrate an effective zero-shot transfer from English to these two languages by training cross-lingual classifiers. We adopt cross-lingual embeddings constructed using different methods to extract features of the tweets, including a few state-of-the-art contextual embeddings such as BERT, RoBERTa and XLM-R. We train classifiers of different architectures on the extracted features. We also explore semi-supervised approaches by utilizing unlabeled tweets and experiment with ensembling different classifiers. With very limited amounts of labeled data in English and zero data in the low resource languages, we show a successful framework of training monolingual and cross-lingual classifiers using deep learning methods which are known to be data hungry. Specifically, we show that the recent deep contextual embeddings are also helpful when dealing with very small-scale datasets. Classifiers that incorporate RoBERTa yield the best performance for English urgency detection task, with F1 scores that are more than 25 points over our baseline classifier. For the zero-shot transfer to low resource languages, classifiers that use LASER features perform the best for Sinhala transfer while XLM-R features benefit the Odia transfer the most.
pdf
bib
abs
Cross-lingual Transfer Learning for Grammatical Error Correction
Ikumi Yamashita
|
Satoru Katsumata
|
Masahiro Kaneko
|
Aizhan Imankulova
|
Mamoru Komachi
In this study, we explore cross-lingual transfer learning in grammatical error correction (GEC) tasks. Many languages lack the resources required to train GEC models. Cross-lingual transfer learning from high-resource languages (the source models) is effective for training models of low-resource languages (the target models) for various tasks. However, in GEC tasks, the possibility of transferring grammatical knowledge (e.g., grammatical functions) across languages is not evident. Therefore, we investigate cross-lingual transfer learning methods for GEC. Our results demonstrate that transfer learning from other languages can improve the accuracy of GEC. We also demonstrate that proximity to source languages has a significant impact on the accuracy of correcting certain types of errors.
pdf
bib
abs
Emergent Communication Pretraining for Few-Shot Machine Translation
Yaoyiran Li
|
Edoardo Maria Ponti
|
Ivan Vulić
|
Anna Korhonen
While state-of-the-art models that rely upon massively multilingual pretrained encoders achieve sample efficiency in downstream applications, they still require abundant amounts of unlabelled text. Nevertheless, most of the world’s languages lack such resources. Hence, we investigate a more radical form of unsupervised knowledge transfer in the absence of linguistic data. In particular, for the first time we pretrain neural networks via emergent communication from referential games. Our key assumption is that grounding communication on images—as a crude approximation of real-world environments—inductively biases the model towards learning natural languages. On the one hand, we show that this substantially benefits machine translation in few-shot settings. On the other hand, this also provides an extrinsic evaluation protocol to probe the properties of emergent languages ex vitro. Intuitively, the closer they are to natural languages, the higher the gains from pretraining on them should be. For instance, in this work we measure the influence of communication success and maximum sequence length on downstream performances. Finally, we introduce a customised adapter layer and annealing strategies for the regulariser of maximum-a-posteriori inference during fine-tuning. These turn out to be crucial to facilitate knowledge transfer and prevent catastrophic forgetting. Compared to a recurrent baseline, our method yields gains of 59.0% 147.6% in BLEU score with only 500 NMT training instances and 65.1% 196.7% with 1,000 NMT training instances across four language pairs. These proof-of-concept results reveal the potential of emergent communication pretraining for both natural language processing tasks in resource-poor settings and extrinsic evaluation of artificial languages.
pdf
bib
abs
ContraCAT: Contrastive Coreference Analytical Templates for Machine Translation
Dario Stojanovski
|
Benno Krojer
|
Denis Peskov
|
Alexander Fraser
Recent high scores on pronoun translation using context-aware neural machine translation have suggested that current approaches work well. ContraPro is a notable example of a contrastive challenge set for English→German pronoun translation. The high scores achieved by transformer models may suggest that they are able to effectively model the complicated set of inferences required to carry out pronoun translation. This entails the ability to determine which entities could be referred to, identify which entity a source-language pronoun refers to (if any), and access the target-language grammatical gender for that entity. We first show through a series of targeted adversarial attacks that in fact current approaches are not able to model all of this information well. Inserting small amounts of distracting information is enough to strongly reduce scores, which should not be the case. We then create a new template test set ContraCAT, designed to individually assess the ability to handle the specific steps necessary for successful pronoun translation. Our analyses show that current approaches to context-aware NMT rely on a set of surface heuristics, which break down when translations require real reasoning. We also propose an approach for augmenting the training data, with some improvements.
pdf
bib
abs
SpanAlign: Sentence Alignment Method based on Cross-Language Span Prediction and ILP
Katsuki Chousa
|
Masaaki Nagata
|
Masaaki Nishino
We propose a novel method of automatic sentence alignment from noisy parallel documents. We first formalize the sentence alignment problem as the independent predictions of spans in the target document from sentences in the source document. We then introduce a total optimization method using integer linear programming to prevent span overlapping and obtain non-monotonic alignments. We implement cross-language span prediction by fine-tuning pre-trained multilingual language models based on BERT architecture and train them using pseudo-labeled data obtained from unsupervised sentence alignment method. While the baseline methods use sentence embeddings and assume monotonic alignment, our method can capture the token-to-token interaction between the tokens of source and target text and handle non-monotonic alignments. In sentence alignment experiments on English-Japanese, our method achieved 70.3 F1 scores, which are +8.0 points higher than the baseline method. In particular, our method improved by +53.9 F1 scores for extracting non-parallel sentences. Our method improved the downstream machine translation accuracy by 4.1 BLEU scores when the extracted bilingual sentences are used for fine-tuning a pre-trained Japanese-to-English translation model.
pdf
bib
abs
CLUE: A Chinese Language Understanding Evaluation Benchmark
Liang Xu
|
Hai Hu
|
Xuanwei Zhang
|
Lu Li
|
Chenjie Cao
|
Yudong Li
|
Yechen Xu
|
Kai Sun
|
Dian Yu
|
Cong Yu
|
Yin Tian
|
Qianqian Dong
|
Weitang Liu
|
Bo Shi
|
Yiming Cui
|
Junyi Li
|
Jun Zeng
|
Rongzhao Wang
|
Weijian Xie
|
Yanting Li
|
Yina Patterson
|
Zuoyu Tian
|
Yiwen Zhang
|
He Zhou
|
Shaoweihua Liu
|
Zhe Zhao
|
Qipeng Zhao
|
Cong Yue
|
Xinrui Zhang
|
Zhengliang Yang
|
Kyle Richardson
|
Zhenzhong Lan
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at
https://www.cluebenchmarks.compdf
bib
abs
A Human Evaluation of AMR-to-English Generation Systems
Emma Manning
|
Shira Wein
|
Nathan Schneider
Most current state-of-the art systems for generating English text from Abstract Meaning Representation (AMR) have been evaluated only using automated metrics, such as BLEU, which are known to be problematic for natural language generation. In this work, we present the results of a new human evaluation which collects fluency and adequacy scores, as well as categorization of error types, for several recent AMR generation systems. We discuss the relative quality of these systems and how our results compare to those of automatic metrics, finding that while the metrics are mostly successful in ranking systems overall, collecting human judgments allows for more nuanced comparisons. We also analyze common errors made by these systems.
pdf
bib
abs
Identifying Annotator Bias: A new IRT-based method for bias identification
Jacopo Amidei
|
Paul Piwek
|
Alistair Willis
A basic step in any annotation effort is the measurement of the Inter Annotator Agreement (IAA). An important factor that can affect the IAA is the presence of annotator bias. In this paper we introduce a new interpretation and application of the Item Response Theory (IRT) to detect annotators’ bias. Our interpretation of IRT offers an original bias identification method that can be used to compare annotators’ bias and characterise annotation disagreement. Our method can be used to spot outlier annotators, improve annotation guidelines and provide a better picture of the annotation reliability. Additionally, because scales for IAA interpretation are not generally agreed upon, our bias identification method is valuable as a complement to the IAA value which can help with understanding the annotation disagreement.
pdf
bib
abs
Would you describe a leopard as yellow? Evaluating crowd-annotations with justified and informative disagreement
Pia Sommerauer
|
Antske Fokkens
|
Piek Vossen
Semantic annotation tasks contain ambiguity and vagueness and require varying degrees of world knowledge. Disagreement is an important indication of these phenomena. Most traditional evaluation methods, however, critically hinge upon the notion of inter-annotator agreement. While alternative frameworks have been proposed, they do not move beyond agreement as the most important indicator of quality. Critically, evaluations usually do not distinguish between instances in which agreement is expected and instances in which disagreement is not only valid but desired because it captures the linguistic and cognitive phenomena in the data. We attempt to overcome these limitations using the example of a dataset that provides semantic representations for diagnostic experiments on language models. Ambiguity, vagueness, and difficulty are not only highly relevant for this use-case, but also play an important role in other types of semantic annotation tasks. We establish an additional, agreement-independent quality metric based on answer-coherence and evaluate it in comparison to existing metrics. We compare against a gold standard and evaluate on expected disagreement. Despite generally low agreement, annotations follow expected behavior and have high accuracy when selected based on coherence. We show that combining different quality metrics enables a more comprehensive evaluation than relying exclusively on agreement.
pdf
bib
abs
Manual Clustering and Spatial Arrangement of Verbs for Multilingual Evaluation and Typology Analysis
Olga Majewska
|
Ivan Vulić
|
Diana McCarthy
|
Anna Korhonen
We present the first evaluation of the applicability of a spatial arrangement method (SpAM) to a typologically diverse language sample, and its potential to produce semantic evaluation resources to support multilingual NLP, with a focus on verb semantics. We demonstrate SpAM’s utility in allowing for quick bottom-up creation of large-scale evaluation datasets that balance cross-lingual alignment with language specificity. Starting from a shared sample of 825 English verbs, translated into Chinese, Japanese, Finnish, Polish, and Italian, we apply a two-phase annotation process which produces (i) semantic verb classes and (ii) fine-grained similarity scores for nearly 130 thousand verb pairs. We use the two types of verb data to (a) examine cross-lingual similarities and variation, and (b) evaluate the capacity of static and contextualised representation models to accurately reflect verb semantics, contrasting the performance of large language specific pretraining models with their multilingual equivalent on semantic clustering and lexical similarity, across different domains of verb meaning. We release the data from both phases as a large-scale multilingual resource, comprising 85 verb classes and nearly 130k pairwise similarity scores, offering a wealth of possibilities for further evaluation and research on multilingual verb semantics.
pdf
bib
abs
Hierarchical Trivia Fact Extraction from Wikipedia Articles
Jingun Kwon
|
Hidetaka Kamigaito
|
Young-In Song
|
Manabu Okumura
Recently, automatic trivia fact extraction has attracted much research interest. Modern search engines have begun to provide trivia facts as the information for entities because they can motivate more user engagement. In this paper, we propose a new unsupervised algorithm that automatically mines trivia facts for a given entity. Unlike previous studies, the proposed algorithm targets at a single Wikipedia article and leverages its hierarchical structure via top-down processing. Thus, the proposed algorithm offers two distinctive advantages: it does not incur high computation time, and it provides a domain-independent approach for extracting trivia facts. Experimental results demonstrate that the proposed algorithm is over 100 times faster than the existing method which considers Wikipedia categories. Human evaluation demonstrates that the proposed algorithm can mine better trivia facts regardless of the target entity domain and outperforms the existing methods.
pdf
bib
abs
Predicting Clickbait Strength in Online Social Media
Vijayasaradhi Indurthi
|
Bakhtiyar Syed
|
Manish Gupta
|
Vasudeva Varma
Hoping for a large number of clicks and potentially high social shares, journalists of various news media outlets publish sensationalist headlines on social media. These headlines lure the readers to click on them and satisfy the curiosity gap in their mind. Low quality material pointed to by clickbaits leads to time wastage and annoyance for users. Even for enterprises publishing clickbaits, it hurts more than it helps as it erodes user trust, attracts wrong visitors, and produces negative signals for ranking algorithms. Hence, identifying and flagging clickbait titles is very essential. Previous work on clickbaits has majorly focused on binary classification of clickbait titles. However not all clickbaits are equally clickbaity. It is not only essential to identify a click-bait, but also to identify the intensity of the clickbait based on the strength of the clickbait. In this work, we model clickbait strength prediction as a regression problem. While previous methods have relied on traditional machine learning or vanilla recurrent neural networks, we rigorously investigate the use of transformers for clickbait strength prediction. On a benchmark dataset with ∼39K posts, our methods outperform all the existing methods in the Clickbait Challenge.
pdf
bib
abs
GPolS: A Contextual Graph-Based Language Model for Analyzing Parliamentary Debates and Political Cohesion
Ramit Sawhney
|
Arnav Wadhwa
|
Shivam Agarwal
|
Rajiv Ratn Shah
Parliamentary debates present a valuable language resource for analyzing comprehensive options in electing representatives under a functional, free society. However, the esoteric nature of political speech coupled with non-linguistic aspects such as political cohesion between party members presents a complex and underexplored task of contextual parliamentary debate analysis. We introduce GPolS, a neural model for political speech sentiment analysis jointly exploiting both semantic language representations and relations between debate transcripts, motions, and political party members. Through experiments on real-world English data and by visualizing attention, we provide a use case of GPolS as a tool for political speech analysis and polarity prediction.
pdf
bib
abs
Measuring Correlation-to-Causation Exaggeration in Press Releases
Bei Yu
|
Jun Wang
|
Lu Guo
|
Yingya Li
Press releases have an increasingly strong influence on media coverage of health research; however, they have been found to contain seriously exaggerated claims that can misinform the public and undermine public trust in science. In this study we propose an NLP approach to identify exaggerated causal claims made in health press releases that report on observational studies, which are designed to establish correlational findings, but are often exaggerated as causal. We developed a new corpus and trained models that can identify causal claims in the main statements in a press release. By comparing the claims made in a press release with the corresponding claims in the original research paper, we found that 22% of press releases made exaggerated causal claims from correlational findings in observational studies. Furthermore, universities exaggerated more often than journal publishers by a ratio of 1.5 to 1. Encouragingly, the exaggeration rate has slightly decreased over the past 10 years, despite the increase of the total number of press releases. More research is needed to understand the cause of the decreasing pattern.
pdf
bib
abs
Inflating Topic Relevance with Ideology: A Case Study of Political Ideology Bias in Social Topic Detection Models
Meiqi Guo
|
Rebecca Hwa
|
Yu-Ru Lin
|
Wen-Ting Chung
We investigate the impact of political ideology biases in training data. Through a set of comparison studies, we examine the propagation of biases in several widely-used NLP models and its effect on the overall retrieval accuracy. Our work highlights the susceptibility of large, complex models to propagating the biases from human-selected input, which may lead to a deterioration of retrieval accuracy, and the importance of controlling for these biases. Finally, as a way to mitigate the bias, we propose to learn a text representation that is invariant to political ideology while still judging topic relevance.
pdf
bib
abs
A Taxonomy of Empathetic Response Intents in Human Social Conversations
Anuradha Welivita
|
Pearl Pu
Open-domain conversational agents or chatbots are becoming increasingly popular in the natural language processing community. One of the challenges is enabling them to converse in an empathetic manner. Current neural response generation methods rely solely on end-to-end learning from large scale conversation data to generate dialogues. This approach can produce socially unacceptable responses due to the lack of large-scale quality data used to train the neural models. However, recent work has shown the promise of combining dialogue act/intent modelling and neural response generation. This hybrid method improves the response quality of chatbots and makes them more controllable and interpretable. A key element in dialog intent modelling is the development of a taxonomy. Inspired by this idea, we have manually labeled 500 response intents using a subset of a sizeable empathetic dialogue dataset (25K dialogues). Our goal is to produce a large-scale taxonomy for empathetic response intents. Furthermore, using lexical and machine learning methods, we automatically analysed both speaker and listener utterances of the entire dataset with identified response intents and 32 emotion categories. Finally, we use information visualization methods to summarize emotional dialogue exchange patterns and their temporal progression. These results reveal novel and important empathy patterns in human-human open-domain conversations and can serve as heuristics for hybrid approaches.
pdf
bib
abs
A Multitask Active Learning Framework for Natural Language Understanding
Hua Zhu
|
Wu Ye
|
Sihan Luo
|
Xidong Zhang
Natural language understanding (NLU) aims at identifying user intent and extracting semantic slots. This requires sufficient annotating data to get considerable performance in real-world situations. Active learning (AL) has been well-studied to decrease the needed amount of the annotating data and successfully applied to NLU. However, no research has been done on investigating how the relation information between intents and slots can improve the efficiency of AL algorithms. In this paper, we propose a multitask AL framework for NLU. Our framework enables pool-based AL algorithms to make use of the relation information between sub-tasks provided by a joint model, and we propose an efficient computation for the entropy of a joint model. Experimental results show our framework can achieve competitive performance with less training data than baseline methods on all datasets. We also demonstrate that when using the entropy as the query strategy, the model with complete relation information can perform better than those with partial information. Additionally, we demonstrate that the efficiency of these active learning algorithms in our framework is still effective when incorporate with the Bidirectional Encoder Representations from Transformers (BERT).
pdf
bib
abs
Two-level classification for dialogue act recognition in task-oriented dialogues
Philippe Blache
|
Massina Abderrahmane
|
Stéphane Rauzy
|
Magalie Ochs
|
Houda Oufaida
Dialogue act classification becomes a complex task when dealing with fine-grain labels. Many applications require such level of labelling, typically automatic dialogue systems. We present in this paper a 2-level classification technique, distinguishing between generic and specific dialogue acts (DA). This approach makes it possible to benefit from the very good accuracy of generic DA classification at the first level and proposes an efficient approach for specific DA, based on high-level linguistic features. Our results show the interest of involving such features into the classifiers, outperforming all other feature sets, in particular those classically used in DA classification.
pdf
bib
abs
Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling
Xu Cao
|
Deyi Xiong
|
Chongyang Shi
|
Chao Wang
|
Yao Meng
|
Changjian Hu
Joint intent detection and slot filling has recently achieved tremendous success in advancing the performance of utterance understanding. However, many joint models still suffer from the robustness problem, especially on noisy inputs or rare/unseen events. To address this issue, we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial examples to attack the joint model, and (2) training the model to defend against the joint adversarial examples so as to robustify the model on small perturbations. As the generated joint adversarial examples have different impacts on the intent detection and slot filling loss, we further propose a Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization term to the final loss function, which yields a stable training procedure. Extensive experiments and analyses on the lightweight models show that our proposed methods achieve significantly higher scores and substantially improve the robustness of both intent detection and slot filling. In addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two datasets.
pdf
bib
abs
Reasoning Requirements for Indirect Speech Act Interpretation
Vasanth Sarathy
|
Alexander Tsuetaki
|
Antonio Roque
|
Matthias Scheutz
We perform a corpus analysis to develop a representation of the knowledge and reasoning used to interpret indirect speech acts. An indirect speech act (ISA) is an utterance whose intended meaning is different from its literal meaning. We focus on those speech acts in which slight changes in situational or contextual information can switch the dominant intended meaning of an utterance from direct to indirect or vice-versa. We computationalize how various contextual features can influence a speaker’s beliefs, and how these beliefs can influence the intended meaning and choice of the surface form of an utterance. We axiomatize the domain-general patterns of reasoning involved, and implement a proof-of-concept architecture using Answer Set Programming. Our model is presented as a contribution to cognitive science and psycholinguistics, so representational decisions are justified by existing theoretical work.
pdf
bib
abs
Understanding Unnatural Questions Improves Reasoning over Text
Xiaoyu Guo
|
Yuan-Fang Li
|
Gholamreza Haffari
Complex question answering (CQA) over raw text is a challenging task. A prominent approach to this task is based on the programmer-interpreter framework, where the programmer maps the question into a sequence of reasoning actions and the interpreter then executes these actions on the raw text. Learning an effective CQA model requires large amounts of human-annotated data, consisting of the ground-truth sequence of reasoning actions, which is time-consuming and expensive to collect at scale. In this paper, we address the challenge of learning a high-quality programmer (parser) by projecting natural human-generated questions into unnatural machine-generated questions which are more convenient to parse. We firstly generate synthetic (question, action sequence) pairs by a data generator, and train a semantic parser that associates synthetic questions with their corresponding action sequences. To capture the diversity when applied to natural questions, we learn a projection model to map natural questions into their most similar unnatural questions for which the parser can work well. Without any natural training data, our projection model provides high-quality action sequences for the CQA task. Experimental results show that the QA model trained exclusively with synthetic data outperforms its state-of-the-art counterpart trained on human-labeled data.
pdf
bib
abs
An Empirical Study of Contextual Data Augmentation for Japanese Zero Anaphora Resolution
Ryuto Konno
|
Yuichiroh Matsubayashi
|
Shun Kiyono
|
Hiroki Ouchi
|
Ryo Takahashi
|
Kentaro Inui
One critical issue of zero anaphora resolution (ZAR) is the scarcity of labeled data. This study explores how effectively this problem can be alleviated by data augmentation. We adopt a state-of-the-art data augmentation method, called the contextual data augmentation (CDA), that generates labeled training instances using a pretrained language model. The CDA has been reported to work well for several other natural language processing tasks, including text classification and machine translation. This study addresses two underexplored issues on CDA, that is, how to reduce the computational cost of data augmentation and how to ensure the quality of the generated data. We also propose two methods to adapt CDA to ZAR: [MASK]-based augmentation and linguistically-controlled masking. Consequently, the experimental results on Japanese ZAR show that our methods contribute to both the accuracy gainand the computation cost reduction. Our closer analysis reveals that the proposed method can improve the quality of the augmented training data when compared to the conventional CDA.
pdf
bib
abs
A Large-Scale Corpus of E-mail Conversations with Standard and Two-Level Dialogue Act Annotations
Motoki Taniguchi
|
Yoshihiro Ueda
|
Tomoki Taniguchi
|
Tomoko Ohkuma
We present a large-scale corpus of e-mail conversations with domain-agnostic and two-level dialogue act (DA) annotations towards the goal of a better understanding of asynchronous conversations. We annotate over 6,000 messages and 35,000 sentences from more than 2,000 threads. For a domain-independent and application-independent DA annotations, we choose ISO standard 24617-2 as the annotation scheme. To assess the difficulty of DA recognition on our corpus, we evaluate several models, including a pre-trained contextual representation model, as our baselines. The experimental results show that BERT outperforms other neural network models, including previous state-of-the-art models, but falls short of a human performance. We also demonstrate that DA tags of two-level granularity enable a DA recognition model to learn efficiently by using multi-task learning. An evaluation of a model trained on our corpus against other domains of asynchronous conversation reveals the domain independence of our DA annotations.
pdf
bib
abs
Intra-/Inter-Interaction Network with Latent Interaction Modeling for Multi-turn Response Selection
Yang Deng
|
Wenxuan Zhang
|
Wai Lam
Multi-turn response selection has been extensively studied and applied to many real-world applications in recent years. However, current methods typically model the interactions between multi-turn utterances and candidate responses with iterative approaches, which is not practical as the turns of conversations vary. Besides, some latent features, such as user intent and conversation topic, are under-discovered in existing works. In this work, we propose Intra-/Inter-Interaction Network (I3) with latent interaction modeling to comprehensively model multi-level interactions between the utterance context and the response. In specific, we first encode the intra- and inter-utterance interaction with the given response from both individual utterance and the overall utterance context. Then we develop a latent multi-view subspace clustering module to model the latent interaction between the utterance and response. Experimental results show that the proposed method substantially and consistently outperforms existing state-of-the-art methods on three multi-turn response selection benchmark datasets.
pdf
bib
abs
Few-shot Pseudo-Labeling for Intent Detection
Thomas Dopierre
|
Christophe Gravier
|
Julien Subercaze
|
Wilfried Logerais
In this paper, we introduce a state-of-the-art pseudo-labeling technique for few-shot intent detection. We devise a folding/unfolding hierarchical clustering algorithm which assigns weighted pseudo-labels to unlabeled user utterances. We show that our two-step method yields significant improvement over existing solutions. This performance is achieved on multiple intent detection datasets, even in more challenging situations where the number of classes is large or when the dataset is highly imbalanced. Moreover, we confirm this results on the more general text classification task. We also demonstrate that our approach nicely complements existing solutions, thereby providing an even stronger state-of-the-art ensemble method.
pdf
bib
abs
Similarity or deeper understanding? Analyzing the TED-Q dataset of evoked questions
Matthijs Westera
|
Jacopo Amidei
|
Laia Mayol
We take a close look at a recent dataset of TED-talks annotated with the questions they implicitly evoke, TED-Q (Westera et al., 2020). We test to what extent the relation between a discourse and the questions it evokes is merely one of similarity or association, as opposed to deeper semantic/pragmatic interpretation. We do so by turning the TED-Q dataset into a binary classification task, constructing an analogous task from explicit questions we extract from the BookCorpus (Zhu et al., 2015), and fitting a BERT-based classifier alongside models based on different notions of similarity. The BERT-based classifier, achieving close to human performance, outperforms all similarity-based models, suggesting that there is more to identifying true evoked questions than plain similarity.
pdf
bib
abs
Sentiment Analysis for Emotional Speech Synthesis in a News Dialogue System
Hiroaki Takatsu
|
Ryota Ando
|
Yoichi Matsuyama
|
Tetsunori Kobayashi
As smart speakers and conversational robots become ubiquitous, the demand for expressive speech synthesis has increased. In this paper, to control the emotional parameters of the speech synthesis according to certain dialogue contents, we construct a news dataset with emotion labels (“positive,” “negative,” or “neutral”) annotated for each sentence. We then propose a method to identify emotion labels using a model combining BERT and BiLSTM-CRF, and evaluate its effectiveness using the constructed dataset. The results showed that the classification model performance can be efficiently improved by preferentially annotating news articles with low confidence in the human-in-the-loop machine learning framework.
pdf
bib
abs
Adversarial Learning on the Latent Space for Diverse Dialog Generation
Kashif Khan
|
Gaurav Sahu
|
Vikash Balasubramanian
|
Lili Mou
|
Olga Vechtomova
Generating relevant responses in a dialog is challenging, and requires not only proper modeling of context in the conversation, but also being able to generate fluent sentences during inference. In this paper, we propose a two-step framework based on generative adversarial nets for generating conditioned responses. Our model first learns a meaningful representation of sentences by autoencoding, and then learns to map an input query to the response representation, which is in turn decoded as a response sentence. Both quantitative and qualitative evaluations show that our model generates more fluent, relevant, and diverse responses than existing state-of-the-art methods.
pdf
bib
abs
Inconsistencies in Crowdsourced Slot-Filling Annotations: A Typology and Identification Methods
Stefan Larson
|
Adrian Cheung
|
Anish Mahendran
|
Kevin Leach
|
Jonathan K. Kummerfeld
Slot-filling models in task-driven dialog systems rely on carefully annotated training data. However, annotations by crowd workers are often inconsistent or contain errors. Simple solutions like manually checking annotations or having multiple workers label each sample are expensive and waste effort on samples that are correct. If we can identify inconsistencies, we can focus effort where it is needed. Toward this end, we define six inconsistency types in slot-filling annotations. Using three new noisy crowd-annotated datasets, we show that a wide range of inconsistencies occur and can impact system performance if not addressed. We then introduce automatic methods of identifying inconsistencies. Experiments on our new datasets show that these methods effectively reveal inconsistencies in data, though there is further scope for improvement.
pdf
bib
abs
Online Versus Offline NMT Quality: An In-depth Analysis on English-German and German-English
Maha Elbayad
|
Michael Ustaszewski
|
Emmanuelle Esperança-Rodier
|
Francis Brunet-Manquat
|
Jakob Verbeek
|
Laurent Besacier
We conduct in this work an evaluation study comparing offline and online neural machine translation architectures. Two sequence-to-sequence models: convolutional Pervasive Attention (Elbayad et al. 2018) and attention-based Transformer (Vaswani et al. 2017) are considered. We investigate, for both architectures, the impact of online decoding constraints on the translation quality through a carefully designed human evaluation on English-German and German-English language pairs, the latter being particularly sensitive to latency constraints. The evaluation results allow us to identify the strengths and shortcomings of each model when we shift to the online setup.
pdf
bib
abs
Informative Manual Evaluation of Machine Translation Output
Maja Popović
This work proposes a new method for manual evaluation of Machine Translation (MT) output based on marking actual issues in the translated text. The novelty is that the evaluators are not assigning any scores, nor classifying errors, but marking all problematic parts (words, phrases, sentences) of the translation. The main advantage of this method is that the resulting annotations do not only provide overall scores by counting words with assigned tags, but can be further used for analysis of errors and challenging linguistic phenomena, as well as inter-annotator disagreements. Detailed analysis and understanding of actual problems are not enabled by typical manual evaluations where the annotators are asked to assign overall scores or to rank two or more translations. The proposed method is very general: it can be applied on any genre/domain and language pair, and it can be guided by various types of quality criteria. Also, it is not restricted to MT output, but can be used for other types of generated text.
pdf
bib
abs
TransQuest: Translation Quality Estimation with Cross-lingual Transformers
Tharindu Ranasinghe
|
Constantin Orasan
|
Ruslan Mitkov
Recent years have seen big advances in the field of sentence-level quality estimation (QE), largely as a result of using neural-based architectures. However, the majority of these methods work only on the language pair they are trained on and need retraining for new language pairs. This process can prove difficult from a technical point of view and is usually computationally expensive. In this paper we propose a simple QE framework based on cross-lingual transformers, and we use it to implement and evaluate two different neural architectures. Our evaluation shows that the proposed methods achieve state-of-the-art results outperforming current open-source quality estimation frameworks when trained on datasets from WMT. In addition, the framework proves very useful in transfer learning settings, especially when dealing with low-resourced languages, allowing us to obtain very competitive results.
pdf
bib
abs
Monolingual and Multilingual Reduction of Gender Bias in Contextualized Representations
Sheng Liang
|
Philipp Dufter
|
Hinrich Schütze
Pretrained language models (PLMs) learn stereotypes held by humans and reflected in text from their training corpora, including gender bias. When PLMs are used for downstream tasks such as picking candidates for a job, people’s lives can be negatively affected by these learned stereotypes. Prior work usually identifies a linear gender subspace and removes gender information by eliminating the subspace. Following this line of work, we propose to use DensRay, an analytical method for obtaining interpretable dense subspaces. We show that DensRay performs on-par with prior approaches, but provide arguments that it is more robust and provide indications that it preserves language model performance better. By applying DensRay to attention heads and layers of BERT we show that gender information is spread across all attention heads and most of the layers. Also we show that DensRay can obtain gender bias scores on both token and sentence levels. Finally, we demonstrate that we can remove bias multilingually, e.g., from Chinese, using only English training data.
pdf
bib
abs
AraBench: Benchmarking Dialectal Arabic-English Machine Translation
Hassan Sajjad
|
Ahmed Abdelali
|
Nadir Durrani
|
Fahim Dalvi
Low-resource machine translation suffers from the scarcity of training data and the unavailability of standard evaluation sets. While a number of research efforts target the former, the unavailability of evaluation benchmarks remain a major hindrance in tracking the progress in low-resource machine translation. In this paper, we introduce AraBench, an evaluation suite for dialectal Arabic to English machine translation. Compared to Modern Standard Arabic, Arabic dialects are challenging due to their spoken nature, non-standard orthography, and a large variation in dialectness. To this end, we pool together already available Dialectal Arabic-English resources and additionally build novel test sets. AraBench offers 4 coarse, 15 fine-grained and 25 city-level dialect categories, belonging to diverse genres, such as media, chat, religion and travel with varying level of dialectness. We report strong baselines using several training settings: fine-tuning, back-translation and data augmentation. The evaluation suite opens a wide range of research frontiers to push efforts in low-resource machine translation, particularly Arabic dialect translation. The evaluation suite and the dialectal system are publicly available for research purposes.
pdf
bib
abs
Learning to Few-Shot Learn Across Diverse Natural Language Classification Tasks
Trapit Bansal
|
Rishikesh Jha
|
Andrew McCallum
Pre-trained transformer models have shown enormous success in improving performance on several downstream tasks. However, fine-tuning on a new task still requires large amounts of task-specific labeled data to achieve good performance. We consider this problem of learning to generalize to new tasks, with a few examples, as a meta-learning problem. While meta-learning has shown tremendous progress in recent years, its application is still limited to simulated problems or problems with limited diversity across tasks. We develop a novel method, LEOPARD, which enables optimization-based meta-learning across tasks with a different number of classes, and evaluate different methods on generalization to diverse NLP classification tasks. LEOPARD is trained with the state-of-the-art transformer architecture and shows better generalization to tasks not seen at all during training, with as few as 4 examples per label. Across 17 NLP tasks, including diverse domains of entity typing, natural language inference, sentiment analysis, and several other text classification tasks, we show that LEOPARD learns better initial parameters for few-shot learning than self-supervised pre-training or multi-task training, outperforming many strong baselines, for example, yielding 14.6% average relative gain in accuracy on unseen tasks with only 4 examples per label.
pdf
bib
abs
A Mixture-of-Experts Model for Learning Multi-Facet Entity Embeddings
Rana Alshaikh
|
Zied Bouraoui
|
Shelan Jeawak
|
Steven Schockaert
Various methods have already been proposed for learning entity embeddings from text descriptions. Such embeddings are commonly used for inferring properties of entities, for recommendation and entity-oriented search, and for injecting background knowledge into neural architectures, among others. Entity embeddings essentially serve as a compact encoding of a similarity relation, but similarity is an inherently multi-faceted notion. By representing entities as single vectors, existing methods leave it to downstream applications to identify these different facets, and to select the most relevant ones. In this paper, we propose a model that instead learns several vectors for each entity, each of which intuitively captures a different aspect of the considered domain. We use a mixture-of-experts formulation to jointly learn these facet-specific embeddings. The individual entity embeddings are learned using a variant of the GloVe model, which has the advantage that we can easily identify which properties are modelled well in which of the learned embeddings. This is exploited by an associated gating network, which uses pre-trained word vectors to encourage the properties that are modelled by a given embedding to be semantically coherent, i.e. to encourage each of the individual embeddings to capture a meaningful facet.
pdf
bib
abs
Classifier Probes May Just Learn from Linear Context Features
Jenny Kunz
|
Marco Kuhlmann
Classifiers trained on auxiliary probing tasks are a popular tool to analyze the representations learned by neural sentence encoders such as BERT and ELMo. While many authors are aware of the difficulty to distinguish between “extracting the linguistic structure encoded in the representations” and “learning the probing task,” the validity of probing methods calls for further research. Using a neighboring word identity prediction task, we show that the token embeddings learned by neural sentence encoders contain a significant amount of information about the exact linear context of the token, and hypothesize that, with such information, learning standard probing tasks may be feasible even without additional linguistic structure. We develop this hypothesis into a framework in which analysis efforts can be scrutinized and argue that, with current models and baselines, conclusions that representations contain linguistic structure are not well-founded. Current probing methodology, such as restricting the classifier’s expressiveness or using strong baselines, can help to better estimate the complexity of learning, but not build a foundation for speculations about the nature of the linguistic structure encoded in the learned representations.
pdf
bib
abs
Priorless Recurrent Networks Learn Curiously
Jeff Mitchell
|
Jeffrey Bowers
Recently, domain-general recurrent neural networks, without explicit linguistic inductive biases, have been shown to successfully reproduce a range of human language behaviours, such as accurately predicting number agreement between nouns and verbs. We show that such networks will also learn number agreement within unnatural sentence structures, i.e. structures that are not found within any natural languages and which humans struggle to process. These results suggest that the models are learning from their input in a manner that is substantially different from human language acquisition, and we undertake an analysis of how the learned knowledge is stored in the weights of the network. We find that while the model has an effective understanding of singular versus plural for individual sentences, there is a lack of a unified concept of number agreement connecting these processes across the full range of inputs. Moreover, the weights handling natural and unnatural structures overlap substantially, in a way that underlines the non-human-like nature of the knowledge learned by the network.
pdf
bib
abs
Answer-driven Deep Question Generation based on Reinforcement Learning
Liuyin Wang
|
Zihan Xu
|
Zibo Lin
|
Haitao Zheng
|
Ying Shen
Deep question generation (DQG) aims to generate complex questions through reasoning over multiple documents. The task is challenging and underexplored. Existing methods mainly focus on enhancing document representations, with little attention paid to the answer information, which may result in the generated question not matching the answer type and being answerirrelevant. In this paper, we propose an Answer-driven Deep Question Generation (ADDQG) model based on the encoder-decoder framework. The model makes better use of the target answer as a guidance to facilitate question generation. First, we propose an answer-aware initialization module with a gated connection layer which introduces both document and answer information to the decoder, thus helping to guide the choice of answer-focused question words. Then a semantic-rich fusion attention mechanism is designed to support the decoding process, which integrates the answer with the document representations to promote the proper handling of answer information during generation. Moreover, reinforcement learning is applied to integrate both syntactic and semantic metrics as the reward to enhance the training of the ADDQG. Extensive experiments on the HotpotQA dataset show that ADDQG outperforms state-of-the-art models in both automatic and human evaluations.
pdf
bib
abs
Distinguishing Between Foreground and Background Events in News
Mohammed Aldawsari
|
Adrian Perez
|
Deya Banisakher
|
Mark Finlayson
Determining whether an event in a news article is a foreground or background event would be useful in many natural language processing tasks, for example, temporal relation extraction, summarization, or storyline generation. We introduce the task of distinguishing between foreground and background events in news articles as well as identifying the general temporal position of background events relative to the foreground period (past, present, future, and their combinations). We achieve good performance (0.73 F1 for background vs. foreground and temporal position, and 0.79 F1 for background vs. foreground only) on a dataset of news articles by leveraging discourse information in a featurized model. We release our implementation and annotated data for other researchers
pdf
bib
abs
Pick a Fight or Bite your Tongue: Investigation of Gender Differences in Idiomatic Language Usage
Ella Rabinovich
|
Hila Gonen
|
Suzanne Stevenson
A large body of research on gender-linked language has established foundations regarding cross-gender differences in lexical, emotional, and topical preferences, along with their sociological underpinnings. We compile a novel, large and diverse corpus of spontaneous linguistic productions annotated with speakers’ gender, and perform a first large-scale empirical study of distinctions in the usage of figurative language between male and female authors. Our analyses suggest that (1) idiomatic choices reflect gender-specific lexical and semantic preferences in general language, (2) men’s and women’s idiomatic usages express higher emotion than their literal language, with detectable, albeit more subtle, differences between male and female authors along the dimension of dominance compared to similar distinctions in their literal utterances, and (3) contextual analysis of idiomatic expressions reveals considerable differences, reflecting subtle divergences in usage environments, shaped by cross-gender communication styles and semantic biases.
pdf
bib
abs
Intra-Correlation Encoding for Chinese Sentence Intention Matching
Xu Zhang
|
Yifeng Li
|
Wenpeng Lu
|
Ping Jian
|
Guoqiang Zhang
Sentence intention matching is vital for natural language understanding. Especially for Chinese sentence intention matching task, due to the ambiguity of Chinese words, semantic missing or semantic confusion are more likely to occur in the encoding process. Although the existing methods have enriched text representation through pre-trained word embedding to solve this problem, due to the particularity of Chinese text, different granularities of pre-trained word embedding will affect the semantic description of a piece of text. In this paper, we propose an effective approach that combines character-granularity and word-granularity features to perform sentence intention matching, and we utilize soft alignment attention to enhance the local information of sentences on the corresponding levels. The proposed method can capture sentence feature information from multiple perspectives and correlation information between different levels of sentences. By evaluating on BQ and LCQMC datasets, our model has achieved remarkable results, and demonstrates better or comparable performance with BERT-based models.
pdf
bib
abs
Explain by Evidence: An Explainable Memory-based Neural Network for Question Answering
Quan Hung Tran
|
Nhan Dam
|
Tuan Lai
|
Franck Dernoncourt
|
Trung Le
|
Nham Le
|
Dinh Phung
Interpretability and explainability of deep neural net models are always challenging due to their size and complexity. Many previous works focused on visualizing internal components of neural networks to represent them through human-friendly concepts. On the other hand, in real life, when making a decision, human tends to rely on similar situations in the past. Thus, we argue that one potential approach to make the model interpretable and explainable is to design it in a way such that the model explicitly connects the current sample with the seen samples, and bases its decision on these samples. In this work, we design one such model: an explainable, evidence-based memory network architecture, which learns to summarize the dataset and extract supporting evidences to make its decision. The model achieves state-of-the-art performance on two popular question answering datasets, the TrecQA dataset and the WikiQA dataset. Via further analysis, we showed that this model can reliably trace the errors it has made in the validation step to the training instances that might have caused this error. We believe that this error-tracing capability might be beneficial in improving dataset quality in many applications.
pdf
bib
abs
A Study on Efficiency, Accuracy and Document Structure for Answer Sentence Selection
Daniele Bonadiman
|
Alessandro Moschitti
An essential task of most Question Answering (QA) systems is to re-rank the set of answer candidates, i.e., Answer Sentence Selection (AS2). These candidates are typically sentences either extracted from one or more documents preserving their natural order or retrieved by a search engine. Most state-of-the-art approaches to the task use huge neural models, such as BERT, or complex attentive architectures. In this paper, we argue that by exploiting the intrinsic structure of the original rank together with an effective word-relatedness encoder, we achieve the highest accuracy among the cost-efficient models, with two orders of magnitude fewer parameters than the current state of the art. Our model takes 9.5 seconds to train on the WikiQA dataset, i.e., very fast in comparison with the 18 minutes required by a standard BERT-base fine-tuning.
pdf
bib
abs
Auto-Encoding Variational Bayes for Inferring Topics and Visualization
Dang Pham
|
Tuan Le
Visualization and topic modeling are widely used approaches for text analysis. Traditional visualization methods find low-dimensional representations of documents in the visualization space (typically 2D or 3D) that can be displayed using a scatterplot. In contrast, topic modeling aims to discover topics from text, but for visualization, one needs to perform a post-hoc embedding using dimensionality reduction methods. Recent approaches propose using a generative model to jointly find topics and visualization, allowing the semantics to be infused in the visualization space for a meaningful interpretation. A major challenge that prevents these methods from being used practically is the scalability of their inference algorithms. We present, to the best of our knowledge, the first fast Auto-Encoding Variational Bayes based inference method for jointly inferring topics and visualization. Since our method is black box, it can handle model changes efficiently with little mathematical rederivation effort. We demonstrate the efficiency and effectiveness of our method on real-world large datasets and compare it with existing baselines.
pdf
bib
abs
Hy-NLI: a Hybrid system for Natural Language Inference
Aikaterini-Lida Kalouli
|
Richard Crouch
|
Valeria de Paiva
Despite the advances in Natural Language Inference through the training of massive deep models, recent work has revealed the generalization difficulties of such models, which fail to perform on adversarial datasets with challenging linguistic phenomena. Such phenomena, however, can be handled well by symbolic systems. Thus, we propose Hy-NLI, a hybrid system that learns to identify an NLI pair as linguistically challenging or not. Based on that, it uses its symbolic or deep learning component, respectively, to make the final inference decision. We show how linguistically less complex cases are best solved by robust state-of-the-art models, like BERT and XLNet, while hard linguistic phenomena are best handled by our implemented symbolic engine. Our thorough evaluation shows that our hybrid system achieves state-of-the-art performance across mainstream and adversarial datasets and opens the way for further research into the hybrid direction.
pdf
bib
abs
Identifying Motion Entities in Natural Language and A Case Study for Named Entity Recognition
Ngoc Phuoc An Vo
|
Irene Manotas
|
Vadim Sheinin
|
Octavian Popescu
Motion recognition is one of the basic cognitive capabilities of many life forms, however, detecting and understanding motion in text is not a trivial task. In addition, identifying motion entities in natural language is not only challenging but also beneficial for a better natural language understanding. In this paper, we present a Motion Entity Tagging (MET) model to identify entities in motion in a text using the Literal-Motion-in-Text (LiMiT) dataset for training and evaluating the model. Then we propose a new method to split clauses and phrases from complex and long motion sentences to improve the performance of our MET model. We also present results showing that motion features, in particular, entity in motion benefits the Named-Entity Recognition (NER) task. Finally, we present an analysis for the special co-occurrence relation between the person category in NER and animate entities in motion, which significantly improves the classification performance for the person category in NER.
pdf
bib
abs
Global Context-enhanced Graph Convolutional Networks for Document-level Relation Extraction
Huiwei Zhou
|
Yibin Xu
|
Weihong Yao
|
Zhe Liu
|
Chengkun Lang
|
Haibin Jiang
Document-level Relation Extraction (RE) is particularly challenging due to complex semantic interactions among multiple entities in a document. Among exiting approaches, Graph Convolutional Networks (GCN) is one of the most effective approaches for document-level RE. However, traditional GCN simply takes word nodes and adjacency matrix to represent graphs, which is difficult to establish direct connections between distant entity pairs. In this paper, we propose Global Context-enhanced Graph Convolutional Networks (GCGCN), a novel model which is composed of entities as nodes and context of entity pairs as edges between nodes to capture rich global context information of entities in a document. Two hierarchical blocks, Context-aware Attention Guided Graph Convolution (CAGGC) for partially connected graphs and Multi-head Attention Guided Graph Convolution (MAGGC) for fully connected graphs, could take progressively more global context into account. Meantime, we leverage a large-scale distantly supervised dataset to pre-train a GCGCN model with curriculum learning, which is then fine-tuned on the human-annotated dataset for further improving document-level RE performance. The experimental results on DocRED show that our model could effectively capture rich global context information in the document, leading to a state-of-the-art result. Our code is available at
https://github.com/Huiweizhou/GCGCN.
pdf
bib
abs
Diverse Keyphrase Generation with Neural Unlikelihood Training
Hareesh Bahuleyan
|
Layla El Asri
In this paper, we study sequence-to-sequence (S2S) keyphrase generation models from the perspective of diversity. Recent advances in neural natural language generation have made possible remarkable progress on the task of keyphrase generation, demonstrated through improvements on quality metrics such as F1-score. However, the importance of diversity in keyphrase generation has been largely ignored. We first analyze the extent of information redundancy present in the outputs generated by a baseline model trained using maximum likelihood estimation (MLE). Our findings show that repetition of keyphrases is a major issue with MLE training. To alleviate this issue, we adopt neural unlikelihood (UL) objective for training the S2S model. Our version of UL training operates at (1) the target token level to discourage the generation of repeating tokens; (2) the copy token level to avoid copying repetitive tokens from the source text. Further, to encourage better model planning during the decoding process, we incorporate K-step ahead token prediction objective that computes both MLE and UL losses on future tokens as well. Through extensive experiments on datasets from three different domains we demonstrate that the proposed approach attains considerably large diversity gains, while maintaining competitive output quality.
pdf
bib
abs
User Memory Reasoning for Conversational Recommendation
Hu Xu
|
Seungwhan Moon
|
Honglei Liu
|
Bing Liu
|
Pararth Shah
|
Bing Liu
|
Philip Yu
We study an end-to-end approach for conversational recommendation that dynamically manages and reasons over users’ past (offline) preferences and current (online) requests through a structured and cumulative user memory knowledge graph. This formulation extends existing state tracking beyond the boundary of a single dialog to user state tracking (UST). For this study, we create a new Memory Graph (MG) <-> Conversational Recommendation parallel corpus called MGConvRex with 7K+ human-to-human role-playing dialogs, grounded on a large-scale user memory bootstrapped from real-world user scenarios. MGConvRex captures human-level reasoning over user memory and has disjoint training/testing sets of users for zero-shot (cold-start) reasoning for recommendation. We propose a simple yet expandable formulation for constructing and updating the MG, and an end-to-end graph-based reasoning model that updates MG from unstructured utterances and predicts optimal dialog policies (eg recommendation) based on updated MG. The prediction of our proposed model inherits the graph structure, providing a natural way to explain policies. Experiments are conducted for both offline metrics and online simulation, showing competitive results.
pdf
bib
abs
Diverse and Non-redundant Answer Set Extraction on Community QA based on DPPs
Shogo Fujita
|
Tomohide Shibata
|
Manabu Okumura
In community-based question answering (CQA) platforms, it takes time for a user to get useful information from among many answers. Although one solution is an answer ranking method, the user still needs to read through the top-ranked answers carefully. This paper proposes a new task of selecting a diverse and non-redundant answer set rather than ranking the answers. Our method is based on determinantal point processes (DPPs), and it calculates the answer importance and similarity between answers by using BERT. We built a dataset focusing on a Japanese CQA site, and the experiments on this dataset demonstrated that the proposed method outperformed several baseline methods.
pdf
bib
abs
An empirical analysis of existing systems and datasets toward general simple question answering
Namgi Han
|
Goran Topic
|
Hiroshi Noji
|
Hiroya Takamura
|
Yusuke Miyao
In this paper, we evaluate the progress of our field toward solving simple factoid questions over a knowledge base, a practically important problem in natural language interface to database. As in other natural language understanding tasks, a common practice for this task is to train and evaluate a model on a single dataset, and recent studies suggest that SimpleQuestions, the most popular and largest dataset, is nearly solved under this setting. However, this common setting does not evaluate the robustness of the systems outside of the distribution of the used training data. We rigorously evaluate such robustness of existing systems using different datasets. Our analysis, including shifting of training and test datasets and training on a union of the datasets, suggests that our progress in solving SimpleQuestions dataset does not indicate the success of more general simple question answering. We discuss a possible future direction toward this goal.
pdf
bib
abs
Learn to Combine Linguistic and Symbolic Information for Table-based Fact Verification
Qi Shi
|
Yu Zhang
|
Qingyu Yin
|
Ting Liu
Table-based fact verification is expected to perform both linguistic reasoning and symbolic reasoning. Existing methods lack attention to take advantage of the combination of linguistic information and symbolic information. In this work, we propose HeterTFV, a graph-based reasoning approach, that learns to combine linguistic information and symbolic information effectively. We first construct a program graph to encode programs, a kind of LISP-like logical form, to learn the semantic compositionality of the programs. Then we construct a heterogeneous graph to incorporate both linguistic information and symbolic information by introducing program nodes into the heterogeneous graph. Finally, we propose a graph-based reasoning approach to reason over the multiple types of nodes to make an effective combination of both types of information. Experimental results on a large-scale benchmark dataset TABFACT illustrate the effect of our approach.
pdf
bib
abs
CosMo: Conditional Seq2Seq-based Mixture Model for Zero-Shot Commonsense Question Answering
Farhad Moghimifar
|
Lizhen Qu
|
Yue Zhuo
|
Mahsa Baktashmotlagh
|
Gholamreza Haffari
Commonsense reasoning refers to the ability of evaluating a social situation and acting accordingly. Identification of the implicit causes and effects of a social context is the driving capability which can enable machines to perform commonsense reasoning. The dynamic world of social interactions requires context-dependent on-demand systems to infer such underlying information. However, current approaches in this realm lack the ability to perform commonsense reasoning upon facing an unseen situation, mostly due to incapability of identifying a diverse range of implicit social relations. Hence they fail to estimate the correct reasoning path. In this paper, we present Conditional Seq2Seq-based Mixture model (CosMo), which provides us with the capabilities of dynamic and diverse content generation. We use CosMo to generate context-dependent clauses, which form a dynamic Knowledge Graph (KG) on-the-fly for commonsense reasoning. To show the adaptability of our model to context-dependant knowledge generation, we address the task of zero-shot commonsense question answering. The empirical results indicate an improvement of up to +5.2% over the state-of-the-art models.
pdf
bib
abs
Enhancing Extractive Text Summarization with Topic-Aware Graph Neural Networks
Peng Cui
|
Le Hu
|
Yuanchao Liu
Text summarization aims to compress a textual document to a short summary while keeping salient information. Extractive approaches are widely used in text summarization because of their fluency and efficiency. However, most of existing extractive models hardly capture inter-sentence relationships, particularly in long documents. They also often ignore the effect of topical information on capturing important contents. To address these issues, this paper proposes a graph neural network (GNN)-based extractive summarization model, enabling to capture inter-sentence relationships efficiently via graph-structured document representation. Moreover, our model integrates a joint neural topic model (NTM) to discover latent topics, which can provide document-level features for sentence selection. The experimental results demonstrate that our model not only substantially achieves state-of-the-art results on CNN/DM and NYT datasets but also considerably outperforms existing approaches on scientific paper datasets consisting of much longer documents, indicating its better robustness in document genres and lengths. Further discussions show that topical information can help the model preselect salient contents from an entire document, which interprets its effectiveness in long document summarization.
pdf
bib
abs
SaSAKE: Syntax and Semantics Aware Keyphrase Extraction from Research Papers
Santosh T.y.s.s
|
Debarshi Kumar Sanyal
|
Plaban Kumar Bhowmick
|
Partha Pratim Das
Keyphrases in a research paper succinctly capture the primary content of the paper and also assist in indexing the paper at a concept level. Given the huge rate at which scientific papers are published today, it is important to have effective ways of automatically extracting keyphrases from a research paper. In this paper, we present a novel method, Syntax and Semantics Aware Keyphrase Extraction (SaSAKE), to extract keyphrases from research papers. It uses a transformer architecture, stacking up sentence encoders to incorporate sequential information, and graph encoders to incorporate syntactic and semantic dependency graph information. Incorporation of these dependency graphs helps to alleviate long-range dependency problems and identify the boundaries of multi-word keyphrases effectively. Experimental results on three benchmark datasets show that our proposed method SaSAKE achieves state-of-the-art performance in keyphrase extraction from scientific papers.
pdf
bib
abs
News Editorials: Towards Summarizing Long Argumentative Texts
Shahbaz Syed
|
Roxanne El Baff
|
Johannes Kiesel
|
Khalid Al Khatib
|
Benno Stein
|
Martin Potthast
The automatic summarization of argumentative texts has hardly been explored. This paper takes a further step in this direction, targeting news editorials, i.e., opinionated articles with a well-defined argumentation structure. With Webis-EditorialSum-2020, we present a corpus of 1330 carefully curated summaries for 266 news editorials. We evaluate these summaries based on a tailored annotation scheme, where a high-quality summary is expected to be thesis-indicative, persuasive, reasonable, concise, and self-contained. Our corpus contains at least three high-quality summaries for about 90% of the editorials, rendering it a valuable resource for the development and evaluation of summarization technology for long argumentative texts. We further report details of both, an in-depth corpus analysis, and the evaluation of two extractive summarization models.
pdf
bib
abs
Automatic Interlinear Glossing for Under-Resourced Languages Leveraging Translations
Xingyuan Zhao
|
Satoru Ozaki
|
Antonios Anastasopoulos
|
Graham Neubig
|
Lori Levin
Interlinear Glossed Text (IGT) is a widely used format for encoding linguistic information in language documentation projects and scholarly papers. Manual production of IGT takes time and requires linguistic expertise. We attempt to address this issue by creating automatic glossing models, using modern multi-source neural models that additionally leverage easy-to-collect translations. We further explore cross-lingual transfer and a simple output length control mechanism, further refining our models. Evaluated on three challenging low-resource scenarios, our approach significantly outperforms a recent, state-of-the-art baseline, particularly improving on overall accuracy as well as lemma and tag recall.
pdf
bib
abs
Scientific Keyphrase Identification and Classification by Pre-Trained Language Models Intermediate Task Transfer Learning
Seoyeon Park
|
Cornelia Caragea
Scientific keyphrase identification and classification is the task of detecting and classifying keyphrases from scholarly text with their types from a set of predefined classes. This task has a wide range of benefits, but it is still challenging in performance due to the lack of large amounts of labeled data required for training deep neural models. In order to overcome this challenge, we explore pre-trained language models BERT and SciBERT with intermediate task transfer learning, using 42 data-rich related intermediate-target task combinations. We reveal that intermediate task transfer learning on SciBERT induces a better starting point for target task fine-tuning compared with BERT and achieves competitive performance in scientific keyphrase identification and classification compared to both previous works and strong baselines. Interestingly, we observe that BERT with intermediate task transfer learning fails to improve the performance of scientific keyphrase identification and classification potentially due to significant catastrophic forgetting. This result highlights that scientific knowledge achieved during the pre-training of language models on large scientific collections plays an important role in the target tasks. We also observe that sequence tagging related intermediate tasks, especially syntactic structure learning tasks such as POS Tagging, tend to work best for scientific keyphrase identification and classification.
pdf
bib
abs
Exploiting Microblog Conversation Structures to Detect Rumors
Jiawen Li
|
Yudianto Sujana
|
Hung-Yu Kao
As one of the most popular social media platforms, Twitter has become a primary source of information for many people. Unfortunately, both valid information and rumors are propagated on Twitter due to the lack of an automatic information verification system. Twitter users communicate by replying to other users’ messages, forming a conversation structure. Using this structure, users can decide whether the information in the source tweet is a rumor by reading the tweet’s replies, which voice other users’ stances on the tweet. The majority of rumor detection researchers process such tweets based on time, ignoring the conversation structure. To reap the benefits of the Twitter conversation structure, we developed a model to detect rumors by modeling conversation structure as a graph. Thus, our model’s improved representation of the conversation structure enhances its rumor detection accuracy. The experimental results on two rumor datasets show that our model outperforms several baseline models, including a state-of-the-art model
pdf
bib
abs
Explainable Automated Fact-Checking: A Survey
Neema Kotonya
|
Francesca Toni
A number of exciting advances have been made in automated fact-checking thanks to increasingly larger datasets and more powerful systems, leading to improvements in the complexity of claims which can be accurately fact-checked. However, despite these advances, there are still desirable functionalities missing from the fact-checking pipeline. In this survey, we focus on the explanation functionality – that is fact-checking systems providing reasons for their predictions. We summarize existing methods for explaining the predictions of fact-checking systems and we explore trends in this topic. Further, we consider what makes for good explanations in this specific domain through a comparative analysis of existing fact-checking explanations against some desirable properties. Finally, we propose further research directions for generating fact-checking explanations, and describe how these may lead to improvements in the research area.
pdf
bib
abs
Early Detection of Fake News by Utilizing the Credibility of News, Publishers, and Users based on Weakly Supervised Learning
Chunyuan Yuan
|
Qianwen Ma
|
Wei Zhou
|
Jizhong Han
|
Songlin Hu
The dissemination of fake news significantly affects personal reputation and public trust. Recently, fake news detection has attracted tremendous attention, and previous studies mainly focused on finding clues from news content or diffusion path. However, the required features of previous models are often unavailable or insufficient in early detection scenarios, resulting in poor performance. Thus, early fake news detection remains a tough challenge. Intuitively, the news from trusted and authoritative sources or shared by many users with a good reputation is more reliable than other news. Using the credibility of publishers and users as prior weakly supervised information, we can quickly locate fake news in massive news and detect them in the early stages of dissemination. In this paper, we propose a novel structure-aware multi-head attention network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users, to jointly optimize the fake news detection and credibility prediction tasks. In this way, we can explicitly exploit the credibility of publishers and users for early fake news detection. We conducted experiments on three real-world datasets, and the results show that SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.
pdf
bib
abs
Debunking Rumors on Twitter with Tree Transformer
Jing Ma
|
Wei Gao
Rumors are manufactured with no respect for accuracy, but can circulate quickly and widely by “word-of-post” through social media conversations. Conversation tree encodes important information indicative of the credibility of rumor. Existing conversation-based techniques for rumor detection either just strictly follow tree edges or treat all the posts fully-connected during feature learning. In this paper, we propose a novel detection model based on tree transformer to better utilize user interactions in the dialogue where post-level self-attention plays the key role for aggregating the intra-/inter-subtree stances. Experimental results on the TWITTER and PHEME datasets show that the proposed approach consistently improves rumor detection performance.
pdf
bib
abs
Words are the Window to the Soul: Language-based User Representations for Fake News Detection
Marco Del Tredici
|
Raquel Fernández
Cognitive and social traits of individuals are reflected in language use. Moreover, individuals who are prone to spread fake news online often share common traits. Building on these ideas, we introduce a model that creates representations of individuals on social media based only on the language they produce, and use them to detect fake news. We show that language-based user representations are beneficial for this task. We also present an extended analysis of the language of fake news spreaders, showing that its main features are mostly domain independent and consistent across two English datasets. Finally, we exploit the relation between language use and connections in the social graph to assess the presence of the Echo Chamber effect in our data.
pdf
bib
abs
Argumentation Mining on Essays at Multi Scales
Hao Wang
|
Zhen Huang
|
Yong Dou
|
Yu Hong
Argumentation mining on essays is a new challenging task in natural language processing, which aims to identify the types and locations of argumentation components. Recent research mainly models the task as a sequence tagging problem and deal with all the argumentation components at word level. However, this task is not scale-independent. Some types of argumentation components which serve as core opinions on essays or paragraphs, are at essay level or paragraph level. Sequence tagging method conducts reasoning by local context words, and fails to effectively mine these components. To this end, we propose a multi-scale argumentation mining model, where we respectively mine different types of argumentation components at corresponding levels. Besides, an effective coarse-to-fine argumentation fusion mechanism is proposed to further improve the performance. We conduct a serial of experiments on the Persuasive Essay dataset (PE2.0). Experimental results indicate that our model outperforms existing models on mining all types of argumentation components.
pdf
bib
abs
Data Augmentation for Multiclass Utterance Classification – A Systematic Study
Binxia Xu
|
Siyuan Qiu
|
Jie Zhang
|
Yafang Wang
|
Xiaoyu Shen
|
Gerard de Melo
Utterance classification is a key component in many conversational systems. However, classifying real-world user utterances is challenging, as people may express their ideas and thoughts in manifold ways, and the amount of training data for some categories may be fairly limited, resulting in imbalanced data distributions. To alleviate these issues, we conduct a comprehensive survey regarding data augmentation approaches for text classification, including simple random resampling, word-level transformations, and neural text generation to cope with imbalanced data. Our experiments focus on multi-class datasets with a large number of data samples, which has not been systematically studied in previous work. The results show that the effectiveness of different data augmentation schemes depends on the nature of the dataset under consideration.
pdf
bib
abs
KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi
Rubungo Andre Niyongabo
|
Qu Hong
|
Julia Kreutzer
|
Li Huang
Recent progress in text classification has been focused on high-resource languages such as English and Chinese. For low-resource languages, amongst them most African languages, the lack of well-annotated data and effective preprocessing, is hindering the progress and the transfer of successful methods. In this paper, we introduce two news datasets (KINNEWS and IRNEWS) for multi-class classification of news articles in Kinyarwanda and Kirundi, two low-resource African languages. The two languages are mutually intelligible, but while Kinyarwanda has been studied in Natural Language Processing (NLP) to some extent, this work constitutes the first study on Kirundi. Along with the datasets, we provide statistics, guidelines for preprocessing, and monolingual and cross-lingual baseline models. Our experiments show that training embeddings on the relatively higher-resourced Kinyarwanda yields successful cross-lingual transfer to Kirundi. In addition, the design of the created datasets allows for a wider use in NLP beyond text classification in future studies, such as representation learning, cross-lingual learning with more distant languages, or as base for new annotations for tasks such as parsing, POS tagging, and NER. The datasets, stopwords, and pre-trained embeddings are publicly available at
https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus.
pdf
bib
abs
Go Simple and Pre-Train on Domain-Specific Corpora: On the Role of Training Data for Text Classification
Aleksandra Edwards
|
Jose Camacho-Collados
|
Hélène De Ribaupierre
|
Alun Preece
Pre-trained language models provide the foundations for state-of-the-art performance across a wide range of natural language processing tasks, including text classification. However, most classification datasets assume a large amount labeled data, which is commonly not the case in practical settings. In particular, in this paper we compare the performance of a light-weight linear classifier based on word embeddings, i.e., fastText (Joulin et al., 2017), versus a pre-trained language model, i.e., BERT (Devlin et al., 2019), across a wide range of datasets and classification tasks. In general, results show the importance of domain-specific unlabeled data, both in the form of word embeddings or language models. As for the comparison, BERT outperforms all baselines in standard datasets with large training sets. However, in settings with small training datasets a simple method like fastText coupled with domain-specific word embeddings performs equally well or better than BERT, even when pre-trained on domain-specific data.
pdf
bib
abs
Unsupervised Fine-tuning for Text Clustering
Shaohan Huang
|
Furu Wei
|
Lei Cui
|
Xingxing Zhang
|
Ming Zhou
Fine-tuning with pre-trained language models (e.g. BERT) has achieved great success in many language understanding tasks in supervised settings (e.g. text classification). However, relatively little work has been focused on applying pre-trained models in unsupervised settings, such as text clustering. In this paper, we propose a novel method to fine-tune pre-trained models unsupervisedly for text clustering, which simultaneously learns text representations and cluster assignments using a clustering oriented loss. Experiments on three text clustering datasets (namely TREC-6, Yelp, and DBpedia) show that our model outperforms the baseline methods and achieves state-of-the-art results.
pdf
bib
abs
Exploiting Narrative Context and A Priori Knowledge of Categories in Textual Emotion Classification
Hikari Tanabe
|
Tetsuji Ogawa
|
Tetsunori Kobayashi
|
Yoshihiko Hayashi
Recognition of the mental state of a human character in text is a major challenge in natural language processing. In this study, we investigate the efficacy of the narrative context in recognizing the emotional states of human characters in text and discuss an approach to make use of a priori knowledge regarding the employed emotion category system. Specifically, we experimentally show that the accuracy of emotion classification is substantially increased by encoding the preceding context of the target sentence using a BERT-based text encoder. We also compare ways to incorporate a priori knowledge of emotion categories by altering the loss function used in training, in which our proposal of multi-task learning that jointly learns to classify positive/negative polarity of emotions is included. The experimental results suggest that, when using Plutchik’s Wheel of Emotions, it is better to jointly classify the basic emotion categories with positive/negative polarity rather than directly exploiting its characteristic structure in which eight basic categories are arranged in a wheel.
pdf
bib
abs
Word-Level Uncertainty Estimation for Black-Box Text Classifiers using RNNs
Jakob Smedegaard Andersen
|
Tom Schöner
|
Walid Maalej
Estimating uncertainties of Neural Network predictions paves the way towards more reliable and trustful text classifications. However, common uncertainty estimation approaches remain as black-boxes without explaining which features have led to the uncertainty of a prediction. This hinders users from understanding the cause of unreliable model behaviour. We introduce an approach to decompose and visualize the uncertainty of text classifiers at the level of words. Our approach builds on top of Recurrent Neural Networks and Bayesian modelling in order to provide detailed explanations of uncertainties, enabling a deeper reasoning about unreliable model behaviours. We conduct a preliminary experiment to check the impact and correctness of our approach. By explaining and investigating the predictive uncertainties of a sentiment analysis task, we argue that our approach is able to provide a more profound understanding of artificial decision making.
pdf
bib
abs
Few-Shot Text Classification with Edge-Labeling Graph Neural Network-Based Prototypical Network
Chen Lyu
|
Weijie Liu
|
Ping Wang
In this paper, we propose a new few-shot text classification method. Compared with supervised learning methods which require a large corpus of labeled documents, our method aims to make it possible to classify unlabeled text with few labeled data. To achieve this goal, we take advantage of advanced pre-trained language model to extract the semantic features of each document. Furthermore, we utilize an edge-labeling graph neural network to implicitly models the intra-cluster similarity and the inter-cluster dissimilarity of the documents. Finally, we take the results of the graph neural network as the input of a prototypical network to classify the unlabeled texts. We verify the effectiveness of our method on a sentiment analysis dataset and a relation classification dataset and achieve the state-of-the-art performance on both tasks.
pdf
bib
abs
ManyEnt: A Dataset for Few-shot Entity Typing
Markus Eberts
|
Kevin Pech
|
Adrian Ulges
We introduce ManyEnt, a benchmark for entity typing models in few-shot scenarios. ManyEnt offers a rich typeset, with a fine-grain variant featuring 256 entity types and a coarse-grain one with 53 entity types. Both versions have been derived from the Wikidata knowledge graph in a semi-automatic fashion. We also report results for two baselines using BERT, reaching up to 70.68% accuracy (10-way 1-shot).
pdf
bib
abs
Embedding Meta-Textual Information for Improved Learning to Rank
Toshitaka Kuwa
|
Shigehiko Schamoni
|
Stefan Riezler
Neural approaches to learning term embeddings have led to improved computation of similarity and ranking in information retrieval (IR). So far neural representation learning has not been extended to meta-textual information that is readily available for many IR tasks, for example, patent classes in prior-art retrieval, topical information in Wikipedia articles, or product categories in e-commerce data. We present a framework that learns embeddings for meta-textual categories, and optimizes a pairwise ranking objective for improved matching based on combined embeddings of textual and meta-textual information. We show considerable gains in an experimental evaluation on cross-lingual retrieval in the Wikipedia domain for three language pairs, and in the Patent domain for one language pair. Our results emphasize that the mode of combining different types of information is crucial for model improvement.
pdf
bib
abs
Automatically Identifying Words That Can Serve as Labels for Few-Shot Text Classification
Timo Schick
|
Helmut Schmid
|
Hinrich Schütze
A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this mapping between words and labels requires both domain expertise and an understanding of the language model’s abilities. To mitigate this issue, we devise an approach that automatically finds such a mapping given small amounts of training data. For a number of tasks, the mapping found by our approach performs almost as well as hand-crafted label-to-word mappings.
pdf
bib
abs
Knowledge Base Embedding By Cooperative Knowledge Distillation
Raphaël Sourty
|
Jose G. Moreno
|
François-Paul Servant
|
Lynda Tamine-Lechani
Knowledge bases are increasingly exploited as gold standard data sources which benefit various knowledge-driven NLP tasks. In this paper, we explore a new research direction to perform knowledge base (KB) representation learning grounded with the recent theoretical framework of knowledge distillation over neural networks. Given a set of KBs, our proposed approach KD-MKB, learns KB embeddings by mutually and jointly distilling knowledge within a dynamic teacher-student setting. Experimental results on two standard datasets show that knowledge distillation between KBs through entity and relation inference is actually observed. We also show that cooperative learning significantly outperforms the two proposed baselines, namely traditional and sequential distillation.
pdf
bib
abs
IntKB: A Verifiable Interactive Framework for Knowledge Base Completion
Bernhard Kratzwald
|
Guo Kunpeng
|
Stefan Feuerriegel
|
Dennis Diefenbach
Knowledge bases (KBs) are essential for many downstream NLP tasks, yet their prime shortcoming is that they are often incomplete. State-of-the-art frameworks for KB completion often lack sufficient accuracy to work fully automated without human supervision. As a remedy, we propose : a novel interactive framework for KB completion from text based on a question answering pipeline. Our framework is tailored to the specific needs of a human-in-the-loop paradigm: (i) We generate facts that are aligned with text snippets and are thus immediately verifiable by humans. (ii) Our system is designed such that it continuously learns during the KB completion task and, therefore, significantly improves its performance upon initial zero- and few-shot relations over time. (iii) We only trigger human interactions when there is enough information for a correct prediction. Therefore, we train our system with negative examples and a fold-option if there is no answer. Our framework yields a favorable performance: it achieves a hit@1 ratio of 29.7% for initially unseen relations, upon which it gradually improves to 46.2%.
pdf
bib
abs
Reference and Document Aware Semantic Evaluation Methods for Korean Language Summarization
Dongyub Lee
|
Myeong Cheol Shin
|
Taesun Whang
|
Seungwoo Cho
|
Byeongil Ko
|
Daniel Lee
|
EungGyun Kim
|
Jaechoon Jo
Text summarization refers to the process that generates a shorter form of text from the source document preserving salient information. Many existing works for text summarization are generally evaluated by using recall-oriented understudy for gisting evaluation (ROUGE) scores. However, as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning correspondences between generated and reference summaries. Because Korean is an agglutinative language that combines various morphemes into a word that express several meanings, ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics that reflect semantic meanings of a reference summary and the original document, Reference and Document Aware Semantic Score (RDASS). We then propose a method for improving the correlation of the metrics with human judgment. Evaluation results show that the correlation with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.
pdf
bib
abs
At Which Level Should We Extract? An Empirical Analysis on Extractive Document Summarization
Qingyu Zhou
|
Furu Wei
|
Ming Zhou
Extractive methods have been proven effective in automatic document summarization. Previous works perform this task by identifying informative contents at sentence level. However, it is unclear whether performing extraction at sentence level is the best solution. In this work, we show that unnecessity and redundancy issues exist when extracting full sentences, and extracting sub-sentential units is a promising alternative. Specifically, we propose extracting sub-sentential units based on the constituency parsing tree. A neural extractive model which leverages the sub-sentential information and extracts them is presented. Extensive experiments and analyses show that extracting sub-sentential units performs competitively comparing to full sentence extraction under the evaluation of both automatic and human evaluations. Hopefully, our work could provide some inspiration of the basic extraction units in extractive summarization for future research.
pdf
bib
abs
Fact-level Extractive Summarization with Hierarchical Graph Mask on BERT
Ruifeng Yuan
|
Zili Wang
|
Wenjie Li
Most current extractive summarization models generate summaries by selecting salient sentences. However, one of the problems with sentence-level extractive summarization is that there exists a gap between the human-written gold summary and the oracle sentence labels. In this paper, we propose to extract fact-level semantic units for better extractive summarization. We also introduce a hierarchical structure, which incorporates the multi-level of granularities of the textual information into the model. In addition, we incorporate our model with BERT using a hierarchical graph mask. This allows us to combine BERT’s ability in natural language understanding and the structural information without increasing the scale of the model. Experiments on the CNN/DaliyMail dataset show that our model achieves state-of-the-art results.
pdf
bib
abs
Flight of the PEGASUS? Comparing Transformers on Few-shot and Zero-shot Multi-document Abstractive Summarization
Travis Goodwin
|
Max Savery
|
Dina Demner-Fushman
Recent work has shown that pre-trained Transformers obtain remarkable performance on many natural language processing tasks including automatic summarization. However, most work has focused on (relatively) data-rich single-document summarization settings. In this paper, we explore highly-abstractive multi-document summarization where the summary is explicitly conditioned on a user-given topic statement or question. We compare the summarization quality produced by three state-of-the-art transformer-based models: BART, T5, and PEGASUS. We report the performance on four challenging summarization datasets: three from the general domain and one from consumer health in both zero-shot and few-shot learning settings. While prior work has shown significant differences in performance for these models on standard summarization tasks, our results indicate that with as few as 10 labeled examples there is no statistically significant difference in summary quality, suggesting the need for more abstractive benchmark collections when determining state-of-the-art.
pdf
bib
abs
WSL-DS: Weakly Supervised Learning with Distant Supervision for Query Focused Multi-Document Abstractive Summarization
Md Tahmid Rahman Laskar
|
Enamul Hoque
|
Jimmy Xiangji Huang
In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents based on the given query. However, one major challenge for this task is the lack of availability of labeled training datasets. To overcome this issue, in this paper, we propose a novel weakly supervised learning approach via utilizing distant supervision. In particular, we use datasets similar to the target dataset as the training data where we leverage pre-trained sentence similarity models to generate the weak reference summary of each individual document in a document set from the multi-document gold reference summaries. Then, we iteratively train our summarization model on each single-document to alleviate the computational complexity issue that occurs while training neural summarization models in multiple documents (i.e., long sequences) at once. Experimental results on the Document Understanding Conferences (DUC) datasets show that our proposed approach sets a new state-of-the-art result in terms of various evaluation metrics.
pdf
bib
abs
Multimodal Sentence Summarization via Multimodal Selective Encoding
Haoran Li
|
Junnan Zhu
|
Jiajun Zhang
|
Xiaodong He
|
Chengqing Zong
This paper studies the problem of generating a summary for a given sentence-image pair. Existing multimodal sequence-to-sequence approaches mainly focus on enhancing the decoder by visual signals, while ignoring that the image can improve the ability of the encoder to identify highlights of a news event or a document. Thus, we propose a multimodal selective gate network that considers reciprocal relationships between textual and multi-level visual features, including global image descriptor, activation grids, and object proposals, to select highlights of the event when encoding the source sentence. In addition, we introduce a modality regularization to encourage the summary to capture the highlights embedded in the image more accurately. To verify the generalization of our model, we adopt the multimodal selective gate to the text-based decoder and multimodal-based decoder. Experimental results on a public multimodal sentence summarization dataset demonstrate the advantage of our models over baselines. Further analysis suggests that our proposed multimodal selective gate network can effectively select important information in the input sentence.
pdf
bib
abs
Controllable Abstractive Sentence Summarization with Guiding Entities
Changmeng Zheng
|
Yi Cai
|
Guanjie Zhang
|
Qing Li
Entities are the major proportion and build up the topic of text summaries. Although existing text summarization models can produce promising results of automatic metrics, for example, ROUGE, it is difficult to guarantee that an entity is contained in generated summaries. In this paper, we propose a controllable abstractive sentence summarization model which generates summaries with guiding entities. Instead of generating summaries from left to right, we start with a selected entity, generate the left part first, then the right part of a complete summary. Compared to previous entity-based text summarization models, our method can ensure that entities appear in final output summaries rather than generating the complete sentence with implicit entity and article representations. Our model can also generate more novel entities with them incorporated into outputs directly. To evaluate the informativeness of the proposed model, we develop a fine-grained informativeness metrics in the relevance, extraness and omission perspectives. We conduct experiments in two widely-used sentence summarization datasets and experimental results show that our model outperforms the state-of-the-art methods in both automatic evaluation scores and informativeness metrics.
pdf
bib
abs
HOLMS: Alternative Summary Evaluation with Large Language Models
Yassine Mrabet
|
Dina Demner-Fushman
Efficient document summarization requires evaluation measures that can not only rank a set of systems based on an average score, but also highlight which individual summary is better than another. However, despite the very active research on summarization approaches, few works have proposed new evaluation measures in the recent years. The standard measures relied upon for the development of summarization systems are most often ROUGE and BLEU which, despite being efficient in overall system ranking, remain lexical in nature and have a limited potential when it comes to training neural networks. In this paper, we present a new hybrid evaluation measure for summarization, called HOLMS, that combines both language models pre-trained on large corpora and lexical similarity measures. Through several experiments, we show that HOLMS outperforms ROUGE and BLEU substantially in its correlation with human judgments on several extractive summarization datasets for both linguistic quality and pyramid scores.
pdf
bib
abs
How Domain Terminology Affects Meeting Summarization Performance
Jia Jin Koay
|
Alexander Roustai
|
Xiaojin Dai
|
Dillon Burns
|
Alec Kerrigan
|
Fei Liu
Meetings are essential to modern organizations. Numerous meetings are held and recorded daily, more than can ever be comprehended. A meeting summarization system that identifies salient utterances from the transcripts to automatically generate meeting minutes can help. It empowers users to rapidly search and sift through large meeting collections. To date, the impact of domain terminology on the performance of meeting summarization remains understudied, despite that meetings are rich with domain knowledge. In this paper, we create gold-standard annotations for domain terminology on a sizable meeting corpus; they are known as jargon terms. We then analyze the performance of a meeting summarization system with and without jargon terms. Our findings reveal that domain terminology can have a substantial impact on summarization performance. We publicly release all domain terminology to advance research in meeting summarization.
pdf
bib
abs
An Anchor-Based Automatic Evaluation Metric for Document Summarization
Kexiang Wang
|
Tianyu Liu
|
Baobao Chang
|
Zhifang Sui
The widespread adoption of reference-based automatic evaluation metrics such as ROUGE has promoted the development of document summarization. In this paper, we consider a new protocol for designing reference-based metrics that require the endorsement of source document(s). Following protocol, we propose an anchored ROUGE metric fixing each summary particle on source document, which bases the computation on more solid ground. Empirical results on benchmark datasets validate that source document helps to induce a higher correlation with human judgments for ROUGE metric. Being self-explanatory and easy-to-implement, the protocol can naturally foster various effective designs of reference-based metrics besides the anchored ROUGE introduced here.
pdf
bib
abs
Metrics also Disagree in the Low Scoring Range: Revisiting Summarization Evaluation Metrics
Manik Bhandari
|
Pranav Narayan Gour
|
Atabak Ashfaq
|
Pengfei Liu
In text summarization, evaluating the efficacy of automatic metrics without human judgments has become recently popular. One exemplar work (Peyrard, 2019) concludes that automatic metrics strongly disagree when ranking high-scoring summaries. In this paper, we revisit their experiments and find that their observations stem from the fact that metrics disagree in ranking summaries from any narrow scoring range. We hypothesize that this may be because summaries are similar to each other in a narrow scoring range and are thus, difficult to rank. Apart from the width of the scoring range of summaries, we analyze three other properties that impact inter-metric agreement - Ease of Summarization, Abstractiveness, and Coverage.
pdf
bib
abs
On the Faithfulness for E-commerce Product Summarization
Peng Yuan
|
Haoran Li
|
Song Xu
|
Youzheng Wu
|
Xiaodong He
|
Bowen Zhou
In this work, we present a model to generate e-commerce product summaries. The consistency between the generated summary and the product attributes is an essential criterion for the ecommerce product summarization task. To enhance the consistency, first, we encode the product attribute table to guide the process of summary generation. Second, we identify the attribute words from the vocabulary, and we constrain these attribute words can be presented in the summaries only through copying from the source, i.e., the attribute words not in the source cannot be generated. We construct a Chinese e-commerce product summarization dataset, and the experimental results on this dataset demonstrate that our models significantly improve the faithfulness.
pdf
bib
abs
SumTitles: a Summarization Dataset with Low Extractiveness
Valentin Malykh
|
Konstantin Chernis
|
Ekaterina Artemova
|
Irina Piontkovskaya
The existing dialogue summarization corpora are significantly extractive. We introduce a methodology for dataset extractiveness evaluation and present a new low-extractive corpus of movie dialogues for abstractive text summarization along with baseline evaluation. The corpus contains 153k dialogues and consists of three parts: 1) automatically aligned subtitles, 2) automatically aligned scenes from scripts, and 3) manually aligned scenes from scripts. We also present an alignment algorithm which we use to construct the corpus.
pdf
bib
abs
TWEETSUM: Event oriented Social Summarization Dataset
Ruifang He
|
Liangliang Zhao
|
Huanyu Liu
With social media becoming popular, a vast of short and noisy messages are produced by millions of users when a hot event happens. Developing social summarization systems becomes more and more critical for people to quickly grasp core and essential information. However, the publicly available and high-quality large scale social summarization dataset is rare. Constructing such corpus is not easy and very expensive since short texts have very complex social characteristics. In this paper, we construct TWEETSUM, a new event-oriented dataset for social summarization. The original data is collected from twitter and contains 12 real world hot events with a total of 44,034 tweets and 11,240 users. Each event has four expert summaries, and we also have the annotation quality evaluation. In addition, we collect additional social signals (i.e. user relations, hashtags and user profiles) and further establish user relation network for each event. Besides the detailed dataset description, we show the performance of several typical extractive summarization methods on TWEETSUM to establish baselines. For further researches, we will release this dataset to the public.
pdf
bib
abs
Exploiting a lexical resource for discourse connective disambiguation in German
Peter Bourgonje
|
Manfred Stede
In this paper we focus on connective identification and sense classification for explicit discourse relations in German, as two individual sub-tasks of the overarching Shallow Discourse Parsing task. We successively augment a purely-empirical approach based on contextualised embeddings with linguistic knowledge encoded in a connective lexicon. In this way, we improve over published results for connective identification, achieving a final F1-score of 87.93; and we introduce, to the best of our knowledge, first results for German sense classification, achieving an F1-score of 87.13. Our approach demonstrates that a connective lexicon can be a valuable resource for those languages that do not have a large PDTB-style-annotated coprus available.
pdf
bib
abs
Chinese Paragraph-level Discourse Parsing with Global Backward and Local Reverse Reading
Feng Jiang
|
Xiaomin Chu
|
Peifeng Li
|
Fang Kong
|
Qiaoming Zhu
Discourse structure tree construction is the fundamental task of discourse parsing and most previous work focused on English. Due to the cultural and linguistic differences, existing successful methods on English discourse parsing cannot be transformed into Chinese directly, especially in paragraph level suffering from longer discourse units and fewer explicit connectives. To alleviate the above issues, we propose two reading modes, i.e., the global backward reading and the local reverse reading, to construct Chinese paragraph level discourse trees. The former processes discourse units from the end to the beginning in a document to utilize the left-branching bias of discourse structure in Chinese, while the latter reverses the position of paragraphs in a discourse unit to enhance the differentiation of coherence between adjacent discourse units. The experimental results on Chinese MCDTB demonstrate that our model outperforms all strong baselines.
pdf
bib
abs
A Neural Model for Aggregating Coreference Annotation in Crowdsourcing
Maolin Li
|
Hiroya Takamura
|
Sophia Ananiadou
Coreference resolution is the task of identifying all mentions in a text that refer to the same real-world entity. Collecting sufficient labelled data from expert annotators to train a high-performance coreference resolution system is time-consuming and expensive. Crowdsourcing makes it possible to obtain the required amounts of data rapidly and cost-effectively. However, crowd-sourced labels can be noisy. To ensure high-quality data, it is crucial to infer the correct labels by aggregating the noisy labels. In this paper, we split the aggregation into two subtasks, i.e, mention classification and coreference chain inference. Firstly, we predict the general class of each mention using an autoencoder, which incorporates contextual information about each mention, while at the same time taking into account the mention’s annotation complexity and annotators’ reliability at different levels. Secondly, to determine the coreference chain of each mention, we use weighted voting which takes into account the learned reliability in the first subtask. Experimental results demonstrate the effectiveness of our method in predicting the correct labels. We also illustrate our model’s interpretability through a comprehensive analysis of experimental results.
pdf
bib
abs
Variation in Coreference Strategies across Genres and Production Media
Berfin Aktaş
|
Manfred Stede
In response to (i) inconclusive results in the literature as to the properties of coreference chains in written versus spoken language, and (ii) a general lack of work on automatic coreference resolution on both spoken language and social media, we undertake a corpus study involving the various genre sections of Ontonotes, the Switchboard corpus, and a corpus of Twitter conversations. Using a set of measures that previously have been applied individually to different data sets, we find fairly clear patterns of “behavior” for the different genres/media. Besides their role for psycholinguistic investigation (why do we employ different coreference strategies when we write or speak) and for the placement of Twitter in the spoken–written continuum, we see our results as a contribution to approaching genre-/media-specific coreference resolution.
pdf
bib
abs
Towards automatically generating Questions under Discussion to link information and discourse structure
Kordula De Kuthy
|
Madeeswaran Kannan
|
Haemanth Santhi Ponnusamy
|
Detmar Meurers
Questions under Discussion (QUD; Roberts, 2012) are emerging as a conceptually fruitful approach to spelling out the connection between the information structure of a sentence and the nature of the discourse in which the sentence can function. To make this approach useful for analyzing authentic data, Riester, Brunetti & De Kuthy (2018) presented a discourse annotation framework based on explicit pragmatic principles for determining a QUD for every assertion in a text. De Kuthy et al. (2018) demonstrate that this supports more reliable discourse structure annotation, and Ziai and Meurers (2018) show that based on explicit questions, automatic focus annotation becomes feasible. But both approaches are based on manually specified questions. In this paper, we present an automatic question generation approach to partially automate QUD annotation by generating all potentially relevant questions for a given sentence. While transformation rules can concisely capture the typical question formation process, a rule-based approach is not sufficiently robust for authentic data. We therefore employ the transformation rules to generate a large set of sentence-question-answer triples and train a neural question generation model on them to obtain both systematic question type coverage and robustness.
pdf
bib
abs
Learning to Decouple Relations: Few-Shot Relation Classification with Entity-Guided Attention and Confusion-Aware Training
Yingyao Wang
|
Junwei Bao
|
Guangyi Liu
|
Youzheng Wu
|
Xiaodong He
|
Bowen Zhou
|
Tiejun Zhao
This paper aims to enhance the few-shot relation classification especially for sentences that jointly describe multiple relations. Due to the fact that some relations usually keep high co-occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them with few annotated instances. To alleviate the above relation confusion problem, we propose CTEG, a model equipped with two novel mechanisms to learn to decouple these easily-confused relations. On the one hand, an Entity -Guided Attention (EGA) mechanism, which leverages the syntactic relations and relative positions between each word and the specified entity pair, is introduced to guide the attention to filter out information causing confusion. On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations by playing a pushing-away game between classifying a sentence into a true relation and its confusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show that our proposed model achieves comparable and even much better results to strong baselines in terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our proposed EGA and CAT, especially in addressing the relation confusion problem.
pdf
bib
abs
Semi-supervised Multi-task Learning for Multi-label Fine-grained Sexism Classification
Harika Abburi
|
Pulkit Parikh
|
Niyati Chhaya
|
Vasudeva Varma
Sexism, a form of oppression based on one’s sex, manifests itself in numerous ways and causes enormous suffering. In view of the growing number of experiences of sexism reported online, categorizing these recollections automatically can assist the fight against sexism, as it can facilitate effective analyses by gender studies researchers and government officials involved in policy making. In this paper, we investigate the fine-grained, multi-label classification of accounts (reports) of sexism. To the best of our knowledge, we work with considerably more categories of sexism than any published work through our 23-class problem formulation. Moreover, we propose a multi-task approach for fine-grained multi-label sexism classification that leverages several supporting tasks without incurring any manual labeling cost. Unlabeled accounts of sexism are utilized through unsupervised learning to help construct our multi-task setup. We also devise objective functions that exploit label correlations in the training data explicitly. Multiple proposed methods outperform the state-of-the-art for multi-label sexism classification on a recently released dataset across five standard metrics.
pdf
bib
abs
Using Eye-tracking Data to Predict the Readability of Brazilian Portuguese Sentences in Single-task, Multi-task and Sequential Transfer Learning Approaches
Sidney Evaldo Leal
|
João Marcos Munguba Vieira
|
Erica dos Santos Rodrigues
|
Elisângela Nogueira Teixeira
|
Sandra Aluísio
Sentence complexity assessment is a relatively new task in Natural Language Processing. One of its aims is to highlight in a text which sentences are more complex to support the simplification of contents for a target audience (e.g., children, cognitively impaired users, non-native speakers and low-literacy readers (Scarton and Specia, 2018)). This task is evaluated using datasets of pairs of aligned sentences including the complex and simple version of the same sentence. For Brazilian Portuguese, the task was addressed by (Leal et al., 2018), who set up the first dataset to evaluate the task in this language, reaching 87.8% of accuracy with linguistic features. The present work advances these results, using models inspired by (Gonzalez-Garduño and Søgaard, 2018), which hold the state-of-the-art for the English language, with multi-task learning and eye-tracking measures. First-Pass Duration, Total Regression Duration and Total Fixation Duration were used in two moments; first to select a subset of linguistic features and then as an auxiliary task in the multi-task and sequential learning models. The best model proposed here reaches the new state-of-the-art for Portuguese with 97.5% accuracy 1 , an increase of almost 10 points compared to the best previous results, in addition to proposing improvements in the public dataset after analysing the errors of our best model.
pdf
bib
abs
Retrieving Skills from Job Descriptions: A Language Model Based Extreme Multi-label Classification Framework
Akshay Bhola
|
Kishaloy Halder
|
Animesh Prasad
|
Min-Yen Kan
We introduce a deep learning model to learn the set of enumerated job skills associated with a job description. In our analysis of a large-scale government job portal mycareersfuture.sg, we observe that as much as 65% of job descriptions miss describing a significant number of relevant skills. Our model addresses this task from the perspective of an extreme multi-label classification (XMLC) problem, where descriptions are the evidence for the binary relevance of thousands of individual skills. Building upon the current state-of-the-art language modeling approaches such as BERT, we show our XMLC method improves on an existing baseline solution by over 9% and 7% absolute improvements in terms of recall and normalized discounted cumulative gain. We further show that our approach effectively addresses the missing skills problem, and helps in recovering relevant skills that were missed out in the job postings by taking into account the structured semantic representation of skills and their co-occurrences through a Correlation Aware Bootstrapping process. We further show that our approach, to ensure the BERT-XMLC model accounts for structured semantic representation of skills and their co-occurrences through a Correlation Aware Bootstrapping process, effectively addresses the missing skills problem, and helps in recovering relevant skills that were missed out in the job postings. To facilitate future research and replication of our work, we have made the dataset and the implementation of our model publicly available.
pdf
bib
abs
Native-like Expression Identification by Contrasting Native and Proficient Second Language Speakers
Oleksandr Harust
|
Yugo Murawaki
|
Sadao Kurohashi
We propose a novel task of native-like expression identification by contrasting texts written by native speakers and those by proficient second language speakers. This task is highly challenging mainly because 1) the combinatorial nature of expressions prevents us from choosing candidate expressions a priori and 2) the distributions of the two types of texts overlap considerably. Our solution to the first problem is to combine a powerful neural network-based classifier of sentence-level nativeness with an explainability method that measures an approximate contribution of a given expression to the classifier’s prediction. To address the second problem, we introduce a special label neutral and reformulate the classification task as complementary-label learning. Our crowdsourcing-based evaluation and in-depth analysis suggest that our method successfully uncovers linguistically interesting usages distinctive of native speech.
pdf
bib
abs
An Analysis of Dataset Overlap on Winograd-Style Tasks
Ali Emami
|
Kaheer Suleman
|
Adam Trischler
|
Jackie Chi Kit Cheung
The Winograd Schema Challenge (WSC) and variants inspired by it have become important benchmarks for common-sense reasoning (CSR). Model performance on the WSC has quickly progressed from chance-level to near-human using neural language models trained on massive corpora. In this paper, we analyze the effects of varying degrees of overlaps that occur between these corpora and the test instances in WSC-style tasks. We find that a large number of test instances overlap considerably with the pretraining corpora on which state-of-the-art models are trained, and that a significant drop in classification accuracy occurs when models are evaluated on instances with minimal overlap. Based on these results, we provide the WSC-Web dataset, consisting of over 60k pronoun disambiguation problems scraped from web data, being both the largest corpus to date, and having a significantly lower proportion of overlaps with current pretraining corpora.
pdf
bib
abs
The Indigenous Languages Technology project at NRC Canada: An empowerment-oriented approach to developing language software
Roland Kuhn
|
Fineen Davis
|
Alain Désilets
|
Eric Joanis
|
Anna Kazantseva
|
Rebecca Knowles
|
Patrick Littell
|
Delaney Lothian
|
Aidan Pine
|
Caroline Running Wolf
|
Eddie Santos
|
Darlene Stewart
|
Gilles Boulianne
|
Vishwa Gupta
|
Brian Maracle Owennatékha
|
Akwiratékha’ Martin
|
Christopher Cox
|
Marie-Odile Junker
|
Olivia Sammons
|
Delasie Torkornoo
|
Nathan Thanyehténhas Brinklow
|
Sara Child
|
Benoît Farley
|
David Huggins-Daines
|
Daisy Rosenblum
|
Heather Souter
This paper surveys the first, three-year phase of a project at the National Research Council of Canada that is developing software to assist Indigenous communities in Canada in preserving their languages and extending their use. The project aimed to work within the empowerment paradigm, where collaboration with communities and fulfillment of their goals is central. Since many of the technologies we developed were in response to community needs, the project ended up as a collection of diverse subprojects, including the creation of a sophisticated framework for building verb conjugators for highly inflectional polysynthetic languages (such as Kanyen’kéha, in the Iroquoian language family), release of what is probably the largest available corpus of sentences in a polysynthetic language (Inuktut) aligned with English sentences and experiments with machine translation (MT) systems trained on this corpus, free online services based on automatic speech recognition (ASR) for easing the transcription bottleneck for recordings of speech in Indigenous languages (and other languages), software for implementing text prediction and read-along audiobooks for Indigenous languages, and several other subprojects.
pdf
bib
abs
Cross-Lingual Emotion Lexicon Induction using Representation Alignment in Low-Resource Settings
Arun Ramachandran
|
Gerard de Melo
Emotion lexicons provide information about associations between words and emotions. They have proven useful in analyses of reviews, literary texts, and posts on social media, among other things. We evaluate the feasibility of deriving emotion lexicons cross-lingually, especially for low-resource languages, from existing emotion lexicons in resource-rich languages. For this, we start out from very small corpora to induce cross-lingually aligned vector spaces. Our study empirically analyses the effectiveness of the induced emotion lexicons by measuring translation precision and correlations with existing emotion lexicons, along with measurements on a downstream task of sentence emotion prediction.
pdf
bib
abs
Don’t Patronize Me! An Annotated Dataset with Patronizing and Condescending Language towards Vulnerable Communities
Carla Perez Almendros
|
Luis Espinosa Anke
|
Steven Schockaert
In this paper, we introduce a new annotated dataset which is aimed at supporting the development of NLP models to identify and categorize language that is patronizing or condescending towards vulnerable communities (e.g. refugees, homeless people, poor families). While the prevalence of such language in the general media has long been shown to have harmful effects, it differs from other types of harmful language, in that it is generally used unconsciously and with good intentions. We furthermore believe that the often subtle nature of patronizing and condescending language (PCL) presents an interesting technical challenge for the NLP community. Our analysis of the proposed dataset shows that identifying PCL is hard for standard NLP models, with language models such as BERT achieving the best results.
pdf
bib
abs
100,000 Podcasts: A Spoken English Document Corpus
Ann Clifton
|
Sravana Reddy
|
Yongze Yu
|
Aasish Pappu
|
Rezvaneh Rezapour
|
Hamed Bonab
|
Maria Eskevich
|
Gareth Jones
|
Jussi Karlgren
|
Ben Carterette
|
Rosie Jones
Podcasts are a large and growing repository of spoken audio. As an audio format, podcasts are more varied in style and production type than broadcast news, contain more genres than typically studied in video data, and are more varied in style and format than previous corpora of conversations. When transcribed with automatic speech recognition they represent a noisy but fascinating collection of documents which can be studied through the lens of natural language processing, information retrieval, and linguistics. Paired with the audio files, they are also a resource for speech processing and the study of paralinguistic, sociolinguistic, and acoustic aspects of the domain. We introduce the Spotify Podcast Dataset, a new corpus of 100,000 podcasts. We demonstrate the complexity of the domain with a case study of two tasks: (1) passage search and (2) summarization. This is orders of magnitude larger than previous speech corpora used for search and summarization. Our results show that the size and variability of this corpus opens up new avenues for research.
pdf
bib
abs
A Contextual Alignment Enhanced Cross Graph Attention Network for Cross-lingual Entity Alignment
Zhiwen Xie
|
Runjie Zhu
|
Kunsong Zhao
|
Jin Liu
|
Guangyou Zhou
|
Jimmy Xiangji Huang
Cross-lingual entity alignment, which aims to match equivalent entities in KGs with different languages, has attracted considerable focus in recent years. Recently, many graph neural network (GNN) based methods are proposed for entity alignment and obtain promising results. However, existing GNN-based methods consider the two KGs independently and learn embeddings for different KGs separately, which ignore the useful pre-aligned links between two KGs. In this paper, we propose a novel Contextual Alignment Enhanced Cross Graph Attention Network (CAECGAT) for the task of cross-lingual entity alignment, which is able to jointly learn the embeddings in different KGs by propagating cross-KG information through pre-aligned seed alignments. We conduct extensive experiments on three benchmark cross-lingual entity alignment datasets. The experimental results demonstrate that our proposed method obtains remarkable performance gains compared to state-of-the-art methods.
pdf
bib
abs
PheMT: A Phenomenon-wise Dataset for Machine Translation Robustness on User-Generated Contents
Ryo Fujii
|
Masato Mita
|
Kaori Abe
|
Kazuaki Hanawa
|
Makoto Morishita
|
Jun Suzuki
|
Kentaro Inui
Neural Machine Translation (NMT) has shown drastic improvement in its quality when translating clean input, such as text from the news domain. However, existing studies suggest that NMT still struggles with certain kinds of input with considerable noise, such as User-Generated Contents (UGC) on the Internet. To make better use of NMT for cross-cultural communication, one of the most promising directions is to develop a model that correctly handles these expressions. Though its importance has been recognized, it is still not clear as to what creates the great gap in performance between the translation of clean input and that of UGC. To answer the question, we present a new dataset, PheMT, for evaluating the robustness of MT systems against specific linguistic phenomena in Japanese-English translation. Our experiments with the created dataset revealed that not only our in-house models but even widely used off-the-shelf systems are greatly disturbed by the presence of certain phenomena.
pdf
bib
abs
Detecting Non-literal Translations by Fine-tuning Cross-lingual Pre-trained Language Models
Yuming Zhai
|
Gabriel Illouz
|
Anne Vilnat
Human-generated non-literal translations reflect the richness of human languages and are sometimes indispensable to ensure adequacy and fluency. Non-literal translations are difficult to produce even for human translators, especially for foreign language learners, and machine translations are still on the way to simulate human ones on this aspect. In order to foster the study on appropriate and creative non-literal translations, automatically detecting them in parallel corpora is an important step, which can benefit downstream NLP tasks or help to construct materials to teach translation. This article demonstrates that generic sentence representations produced by a pre-trained cross-lingual language model could be fine-tuned to solve this task. We show that there exists a moderate positive correlation between the prediction probability of being human translation and the non-literal translations’ proportion in a sentence. The fine-tuning experiments show an accuracy of 80.16% when predicting the presence of non-literal translations in a sentence and an accuracy of 85.20% when distinguishing literal and non-literal translations at phrase level. We further conduct a linguistic error analysis and propose directions for future work.
pdf
bib
abs
WikiUMLS: Aligning UMLS to Wikipedia via Cross-lingual Neural Ranking
Afshin Rahimi
|
Timothy Baldwin
|
Karin Verspoor
We present our work on aligning the Unified Medical Language System (UMLS) to Wikipedia, to facilitate manual alignment of the two resources. We propose a cross-lingual neural reranking model to match a UMLS concept with a Wikipedia page, which achieves a recall@1of 72%, a substantial improvement of 20% over word- and char-level BM25, enabling manual alignment with minimal effort. We release our resources, including ranked Wikipedia pages for 700k UMLSconcepts, and WikiUMLS, a dataset for training and evaluation of alignment models between UMLS and Wikipedia collected from Wikidata. This will provide easier access to Wikipedia for health professionals, patients, and NLP systems, including in multilingual settings.
pdf
bib
abs
The Transference Architecture for Automatic Post-Editing
Santanu Pal
|
Hongfei Xu
|
Nico Herbig
|
Sudip Kumar Naskar
|
Antonio Krüger
|
Josef van Genabith
In automatic post-editing (APE) it makes sense to condition post-editing (pe) decisions on both the source (src) and the machine translated text (mt) as input. This has led to multi-encoder based neural APE approaches. A research challenge now is the search for architectures that best support the capture, preparation and provision of src and mt information and its integration with pe decisions. In this paper we present an efficient multi-encoder based APE model, called transference. Unlike previous approaches, it (i) uses a transformer encoder block for src, (ii) followed by a decoder block, but without masking for self-attention on mt, which effectively acts as second encoder combining src –> mt, and (iii) feeds this representation into a final decoder block generating pe. Our model outperforms the best performing systems by 1 BLEU point on the WMT 2016, 2017, and 2018 English–German APE shared tasks (PBSMT and NMT). Furthermore, the results of our model on the WMT 2019 APE task using NMT data shows a comparable performance to the state-of-the-art system. The inference time of our model is similar to the vanilla transformer-based NMT system although our model deals with two separate encoders. We further investigate the importance of our newly introduced second encoder and find that a too small amount of layers does hurt the performance, while reducing the number of layers of the decoder does not matter much.
pdf
bib
abs
Better Sign Language Translation with STMC-Transformer
Kayo Yin
|
Jesse Read
Sign Language Translation (SLT) first uses a Sign Language Recognition (SLR) system to extract sign language glosses from videos. Then, a translation system generates spoken language translations from the sign language glosses. This paper focuses on the translation system and introduces the STMC-Transformer which improves on the current state-of-the-art by over 5 and 7 BLEU respectively on gloss-to-text and video-to-text translation of the PHOENIX-Weather 2014T dataset. On the ASLG-PC12 corpus, we report an increase of over 16 BLEU. We also demonstrate the problem in current methods that rely on gloss supervision. The video-to-text translation of our STMC-Transformer outperforms translation of GT glosses. This contradicts previous claims that GT gloss translation acts as an upper bound for SLT performance and reveals that glosses are an inefficient representation of sign language. For future SLT research, we therefore suggest an end-to-end training of the recognition and translation models, or using a different sign language annotation scheme.
pdf
bib
abs
A Simple and Effective Approach to Robust Unsupervised Bilingual Dictionary Induction
Yanyang Li
|
Yingfeng Luo
|
Ye Lin
|
Quan Du
|
Huizhen Wang
|
Shujian Huang
|
Tong Xiao
|
Jingbo Zhu
Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant language pairs, e.g., English-Japanese. In this work, we show that this failure results from the gap between the actual initialization performance and the minimum initialization performance for the self-learning to succeed. We propose Iterative Dimension Reduction to bridge this gap. Our experiments show that this simple method does not hamper the performance of similar language pairs and achieves an accuracy of 13.64 55.53% between English and four distant languages, i.e., Chinese, Japanese, Vietnamese and Thai.
pdf
bib
abs
Data Selection for Bilingual Lexicon Induction from Specialized Comparable Corpora
Martin Laville
|
Amir Hazem
|
Emmanuel Morin
|
Phillippe Langlais
Narrow specialized comparable corpora are often small in size. This particularity makes it difficult to build efficient models to acquire translation equivalents, especially for less frequent and rare words. One way to overcome this issue is to enrich the specialized corpora with out-of-domain resources. Although some recent studies have shown improvements using data augmentation, the enrichment method was roughly conducted by adding out-of-domain data with no particular attention given to how to enrich words and how to do it optimally. In this paper, we contrast several data selection techniques to improve bilingual lexicon induction from specialized comparable corpora. We first apply two well-established data selection techniques often used in machine translation that is: Tf-Idf and cross entropy. Then, we propose to exploit BERT for data selection. Overall, all the proposed techniques improve the quality of the extracted bilingual lexicons by a large margin. The best performing model is the cross entropy, obtaining a gain of about 4 points in MAP while decreasing computation time by a factor of 10.
pdf
bib
abs
A Locally Linear Procedure for Word Translation
Soham Dan
|
Hagai Taitelbaum
|
Jacob Goldberger
Learning a mapping between word embeddings of two languages given a dictionary is an important problem with several applications. A common mapping approach is using an orthogonal matrix. The Orthogonal Procrustes Analysis (PA) algorithm can be applied to find the optimal orthogonal matrix. This solution restricts the expressiveness of the translation model which may result in sub-optimal translations. We propose a natural extension of the PA algorithm that uses multiple orthogonal translation matrices to model the mapping and derive an algorithm to learn these multiple matrices. We achieve better performance in a bilingual word translation task and a cross-lingual word similarity task compared to the single matrix baseline. We also show how multiple matrices can model multiple senses of a word.
pdf
bib
abs
Rethinking the Value of Transformer Components
Wenxuan Wang
|
Zhaopeng Tu
Transformer becomes the state-of-the-art translation model, while it is not well studied how each intermediate component contributes to the model performance, which poses significant challenges for designing optimal architectures. In this work, we bridge this gap by evaluating the impact of individual component (sub-layer) in trained Transformer models from different perspectives. Experimental results across language pairs, training strategies, and model capacities show that certain components are consistently more important than the others. We also report a number of interesting findings that might help humans better analyze, understand and improve Transformer models. Based on these observations, we further propose a new training strategy that can improves translation performance by distinguishing the unimportant components in training.
pdf
bib
abs
The SADID Evaluation Datasets for Low-Resource Spoken Language Machine Translation of Arabic Dialects
Wael Abid
Low-resource Machine Translation recently gained a lot of popularity, and for certain languages, it has made great strides. However, it is still difficult to track progress in other languages for which there is no publicly available evaluation data. In this paper, we introduce benchmark datasets for Arabic and its dialects. We describe our design process and motivations and analyze the datasets to understand their resulting properties. Numerous successful attempts use large monolingual corpora to augment low-resource pairs. We try to approach augmentation differently and investigate whether it is possible to improve MT models without any external sources of data. We accomplish this by bootstrapping existing parallel sentences and complement this with multilingual training to achieve strong baselines.
pdf
bib
abs
Combining Word Embeddings with Bilingual Orthography Embeddings for Bilingual Dictionary Induction
Silvia Severini
|
Viktor Hangya
|
Alexander Fraser
|
Hinrich Schütze
Bilingual dictionary induction (BDI) is the task of accurately translating words to the target language. It is of great importance in many low-resource scenarios where cross-lingual training data is not available. To perform BDI, bilingual word embeddings (BWEs) are often used due to their low bilingual training signal requirements. They achieve high performance, but problematic cases still remain, such as the translation of rare words or named entities, which often need to be transliterated. In this paper, we enrich BWE-based BDI with transliteration information by using Bilingual Orthography Embeddings (BOEs). BOEs represent source and target language transliteration word pairs with similar vectors. A key problem in our BDI setup is to decide which information source – BWEs (or semantics) vs. BOEs (or orthography) – is more reliable for a particular word pair. We propose a novel classification-based BDI system that uses BWEs, BOEs and a number of other features to make this decision. We test our system on English-Russian BDI and show improved performance. In addition, we show the effectiveness of our BOEs by successfully using them for transliteration mining based on cosine similarity.
pdf
bib
abs
Understanding Translationese in Multi-view Embedding Spaces
Koel Dutta Chowdhury
|
Cristina España-Bonet
|
Josef van Genabith
Recent studies use a combination of lexical and syntactic features to show that footprints of the source language remain visible in translations, to the extent that it is possible to predict the original source language from the translation. In this paper, we focus on embedding-based semantic spaces, exploiting departures from isomorphism between spaces built from original target language and translations into this target language to predict relations between languages in an unsupervised way. We use different views of the data — words, parts of speech, semantic tags and synsets — to track translationese. Our analysis shows that (i) semantic distances between original target language and translations into this target language can be detected using the notion of isomorphism, (ii) language family ties with characteristics similar to linguistically motivated phylogenetic trees can be inferred from the distances and (iii) with delexicalised embeddings exhibiting source-language interference most significantly, other levels of abstraction display the same tendency, indicating the lexicalised results to be not “just” due to possible topic differences between original and translated texts. To the best of our knowledge, this is the first time departures from isomorphism between embedding spaces are used to track translationese.
pdf
bib
abs
Building The First English-Brazilian Portuguese Corpus for Automatic Post-Editing
Felipe Almeida Costa
|
Thiago Castro Ferreira
|
Adriana Pagano
|
Wagner Meira
This paper introduces the first corpus for Automatic Post-Editing of English and a low-resource language, Brazilian Portuguese. The source English texts were extracted from the WebNLG corpus and automatically translated into Portuguese using a state-of-the-art industrial neural machine translator. Post-edits were then obtained in an experiment with native speakers of Brazilian Portuguese. To assess the quality of the corpus, we performed error analysis and computed complexity indicators measuring how difficult the APE task would be. We report preliminary results of Phrase-Based and Neural Machine Translation Models on this new corpus. Data and code publicly available in our repository.
pdf
bib
abs
Analysing cross-lingual transfer in lemmatisation for Indian languages
Kumar Saurav
|
Kumar Saunack
|
Pushpak Bhattacharyya
Lemmatization aims to reduce the sparse data problem by relating the inflected forms of a word to its dictionary form. However, most of the prior work on this topic has focused on high resource languages. In this paper, we evaluate cross-lingual approaches for low resource languages, especially in the context of morphologically rich Indian languages. We test our model on six languages from two different families and develop linguistic insights into each model’s performance.
pdf
bib
abs
Neural Automated Essay Scoring Incorporating Handcrafted Features
Masaki Uto
|
Yikuan Xie
|
Maomi Ueno
Automated essay scoring (AES) is the task of automatically assigning scores to essays as an alternative to grading by human raters. Conventional AES typically relies on handcrafted features, whereas recent studies have proposed AES models based on deep neural networks (DNNs) to obviate the need for feature engineering. Furthermore, hybrid methods that integrate handcrafted features in a DNN-AES model have been recently developed and have achieved state-of-the-art accuracy. One of the most popular hybrid methods is formulated as a DNN-AES model with an additional recurrent neural network (RNN) that processes a sequence of handcrafted sentence-level features. However, this method has the following problems: 1) It cannot incorporate effective essay-level features developed in previous AES research. 2) It greatly increases the numbers of model parameters and tuning parameters, increasing the difficulty of model training. 3) It has an additional RNN to process sentence-level features, enabling extension to various DNN-AES models complex. To resolve these problems, we propose a new hybrid method that integrates handcrafted essay-level features into a DNN-AES model. Specifically, our method concatenates handcrafted essay-level features to a distributed essay representation vector, which is obtained from an intermediate layer of a DNN-AES model. Our method is a simple DNN-AES extension, but significantly improves scoring accuracy.
pdf
bib
abs
A Straightforward Approach to Narratologically Grounded Character Identification
Labiba Jahan
|
Rahul Mittal
|
W. Victor Yarlott
|
Mark Finlayson
One of the most fundamental elements of narrative is character: if we are to understand a narrative, we must be able to identify the characters of that narrative. Therefore, character identification is a critical task in narrative natural language understanding. Most prior work has lacked a narratologically grounded definition of character, instead relying on simplified or implicit definitions that do not capture essential distinctions between characters and other referents in narratives. In prior work we proposed a preliminary definition of character that was based in clear narratological principles: a character is an animate entity that is important to the plot. Here we flesh out this concept, demonstrate that it can be reliably annotated (0.78 Cohen’s κ), and provide annotations of 170 narrative texts, drawn from 3 different corpora, containing 1,347 character co-reference chains and 21,999 non-character chains that include 3,937 animate chains. Furthermore, we have shown that a supervised classifier using a simple set of easily computable features can effectively identify these characters (overall F1 of 0.90). A detailed error analysis shows that character identification is first and foremost affected by co-reference quality, and further, that the shorter a chain is the harder it is to effectively identify as a character. We release our code and data for the benefit of other researchers
pdf
bib
abs
Fine-grained Information Status Classification Using Discourse Context-Aware BERT
Yufang Hou
Previous work on bridging anaphora recognition (Hou et al., 2013) casts the problem as a subtask of learning fine-grained information status (IS). However, these systems heavily depend on many hand-crafted linguistic features. In this paper, we propose a simple discourse context-aware BERT model for fine-grained IS classification. On the ISNotes corpus (Markert et al., 2012), our model achieves new state-of-the-art performances on fine-grained IS classification, obtaining a 4.8 absolute overall accuracy improvement compared to Hou et al. (2013). More importantly, we also show an improvement of 10.5 F1 points for bridging anaphora recognition without using any complex hand-crafted semantic features designed for capturing the bridging phenomenon. We further analyze the trained model and find that the most attended signals for each IS category correspond well to linguistic notions of information status.
pdf
bib
abs
Free the Plural: Unrestricted Split-Antecedent Anaphora Resolution
Juntao Yu
|
Nafise Sadat Moosavi
|
Silviu Paun
|
Massimo Poesio
Now that the performance of coreference resolvers on the simpler forms of anaphoric reference has greatly improved, more attention is devoted to more complex aspects of anaphora. One limitation of virtually all coreference resolution models is the focus on single-antecedent anaphors. Plural anaphors with multiple antecedents-so-called split-antecedent anaphors (as in John met Mary. They went to the movies) have not been widely studied, because they are not annotated in ONTONOTES and are relatively infrequent in other corpora. In this paper, we introduce the first model for unrestricted resolution of split-antecedent anaphors. We start with a strong baseline enhanced by BERT embeddings, and show that we can substantially improve its performance by addressing the sparsity issue. To do this, we experiment with auxiliary corpora where split-antecedent anaphors were annotated by the crowd, and with transfer learning models using element-of bridging references and single-antecedent coreference as auxiliary tasks. Evaluation on the gold annotated ARRAU corpus shows that the out best model uses a combination of three auxiliary corpora achieved F1 scores of 70% and 43.6% when evaluated in a lenient and strict setting, respectively, i.e., 11 and 21 percentage points gain when compared with our baseline.
pdf
bib
abs
How coherent are neural models of coherence?
Leila Pishdad
|
Federico Fancellu
|
Ran Zhang
|
Afsaneh Fazly
Despite the recent advances in coherence modelling, most such models including state-of-the-art neural ones, are evaluated on either contrived proxy tasks such as the standard order discrimination benchmark, or tasks that require special expert annotation. Moreover, most evaluations are conducted on small newswire corpora. To address these shortcomings, in this paper we propose four generic evaluation tasks that draw on different aspects of coherence at both the lexical and document levels, and can be applied to any corpora. In designing these tasks, we aim at capturing coherence-specific properties, such as the correct use of discourse connectives, lexical cohesion, as well as the overall temporal and causal consistency among events and participants in a story. Importantly, our proposed tasks either rely on automatically-generated data, or data annotated for other purposes, hence alleviating the need for annotation specifically targeted to the task of coherence modelling. We perform experiments with several existing state-of-the-art neural models of coherence on these tasks, across large corpora from different domains, including newswire, dialogue, as well as narrative and instructional text. Our findings point to a strong need for revisiting the common practices in the development and evaluation of coherence models.
pdf
bib
abs
Fact vs. Opinion: the Role of Argumentation Features in News Classification
Tariq Alhindi
|
Smaranda Muresan
|
Daniel Preotiuc-Pietro
A 2018 study led by the Media Insight Project showed that most journalists think that a clearmarking of what is news reporting and what is commentary or opinion (e.g., editorial, op-ed)is essential for gaining public trust. We present an approach to classify news articles into newsstories (i.e., reporting of factual information) and opinion pieces using models that aim to sup-plement the article content representation with argumentation features. Our hypothesis is thatthe nature of argumentative discourse is important in distinguishing between news stories andopinion articles. We show that argumentation features outperform linguistic features used previ-ously and improve on fine-tuned transformer-based models when tested on data from publishersunseen in training. Automatically flagging opinion pieces vs. news stories can aid applicationssuch as fact-checking or event extraction.
pdf
bib
abs
Generating Plausible Counterfactual Explanations for Deep Transformers in Financial Text Classification
Linyi Yang
|
Eoin Kenny
|
Tin Lok James Ng
|
Yi Yang
|
Barry Smyth
|
Ruihai Dong
Corporate mergers and acquisitions (M&A) account for billions of dollars of investment globally every year and offer an interesting and challenging domain for artificial intelligence. However, in these highly sensitive domains, it is crucial to not only have a highly robust/accurate model, but be able to generate useful explanations to garner a user’s trust in the automated system. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classification has received little to no attention, and many current methods for generating textual-based explanations result in highly implausible explanations, which damage a user’s trust in the system. To address these issues, this paper proposes a novel methodology for producing plausible counterfactual explanations, whilst exploring the regularization benefits of adversarial training on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate that not only does this approach improve the model accuracy when compared to the current state-of-the-art and human performance, but it also generates counterfactual explanations which are significantly more plausible based on human trials.
pdf
bib
abs
Text Classification by Contrastive Learning and Cross-lingual Data Augmentation for Alzheimer’s Disease Detection
Zhiqiang Guo
|
Zhaoci Liu
|
Zhenhua Ling
|
Shijin Wang
|
Lingjing Jin
|
Yunxia Li
Data scarcity is always a constraint on analyzing speech transcriptions for automatic Alzheimer’s disease (AD) detection, especially when the subjects are non-English speakers. To deal with this issue, this paper first proposes a contrastive learning method to obtain effective representations for text classification based on monolingual embeddings of BERT. Furthermore, a cross-lingual data augmentation method is designed by building autoencoders to learn the text representations shared by both languages. Experiments on a Mandarin AD corpus show that the contrastive learning method can achieve better detection accuracy than conventional CNN-based and BERTbased methods. Our cross-lingual data augmentation method also outperforms other compared methods when using another English AD corpus for augmentation. Finally, a best detection accuracy of 81.6% is obtained by our proposed methods on the Mandarin AD corpus.
pdf
bib
abs
Multilingual Epidemiological Text Classification: A Comparative Study
Stephen Mutuvi
|
Emanuela Boros
|
Antoine Doucet
|
Adam Jatowt
|
Gaël Lejeune
|
Moses Odeo
In this paper, we approach the multilingual text classification task in the context of the epidemiological field. Multilingual text classification models tend to perform differently across different languages (low- or high-resourced), more particularly when the dataset is highly imbalanced, which is the case for epidemiological datasets. We conduct a comparative study of different machine and deep learning text classification models using a dataset comprising news articles related to epidemic outbreaks from six languages, four low-resourced and two high-resourced, in order to analyze the influence of the nature of the language, the structure of the document, and the size of the data. Our findings indicate that the performance of the models based on fine-tuned language models exceeds by more than 50% the chosen baseline models that include a specialized epidemiological news surveillance system and several machine learning models. Also, low-resource languages are highly influenced not only by the typology of the languages on which the models have been pre-trained or/and fine-tuned but also by their size. Furthermore, we discover that the beginning and the end of documents provide the most salient features for this task and, as expected, the performance of the models was proportionate to the training data size.
pdf
bib
abs
Pointing to Select: A Fast Pointer-LSTM for Long Text Classification
Jinhua Du
|
Yan Huang
|
Karo Moilanen
Recurrent neural networks (RNNs) suffer from well-known limitations and complications which include slow inference and vanishing gradients when processing long sequences in text classification. Recent studies have attempted to accelerate RNNs via various ad hoc mechanisms to skip irrelevant words in the input. However, word skipping approaches proposed to date effectively stop at each or a given time step to decide whether or not a given input word should be skipped, breaking the coherence of input processing in RNNs. Furthermore, current methods cannot change skip rates during inference and are consequently unable to support different skip rates in demanding real-world conditions. To overcome these limitations, we propose Pointer- LSTM, a novel LSTM framework which relies on a pointer network to select important words for target prediction. The model maintains a coherent input process for the LSTM modules and makes it possible to change the skip rate during inference. Our evaluation on four public data sets demonstrates that Pointer-LSTM (a) is 1.1x∼3.5x faster than the standard LSTM architecture; (b) is more accurate than Leap-LSTM (the state-of-the-art LSTM skipping model) at high skip rates; and (c) reaches robust accuracy levels even when the skip rate is changed during inference.
pdf
bib
abs
Aspect-based Document Similarity for Research Papers
Malte Ostendorff
|
Terry Ruas
|
Till Blume
|
Bela Gipp
|
Georg Rehm
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity approach for research papers. Paper citations indicate the aspect-based similarity, i.e., the title of a section in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. According to our results, SciBERT is the best performing system with F1-scores of up to 0.83. A qualitative analysis validates our quantitative results and indicates that aspect-based document similarity indeed leads to more fine-grained recommendations.
pdf
bib
abs
Explainable and Sparse Representations of Academic Articles for Knowledge Exploration
Keng-Te Liao
|
Zhihong Shen
|
Chiyuan Huang
|
Chieh-Han Wu
|
PoChun Chen
|
Kuansan Wang
|
Shou-de Lin
We focus on a recently deployed system built for summarizing academic articles by concept tagging. The system has shown great coverage and high accuracy of concept identification which could be contributed by the knowledge acquired from millions of publications. Provided with the interpretable concepts and knowledge encoded in a pre-trained neural model, we investigate whether the tagged concepts can be applied to a broader class of applications. We propose transforming the tagged concepts into sparse vectors as representations of academic documents. The effectiveness of the representations is analyzed theoretically by a proposed framework. We also empirically show that the representations can have advantages on academic topic discovery and paper recommendation. On these applications, we reveal that the knowledge encoded in the tagging system can be effectively utilized and can help infer additional features from data with limited information.
pdf
bib
abs
“What is on your mind?” Automated Scoring of Mindreading in Childhood and Early Adolescence
Venelin Kovatchev
|
Phillip Smith
|
Mark Lee
|
Imogen Grumley Traynor
|
Irene Luque Aguilera
|
Rory Devine
In this paper we present the first work on the automated scoring of mindreading ability in middle childhood and early adolescence. We create MIND-CA, a new corpus of 11,311 question-answer pairs in English from 1,066 children aged from 7 to 14. We perform machine learning experiments and carry out extensive quantitative and qualitative evaluation. We obtain promising results, demonstrating the applicability of state-of-the-art NLP solutions to a new domain and task.
pdf
bib
abs
A Deep Metric Learning Method for Biomedical Passage Retrieval
Andrés Rosso-Mateus
|
Fabio A. González
|
Manuel Montes-y-Gómez
Passage retrieval is the task of identifying text snippets that are valid answers for a natural language posed question. One way to address this problem is to look at it as a metric learning problem, where we want to induce a metric between questions and passages that assign smaller distances to more relevant passages. In this work, we present a novel method for passage retrieval that learns a metric for questions and passages based on their internal semantic interactions. The method uses a similar approach to that of triplet networks, where the training samples are composed of one anchor (the question) and two positive and negative samples (passages). However,and in contrast with triplet networks, the proposed method uses a novel deep architecture that better exploits the particularities of text and takes into consideration complementary relatedness measures. Besides, the paper presents a sampling strategy that selects both easy and hard negative samples which improves the accuracy of the trained model. The method is particularly well suited for domain-specific passage retrieval where it is very important to take into account different sources of information. The proposed approach was evaluated in a biomedical passage retrieval task, the BioASQ challenge, outperforming standard triplet loss substantially by 10%,and state-of-the-art performance by 26%.
pdf
bib
abs
Hierarchical Text Segmentation for Medieval Manuscripts
Amir Hazem
|
Beatrice Daille
|
Dominique Stutzmann
|
Christopher Kermorvant
|
Louis Chevalier
In this paper, we address the segmentation of books of hours, Latin devotional manuscripts of the late Middle Ages, that exhibit challenging issues: a complex hierarchical entangled structure, variable content, noisy transcriptions with no sentence markers, and strong correlations between sections for which topical information is no longer sufficient to draw segmentation boundaries. We show that the main state-of-the-art segmentation methods are either inefficient or inapplicable for books of hours and propose a bottom-up greedy approach that considerably enhances the segmentation results. We stress the importance of such hierarchical segmentation of books of hours for historians to explore their overarching differences underlying conception about Church.
pdf
bib
abs
Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets
Reem Suwaileh
|
Muhammad Imran
|
Tamer Elsayed
|
Hassan Sajjad
The widespread usage of Twitter during emergencies has provided a new opportunity and timely resource to crisis responders for various disaster management tasks. Geolocation information of pertinent tweets is crucial for gaining situational awareness and delivering aid. However, the majority of tweets do not come with geoinformation. In this work, we focus on the task of location mention recognition from crisis-related tweets. Specifically, we investigate the influence of different types of labeled training data on the performance of a BERT-based classification model. We explore several training settings such as combing in- and out-domain data from news articles and general-purpose and crisis-related tweets. Furthermore, we investigate the effect of geospatial proximity while training on near or far-away events from the target event. Using five different datasets, our extensive experiments provide answers to several critical research questions that are useful for the research community to foster research in this important direction. For example, results show that, for training a location mention recognition model, Twitter-based data is preferred over general-purpose data; and crisis-related data is preferred over general-purpose Twitter data. Furthermore, training on data from geographically-nearby disaster events to the target event boosts the performance compared to training on distant events.
pdf
bib
abs
Mining Crowdsourcing Problems from Discussion Forums of Workers
Zahra Nouri
|
Henning Wachsmuth
|
Gregor Engels
Crowdsourcing is used in academia and industry to solve tasks that are easy for humans but hard for computers, in natural language processing mostly to annotate data. The quality of annotations is affected by problems in the task design, task operation, and task evaluation that workers face with requesters in crowdsourcing processes. To learn about the major problems, we provide a short but comprehensive survey based on two complementary studies: (1) a literature review where we collect and organize problems known from interviews with workers, and (2) an empirical data analysis where we use topic modeling to mine workers’ complaints from a new English corpus of workers’ forum discussions. While literature covers all process phases, problems in the task evaluation are prevalent, including unfair rejections, late payments, and unjustified blockings of workers. According to the data, however, poor task design in terms of malfunctioning environments, bad workload estimation, and privacy violations seems to bother the workers most. Our findings form the basis for future research on how to improve crowdsourcing processes.
pdf
bib
abs
AbuseAnalyzer: Abuse Detection, Severity and Target Prediction for Gab Posts
Mohit Chandra
|
Ashwin Pathak
|
Eesha Dutta
|
Paryul Jain
|
Manish Gupta
|
Manish Shrivastava
|
Ponnurangam Kumaraguru
While extensive popularity of online social media platforms has made information dissemination faster, it has also resulted in widespread online abuse of different types like hate speech, offensive language, sexist and racist opinions, etc. Detection and curtailment of such abusive content is critical for avoiding its psychological impact on victim communities, and thereby preventing hate crimes. Previous works have focused on classifying user posts into various forms of abusive behavior. But there has hardly been any focus on estimating the severity of abuse and the target. In this paper, we present a first of the kind dataset with 7,601 posts from Gab which looks at online abuse from the perspective of presence of abuse, severity and target of abusive behavior. We also propose a system to address these tasks, obtaining an accuracy of ∼80% for abuse presence, ∼82% for abuse target prediction, and ∼65% for abuse severity prediction.
pdf
bib
abs
A Survey of Automatic Personality Detection from Texts
Sanja Stajner
|
Seren Yenikent
Personality profiling has long been used in psychology to predict life outcomes. Recently, automatic detection of personality traits from written messages has gained significant attention in computational linguistics and natural language processing communities, due to its applicability in various fields. In this survey, we show the trajectory of research towards automatic personality detection from purely psychology approaches, through psycholinguistics, to the recent purely natural language processing approaches on large datasets automatically extracted from social media. We point out what has been gained and what lost during that trajectory, and show what can be realistic expectations in the field.
pdf
bib
abs
Mama/Papa, Is this Text for Me?
Rashedur Rahman
|
Gwénolé Lecorvé
|
Aline Étienne
|
Delphine Battistelli
|
Nicolas Béchet
|
Jonathan Chevelu
Children have less linguistic skills than adults, which makes it more difficult for them to understand some texts, for instance when browsing the Internet. In this context, we present a novel method which predicts the minimal age from which a text can be understood. This method analyses each sentence of a text using a recurrent neural network, and then aggregates this information to provide the text-level prediction. Different approaches are proposed and compared to baseline models, at sentence and text levels. Experiments are carried out on a corpus of 1, 500 texts and 160K sentences. Our best model, based on LSTMs, outperforms state-of-the-art results and achieves mean absolute errors of 1.86 and 2.28, at sentence and text levels, respectively.
pdf
bib
abs
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation
Zhongfen Deng
|
Hao Peng
|
Congying Xia
|
Jianxin Li
|
Lifang He
|
Philip Yu
Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simple text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.
pdf
bib
abs
Context in Informational Bias Detection
Esther van den Berg
|
Katja Markert
Informational bias is bias conveyed through sentences or clauses that provide tangential, speculative or background information that can sway readers’ opinions towards entities. By nature, informational bias is context-dependent, but previous work on informational bias detection has not explored the role of context beyond the sentence. In this paper, we explore four kinds of context for informational bias in English news articles: neighboring sentences, the full article, articles on the same event from other news publishers, and articles from the same domain (but potentially different events). We find that integrating event context improves classification performance over a very strong baseline. In addition, we perform the first error analysis of models on this task. We find that the best-performing context-inclusive model outperforms the baseline on longer sentences, and sentences from politically centrist articles.
pdf
bib
abs
HateGAN: Adversarial Generative-Based Data Augmentation for Hate Speech Detection
Rui Cao
|
Roy Ka-Wei Lee
Academia and industry have developed machine learning and natural language processing models to detect online hate speech automatically. However, most of these existing methods adopt a supervised approach that heavily depends on labeled datasets for training. This results in the methods’ poor detection performance of the hate speech class as the training datasets are highly imbalanced. In this paper, we propose HateGAN, a deep generative reinforcement learning model, which addresses the challenge of imbalance class by augmenting the dataset with hateful tweets. We conduct extensive experiments to augment two commonly-used hate speech detection datasets with the HateGAN generated tweets. Our experiment results show that HateGAN improves the detection performance of the hate speech class regardless of the classifiers and datasets used in the detection task. Specifically, we observe an average 5% improvement for the hate class F1 scores across all state-of-the-art hate speech classifiers. We also conduct case studies to empirically examine the HateGAN generated hate speeches and show that the generated tweets are diverse, coherent, and relevant to hate speech detection.
pdf
bib
abs
Evaluating Unsupervised Representation Learning for Detecting Stances of Fake News
Maike Guderlei
|
Matthias Aßenmacher
Our goal is to evaluate the usefulness of unsupervised representation learning techniques for detecting stances of Fake News. Therefore we examine several pre-trained language models with respect to their performance on two Fake News related data sets, both consisting of instances with a headline, an associated news article and the stance of the article towards the respective headline. Specifically, the aim is to understand how much hyperparameter tuning is necessary when fine-tuning the pre-trained architectures, how well transfer learning works in this specific case of stance detection and how sensitive the models are to changes in hyperparameters like batch size, learning rate (schedule), sequence length as well as the freezing technique. The results indicate that the computationally more expensive autoregression approach of XLNet (Yanget al., 2019) is outperformed by BERT-based models, notably by RoBERTa (Liu et al., 2019).While the learning rate seems to be the most important hyperparameter, experiments with different freezing techniques indicate that all evaluated architectures had already learned powerful language representations that pose a good starting point for fine-tuning them.
pdf
bib
abs
XHate-999: Analyzing and Detecting Abusive Language Across Domains and Languages
Goran Glavaš
|
Vanja Mladen Karan
|
Ivan Vulić
We present XHate-999, a multi-domain and multilingual evaluation data set for abusive language detection. By aligning test instances across six typologically diverse languages, XHate-999 for the first time allows for disentanglement of the domain transfer and language transfer effects in abusive language detection. We conduct a series of domain- and language-transfer experiments with state-of-the-art monolingual and multilingual transformer models, setting strong baseline results and profiling XHate-999 as a comprehensive evaluation resource for abusive language detection. Finally, we show that domain- and language-adaption, via intermediate masked language modeling on abusive corpora in the target language, can lead to substantially improved abusive language detection in the target language in the zero-shot transfer setups.
pdf
bib
abs
Detect All Abuse! Toward Universal Abusive Language Detection Models
Kunze Wang
|
Dong Lu
|
Caren Han
|
Siqu Long
|
Josiah Poon
Online abusive language detection (ALD) has become a societal issue of increasing importance in recent years. Several previous works in online ALD focused on solving a single abusive language problem in a single domain, like Twitter, and have not been successfully transferable to the general ALD task or domain. In this paper, we introduce a new generic ALD framework, MACAS, which is capable of addressing several types of ALD tasks across different domains. Our generic framework covers multi-aspect abusive language embeddings that represent the target and content aspects of abusive language and applies a textual graph embedding that analyses the user’s linguistic behaviour. Then, we propose and use the cross-attention gate flow mechanism to embrace multiple aspects of abusive language. Quantitative and qualitative evaluation results show that our ALD algorithm rivals or exceeds the six state-of-the-art ALD algorithms across seven ALD datasets covering multiple aspects of abusive language and different online community domains.
pdf
bib
abs
Modeling Evolution of Message Interaction for Rumor Resolution
Lei Chen
|
Zhongyu Wei
|
Jing Li
|
Baohua Zhou
|
Qi Zhang
|
Xuanjing Huang
Previous work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods.
pdf
bib
abs
Regularized Attentive Capsule Network for Overlapped Relation Extraction
Tianyi Liu
|
Xiangyu Lin
|
Weijia Jia
|
Mingliang Zhou
|
Wei Zhao
Distantly supervised relation extraction has been widely applied in knowledge base construction due to its less requirement of human efforts. However, the automatically established training datasets in distant supervision contain low-quality instances with noisy words and overlapped relations, introducing great challenges to the accurate extraction of relations. To address this problem, we propose a novel Regularized Attentive Capsule Network (RA-CapNet) to better identify highly overlapped relations in each informal sentence. To discover multiple relation features in an instance, we embed multi-head attention into the capsule network as the low-level capsules, where the subtraction of two entities acts as a new form of relation query to select salient features regardless of their positions. To further discriminate overlapped relation features, we devise disagreement regularization to explicitly encourage the diversity among both multiple attention heads and low-level capsules. Extensive experiments conducted on widely used datasets show that our model achieves significant improvements in relation extraction.
pdf
bib
abs
Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot Relational Triple Extraction
Haiyang Yu
|
Ningyu Zhang
|
Shumin Deng
|
Hongbin Ye
|
Wei Zhang
|
Huajun Chen
Current supervised relational triple extraction approaches require huge amounts of labeled data and thus suffer from poor performance in few-shot settings. However, people can grasp new knowledge by learning a few instances. To this end, we take the first step to study the few-shot relational triple extraction, which has not been well understood. Unlike previous single-task few-shot problems, relational triple extraction is more challenging as the entities and relations have implicit correlations. In this paper, We propose a novel multi-prototype embedding network model to jointly extract the composition of relational triples, namely, entity pairs and corresponding relations. To be specific, we design a hybrid prototypical learning mechanism that bridges text and knowledge concerning both entities and relations. Thus, implicit correlations between entities and relations are injected. Additionally, we propose a prototype-aware regularization to learn more representative prototypes. Experimental results demonstrate that the proposed method can improve the performance of the few-shot triple extraction.
pdf
bib
abs
Dual Supervision Framework for Relation Extraction with Distant Supervision and Human Annotation
Woohwan Jung
|
Kyuseok Shim
Relation extraction (RE) has been extensively studied due to its importance in real-world applications such as knowledge base construction and question answering. Most of the existing works train the models on either distantly supervised data or human-annotated data. To take advantage of the high accuracy of human annotation and the cheap cost of distant supervision, we propose the dual supervision framework which effectively utilizes both types of data. However, simply combining the two types of data to train a RE model may decrease the prediction accuracy since distant supervision has labeling bias. We employ two separate prediction networks HA-Net and DS-Net to predict the labels by human annotation and distant supervision, respectively, to prevent the degradation of accuracy by the incorrect labeling of distant supervision. Furthermore, we propose an additional loss term called disagreement penalty to enable HA-Net to learn from distantly supervised labels. In addition, we exploit additional networks to adaptively assess the labeling bias by considering contextual information. Our performance study on sentence-level and document-level REs confirms the effectiveness of the dual supervision framework.
pdf
bib
abs
Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction
Angrosh Mandya
|
Danushka Bollegala
|
Frans Coenen
We propose a contextualised graph convolution network over multiple dependency-based sub-graphs for relation extraction. A novel method to construct multiple sub-graphs using words in shortest dependency path and words linked to entities in the dependency parse is proposed. Graph convolution operation is performed over the resulting multiple sub-graphs to obtain more informative features useful for relation extraction. Our experimental results show that the proposed method achieves superior performance over the existing GCN-based models achieving state-of-the-art performance on cross-sentence n-ary relation extraction dataset and SemEval 2010 Task 8 sentence-level relation extraction dataset. Our model also achieves a comparable performance to the SoTA on the TACRED dataset.
pdf
bib
abs
Towards Accurate and Consistent Evaluation: A Dataset for Distantly-Supervised Relation Extraction
Tong Zhu
|
Haitao Wang
|
Junjie Yu
|
Xiabing Zhou
|
Wenliang Chen
|
Wei Zhang
|
Min Zhang
In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.
pdf
bib
abs
Multi-choice Relational Reasoning for Machine Reading Comprehension
Wuya Chen
|
Xiaojun Quan
|
Chunyu Kit
|
Zhengcheng Min
|
Jiahai Wang
This paper presents our study of cloze-style reading comprehension by imitating human reading comprehension, which normally involves tactical comparing and reasoning over candidates while choosing the best answer. We propose a multi-choice relational reasoning (McR2) model with an aim to enable relational reasoning on candidates based on fusion representations of document, query and candidates. For the fusion representations, we develop an efficient encoding architecture by integrating the schemes of bidirectional attention flow, self-attention and document-gated query reading. Then, comparing and inferring over candidates are executed by a novel relational reasoning network. We conduct extensive experiments on four datasets derived from two public corpora, Children’s Book Test and Who DiD What, to verify the validity and advantages of our model. The results show that it outperforms all baseline models significantly on the four benchmark datasets. The effectiveness of its key components is also validated by an ablation study.
pdf
bib
abs
FASTMATCH: Accelerating the Inference of BERT-based Text Matching
Shuai Pang
|
Jianqiang Ma
|
Zeyu Yan
|
Yang Zhang
|
Jianping Shen
Recently, pre-trained language models such as BERT have shown state-of-the-art accuracies in text matching. When being applied to IR (or QA), the BERT-based matching models need to online calculate the representations and interactions for all query-candidate pairs. The high inference cost has prohibited the deployments of BERT-based matching models in many practical applications. To address this issue, we propose a novel BERT-based text matching model, in which the representations and the interactions are decoupled. Then, the representations of the candidates can be calculated and stored offline, and directly retrieved during the online matching phase. To conduct the interactions and generate final matching scores, a lightweight attention network is designed. Experiments based on several large scale text matching datasets show that the proposed model, called FASTMATCH, can achieve up to 100X speed-up to BERT and RoBERTa at the online matching phase, while keeping more up to 98.7% of the performance.
pdf
bib
abs
DT-QDC: A Dataset for Question Comprehension in Online Test
Sijin Wu
|
Yujiu Yang
|
Nicholas Yung
|
Zhengchen Shen
|
Zeyang Lei
With the transformation of education from the traditional classroom environment to online education and assessment, it is more and more important to accurately assess the difficulty of questions than ever. As teachers may not be able to follow the student’s performance and learning behavior closely, a well-defined method to measure the difficulty of questions to guide learning is necessary. In this paper, we explore the concept of question difficulty and provide our new Chinese DT-QDC dataset. This is currently the largest and only Chinese question dataset, and it also has enriched attributes and difficulty labels. Additional attributes such as keywords, chapter, and question type would allow models to understand questions more precisely. We proposed the MTMS-BERT and ORMS-BERT, which can improve the judgment of difficulty from different views. The proposed methods outperforms different baselines by 7.79% on F1-score and 15.92% on MAE, 28.26% on MSE on the new DT-QDC dataset, laying the foundation for the question difficulty comprehension task.
pdf
bib
abs
Read and Reason with MuSeRC and RuCoS: Datasets for Machine Reading Comprehension for Russian
Alena Fenogenova
|
Vladislav Mikhailov
|
Denis Shevelev
The paper introduces two Russian machine reading comprehension (MRC) datasets, called MuSeRC and RuCoS, which require reasoning over multiple sentences and commonsense knowledge to infer the answer. The former follows the design of MultiRC, while the latter is a counterpart of the ReCoRD dataset. The datasets are included in RussianSuperGLUE, the Russian general language understanding benchmark. We provide a comparative analysis and demonstrate that the proposed tasks are relatively more complex as compared to the original ones for English. Besides, performance results of human solvers and BERT-based models show that MuSeRC and RuCoS represent a challenge for recent advanced neural models. We thus hope to facilitate research in the field of MRC for Russian and prompt the study of multi-hop reasoning in a cross-lingual scenario.
pdf
bib
abs
Knowledge-Enhanced Natural Language Inference Based on Knowledge Graphs
Zikang Wang
|
Linjing Li
|
Daniel Zeng
Natural Language Inference (NLI) is a vital task in natural language processing. It aims to identify the logical relationship between two sentences. Most of the existing approaches make such inference based on semantic knowledge obtained through training corpus. The adoption of background knowledge is rarely seen or limited to a few specific types. In this paper, we propose a novel Knowledge Graph-enhanced NLI (KGNLI) model to leverage the usage of background knowledge stored in knowledge graphs in the field of NLI. KGNLI model consists of three components: a semantic-relation representation module, a knowledge-relation representation module, and a label prediction module. Different from previous methods, various kinds of background knowledge can be flexibly combined in the proposed KGNLI model. Experiments on four benchmarks, SNLI, MultiNLI, SciTail, and BNLI, validate the effectiveness of our model.
pdf
bib
abs
NYTWIT: A Dataset of Novel Words in the New York Times
Yuval Pinter
|
Cassandra L. Jacobs
|
Max Bittker
We present the New York Times Word Innovation Types dataset, or NYTWIT, a collection of over 2,500 novel English words published in the New York Times between November 2017 and March 2019, manually annotated for their class of novelty (such as lexical derivation, dialectal variation, blending, or compounding). We present baseline results for both uncontextual and contextual prediction of novelty class, showing that there is room for improvement even for state-of-the-art NLP systems. We hope this resource will prove useful for linguists and NLP practitioners by providing a real-world environment of novel word appearance.
pdf
bib
abs
SOME: Reference-less Sub-Metrics Optimized for Manual Evaluations of Grammatical Error Correction
Ryoma Yoshimura
|
Masahiro Kaneko
|
Tomoyuki Kajiwara
|
Mamoru Komachi
We propose a reference-less metric trained on manual evaluations of system outputs for grammatical error correction (GEC). Previous studies have shown that reference-less metrics are promising; however, existing metrics are not optimized for manual evaluations of the system outputs because no dataset of the system output exists with manual evaluation. This study manually evaluates outputs of GEC systems to optimize the metrics. Experimental results show that the proposed metric improves correlation with the manual evaluation in both system- and sentence-level meta-evaluation. Our dataset and metric will be made publicly available.
pdf
bib
abs
Continual Lifelong Learning in Natural Language Processing: A Survey
Magdalena Biesialska
|
Katarzyna Biesialska
|
Marta R. Costa-jussà
Continual learning (CL) aims to enable information systems to learn from a continuous data stream across time. However, it is difficult for existing deep learning architectures to learn a new task without largely forgetting previously acquired knowledge. Furthermore, CL is particularly challenging for language learning, as natural language is ambiguous: it is discrete, compositional, and its meaning is context-dependent. In this work, we look at the problem of CL through the lens of various NLP tasks. Our survey discusses major challenges in CL and current methods applied in neural network models. We also provide a critical review of the existing CL evaluation methods and datasets in NLP. Finally, we present our outlook on future research directions.
pdf
bib
abs
XED: A Multilingual Dataset for Sentiment Analysis and Emotion Detection
Emily Öhman
|
Marc Pàmies
|
Kaisla Kajava
|
Jörg Tiedemann
We introduce XED, a multilingual fine-grained emotion dataset. The dataset consists of human-annotated Finnish (25k) and English sentences (30k), as well as projected annotations for 30 additional languages, providing new resources for many low-resource languages. We use Plutchik’s core emotions to annotate the dataset with the addition of neutral to create a multilabel multiclass dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to show that XED performs on par with other similar datasets and is therefore a useful tool for sentiment analysis and emotion detection.
pdf
bib
abs
Human or Neural Translation?
Shivendra Bhardwaj
|
David Alfonso Hermelo
|
Phillippe Langlais
|
Gabriel Bernier-Colborne
|
Cyril Goutte
|
Michel Simard
Deep neural models tremendously improved machine translation. In this context, we investigate whether distinguishing machine from human translations is still feasible. We trained and applied 18 classifiers under two settings: a monolingual task, in which the classifier only looks at the translation; and a bilingual task, in which the source text is also taken into consideration. We report on extensive experiments involving 4 neural MT systems (Google Translate, DeepL, as well as two systems we trained) and varying the domain of texts. We show that the bilingual task is the easiest one and that transfer-based deep-learning classifiers perform best, with mean accuracies around 85% in-domain and 75% out-of-domain .
pdf
bib
abs
Biomedical Concept Relatedness – A large EHR-based benchmark
Claudia Schulz
|
Josh Levy-Kramer
|
Camille Van Assel
|
Miklos Kepes
|
Nils Hammerla
A promising application of AI to healthcare is the retrieval of information from electronic health records (EHRs), e.g. to aid clinicians in finding relevant information for a consultation or to recruit suitable patients for a study. This requires search capabilities far beyond simple string matching, including the retrieval of concepts (diagnoses, symptoms, medications, etc.) related to the one in question. The suitability of AI methods for such applications is tested by predicting the relatedness of concepts with known relatedness scores. However, all existing biomedical concept relatedness datasets are notoriously small and consist of hand-picked concept pairs. We open-source a novel concept relatedness benchmark overcoming these issues: it is six times larger than existing datasets and concept pairs are chosen based on co-occurrence in EHRs, ensuring their relevance for the application of interest. We present an in-depth analysis of our new dataset and compare it to existing ones, highlighting that it is not only larger but also complements existing datasets in terms of the types of concepts included. Initial experiments with state-of-the-art embedding methods show that our dataset is a challenging new benchmark for testing concept relatedness models.
pdf
bib
abs
Domain-Specific Sentiment Lexicons Induced from Labeled Documents
SM Mazharul Islam
|
Xin Dong
|
Gerard de Melo
Sentiment analysis is an area of substantial relevance both in industry and in academia, including for instance in social studies. Although supervised learning algorithms have advanced considerably in recent years, in many settings it remains more practical to apply an unsupervised technique. The latter are oftentimes based on sentiment lexicons. However, existing sentiment lexicons reflect an abstract notion of polarity and do not do justice to the substantial differences of word polarities between different domains. In this work, we draw on a collection of domain-specific data to induce a set of 24 domain-specific sentiment lexicons. We rely on initial linear models to induce initial word intensity scores, and then train new deep models based on word vector representations to overcome the scarcity of the original seed data. Our analysis shows substantial differences between domains, which make domain-specific sentiment lexicons a promising form of lexical resource in downstream tasks, and the predicted lexicons indeed perform effectively on tasks such as review classification and cross-lingual word sentiment prediction.
pdf
bib
abs
Language ID in the Wild: Unexpected Challenges on the Path to a Thousand-Language Web Text Corpus
Isaac Caswell
|
Theresa Breiner
|
Daan van Esch
|
Ankur Bapna
Large text corpora are increasingly important for a wide variety of Natural Language Processing (NLP) tasks, and automatic language identification (LangID) is a core technology needed to collect such datasets in a multilingual context. LangID is largely treated as solved in the literature, with models reported that achieve over 90% average F1 on as many as 1,366 languages. We train LangID models on up to 1,629 languages with comparable quality on held-out test sets, but find that human-judged LangID accuracy for web-crawl text corpora created using these models is only around 5% for many lower-resource languages, suggesting a need for more robust evaluation. Further analysis revealed a variety of error modes, arising from domain mismatch, class imbalance, language similarity, and insufficiently expressive models. We propose two classes of techniques to mitigate these errors: wordlist-based tunable-precision filters (for which we release curated lists in about 500 languages) and transformer-based semi-supervised LangID models, which increase median dataset precision from 5.5% to 71.2%. These techniques enable us to create an initial data set covering 100K or more relatively clean sentences in each of 500+ languages, paving the way towards a 1,000-language web text corpus.
pdf
bib
abs
Constructing A Multi-hop QA Dataset for Comprehensive Evaluation of Reasoning Steps
Xanh Ho
|
Anh-Khoa Duong Nguyen
|
Saku Sugawara
|
Akiko Aizawa
A multi-hop question answering (QA) dataset aims to test reasoning and inference skills by requiring a model to read multiple paragraphs to answer a given question. However, current datasets do not provide a complete explanation for the reasoning process from the question to the answer. Further, previous studies revealed that many examples in existing multi-hop datasets do not require multi-hop reasoning to answer a question. In this study, we present a new multi-hop QA dataset, called 2WikiMultiHopQA, which uses structured and unstructured data. In our dataset, we introduce the evidence information containing a reasoning path for multi-hop questions. The evidence information has two benefits: (i) providing a comprehensive explanation for predictions and (ii) evaluating the reasoning skills of a model. We carefully design a pipeline and a set of templates when generating a question-answer pair that guarantees the multi-hop steps and the quality of the questions. We also exploit the structured format in Wikidata and use logical rules to create questions that are natural but still require multi-hop reasoning. Through experiments, we demonstrate that our dataset is challenging for multi-hop models and it ensures that multi-hop reasoning is required.
pdf
bib
abs
RoBERT – A Romanian BERT Model
Mihai Masala
|
Stefan Ruseti
|
Mihai Dascalu
Deep pre-trained language models tend to become ubiquitous in the field of Natural Language Processing (NLP). These models learn contextualized representations by using a huge amount of unlabeled text data and obtain state of the art results on a multitude of NLP tasks, by enabling efficient transfer learning. For other languages besides English, there are limited options of such models, most of which are trained only on multi-lingual corpora. In this paper we introduce a Romanian-only pre-trained BERT model – RoBERT – and compare it with different multi-lingual models on seven Romanian specific NLP tasks grouped into three categories, namely: sentiment analysis, dialect and cross-dialect topic identification, and diacritics restoration. Our model surpasses the multi-lingual models, as well as a another mono-lingual implementation of BERT, on all tasks.
pdf
bib
abs
Exploring the Language of Data
Gábor Bella
|
Linda Gremes
|
Fausto Giunchiglia
We set out to uncover the unique grammatical properties of an important yet so far under-researched type of natural language text: that of short labels typically found within structured datasets. We show that such labels obey a specific type of abbreviated grammar that we call the Language of Data, with properties significantly different from the kinds of text typically addressed in computational linguistics and NLP, such as ‘standard’ written language or social media messages. We analyse orthography, parts of speech, and syntax over a large, bilingual, hand-annotated corpus of data labels collected from a variety of domains. We perform experiments on tokenisation, part-of-speech tagging, and named entity recognition over real-world structured data, demonstrating that models adapted to the Language of Data outperform those trained on standard text. These observations point in a new direction to be explored as future research, in order to develop new NLP tools and models dedicated to the Language of Data.
pdf
bib
abs
DaN+: Danish Nested Named Entities and Lexical Normalization
Barbara Plank
|
Kristian Nørgaard Jensen
|
Rob van der Goot
This paper introduces DAN+, a new multi-domain corpus and annotation guidelines for Dan-ish nested named entities (NEs) and lexical normalization to support research on cross-lingualcross-domain learning for a less-resourced language. We empirically assess three strategies tomodel the two-layer Named Entity Recognition (NER) task. We compare transfer capabilitiesfrom German versus in-language annotation from scratch. We examine language-specific versusmultilingual BERT, and study the effect of lexical normalization on NER. Our results show that 1) the most robust strategy is multi-task learning which is rivaled by multi-label decoding, 2) BERT-based NER models are sensitive to domain shifts, and 3) in-language BERT and lexicalnormalization are the most beneficial on the least canonical data. Our results also show that anout-of-domain setup remains challenging, while performance on news plateaus quickly. Thishighlights the importance of cross-domain evaluation of cross-lingual transfer.
pdf
bib
abs
New Benchmark Corpus and Models for Fine-grained Event Classification: To BERT or not to BERT?
Jakub Piskorski
|
Jacek Haneczok
|
Guillaume Jacquet
We introduce a new set of benchmark datasets derived from ACLED data for fine-grained event classification and compare the performance of various state-of-the-art models on these datasets, including SVM based on TF-IDF character n-grams and neural context-free embeddings (GLOVE and FASTTEXT) as well as deep learning-based BERT with its contextual embeddings. The best results in terms of micro (94.3-94.9%) and macro F1 (86.0-88.9%) were obtained using BERT transformer, with simpler TF-IDF character n-gram based SVM being an interesting alternative. Further, we discuss the pros and cons of the considered benchmark models in terms of their robustness and the dependence of the classification performance on the size of training data.
pdf
bib
abs
A Geometry-Inspired Attack for Generating Natural Language Adversarial Examples
Zhao Meng
|
Roger Wattenhofer
Generating adversarial examples for natural language is hard, as natural language consists of discrete symbols, and examples are often of variable lengths. In this paper, we propose a geometry-inspired attack for generating natural language adversarial examples. Our attack generates adversarial examples by iteratively approximating the decision boundary of Deep Neural Networks (DNNs). Experiments on two datasets with two different models show that our attack fools natural language models with high success rates, while only replacing a few words. Human evaluation shows that adversarial examples generated by our attack are hard for humans to recognize. Further experiments show that adversarial training can improve model robustness against our attack.
pdf
bib
abs
Expert Concept-Modeling Ground Truth Construction for Word Embeddings Evaluation in Concept-Focused Domains
Arianna Betti
|
Martin Reynaert
|
Thijs Ossenkoppele
|
Yvette Oortwijn
|
Andrew Salway
|
Jelke Bloem
We present a novel, domain expert-controlled, replicable procedure for the construction of concept-modeling ground truths with the aim of evaluating the application of word embeddings. In particular, our method is designed to evaluate the application of word and paragraph embeddings in concept-focused textual domains, where a generic ontology does not provide enough information. We illustrate the procedure, and validate it by describing the construction of an expert ground truth, QuiNE-GT. QuiNE-GT is built to answer research questions concerning the concept of naturalized epistemology in QUINE, a 2-million-token, single-author, 20th-century English philosophy corpus of outstanding quality, cleaned up and enriched for the purpose. To the best of our ken, expert concept-modeling ground truths are extremely rare in current literature, nor has the theoretical methodology behind their construction ever been explicitly conceptualised and properly systematised. Expert-controlled concept-modeling ground truths are however essential to allow proper evaluation of word embeddings techniques, and increase their trustworthiness in specialised domains in which the detection of concepts through their expression in texts is important. We highlight challenges, requirements, and prospects for future work.
pdf
bib
abs
Creation of Corpus and analysis in Code-Mixed Kannada-English Twitter data for Emotion Prediction
Abhinav Reddy Appidi
|
Vamshi Krishna Srirangam
|
Darsi Suhas
|
Manish Shrivastava
Emotion prediction is a critical task in the field of Natural Language Processing (NLP). There has been a significant amount of work done in emotion prediction for resource-rich languages. There has been work done on code-mixed social media corpus but not on emotion prediction of Kannada-English code-mixed Twitter data. In this paper, we analyze the problem of emotion prediction on corpus obtained from code-mixed Kannada-English extracted from Twitter annotated with their respective ‘Emotion’ for each tweet. We experimented with machine learning prediction models using features like Character N-Grams, Word N-Grams, Repetitive characters, and others on SVM and LSTM on our corpus, which resulted in an accuracy of 30% and 32% respectively.
pdf
bib
abs
Fair Evaluation in Concept Normalization: a Large-scale Comparative Analysis for BERT-based Models
Elena Tutubalina
|
Artur Kadurin
|
Zulfat Miftahutdinov
Linking of biomedical entity mentions to various terminologies of chemicals, diseases, genes, adverse drug reactions is a challenging task, often requiring non-syntactic interpretation. A large number of biomedical corpora and state-of-the-art models have been introduced in the past five years. However, there are no general guidelines regarding the evaluation of models on these corpora in single- and cross-terminology settings. In this work, we perform a comparative evaluation of various benchmarks and study the efficiency of state-of-the-art neural architectures based on Bidirectional Encoder Representations from Transformers (BERT) for linking of three entity types across three domains: research abstracts, drug labels, and user-generated texts on drug therapy in English. We have made the source code and results available at
https://github.com/insilicomedicine/Fair-Evaluation-BERT.
pdf
bib
abs
A Sentence Cloze Dataset for Chinese Machine Reading Comprehension
Yiming Cui
|
Ting Liu
|
Ziqing Yang
|
Zhipeng Chen
|
Wentao Ma
|
Wanxiang Che
|
Shijin Wang
|
Guoping Hu
Owing to the continuous efforts by the Chinese NLP community, more and more Chinese machine reading comprehension datasets become available. To add diversity in this area, in this paper, we propose a new task called Sentence Cloze-style Machine Reading Comprehension (SC-MRC). The proposed task aims to fill the right candidate sentence into the passage that has several blanks. We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task. Moreover, to add more difficulties, we also made fake candidates that are similar to the correct ones, which requires the machine to judge their correctness in the context. The proposed dataset contains over 100K blanks (questions) within over 10K passages, which was originated from Chinese narrative stories. To evaluate the dataset, we implement several baseline systems based on the pre-trained models, and the results show that the state-of-the-art model still underperforms human performance by a large margin. We release the dataset and baseline system to further facilitate our community. Resources available through
https://github.com/ymcui/cmrc2019pdf
bib
abs
Improving Document-Level Sentiment Analysis with User and Product Context
Chenyang Lyu
|
Jennifer Foster
|
Yvette Graham
Past work that improves document-level sentiment analysis by encoding user and product in- formation has been limited to considering only the text of the current review. We investigate incorporating additional review text available at the time of sentiment prediction that may prove meaningful for guiding prediction. Firstly, we incorporate all available historical review text belonging to the author of the review in question. Secondly, we investigate the inclusion of his- torical reviews associated with the current product (written by other users). We achieve this by explicitly storing representations of reviews written by the same user and about the same product and force the model to memorize all reviews for one particular user and product. Additionally, we drop the hierarchical architecture used in previous work to enable words in the text to directly attend to each other. Experiment results on IMDB, Yelp 2013 and Yelp 2014 datasets show improvement to state-of-the-art of more than 2 percentage points in the best case.
pdf
bib
abs
Multilingual Neural RST Discourse Parsing
Zhengyuan Liu
|
Ke Shi
|
Nancy Chen
Text discourse parsing plays an important role in understanding information flow and argumentative structure in natural language. Previous research under the Rhetorical Structure Theory (RST) has mostly focused on inducing and evaluating models from the English treebank. However, the parsing tasks for other languages such as German, Dutch, and Portuguese are still challenging due to the shortage of annotated data. In this work, we investigate two approaches to establish a neural, cross-lingual discourse parser via: (1) utilizing multilingual vector representations; and (2) adopting segment-level translation of the source content. Experiment results show that both methods are effective even with limited training data, and achieve state-of-the-art performance on cross-lingual, document-level discourse parsing on all sub-tasks.
pdf
bib
abs
Intrinsic Quality Assessment of Arguments
Henning Wachsmuth
|
Till Werner
Several quality dimensions of natural language arguments have been investigated. Some are likely to be reflected in linguistic features (e.g., an argument’s arrangement), whereas others depend on context (e.g., relevance) or topic knowledge (e.g., acceptability). In this paper, we study the intrinsic computational assessment of 15 dimensions, i.e., only learning from an argument’s text. In systematic experiments with eight feature types on an existing corpus, we observe moderate but significant learning success for most dimensions. Rhetorical quality seems hardest to assess, and subjectivity features turn out strong, although length bias in the corpus impedes full validity. We also find that human assessors differ more clearly to each other than to our approach.
pdf
bib
abs
Tree Representations in Transition System for RST Parsing
Jinfen Li
|
Lu Xiao
The transition-based systems in the past studies propose a series of actions, to build a right-heavy binarized tree for the RST parsing. However, the nodes of the binary-nuclear relations (e.g., Contrast) have the same nuclear type with those of the multi-nuclear relations (e.g., Joint) in the binary tree structure. In addition, the reduce action only construct binary trees instead of multi-branch trees, which is the original RST tree structure. In our paper, we design a new nuclear type for the multi-nuclear relations, and a new action to construct a multi-branch tree. We enrich the feature set by extracting additional refined dependency feature of texts from the Bi-Affine model. We also compare the performance of two approaches for RST parsing in the transition-based system: a joint action of reduce-shift and nuclear type (i.e., Reduce-SN) vs a separate one that applies Reduce action first and then assigns nuclear type. We find that the new devised nuclear type and action are more capable of capturing the multi-nuclear relation and the joint action is more suitable than the separate one. Our multi-branch tree structure obtains the state-of-the-art performance for all the 18 coarse relations.
pdf
bib
abs
Incremental Neural Lexical Coherence Modeling
Sungho Jeon
|
Michael Strube
Pretrained language models, neural models pretrained on massive amounts of data, have established the state of the art in a range of NLP tasks. They are based on a modern machine-learning technique, the Transformer which relates all items simultaneously to capture semantic relations in sequences. However, it differs from what humans do. Humans read sentences one-by-one, incrementally. Can neural models benefit by interpreting texts incrementally as humans do? We investigate this question in coherence modeling. We propose a coherence model which interprets sentences incrementally to capture lexical relations between them. We compare the state of the art in each task, simple neural models relying on a pretrained language model, and our model in two downstream tasks. Our findings suggest that interpreting texts incrementally as humans could be useful to design more advanced models.
pdf
bib
abs
Statistical Parsing of Tree Wrapping Grammars
Tatiana Bladier
|
Jakub Waszczuk
|
Laura Kallmeyer
We describe an approach to statistical parsing with Tree-Wrapping Grammars (TWG). TWG is a tree-rewriting formalism which includes the tree-combination operations of substitution, sister-adjunction and tree-wrapping substitution. TWGs can be extracted from constituency treebanks and aim at representing long distance dependencies (LDDs) in a linguistically adequate way. We present a parsing algorithm for TWGs based on neural supertagging and A* parsing. We extract a TWG for English from the treebanks for Role and Reference Grammar and discuss first parsing results with this grammar.
pdf
bib
abs
Out-of-Task Training for Dialog State Tracking Models
Michael Heck
|
Christian Geishauser
|
Hsien-chin Lin
|
Nurul Lubis
|
Marco Moresi
|
Carel van Niekerk
|
Milica Gasic
Dialog state tracking (DST) suffers from severe data sparsity. While many natural language processing (NLP) tasks benefit from transfer learning and multi-task learning, in dialog these methods are limited by the amount of available data and by the specificity of dialog applications. In this work, we successfully utilize non-dialog data from unrelated NLP tasks to train dialog state trackers. This opens the door to the abundance of unrelated NLP corpora to mitigate the data sparsity issue inherent to DST.
pdf
bib
abs
Resource Constrained Dialog Policy Learning Via Differentiable Inductive Logic Programming
Zhenpeng Zhou
|
Ahmad Beirami
|
Paul Crook
|
Pararth Shah
|
Rajen Subba
|
Alborz Geramifard
Motivated by the needs of resource constrained dialog policy learning, we introduce dialog policy via differentiable inductive logic (DILOG). We explore the tasks of one-shot learning and zero-shot domain transfer with DILOG on SimDial and MultiWoZ. Using a single representative dialog from the restaurant domain, we train DILOG on the SimDial dataset and obtain 99+% in-domain test accuracy. We also show that the trained DILOG zero-shot transfers to all other domains with 99+% accuracy, proving the suitability of DILOG to slot-filling dialogs. We further extend our study to the MultiWoZ dataset achieving 90+% inform and success metrics. We also observe that these metrics are not capturing some of the shortcomings of DILOG in terms of false positives, prompting us to measure an auxiliary Action F1 score. We show that DILOG is 100x more data efficient than state-of-the-art neural approaches on MultiWoZ while achieving similar performance metrics. We conclude with a discussion on the strengths and weaknesses of DILOG.
pdf
bib
abs
German’s Next Language Model
Branden Chan
|
Stefan Schweter
|
Timo Möller
In this work we present the experiments which lead to the creation of our BERT and ELECTRA based German language models, GBERT and GELECTRA. By varying the input training data, model size, and the presence of Whole Word Masking (WWM) we were able to attain SoTA performance across a set of document classification and named entity recognition (NER) tasks for both models of base and large size. We adopt an evaluation driven approach in training these models and our results indicate that both adding more data and utilizing WWM improve model performance. By benchmarking against existing German models, we show that these models are the best German models to date. All trained models will be made publicly available to the research community.
pdf
bib
abs
Language Model Transformers as Evaluators for Open-domain Dialogues
Rostislav Nedelchev
|
Jens Lehmann
|
Ricardo Usbeck
Computer-based systems for communication with humans are a cornerstone of AI research since the 1950s. So far, the most effective way to assess the quality of the dialogues produced by these systems is to use resource-intensive manual labor instead of automated means. In this work, we investigate whether language models (LM) based on transformer neural networks can indicate the quality of a conversation. In a general sense, language models are methods that learn to predict one or more words based on an already given context. Due to their unsupervised nature, they are candidates for efficient, automatic indication of dialogue quality. We demonstrate that human evaluators have a positive correlation between the output of the language models and scores. We also provide some insights into their behavior and inner-working in a conversational context.
pdf
bib
abs
Embedding Dynamic Attributed Networks by Modeling the Evolution Processes
Zenan Xu
|
Zijing Ou
|
Qinliang Su
|
Jianxing Yu
|
Xiaojun Quan
|
ZhenKun Lin
Network embedding has recently emerged as a promising technique to embed nodes of a network into low-dimensional vectors. While fairly successful, most existing works focus on the embedding techniques for static networks. But in practice, there are many networks that are evolving over time and hence are dynamic, e.g., the social networks. To address this issue, a high-order spatio-temporal embedding model is developed to track the evolutions of dynamic networks. Specifically, an activeness-aware neighborhood embedding method is first proposed to extract the high-order neighborhood information at each given timestamp. Then, an embedding prediction framework is further developed to capture the temporal correlations, in which the attention mechanism is employed instead of recurrent neural networks (RNNs) for its efficiency in computing and flexibility in modeling. Extensive experiments are conducted on four real-world datasets from three different areas. It is shown that the proposed method outperforms all the baselines by a substantial margin for the tasks of dynamic link prediction and node classification, which demonstrates the effectiveness of the proposed methods on tracking the evolutions of dynamic networks.
pdf
bib
abs
Learning distributed sentence vectors with bi-directional 3D convolutions
Bin Liu
|
Liang Wang
|
Guosheng Yin
We propose to learn distributed sentence representation using text’s visual features as input. Different from the existing methods that render the words or characters of a sentence into images separately, we further fold these images into a 3-dimensional sentence tensor. Then, multiple 3-dimensional convolutions with different lengths (the third dimension) are applied to the sentence tensor, which act as bi-gram, tri-gram, quad-gram, and even five-gram detectors jointly. Similar to the Bi-LSTM, these n-gram detectors learn both forward and backward distributional semantic knowledge from the sentence tensor. That is, the proposed model using bi-directional convolutions to learn text embedding according to the semantic order of words. The feature maps from the two directions are concatenated for final sentence embedding learning. Our model involves only a single-layer of convolution which makes it easy and fast to train. Finally, we evaluate the sentence embeddings on several downstream Natural Language Processing (NLP) tasks, which demonstrate a surprisingly excellent performance of the proposed model.
pdf
bib
abs
Don’t Invite BERT to Drink a Bottle: Modeling the Interpretation of Metonymies Using BERT and Distributional Representations
Paolo Pedinotti
|
Alessandro Lenci
In this work, we carry out two experiments in order to assess the ability of BERT to capture the meaning shift associated with metonymic expressions. We test the model on a new dataset that is representative of the most common types of metonymy. We compare BERT with the Structured Distributional Model (SDM), a model for the representation of words in context which is based on the notion of Generalized Event Knowledge. The results reveal that, while BERT ability to deal with metonymy is quite limited, SDM is good at predicting the meaning of metonymic expressions, providing support for an account of metonymy based on event knowledge.
pdf
bib
abs
Neural Unsupervised Domain Adaptation in NLP—A Survey
Alan Ramponi
|
Barbara Plank
Deep neural networks excel at learning from labeled data and achieve state-of-the-art results on a wide array of Natural Language Processing tasks. In contrast, learning from unlabeled data, especially under domain shift, remains a challenge. Motivated by the latest advances, in this survey we review neural unsupervised domain adaptation techniques which do not require labeled target domain data. This is a more challenging yet a more widely applicable setup. We outline methods, from early traditional non-neural methods to pre-trained model transfer. We also revisit the notion of domain, and we uncover a bias in the type of Natural Language Processing tasks which received most attention. Lastly, we outline future directions, particularly the broader need for out-of-distribution generalization of future NLP.
pdf
bib
abs
Exploring the Value of Personalized Word Embeddings
Charles Welch
|
Jonathan K. Kummerfeld
|
Verónica Pérez-Rosas
|
Rada Mihalcea
In this paper, we introduce personalized word embeddings, and examine their value for language modeling. We compare the performance of our proposed prediction model when using personalized versus generic word representations, and study how these representations can be leveraged for improved performance. We provide insight into what types of words can be more accurately predicted when building personalized models. Our results show that a subset of words belonging to specific psycholinguistic categories tend to vary more in their representations across users and that combining generic and personalized word embeddings yields the best performance, with a 4.7% relative reduction in perplexity. Additionally, we show that a language model using personalized word embeddings can be effectively used for authorship attribution.
pdf
bib
abs
Do Neural Language Models Overcome Reporting Bias?
Vered Shwartz
|
Yejin Choi
Mining commonsense knowledge from corpora suffers from reporting bias, over-representing the rare at the expense of the trivial (Gordon and Van Durme, 2013). We study to what extent pre-trained language models overcome this issue. We find that while their generalization capacity allows them to better estimate the plausibility of frequent but unspoken of actions, outcomes, and properties, they also tend to overestimate that of the very rare, amplifying the bias that already exists in their training corpus.
pdf
bib
abs
Interpretable Multi-headed Attention for Abstractive Summarization at Controllable Lengths
Ritesh Sarkhel
|
Moniba Keymanesh
|
Arnab Nandi
|
Srinivasan Parthasarathy
Abstractive summarization at controllable lengths is a challenging task in natural language processing. It is even more challenging for domains where limited training data is available or scenarios in which the length of the summary is not known beforehand. At the same time, when it comes to trusting machine-generated summaries, explaining how a summary was constructed in human-understandable terms may be critical. We propose Multi-level Summarizer (MLS), a supervised method to construct abstractive summaries of a text document at controllable lengths. The key enabler of our method is an interpretable multi-headed attention mechanism that computes attention distribution over an input document using an array of timestep independent semantic kernels. Each kernel optimizes a human-interpretable syntactic or semantic property. Exhaustive experiments on two low-resource datasets in English show that MLS outperforms strong baselines by up to 14.70% in the METEOR score. Human evaluation of the summaries also suggests that they capture the key concepts of the document at various length-budgets.
pdf
bib
abs
Scale down Transformer by Grouping Features for a Lightweight Character-level Language Model
Sungrae Park
|
Geewook Kim
|
Junyeop Lee
|
Junbum Cha
|
Ji-Hoon Kim
|
Hwalsuk Lee
This paper introduces a method that efficiently reduces the computational cost and parameter size of Transformer. The proposed model, refer to as Group-Transformer, splits feature space into multiple groups, factorizes the calculation paths, and reduces computations for the group interaction. Extensive experiments on two benchmark tasks, enwik8 and text8, prove our model’s effectiveness and efficiency in small-scale Transformers. To the best of our knowledge, Group-Transformer is the first attempt to design Transformer with the group strategy, widely used for efficient CNN architectures.
pdf
bib
abs
Attention Word Embedding
Shashank Sonkar
|
Andrew Waters
|
Richard Baraniuk
Word embedding models learn semantically rich vector representations of words and are widely used to initialize natural processing language (NLP) models. The popular continuous bag-of-words (CBOW) model of word2vec learns a vector embedding by masking a given word in a sentence and then using the other words as a context to predict it. A limitation of CBOW is that it equally weights the context words when making a prediction, which is inefficient, since some words have higher predictive value than others. We tackle this inefficiency by introducing the Attention Word Embedding (AWE) model, which integrates the attention mechanism into the CBOW model. We also propose AWE-S, which incorporates subword information. We demonstrate that AWE and AWE-S outperform the state-of-the-art word embedding models both on a variety of word similarity datasets and when used for initialization of NLP models.
pdf
bib
abs
CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters
Hicham El Boukkouri
|
Olivier Ferret
|
Thomas Lavergne
|
Hiroshi Noji
|
Pierre Zweigenbaum
|
Jun’ichi Tsujii
Due to the compelling improvements brought by BERT, many recent representation models adopted the Transformer architecture as their main building block, consequently inheriting the wordpiece tokenization system despite it not being intrinsically linked to the notion of Transformers. While this system is thought to achieve a good balance between the flexibility of characters and the efficiency of full words, using predefined wordpiece vocabularies from the general domain is not always suitable, especially when building models for specialized domains (e.g., the medical domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the subword level, making the models conceptually more complex and arguably less convenient in practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the wordpiece system altogether and uses a Character-CNN module instead to represent entire words by consulting their characters. We show that this new model improves the performance of BERT on a variety of medical domain tasks while at the same time producing robust, word-level, and open-vocabulary representations.
pdf
bib
abs
Autoregressive Reasoning over Chains of Facts with Transformers
Ruben Cartuyvels
|
Graham Spinks
|
Marie-Francine Moens
This paper proposes an iterative inference algorithm for multi-hop explanation regeneration, that retrieves relevant factual evidence in the form of text snippets, given a natural language question and its answer. Combining multiple sources of evidence or facts for multi-hop reasoning becomes increasingly hard when the number of sources needed to make an inference grows. Our algorithm copes with this by decomposing the selection of facts from a corpus autoregressively, conditioning the next iteration on previously selected facts. This allows us to use a pairwise learning-to-rank loss. We validate our method on datasets of the TextGraphs 2019 and 2020 Shared Tasks for explanation regeneration. Existing work on this task either evaluates facts in isolation or artificially limits the possible chains of facts, thus limiting multi-hop inference. We demonstrate that our algorithm, when used with a pre-trained transformer model, outperforms the previous state-of-the-art in terms of precision, training time and inference efficiency.
pdf
bib
abs
Augmenting NLP models using Latent Feature Interpolations
Amit Jindal
|
Arijit Ghosh Chowdhury
|
Aniket Didolkar
|
Di Jin
|
Ramit Sawhney
|
Rajiv Ratn Shah
Models with a large number of parameters are prone to over-fitting and often fail to capture the underlying input distribution. We introduce Emix, a data augmentation method that uses interpolations of word embeddings and hidden layer representations to construct virtual examples. We show that Emix shows significant improvements over previously used interpolation based regularizers and data augmentation techniques. We also demonstrate how our proposed method is more robust to sparsification. We highlight the merits of our proposed methodology by performing thorough quantitative and qualitative assessments.
pdf
bib
abs
Neural Language Modeling for Named Entity Recognition
Zhihong Lei
|
Weiyue Wang
|
Christian Dugast
|
Hermann Ney
Named entity recognition is a key component in various natural language processing systems, and neural architectures provide significant improvements over conventional approaches. Regardless of different word embedding and hidden layer structures of the networks, a conditional random field layer is commonly used for the output. This work proposes to use a neural language model as an alternative to the conditional random field layer, which is more flexible for the size of the corpus. Experimental results show that the proposed system has a significant advantage in terms of training speed, with a marginal performance degradation.
uppdf
bib
Proceedings of the Fourteenth Workshop on Semantic Evaluation
Aurelie Herbelot
|
Xiaodan Zhu
|
Alexis Palmer
|
Nathan Schneider
|
Jonathan May
|
Ekaterina Shutova
pdf
bib
abs
SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection
Dominik Schlechtweg
|
Barbara McGillivray
|
Simon Hengchen
|
Haim Dubossarsky
|
Nina Tahmasebi
Lexical Semantic Change detection, i.e., the task of identifying words that change meaning over time, is a very active research area, with applications in NLP, lexicography, and linguistics. Evaluation is currently the most pressing problem in Lexical Semantic Change detection, as no gold standards are available to the community, which hinders progress. We present the results of the first shared task that addresses this gap by providing researchers with an evaluation framework and manually annotated, high-quality datasets for English, German, Latin, and Swedish. 33 teams submitted 186 systems, which were evaluated on two subtasks.
pdf
bib
abs
SemEval-2020 Task 2: Predicting Multilingual and Cross-Lingual (Graded) Lexical Entailment
Goran Glavaš
|
Ivan Vulić
|
Anna Korhonen
|
Simone Paolo Ponzetto
Lexical entailment (LE) is a fundamental asymmetric lexico-semantic relation, supporting the hierarchies in lexical resources (e.g., WordNet, ConceptNet) and applications like natural language inference and taxonomy induction. Multilingual and cross-lingual NLP applications warrant models for LE detection that go beyond language boundaries. As part of SemEval 2020, we carried out a shared task (Task 2) on multilingual and cross-lingual LE. The shared task spans three dimensions: (1) monolingual vs. cross-lingual LE, (2) binary vs. graded LE, and (3) a set of 6 diverse languages (and 15 corresponding language pairs). We offered two different evaluation tracks: (a) Dist: for unsupervised, fully distributional models that capture LE solely on the basis of unannotated corpora, and (b) Any: for externally informed models, allowed to leverage any resources, including lexico-semantic networks (e.g., WordNet or BabelNet). In the Any track, we recieved runs that push state-of-the-art across all languages and language pairs, for both binary LE detection and graded LE prediction.
pdf
bib
abs
SemEval-2020 Task 3: Graded Word Similarity in Context
Carlos Santos Armendariz
|
Matthew Purver
|
Senja Pollak
|
Nikola Ljubešić
|
Matej Ulčar
|
Ivan Vulić
|
Mohammad Taher Pilehvar
This paper presents the Graded Word Similarity in Context (GWSC) task which asked participants to predict the effects of context on human perception of similarity in English, Croatian, Slovene and Finnish. We received 15 submissions and 11 system description papers. A new dataset (CoSimLex) was created for evaluation in this task: it contains pairs of words, each annotated within two different contexts. Systems beat the baselines by significant margins, but few did well in more than one language or subtask. Almost every system employed a Transformer model, but with many variations in the details: WordNet sense embeddings, translation of contexts, TF-IDF weightings, and the automatic creation of datasets for fine-tuning were all used to good effect.
pdf
bib
abs
DiaSense at SemEval-2020 Task 1: Modeling Sense Change via Pre-trained BERT Embeddings
Christin Beck
This paper describes DiaSense, a system developed for Task 1 ‘Unsupervised Lexical Semantic Change Detection’ of SemEval 2020. In DiaSense, contextualized word embeddings are used to model word sense changes. This allows for the calculation of metrics which mimic human intuitions about the semantic relatedness between individual use pairs of a target word for the assessment of lexical semantic change. DiaSense is able to detect lexical semantic change in English, German, Latin and Swedish (accuracy = 0.728). Moreover, DiaSense differentiates between weak and strong change.
pdf
bib
abs
BabelEnconding at SemEval-2020 Task 3: Contextual Similarity as a Combination of Multilingualism and Language Models
Lucas Rafael Costella Pessutto
|
Tiago de Melo
|
Viviane P. Moreira
|
Altigran da Silva
This paper describes the system submitted by our team (BabelEnconding) to SemEval-2020 Task 3: Predicting the Graded Effect of Context in Word Similarity. We propose an approach that relies on translation and multilingual language models in order to compute the contextual similarity between pairs of words. Our hypothesis is that evidence from additional languages can leverage the correlation with the human generated scores. BabelEnconding was applied to both subtasks and ranked among the top-3 in six out of eight task/language combinations and was the highest scoring system three times.
pdf
bib
abs
Discovery Team at SemEval-2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection
Matej Martinc
|
Syrielle Montariol
|
Elaine Zosa
|
Lidia Pivovarova
This paper describes the approaches used by the Discovery Team to solve SemEval-2020 Task 1 - Unsupervised Lexical Semantic Change Detection. The proposed method is based on clustering of BERT contextual embeddings, followed by a comparison of cluster distributions across time. The best results were obtained by an ensemble of this method and static Word2Vec embeddings. According to the official results, our approach proved the best for Latin in Subtask 2.
pdf
bib
abs
GM-CTSC at SemEval-2020 Task 1: Gaussian Mixtures Cross Temporal Similarity Clustering
Pierluigi Cassotti
|
Annalina Caputo
|
Marco Polignano
|
Pierpaolo Basile
This paper describes the system proposed by the Random team for SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. We focus our approach on the detection problem. Given the semantics of words captured by temporal word embeddings in different time periods, we investigate the use of unsupervised methods to detect when the target word has gained or lost senses. To this end, we define a new algorithm based on Gaussian Mixture Models to cluster the target similarities computed over the two periods. We compare the proposed approach with a number of similarity-based thresholds. We found that, although the performance of the detection methods varies across the word embedding algorithms, the combination of Gaussian Mixture with Temporal Referencing resulted in our best system.
pdf
bib
abs
IMS at SemEval-2020 Task 1: How Low Can You Go? Dimensionality in Lexical Semantic Change Detection
Jens Kaiser
|
Dominik Schlechtweg
|
Sean Papay
|
Sabine Schulte im Walde
We present the results of our system for SemEval-2020 Task 1 that exploits a commonly used lexical semantic change detection model based on Skip-Gram with Negative Sampling. Our system focuses on Vector Initialization (VI) alignment, compares VI to the currently top-ranking models for Subtask 2 and demonstrates that these can be outperformed if we optimize VI dimensionality. We demonstrate that differences in performance can largely be attributed to model-specific sources of noise, and we reveal a strong relationship between dimensionality and frequency-induced noise in VI alignment. Our results suggest that lexical semantic change models integrating vector space alignment should pay more attention to the role of the dimensionality parameter.
pdf
bib
abs
JCT at SemEval-2020 Task 1: Combined Semantic Vector Spaces Models for Unsupervised Lexical Semantic Change Detection
Efrat Amar
|
Chaya Liebeskind
In this paper, we present our contribution in SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection, where we systematically combine existing models for unsupervised capturing of lexical semantic change across time in text corpora of German, English, Latin and Swedish. In particular, we analyze the score distribution of existing models. Then we define a general threshold, adjust it independently to each of the models and measure the models’ score reliability. Finally, using both the threshold and score reliability, we aggregate the models for the two sub- tasks: binary classification and ranking.
pdf
bib
abs
RIJP at SemEval-2020 Task 1: Gaussian-based Embeddings for Semantic Change Detection
Ran Iwamoto
|
Masahiro Yukawa
This paper describes the model proposed and submitted by our RIJP team to SemEval 2020 Task1: Unsupervised Lexical Semantic Change Detection. In the model, words are represented by Gaussian distributions. For Subtask 1, the model achieved average scores of 0.51 and 0.70 in the evaluation and post-evaluation processes, respectively. The higher score in the post-evaluation process than that in the evaluation process was achieved owing to appropriate parameter tuning. The results indicate that the proposed Gaussian-based embedding model is able to express semantic shifts while having a low computational
pdf
bib
abs
SChME at SemEval-2020 Task 1: A Model Ensemble for Detecting Lexical Semantic Change
Maurício Gruppi
|
Sibel Adali
|
Pin-Yu Chen
This paper describes SChME (Semantic Change Detection with Model Ensemble), a method used in SemEval-2020 Task 1 on unsupervised detection of lexical semantic change. SChME uses a model ensemble combining signals distributional models (word embeddings) and word frequency where each model casts a vote indicating the probability that a word suffered semantic change according to that feature. More specifically, we combine cosine distance of word vectors combined with a neighborhood-based metric we named Mapped Neighborhood Distance (MAP), and a word frequency differential metric as input signals to our model. Additionally, we explore alignment-based methods to investigate the importance of the landmarks used in this process. Our results show evidence that the number of landmarks used for alignment has a direct impact on the predictive performance of the model. Moreover, we show that languages that suffer less semantic change tend to benefit from using a large number of landmarks, whereas languages with more semantic change benefit from a more careful choice of landmark number for alignment.
pdf
bib
abs
SenseCluster at SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection
Amaru Cuba Gyllensten
|
Evangelia Gogoulou
|
Ariel Ekgren
|
Magnus Sahlgren
We (Team Skurt) propose a simple method to detect lexical semantic change by clustering contextualized embeddings produced by XLM-R, using K-Means++. The basic idea is that contextualized embeddings that encode the same sense are located in close proximity in the embedding space. Our approach is both simple and generic, but yet performs relatively good in both sub-tasks of SemEval-2020 Task 1. We hypothesize that the main shortcoming of our method lies in the simplicity of the clustering method used.
pdf
bib
abs
The UCD-Net System at SemEval-2020 Task 1: Temporal Referencing with Semantic Network Distances
Paul Nulty
|
David Lillis
This paper describes the UCD system entered for SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. We propose a novel method based on distance between temporally referenced nodes in a semantic network constructed from a combination of the time specific corpora. We argue for the value of semantic networks as objects for transparent exploratory analysis and visualisation of lexical semantic change, and present an implementation of a web application for the purpose of searching and visualising semantic networks. The results of the change measure used for this task were not among the best performing systems, but further calibration of the distance metric and backoff approaches may improve this method.
pdf
bib
abs
UiO-UvA at SemEval-2020 Task 1: Contextualised Embeddings for Lexical Semantic Change Detection
Andrey Kutuzov
|
Mario Giulianelli
We apply contextualised word embeddings to lexical semantic change detection in the SemEval-2020 Shared Task 1. This paper focuses on Subtask 2, ranking words by the degree of their semantic drift over time. We analyse the performance of two contextualising architectures (BERT and ELMo) and three change detection algorithms. We find that the most effective algorithms rely on the cosine similarity between averaged token embeddings and the pairwise distances between token embeddings. They outperform strong baselines by a large margin (in the post-evaluation phase, we have the best Subtask 2 submission for SemEval-2020 Task 1), but interestingly, the choice of a particular algorithm depends on the distribution of gold scores in the test set.
pdf
bib
abs
BMEAUT at SemEval-2020 Task 2: Lexical Entailment with Semantic Graphs
Ádám Kovács
|
Kinga Gémes
|
Andras Kornai
|
Gábor Recski
In this paper we present a novel rule-based, language independent method for determining lexical entailment relations using semantic representations built from Wiktionary definitions. Combined with a simple WordNet-based method our system achieves top scores on the English and Italian datasets of the Semeval-2020 task “Predicting Multilingual and Cross-lingual (graded) Lexical Entailment” (Glavaš et al., 2020). A detailed error analysis of our output uncovers future di- rections for improving both the semantic parsing method and the inference process on semantic graphs.
pdf
bib
abs
BRUMS at SemEval-2020 Task 3: Contextualised Embeddings for Predicting the (Graded) Effect of Context in Word Similarity
Hansi Hettiarachchi
|
Tharindu Ranasinghe
This paper presents the team BRUMS submission to SemEval-2020 Task 3: Graded Word Similarity in Context. The system utilises state-of-the-art contextualised word embeddings, which have some task-specific adaptations, including stacked embeddings and average embeddings. Overall, the approach achieves good evaluation scores across all the languages, while maintaining simplicity. Following the final rankings, our approach is ranked within the top 5 solutions of each language while preserving the 1st position of Finnish subtask 2.
pdf
bib
abs
MineriaUNAM at SemEval-2020 Task 3: Predicting Contextual WordSimilarity Using a Centroid Based Approach and Word Embeddings
Helena Gomez-Adorno
|
Gemma Bel-Enguix
|
Jorge Reyes-Magaña
|
Benjamín Moreno
|
Ramón Casillas
|
Daniel Vargas
This paper presents our systems to solve Task 3 of Semeval-2020, which aims to predict the effect that context has on human perception of similarity of words. The task consists of two subtasks in English, Croatian, Finnish, and Slovenian: (1) predicting the change of similarity and (2) predicting the human scores of similarity, both of them for a pair of words within two different contexts. We tackled the problem by developing two systems, the first one uses a centroid approach and word vectors. The second one uses the ELMo language model, which is trained for each pair of words with the given context. Our approach achieved the highest score in subtask 2 for the English language.
pdf
bib
abs
MULTISEM at SemEval-2020 Task 3: Fine-tuning BERT for Lexical Meaning
Aina Garí Soler
|
Marianna Apidianaki
We present the MULTISEM systems submitted to SemEval 2020 Task 3: Graded Word Similarity in Context (GWSC). We experiment with injecting semantic knowledge into pre-trained BERT models through fine-tuning on lexical semantic tasks related to GWSC. We use existing semantically annotated datasets, and propose to approximate similarity through automatically generated lexical substitutes in context. We participate in both GWSC subtasks and address two languages, English and Finnish. Our best English models occupy the third and fourth positions in the ranking for the two subtasks. Performance is lower for the Finnish models which are mid-ranked in the respective subtasks, highlighting the important role of data availability for fine-tuning.
pdf
bib
abs
UZH at SemEval-2020 Task 3: Combining BERT with WordNet Sense Embeddings to Predict Graded Word Similarity Changes
Li Tang
CoSimLex is a dataset that can be used to evaluate the ability of context-dependent word embed- dings for modeling subtle, graded changes of meaning, as perceived by humans during reading. At SemEval-2020, task 3, subtask 1 is about ”predicting the (graded) effect of context in word similarity”, using CoSimLex to quantify such a change of similarity for a pair of words, from one context to another. Here, a meaning shift is composed of two aspects, a) discrete changes observed between different word senses, and b) more subtle changes of meaning representation that are not captured in those discrete changes. Therefore, this SemEval task was designed to allow the evaluation of systems that can deal with a mix of both situations of semantic shift, as they occur in the human perception of meaning. The described system was developed to improve the BERT baseline provided with the task, by reducing distortions in the BERT semantic space, compared to the human semantic space. To this end, complementarity between 768- and 1024-dimensional BERT embeddings, and average word sense vectors were used. With this system, after some fine-tuning, the baseline performance of 0.705 (uncentered Pearson correlation with human semantic shift data from 27 annotators) was enhanced by more than 6%, to 0.7645. We hope that this work can make a contribution to further our understanding of the semantic vector space of human perception, as it can be modeled with context-dependent word embeddings in natural language processing systems.
pdf
bib
abs
BOS at SemEval-2020 Task 1: Word Sense Induction via Lexical Substitution for Lexical Semantic Change Detection
Nikolay Arefyev
|
Vasily Zhikov
SemEval-2020 Task 1 is devoted to detection of changes in word meaning over time. The first subtask raises a question if a particular word has acquired or lost any of its senses during the given time period. The second subtask requires estimating the change in frequencies of the word senses. We have submitted two solutions for both subtasks. The first solution performs word sense induction (WSI) first, then makes the decision based on the induced word senses. We extend the existing WSI method based on clustering of lexical substitutes generated with neural language models and adapt it to the task. The second solution exploits a well-known approach to semantic change detection, that includes building word2vec SGNS vectors, aligning them with Orthogonal Procrustes and calculating cosine distance between resulting vectors. While WSI-based solution performs better in Subtask 1, which requires binary decisions, the second solution outperforms it in Subtask 2 and obtains the 3rd best result in this subtask.
pdf
bib
abs
CIRCE at SemEval-2020 Task 1: Ensembling Context-Free and Context-Dependent Word Representations
Martin Pömsl
|
Roman Lyapin
This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and context-dependent word representations. The key findings are that (1) context-free word representations are a powerful and robust baseline, (2) a sentence classification objective can be used to obtain useful context-dependent word representations, and (3) combining those representations increases performance on some datasets while decreasing performance on others.
pdf
bib
abs
CMCE at SemEval-2020 Task 1: Clustering on Manifolds of Contextualized Embeddings to Detect Historical Meaning Shifts
David Rother
|
Thomas Haider
|
Steffen Eger
This paper describes the system Clustering on Manifolds of Contextualized Embeddings (CMCE) submitted to the SemEval-2020 Task 1 on Unsupervised Lexical Semantic Change Detection. Subtask 1 asks to identify whether or not a word gained/lost a sense across two time periods. Subtask 2 is about computing a ranking of words according to the amount of change their senses underwent. Our system uses contextualized word embeddings from MBERT, whose dimensionality we reduce with an autoencoder and the UMAP algorithm, to be able to use a wider array of clustering algorithms that can automatically determine the number of clusters. We use Hierarchical Density Based Clustering (HDBSCAN) and compare it to Gaussian MixtureModels (GMMs) and other clustering algorithms. Remarkably, with only 10 dimensional MBERT embeddings (reduced from the original size of 768), our submitted model performs best on subtask 1 for English and ranks third in subtask 2 for English. In addition to describing our system, we discuss our hyperparameter configurations and examine why our system lags behind for the other languages involved in the shared task (German, Swedish, Latin). Our code is available at
https://github.com/DavidRother/semeval2020-task1pdf
bib
abs
DCC-Uchile at SemEval-2020 Task 1: Temporal Referencing Word Embeddings
Frank D. Zamora-Reina
|
Felipe Bravo-Marquez
We present a system for the task of unsupervised lexical change detection: given a target word and two corpora spanning different periods of time, automatically detects whether the word has lost or gained senses from one corpus to another. Our system employs the temporal referencing method to obtain compatible representations of target words in different periods of time. This is done by concatenating corpora of different periods and performing a temporal referencing of target words i.e., treating occurrences of target words in different periods as two independent tokens. Afterwards, we train word embeddings on the joint corpus and compare the referenced vectors of each target word using cosine similarity. Our submission was ranked 7th among 34 teams for subtask 1, obtaining an average accuracy of 0.637, only 0.050 points behind the first ranked system.
pdf
bib
abs
EmbLexChange at SemEval-2020 Task 1: Unsupervised Embedding-based Detection of Lexical Semantic Changes
Ehsaneddin Asgari
|
Christoph Ringlstetter
|
Hinrich Schütze
This paper describes EmbLexChange, a system introduced by the “Life-Language” team for SemEval-2020 Task 1, on unsupervised detection of lexical-semantic changes. EmbLexChange is defined as the divergence between the embedding based profiles of word w (calculated with respect to a set of reference words) in the source and the target domains (source and target domains can be simply two time frames t_1 and t_2). The underlying assumption is that the lexical-semantic change of word w would affect its co-occurring words and subsequently alters the neighborhoods in the embedding spaces. We show that using a resampling framework for the selection of reference words (with conserved senses), we can more reliably detect lexical-semantic changes in English, German, Swedish, and Latin. EmbLexChange achieved second place in the binary detection of semantic changes in the SemEval-2020.
pdf
bib
abs
GloVeInit at SemEval-2020 Task 1: Using GloVe Vector Initialization for Unsupervised Lexical Semantic Change Detection
Vaibhav Jain
This paper presents a vector initialization approach for the SemEval2020 Task 1: Unsupervised Lexical Semantic Change Detection. Given two corpora belonging to different time periods and a set of target words, this task requires us to classify whether a word gained or lost a sense over time (subtask 1) and to rank them on the basis of the changes in their word senses (subtask 2). The proposed approach is based on using Vector Initialization method to align GloVe embeddings. The idea is to consecutively train GloVe embeddings for both corpora, while using the first model to initialize the second one. This paper is based on the hypothesis that GloVe embeddings are more suited for the Vector Initialization method than SGNS embeddings. It presents an intuitive reasoning behind this hypothesis, and also talks about the impact of various factors and hyperparameters on the performance of the proposed approach. Our model ranks 12th and 10th among 33 teams in the two subtasks. The implementation has been shared publicly.
pdf
bib
abs
SST-BERT at SemEval-2020 Task 1: Semantic Shift Tracing by Clustering in BERT-based Embedding Spaces
Vani Kanjirangat
|
Sandra Mitrovic
|
Alessandro Antonucci
|
Fabio Rinaldi
Lexical semantic change detection (also known as semantic shift tracing) is a task of identifying words that have changed their meaning over time. Unsupervised semantic shift tracing, focal point of SemEval2020, is particularly challenging. Given the unsupervised setup, in this work, we propose to identify clusters among different occurrences of each target word, considering these as representatives of different word meanings. As such, disagreements in obtained clusters naturally allow to quantify the level of semantic shift per each target word in four target languages. To leverage this idea, clustering is performed on contextualized (BERT-based) embeddings of word occurrences. The obtained results show that our approach performs well both measured separately (per language) and overall, where we surpass all provided SemEval baselines.
pdf
bib
abs
TemporalTeller at SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection with Temporal Referencing
Jinan Zhou
|
Jiaxin Li
This paper describes our TemporalTeller system for SemEval Task 1: Unsupervised Lexical Semantic Change Detection. We develop a unified framework for the common semantic change detection pipelines including preprocessing, learning word embeddings, calculating vector distances and determining threshold. We also propose Gamma Quantile Threshold to distinguish between changed and stable words. Based on our system, we conduct a comprehensive comparison among BERT, Skip-gram, Temporal Referencing and alignment-based methods. Evaluation results show that Skip-gram with Temporal Referencing achieves the best performance of 66.5% classification accuracy and 51.8% Spearman’s Ranking Correlation.
pdf
bib
abs
TUE at SemEval-2020 Task 1: Detecting Semantic Change by Clustering Contextual Word Embeddings
Anna Karnysheva
|
Pia Schwarz
This paper describes our system for SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. Target words of corpora from two different time periods are classified according to their semantic change. The languages covered are English, German, Latin, and Swedish. Our approach involves clustering ELMo embeddings using DBSCAN and K-means. For a more fine grained detection of semantic change we take the Jensen-Shannon Distance metric and rank the target words from strongest to weakest change. The results show that this is a valid approach for the classification subtask where we rank 13th out of 33 groups with an accuracy score of 61.2%. For the ranking subtask we score a Spearman’s rank-order correlation coefficient of 0.087 which places us on rank 29.
pdf
bib
abs
UoB at SemEval-2020 Task 1: Automatic Identification of Novel Word Senses
Eleri Sarsfield
|
Harish Tayyar Madabushi
Much as the social landscape in which languages are spoken shifts, language too evolves to suit the needs of its users. Lexical semantic change analysis is a burgeoning field of semantic analysis which aims to trace changes in the meanings of words over time. This paper presents an approach to lexical semantic change detection based on Bayesian word sense induction suitable for novel word sense identification. This approach is used for a submission to SemEval-2020 Task 1, which shows the approach to be capable of the SemEval task. The same approach is also applied to a corpus gleaned from 15 years of Twitter data, the results of which are then used to identify words which may be instances of slang.
pdf
bib
abs
UWB at SemEval-2020 Task 1: Lexical Semantic Change Detection
Ondřej Pražák
|
Pavel Přibáň
|
Stephen Taylor
|
Jakub Sido
In this paper, we describe our method for detection of lexical semantic change, i.e., word sense changes over time. We examine semantic differences between specific words in two corpora, chosen from different time periods, for English, German, Latin, and Swedish. Our method was created for the SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. We ranked 1st in Sub-task 1: binary change detection, and 4th in Sub-task 2: ranked change detection. We present our method which is completely unsupervised and language independent. It consists of preparing a semantic vector space for each corpus, earlier and later; computing a linear transformation between earlier and later spaces, using Canonical Correlation Analysis and orthogonal transformation;and measuring the cosines between the transformed vector for the target word from the earlier corpus and the vector for the target word in the later corpus.
pdf
bib
abs
SHIKEBLCU at SemEval-2020 Task 2: An External Knowledge-enhanced Matrix for Multilingual and Cross-Lingual Lexical Entailment
Shike Wang
|
Yuchen Fan
|
Xiangying Luo
|
Dong Yu
Lexical entailment recognition plays an important role in tasks like Question Answering and Machine Translation. As important branches of lexical entailment, predicting multilingual and cross-lingual lexical entailment (LE) are two subtasks of SemEval2020 Task2. In previous monolingual LE studies, researchers leverage external linguistic constraints to transform word embeddings for LE relation. In our system, we expand the number of external constraints in multiple languages to obtain more specialised multilingual word embeddings. For the cross-lingual subtask, we apply a bilingual word embeddings mapping method in the model. The mapping method takes specialised embeddings as inputs and is able to retain the embeddings’ LE features after operations. Our results for multilingual subtask are about 20% and 10% higher than the baseline in graded and binary prediction respectively.
pdf
bib
abs
UAlberta at SemEval-2020 Task 2: Using Translations to Predict Cross-Lingual Entailment
Bradley Hauer
|
Amir Ahmad Habibi
|
Yixing Luan
|
Arnob Mallik
|
Grzegorz Kondrak
We investigate the hypothesis that translations can be used to identify cross-lingual lexical entailment. We propose novel methods that leverage parallel corpora, word embeddings, and multilingual lexical resources. Our results demonstrate that the implementation of these ideas leads to improvements in predicting entailment.
pdf
bib
abs
AlexU-AUX-BERT at SemEval-2020 Task 3: Improving BERT Contextual Similarity Using Multiple Auxiliary Contexts
Somaia Mahmoud
|
Marwan Torki
This paper describes the system we built for SemEval-2020 task 3. That is predicting the scores of similarity for a pair of words within two different contexts. Our system is based on both BERT embeddings and WordNet. We simply use cosine similarity to find the closest synset of the target words. Our results show that using this simple approach greatly improves the system behavior. Our model is ranked 3rd in subtask-2 for SemEval-2020 task 3.
pdf
bib
abs
CitiusNLP at SemEval-2020 Task 3: Comparing Two Approaches for Word Vector Contextualization
Pablo Gamallo
This article describes some unsupervised strategies submitted to SemEval 2020 Task 3, a task which consists of considering the effect of context to compute word similarity. More precisely, given two words in context, the system must predict the degree of similarity of those words considering the context in which they occur, and the system score is compared against human prediction. We compare one approach based on pre-trained BERT models with other strategy relying on static word embeddings and syntactic dependencies. The BERT-based method clearly outperformed the dependency-based strategy.
pdf
bib
abs
Ferryman at SemEval-2020 Task 3: Bert with TFIDF-Weighting for Predicting the Effect of Context in Word Similarity
Weilong Chen
|
Xin Yuan
|
Sai Zhang
|
Jiehui Wu
|
Yanru Zhang
|
Yan Wang
Word similarity is widely used in machine learning applications like searching engine and recommendation. Measuring the changing meaning of the same word between two different sentences is not only a way to handle complex features in word usage (such as sentence syntax and semantics), but also an important method for different word polysemy modeling. In this paper, we present the methodology proposed by team Ferryman. Our system is based on the Bidirectional Encoder Representations from Transformers (BERT) model combined with term frequency-inverse document frequency (TF-IDF), applying the method on the provided datasets called CoSimLex, which covers four different languages including English, Croatian, Slovene, and Finnish. Our team Ferryman wins the the first position for English task and the second position for Finnish in the subtask 1.
pdf
bib
abs
Hitachi at SemEval-2020 Task 3: Exploring the Representation Spaces of Transformers for Human Sense Word Similarity
Terufumi Morishita
|
Gaku Morio
|
Hiroaki Ozaki
|
Toshinori Miyoshi
In this paper, we present our system for SemEval-2020 task 3, Predicting the (Graded) Effect of Context in Word Similarity. Due to the unsupervised nature of the task, we concentrated on inquiring about the similarity measures induced by different layers of different pre-trained Transformer-based language models, which can be good approximations of the human sense of word similarity. Interestingly, our experiments reveal a language-independent characteristic: the middle to upper layers of Transformer-based language models can induce good approximate similarity measures. Finally, our system was ranked 1st on the Slovenian part of Subtask1 and 2nd on the Croatian part of both Subtask1 and Subtask2.
pdf
bib
abs
JUSTMasters at SemEval-2020 Task 3: Multilingual Deep Learning Model to Predict the Effect of Context in Word Similarity
Nour Al-khdour
|
Mutaz Bni Younes
|
Malak Abdullah
|
Mohammad AL-Smadi
There is a growing research interest in studying word similarity. Without a doubt, two similar words in a context may considered different in another context. Therefore, this paper investigates the effect of the context in word similarity. The SemEval-2020 workshop has provided a shared task (Task 3: Predicting the (Graded) Effect of Context in Word Similarity). In this task, the organizers provided unlabeled datasets for four languages, English, Croatian, Finnish and Slovenian. Our team, JUSTMasters, has participated in this competition in the two subtasks: A and B. Our approach has used a weighted average ensembling method for different pretrained embeddings techniques for each of the four languages. Our proposed model outperformed the baseline models in both subtasks and acheived the best result for subtask 2 in English and Finnish, with score 0.725 and 0.68 respectively. We have been ranked the sixth for subtask 1, with scores for English, Croatian, Finnish, and Slovenian as follows: 0.738, 0.44, 0.546, 0.512.
pdf
bib
abs
Will_Go at SemEval-2020 Task 3: An Accurate Model for Predicting the (Graded) Effect of Context in Word Similarity Based on BERT
Wei Bao
|
Hongshu Che
|
Jiandong Zhang
Natural Language Processing (NLP) has been widely used in the semantic analysis in recent years. Our paper mainly discusses a methodology to analyze the effect that context has on human perception of similar words, which is the third task of SemEval 2020. We apply several methods in calculating the distance between two embedding vector generated by Bidirectional Encoder Representation from Transformer (BERT). Our team will go won the 1st place in Finnish language track of subtask1, the second place in English track of subtask1.
pdf
bib
abs
SemEval-2020 Task 4: Commonsense Validation and Explanation
Cunxiang Wang
|
Shuailong Liang
|
Yili Jin
|
Yilong Wang
|
Xiaodan Zhu
|
Yue Zhang
In this paper, we present SemEval-2020 Task 4, Commonsense Validation and Explanation (ComVE), which includes three subtasks, aiming to evaluate whether a system can distinguish a natural language statement that makes sense to humans from one that does not, and provide the reasons. Specifically, in our first subtask, the participating systems are required to choose from two natural language statements of similar wording the one that makes sense and the one does not. The second subtask additionally asks a system to select the key reason from three options why a given statement does not make sense. In the third subtask, a participating system needs to generate the reason automatically. 39 teams submitted their valid systems to at least one subtask. For Subtask A and Subtask B, top-performing teams have achieved results closed to human performance. However, for Subtask C, there is still a considerable gap between system and human performance. The dataset used in our task can be found at
https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation.
pdf
bib
abs
SemEval-2020 Task 5: Counterfactual Recognition
Xiaoyu Yang
|
Stephen Obadinma
|
Huasha Zhao
|
Qiong Zhang
|
Stan Matwin
|
Xiaodan Zhu
We present a counterfactual recognition (CR) task, the shared Task 5 of SemEval-2020. Counterfactuals describe potential outcomes (consequents) produced by actions or circumstances that did not happen or cannot happen and are counter to the facts (antecedent). Counterfactual thinking is an important characteristic of the human cognitive system; it connects antecedents and consequent with causal relations. Our task provides a benchmark for counterfactual recognition in natural language with two subtasks. Subtask-1 aims to determine whether a given sentence is a counterfactual statement or not. Subtask-2 requires the participating systems to extract the antecedent and consequent in a given counterfactual statement. During the SemEval-2020 official evaluation period, we received 27 submissions to Subtask-1 and 11 to Subtask-2. Our data and baseline code are made publicly available at
https://zenodo.org/record/3932442. The task website and leaderboard can be found at
https://competitions.codalab.org/competitions/21691.
pdf
bib
abs
SemEval-2020 Task 6: Definition Extraction from Free Text with the DEFT Corpus
Sasha Spala
|
Nicholas Miller
|
Franck Dernoncourt
|
Carl Dockhorn
Research on definition extraction has been conducted for well over a decade, largely with significant constraints on the type of definitions considered. In this work, we present DeftEval, a SemEval shared task in which participants must extract definitions from free text using a term-definition pair corpus that reflects the complex reality of definitions in natural language. Definitions and glosses in free text often appear without explicit indicators, across sentences boundaries, or in an otherwise complex linguistic manner. DeftEval involved 3 distinct subtasks: 1) Sentence classification, 2) sequence labeling, and 3) relation extraction.
pdf
bib
abs
IIE-NLP-NUT at SemEval-2020 Task 4: Guiding PLM with Prompt Template Reconstruction Strategy for ComVE
Luxi Xing
|
Yuqiang Xie
|
Yue Hu
|
Wei Peng
This paper introduces our systems for the first two subtasks of SemEval Task4: Commonsense Validation and Explanation. To clarify the intention for judgment and inject contrastive information for selection, we propose the input reconstruction strategy with prompt templates. Specifically, we formalize the subtasks into the multiple-choice question answering format and construct the input with the prompt templates, then, the final prediction of question answering is considered as the result of subtasks. Experimental results show that our approaches achieve significant performance compared with the baseline systems. Our approaches secure the third rank on both official test sets of the first two subtasks with an accuracy of 96.4 and an accuracy of 94.3 respectively.
pdf
bib
abs
HIT-SCIR at SemEval-2020 Task 5: Training Pre-trained Language Model with Pseudo-labeling Data for Counterfactuals Detection
Xiao Ding
|
Dingkui Hao
|
Yuewei Zhang
|
Kuo Liao
|
Zhongyang Li
|
Bing Qin
|
Ting Liu
We describe our system for Task 5 of SemEval 2020: Modelling Causal Reasoning in Language: Detecting Counterfactuals. Despite deep learning has achieved significant success in many fields, it still hardly drives today’s AI to strong AI, as it lacks of causation, which is a fundamental concept in human thinking and reasoning. In this task, we dedicate to detecting causation, especially counterfactuals from texts. We explore multiple pre-trained models to learn basic features and then fine-tune models with counterfactual data and pseudo-labeling data. Our team HIT-SCIR wins the first place (1st) in Sub-task 1 — Detecting Counterfactual Statements and is ranked 4th in Sub-task 2 — Detecting Antecedent and Consequence. In this paper we provide a detailed description of the approach, as well as the results obtained in this task.
pdf
bib
abs
Cardiff University at SemEval-2020 Task 6: Fine-tuning BERT for Domain-Specific Definition Classification
Shelan Jeawak
|
Luis Espinosa-Anke
|
Steven Schockaert
We describe the system submitted to SemEval-2020 Task 6, Subtask 1. The aim of this subtask is to predict whether a given sentence contains a definition or not. Unsurprisingly, we found that strong results can be achieved by fine-tuning a pre-trained BERT language model. In this paper, we analyze the performance of this strategy. Among others, we show that results can be improved by using a two-step fine-tuning process, in which the BERT model is first fine-tuned on the full training set, and then further specialized towards a target domain.
pdf
bib
abs
ANA at SemEval-2020 Task 4: MUlti-task learNIng for cOmmonsense reasoNing (UNION)
Anandh Konar
|
Chenyang Huang
|
Amine Trabelsi
|
Osmar Zaiane
In this paper, we describe our mUlti-task learNIng for cOmmonsense reasoNing (UNION) system submitted for Task C of the SemEval2020 Task 4, which is to generate a reason explaining why a given false statement is non-sensical. However, we found in the early experiments that simple adaptations such as fine-tuning GPT2 often yield dull and non-informative generations (e.g. simple negations). In order to generate more meaningful explanations, we propose UNION, a unified end-to-end framework, to utilize several existing commonsense datasets so that it allows a model to learn more dynamics under the scope of commonsense reasoning. In order to perform model selection efficiently, accurately, and promptly, we also propose a couple of auxiliary automatic evaluation metrics so that we can extensively compare the models from different perspectives. Our submitted system not only results in a good performance in the proposed metrics but also outperforms its competitors with the highest achieved score of 2.10 for human evaluation while remaining a BLEU score of 15.7. Our code is made publicly available.
pdf
bib
abs
BUT-FIT at SemEval-2020 Task 4: Multilingual Commonsense
Josef Jon
|
Martin Fajcik
|
Martin Docekal
|
Pavel Smrz
We participated in all three subtasks. In subtasks A and B, our submissions are based on pretrained language representation models (namely ALBERT) and data augmentation. We experimented with solving the task for another language, Czech, by means of multilingual models and machine translated dataset, or translated model inputs. We show that with a strong machine translation system, our system can be used in another language with a small accuracy loss. In subtask C, our submission, which is based on pretrained sequence-to-sequence model (BART), ranked 1st in BLEU score ranking, however, we show that the correlation between BLEU and human evaluation, in which our submission ended up 4th, is low. We analyse the metrics used in the evaluation and we propose an additional score based on model from subtask B, which correlates well with our manual ranking, as well as reranking method based on the same principle. We performed an error and dataset analysis for all subtasks and we present our findings.
pdf
bib
abs
CUHK at SemEval-2020 Task 4: CommonSense Explanation, Reasoning and Prediction with Multi-task Learning
Hongru Wang
|
Xiangru Tang
|
Sunny Lai
|
Kwong Sak Leung
|
Jia Zhu
|
Gabriel Pui Cheong Fung
|
Kam-Fai Wong
This paper describes our system submitted to task 4 of SemEval 2020: Commonsense Validation and Explanation (ComVE) which consists of three sub-tasks. The task is to directly validate the given sentence whether or not to make sense and require the model to explain it. Based on BERT architecture with the multi-task setting, we propose an effective and interpretable “Explain, Reason and Predict” (ERP) system to solve the three sub-tasks about commonsense: (a) Validation, (b) Reasoning, and (c) Explanation. Inspired by cognitive studies of common sense, our system first generates a reason or understanding of the sentences and then choose which one statement makes sense, which is achieved by multi-task learning. During the post-evaluation, our system has reached 92.9% accuracy in subtask A (rank 11), 89.7% accuracy in subtask B (rank 9), and BLEU score of 12.9 in subtask C (rank 8).
pdf
bib
abs
ECNU-SenseMaker at SemEval-2020 Task 4: Leveraging Heterogeneous Knowledge Resources for Commonsense Validation and Explanation
Qian Zhao
|
Siyu Tao
|
Jie Zhou
|
Linlin Wang
|
Xin Lin
|
Liang He
This paper describes our system for SemEval-2020 Task 4: Commonsense Validation and Explanation (Wang et al., 2020). We propose a novel Knowledge-enhanced Graph Attention Network (KEGAT) architecture for this task, leveraging heterogeneous knowledge from both the structured knowledge base (i.e. ConceptNet) and unstructured text to better improve the ability of a machine in commonsense understanding. This model has a powerful commonsense inference capability via utilizing suitable commonsense incorporation methods and upgraded data augmentation techniques. Besides, an internal sharing mechanism is cooperated to prohibit our model from insufficient and excessive reasoning for commonsense. As a result, this model performs quite well in both validation and explanation. For instance, it achieves state-of-the-art accuracy in the subtask called Commonsense Explanation (Multi-Choice). We officially name the system as ECNU-SenseMaker. Code is publicly available at
https://github.com/ECNU-ICA/ECNU-SenseMaker.
pdf
bib
abs
Masked Reasoner at SemEval-2020 Task 4: Fine-Tuning RoBERTa for Commonsense Reasoning
Daming Lu
This paper describes the masked reasoner system that participated in SemEval-2020 Task 4: Commonsense Validation and Explanation. The system participated in the subtask B.We proposes a novel method to fine-tune RoBERTa by masking the most important word in the statement. We believe that the confidence of the system in recovering that word is positively correlated to the score the masked language model gives to the current statement-explanation pair. We evaluate the importance of each word using InferSent and do the masked fine-tuning on RoBERTa. Then we use the fine-tuned model to predict the most plausible explanation. Our system is fast in training and achieved 73.5% accuracy.
pdf
bib
abs
QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explanation System Based on Ensemble of Language Model
Liu Pai
The ability of common sense validation and explanation is very important for most models. Most obviously, this will directly affect the rationality of the generated model output. The large amount and diversity of common sense poses great challenges to this task. In addition, many common sense expressions are obscure, thus we need to understand the meaning contained in the vocabulary in order to judge correctly, which further increases the model’s requirements for the accuracy of word representation. The current neural network models are often data-driven, while the annotated data is often limited and requires a lot of manual labeling. In such case, we proposed transfer learning to handle this challenge. From our experiments, we can draw the following three main conclusions: a) Neural language model fully qualified for commonsense validation and explanation. We attribute this to the powerful word and sentence representation capabilities of language models. b) The inconsistency of task of pre-training and fine-tuning will badly hurt the performance. c) A larger amount of corpus and more parameters will enhance the common sense of the model. At the same time, the content of the corpus is equally important.
pdf
bib
abs
SWAGex at SemEval-2020 Task 4: Commonsense Explanation as Next Event Prediction
Wiem Ben Rim
|
Naoaki Okazaki
We describe the system submitted by the SWAGex team to the SemEval-2020 Commonsense Validation and Explanation Task. We use multiple methods on the pre-trained language model BERT (Devlin et al., 2018) for tasks that require the system to recognize sentences against commonsense and justify the reasoning behind this decision. Our best performing model is BERT trained on SWAG and fine-tuned for the task. We investigate the ability to transfer commonsense knowledge from SWAG to SemEval-2020 by training a model for the Explanation task with Next Event Prediction data
pdf
bib
abs
UoR at SemEval-2020 Task 4: Pre-trained Sentence Transformer Models for Commonsense Validation and Explanation
Thanet Markchom
|
Bhuvana Dhruva
|
Chandresh Pravin
|
Huizhi Liang
SemEval Task 4 Commonsense Validation and Explanation Challenge is to validate whether a system can differentiate natural language statements that make sense from those that do not make sense. Two subtasks, A and B, are focused in this work, i.e., detecting against-common-sense statements and selecting explanations of why they are false from the given options. Intuitively, commonsense validation requires additional knowledge beyond the given statements. Therefore, we propose a system utilising pre-trained sentence transformer models based on BERT, RoBERTa and DistillBERT architectures to embed the statements before classification. According to the results, these embeddings can improve the performance of the typical MLP and LSTM classifiers as downstream models of both subtasks compared to regular tokenised statements. These embedded statements are shown to comprise additional information from external resources which help validate common sense in natural language.
pdf
bib
abs
BUT-FIT at SemEval-2020 Task 5: Automatic Detection of Counterfactual Statements with Deep Pre-trained Language Representation Models
Martin Fajcik
|
Josef Jon
|
Martin Docekal
|
Pavel Smrz
This paper describes BUT-FIT’s submission at SemEval-2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactuals. The challenge focused on detecting whether a given statement contains a counterfactual (Subtask 1) and extracting both antecedent and consequent parts of the counterfactual from the text (Subtask 2). We experimented with various state-of-the-art language representation models (LRMs). We found RoBERTa LRM to perform the best in both subtasks. We achieved the first place in both exact match and F1 for Subtask 2 and ranked second for Subtask 1.
pdf
bib
abs
CLaC at SemEval-2020 Task 5: Muli-task Stacked Bi-LSTMs
MinGyou Sung
|
Parsa Bagherzadeh
|
Sabine Bergler
We consider detection of the span of antecedents and consequents in argumentative prose a structural, grammatical task. Our system comprises a set of stacked Bi-LSTMs trained on two complementary linguistic annotations. We explore the effectiveness of grammatical features (POS and clause type) through ablation. The reported experiments suggest that a multi-task learning approach using this external, grammatical knowledge is useful for detecting the extent of antecedents and consequents and performs nearly as well without the use of word embeddings.
pdf
bib
abs
CNRL at SemEval-2020 Task 5: Modelling Causal Reasoning in Language with Multi-Head Self-Attention Weights Based Counterfactual Detection
Rajaswa Patil
|
Veeky Baths
In this paper, we describe an approach for modelling causal reasoning in natural language by detecting counterfactuals in text using multi-head self-attention weights. We use pre-trained transformer models to extract contextual embeddings and self-attention weights from the text. We show the use of convolutional layers to extract task-specific features from these self-attention weights. Further, we describe a fine-tuning approach with a common base model for knowledge sharing between the two closely related sub-tasks for counterfactual detection. We analyze and compare the performance of various transformer models in our experiments. Finally, we perform a qualitative analysis with the multi-head self-attention weights to interpret our models’ dynamics.
pdf
bib
abs
IITK-RSA at SemEval-2020 Task 5: Detecting Counterfactuals
Anirudh Anil Ojha
|
Rohin Garg
|
Shashank Gupta
|
Ashutosh Modi
This paper describes our efforts in tackling Task 5 of SemEval-2020. The task involved detecting a class of textual expressions known as counterfactuals and separating them into their constituent elements. Our final submitted approaches were an ensemble of various fine-tuned transformer-based and CNN-based models for the first subtask and a transformer model with dependency tree information for the second subtask. We ranked 4-th and 9-th in the overall leaderboard. We also explored various other approaches that involved classical methods, other neural architectures and incorporation of different linguistic features.
pdf
bib
abs
Yseop at SemEval-2020 Task 5: Cascaded BERT Language Model for Counterfactual Statement Analysis
Hanna Abi-Akl
|
Dominique Mariko
|
Estelle Labidurie
In this paper, we explore strategies to detect and evaluate counterfactual sentences. We describe our system for SemEval-2020 Task 5: Modeling Causal Reasoning in Language: Detecting Counterfactuals. We use a BERT base model for the classification task and build a hybrid BERT Multi-Layer Perceptron system to handle the sequence identification task. Our experiments show that while introducing syntactic and semantic features does little in improving the system in the classification task, using these types of features as cascaded linear inputs to fine-tune the sequence-delimiting ability of the model ensures it outperforms other similar-purpose complex systems like BiLSTM-CRF in the second task. Our system achieves an F1 score of 85.00% in Task 1 and 83.90% in Task 2.
pdf
bib
abs
ACNLP at SemEval-2020 Task 6: A Supervised Approach for Definition Extraction
Fabien Caspani
|
Pirashanth Ratnamogan
|
Mathis Linger
|
Mhamed Hajaiej
We describe our contribution to two of the subtasks of SemEval 2020 Task 6, DeftEval: Extracting term-definition pairs in free text. The system for Subtask 1: Sentence Classification is based on a transformer architecture where we use transfer learning to fine-tune a pretrained model on the downstream task, and the one for Subtask 3: Relation Classification uses a Random Forest classifier with handcrafted dedicated features. Our systems respectively achieve 0.830 and 0.994 F1-scores on the official test set, and we believe that the insights derived from our study are potentially relevant to help advance the research on definition extraction.
pdf
bib
abs
Gorynych Transformer at SemEval-2020 Task 6: Multi-task Learning for Definition Extraction
Adis Davletov
|
Nikolay Arefyev
|
Alexander Shatilov
|
Denis Gordeev
|
Alexey Rey
This paper describes our approach to “DeftEval: Extracting Definitions from Free Text in Textbooks” competition held as a part of Semeval 2020. The task was devoted to finding and labeling definitions in texts. DeftEval was split into three subtasks: sentence classification, sequence labeling and relation classification. Our solution ranked 5th in the first subtask and 23rd and 21st in the second and the third subtasks respectively. We applied simultaneous multi-task learning with Transformer-based models for subtasks 1 and 3 and a single BERT-based model for named entity recognition.
pdf
bib
abs
CN-HIT-IT.NLP at SemEval-2020 Task 4: Enhanced Language Representation with Multiple Knowledge Triples
Yice Zhang
|
Jiaxuan Lin
|
Yang Fan
|
Peng Jin
|
Yuanchao Liu
|
Bingquan Liu
This paper describes our system that participated in the SemEval-2020 task 4: Commonsense Validation and Explanation. For this task, it is obvious that external knowledge, such as Knowledge graph, can help the model understand commonsense in natural language statements. But how to select the right triples for statements remains unsolved, so how to reduce the interference of irrelevant triples on model performance is a research focus. This paper adopt a modified K-BERT as the language encoder, to enhance language representation through triples from knowledge graphs. Experiments show that our method is better than models without external knowledge, and is slightly better than the original K-BERT. We got an accuracy score of 0.97 in subtaskA, ranking 1/45, and got an accuracy score of 0.948, ranking 2/35.
pdf
bib
abs
CS-NET at SemEval-2020 Task 4: Siamese BERT for ComVE
Soumya Ranjan Dash
|
Sandeep Routray
|
Prateek Varshney
|
Ashutosh Modi
In this paper, we describe our system for Task 4 of SemEval 2020, which involves differentiating between natural language statements that conform to common sense and those that do not. The organizers propose three subtasks - first, selecting between two sentences, the one which is against common sense. Second, identifying the most crucial reason why a statement does not make sense. Third, generating novel reasons for explaining the against common sense statement. Out of the three subtasks, this paper reports the system description of subtask A and subtask B. This paper proposes a model based on transformer neural network architecture for addressing the subtasks. The novelty in work lies in the architecture design, which handles the logical implication of contradicting statements and simultaneous information extraction from both sentences. We use a parallel instance of transformers, which is responsible for a boost in the performance. We achieved an accuracy of 94.8% in subtask A and 89% in subtask B on the test set.
pdf
bib
abs
CS-NLP Team at SemEval-2020 Task 4: Evaluation of State-of-the-art NLP Deep Learning Architectures on Commonsense Reasoning Task
Sirwe Saeedi
|
Aliakbar Panahi
|
Seyran Saeedi
|
Alvis C Fong
In this paper, we investigate a commonsense inference task that unifies natural language understanding and commonsense reasoning. We describe our attempt at SemEval-2020 Task 4 competition: Commonsense Validation and Explanation (ComVE) challenge. We discuss several state-of-the-art deep learning architectures for this challenge. Our system uses prepared labeled textual datasets that were manually curated for three different natural language inference subtasks. The goal of the first subtask is to test whether a model can distinguish between natural language statements that make sense and those that do not make sense. We compare the performance of several language models and fine-tuned classifiers. Then, we propose a method inspired by question/answering tasks to treat a classification problem as a multiple choice question task to boost the performance of our experimental results (96.06%), which is significantly better than the baseline. For the second subtask, which is to select the reason why a statement does not make sense, we stand within the first six teams (93.7%) among 27 participants with very competitive results. Our result for last subtask of generating reason against the nonsense statement shows many potentials for future researches as we applied the most powerful generative model of language (GPT-2) with 6.1732 BLEU score among first four teams. .
pdf
bib
abs
DEEPYANG at SemEval-2020 Task 4: Using the Hidden Layer State of BERT Model for Differentiating Common Sense
Yang Bai
|
Xiaobing Zhou
Introducing common sense to natural language understanding systems has received increasing research attention. To facilitate the researches on common sense reasoning, the SemEval-2020 Task 4 Commonsense Validation and Explanation(ComVE) is proposed. We participate in sub-task A and try various methods including traditional machine learning methods, deep learning methods, and also recent pre-trained language models. Finally, we concatenate the original output of BERT and the output vector of BERT hidden layer state to obtain more abundant semantic information features, and obtain competitive results. Our model achieves an accuracy of 0.8510 in the final test data and ranks 25th among all the teams.
pdf
bib
abs
HR@JUST Team at SemEval-2020 Task 4: The Impact of RoBERTa Transformer for Evaluation Common Sense Understanding
Heba Al-Jarrah
|
Rahaf Al-Hamouri
|
Mohammad AL-Smadi
This paper describes the results of our team HR@JUST participation at SemEval-2020 Task 4 - Commonsense Validation and Explanation (ComVE) for POST evaluation period. The provided task consists of three sub-tasks, we participate in task A. We considered a state-of-the-art approach for solving this task by performing RoBERTa model with no Next Sentences Prediction (NSP), dynamic masking, larger training data, and larger batch size. The achieved results show that we got the 11th rank on the final test set leaderboard with an accuracy of 91.3%.
pdf
bib
abs
JBNU at SemEval-2020 Task 4: BERT and UniLM for Commonsense Validation and Explanation
Seung-Hoon Na
|
Jong-Hyeon Lee
This paper presents our contributions to the SemEval-2020 Task 4 Commonsense Validation and Explanation (ComVE) and includes the experimental results of the two Subtasks B and C of the SemEval-2020 Task 4. Our systems rely on pre-trained language models, i.e., BERT (including its variants) and UniLM, and rank 10th and 7th among 27 and 17 systems on Subtasks B and C, respectively. We analyze the commonsense ability of the existing pretrained language models by testing them on the SemEval-2020 Task 4 ComVE dataset, specifically for Subtasks B and C, the explanation subtasks with multi-choice and sentence generation, respectively.
pdf
bib
abs
JUSTers at SemEval-2020 Task 4: Evaluating Transformer Models against Commonsense Validation and Explanation
Ali Fadel
|
Mahmoud Al-Ayyoub
|
Erik Cambria
In this paper, we describe our team’s (JUSTers) effort in the Commonsense Validation and Explanation (ComVE) task, which is part of SemEval2020. We evaluate five pre-trained Transformer-based language models with various sizes against the three proposed subtasks. For the first two subtasks, the best accuracy levels achieved by our models are 92.90% and 92.30%, respectively, placing our team in the 12th and 9th places, respectively. As for the last subtask, our models reach 16.10 BLEU score and 1.94 human evaluation score placing our team in the 5th and 3rd places according to these two metrics, respectively. The latter is only 0.16 away from the 1st place human evaluation score.
pdf
bib
abs
KaLM at SemEval-2020 Task 4: Knowledge-aware Language Models for Comprehension and Generation
Jiajing Wan
|
Xinting Huang
This paper presents our strategies in SemEval 2020 Task 4: Commonsense Validation and Explanation. We propose a novel way to search for evidence and choose the different large-scale pre-trained models as the backbone for three subtasks. The results show that our evidence-searching approach improves model performance on commonsense explanation task. Our team ranks 2nd in subtask C according to human evaluation score.
pdf
bib
abs
KDE SenseForce at SemEval-2020 Task 4: Exploiting BERT for Commonsense Validation and Explanation
Khanddorj Mendbayar
|
Masaki Aono
Using a natural language understanding system for commonsense comprehension is getting increasing attention from researchers. Current multi-purpose state-of-the-art models suffer on commonsense validation and explanation tasks. We have adopted one of the state-of-the-art models and proposing a method to boost the performance of the model in commonsense related tasks.
pdf
bib
abs
Lijunyi at SemEval-2020 Task 4: An ALBERT Model Based Maximum Ensemble with Different Training Sizes and Depths for Commonsense Validation and Explanation
Junyi Li
|
Bin Wang
|
Haiyan Ding
This article describes the system submitted to SemEval 2020 Task 4: Commonsense Validation and Explanation. We only participated in the subtask A, which is mainly to distinguish whether the sentence has meaning. To solve this task, we mainly used ALBERT model-based maximum ensemble with different training sizes and depths. To prove the validity of the model to the task, we also used some other neural network models for comparison. Our model achieved the accuracy score of 0.938(ranked 10/41) in subtask A.
pdf
bib
abs
LMVE at SemEval-2020 Task 4: Commonsense Validation and Explanation Using Pretraining Language Model
Shilei Liu
|
Yu Guo
|
BoChao Li
|
Feiliang Ren
This paper introduces our system for commonsense validation and explanation. For Sen-Making task, we use a novel pretraining language model based architecture to pick out one of the two given statements that is againstcommon sense. For Explanation task, we use a hint sentence mechanism to improve the performance greatly. In addition, we propose a subtask level transfer learning to share information between subtasks.
pdf
bib
abs
Mxgra at SemEval-2020 Task 4: Common Sense Making with Next Token Prediction
Kris Collins
|
Max Grathwohl
|
Heba Ahmed
In this paper, we explore solutions to a common sense making task in which a model must discern which of two sentences is against common sense. We used a pre-trained language model which we used to calculate complexity scores for input to discern which sentence contained an unlikely sequence of tokens. Other approaches we tested were word vector distances, which were used to find semantic outliers within a sentence, and siamese network. By using the pre-trained language model to calculate perplexity scores based on the sequence of tokens in input sentences, we achieved an accuracy of 75 percent.
pdf
bib
abs
NLP@JUST at SemEval-2020 Task 4: Ensemble Technique for BERT and Roberta to Evaluate Commonsense Validation
Emran Al-Bashabsheh
|
Ayah Abu Aqouleh
|
Mohammad AL-Smadi
This paper presents the work of the NLP@JUST team at SemEval-2020 Task 4 competition that related to commonsense validation and explanation (ComVE) task. The team participates in sub-taskA (Validation) which related to validation that checks if the text is against common sense or not. Several models have trained (i.e. Bert, XLNet, and Roberta), however, the main models used are the RoBERTa-large and BERT Whole word masking. As well as, we utilized the results from both models to generate final prediction by using the average Ensemble technique, that used to improve the overall performance. The evaluation result shows that the implemented model achieved an accuracy of 93.9% obtained and published at the post-evaluation result on the leaderboard.
pdf
bib
abs
SSN-NLP at SemEval-2020 Task 4: Text Classification and Generation on Common Sense Context Using Neural Networks
Rishivardhan K.
|
Kayalvizhi S
|
Thenmozhi D.
|
Raghav R.
|
Kshitij Sharma
Common sense validation deals with testing whether a system can differentiate natural language statements that make sense from those that do not make sense. This paper describes the our approach to solve this challenge. For common sense validation with multi choice, we propose a stacking based approach to classify sentences that are more favourable in terms of common sense to the particular statement. We have used majority voting classifier methodology amongst three models such as Bidirectional Encoder Representations from Transformers (BERT), Micro Text Classification (Micro TC) and XLNet. For sentence generation, we used Neural Machine Translation (NMT) model to generate explanatory sentences.
pdf
bib
abs
Team Solomon at SemEval-2020 Task 4: Be Reasonable: Exploiting Large-scale Language Models for Commonsense Reasoning
Vertika Srivastava
|
Sudeep Kumar Sahoo
|
Yeon Hyang Kim
|
Rohit R.r
|
Mayank Raj
|
Ajay Jaiswal
In this paper, we present our submission for SemEval 2020 Task 4 - Commonsense Validation and Explanation (ComVE). The objective of this task was to develop a system that can differentiate statements that make sense from the ones that don’t. ComVE comprises of three subtasks to challenge and test a system’s capability in understanding commonsense knowledge from various dimensions. Commonsense reasoning is a challenging task in the domain of natural language understanding and systems augmented with it can improve performance in various other tasks such as reading comprehension, and inferencing. We have developed a system that leverages commonsense knowledge from pretrained language models trained on huge corpus such as RoBERTa, GPT2, etc. Our proposed system validates the reasonability of a given statement against the backdrop of commonsense knowledge acquired by these models and generates a logical reason to support its decision. Our system ranked 2nd in subtask C with a BLEU score of 19.3, which by far is the most challenging subtask as it required systems to generate the rationale behind the choice of an unreasonable statement. In subtask A and B, we achieved 96% and 94% accuracy respectively standing at 4th position in both the subtasks.
pdf
bib
abs
TeamJUST at SemEval-2020 Task 4: Commonsense Validation and Explanation Using Ensembling Techniques
Roweida Mohammed
|
Malak Abdullah
Common sense for natural language processing methods has been attracting a wide research interest, recently. Estimating automatically whether a sentence makes sense or not is considered an essential question. Task 4 in the International Workshop SemEval 2020 has provided three subtasks (A, B, and C) that challenges the participants to build systems for distinguishing the common sense statements from those that do not make sense. This paper describes TeamJUST’s approach for participating in subtask A to differentiate between two sentences in English and classify them into two classes: common sense and uncommon sense statements. Our approach depends on ensembling four different state-of-the-art pre-trained models (BERT, ALBERT, Roberta, and XLNet). Our baseline model which we used only the pre-trained model of BERT has scored 89.1, while the TeamJUST model outperformed the baseline model with an accuracy score of 96.2. We have improved the results in the post-evaluation period to achieve our best result, which would rank the 4th in the competition if we had the chance to use our latest experiment.
pdf
bib
abs
TR at SemEval-2020 Task 4: Exploring the Limits of Language-model-based Common Sense Validation
Don Teo
In this paper, we present our submission for subtask A of the Common Sense Validation and Explanation (ComVE) shared task. We examine the ability of large-scale pre-trained language models to distinguish commonsense from non-commonsense statements. We also explore the utility of external resources that aim to supplement the world knowledge inherent in such language models, including commonsense knowledge graph embedding models, word concreteness ratings, and text-to-image generation models. We find that such resources provide insignificant gains to the performance of fine-tuned language models. We also provide a qualitative analysis of the limitations of the language model fine-tuned to this task.
pdf
bib
abs
UAICS at SemEval-2020 Task 4: Using a Bidirectional Transformer for Task a
Ciprian-Gabriel Cusmuliuc
|
Lucia-Georgiana Coca
|
Adrian Iftene
Commonsense Validation and Explanation has been a difficult task for machines since the dawn of computing. Although very trivial to humans it poses a high complexity for machines due to the necessity of inference over a pre-existing knowledge base. In order to try and solve this problem the SemEval 2020 Task 4 - ”Commonsense Validation and Explanation (ComVE)” aims to evaluate systems capable of multiple stages of ComVE. The challenge includes 3 tasks (A, B and C), each with it’s own requirements. Our team participated only in task A which required selecting the statement that made the least sense. We choose to use a bidirectional transformer in order to solve the challenge, this paper presents the details of our method, runs and result.
pdf
bib
abs
UI at SemEval-2020 Task 4: Commonsense Validation and Explanation by Exploiting Contradiction
Kerenza Doxolodeo
|
Rahmad Mahendra
This paper describes our submissions into the ComVe challenge, the SemEval 2020 Task 4. This evaluation task consists of three sub-tasks that test commonsense comprehension by identifying sentences that do not make sense and explain why they do not. In subtask A, we use Roberta to find which sentence does not make sense. In subtask B, besides using BERT, we also experiment with replacing the dataset with MNLI when selecting the best explanation from the provided options why the given sentence does not make sense. In subtask C, we utilize the MNLI model from subtask B to evaluate the explanation generated by Roberta and GPT-2 by exploiting the contradiction of the sentence and their explanation. Our system submission records a performance of 88.2%, 80.5%, and BLEU 5.5 for those three subtasks, respectively.
pdf
bib
abs
Warren at SemEval-2020 Task 4: ALBERT and Multi-Task Learning for Commonsense Validation
Yuhang Wu
|
Hao Wu
This paper describes our system in subtask A of SemEval 2020 Shared Task 4. We propose a reinforcement learning model based on MTL(Multi-Task Learning) to enhance the prediction ability of commonsense validation. The experimental results demonstrate that our system outperforms the single-task text classification model. We combine MTL and ALBERT pretrain model to achieve an accuracy of 0.904 and our model is ranked 16th on the final leader board of the competition among the 45 teams.
pdf
bib
abs
YNU-oxz at SemEval-2020 Task 4: Commonsense Validation Using BERT with Bidirectional GRU
Xiaozhi Ou
|
Hongling Li
This paper describes the system and results of our team participated in SemEval-2020 Task4: Commonsense Validation and Explanation (ComVE), which aim to distinguish meaningful natural language statements from unreasonable natural language statements. This task contains three subtasks: Subtask A–Validation, Subtask B–Explanation (Multi-Choice), and Subtask C– Explanation (Generation). In these three subtasks, we only participated in Subtask A, which aims to distinguish whether a given two natural language statements with similar wording are meaningful. To solve this problem, we proposed a method using a combination of BERT with the Bidirectional Gated Recurrent Unit (Bi-GRU). Our model achieved an accuracy of 0.836 in Subtask A (ranked 27/45).
pdf
bib
abs
BLCU-NLP at SemEval-2020 Task 5: Data Augmentation for Efficient Counterfactual Detecting
Chang Liu
|
Dong Yu
Counterfactuals describe events counter to facts and hence naturally involve common sense, knowledge, and reasoning. SemEval 2020 task 5 is focusing on this field. We participate in the subtask 1 and we use BERT as our system. Our Innovations are feature extraction and data augmentation. We extract and summarize features of counterfactual statements, augment counterfactual examples in training set with the help of these features, and two general methods of data augmentation is experimented in our work. We demonstrate the effectiveness of our approaches, which achieves 0.95 of subtask 1 in F1 while using only a subset of giving training set to fine-tune the BERT model, and our official submission achieves F1 0.802, which ranks us 16th in the competition.
pdf
bib
abs
BYteam at SemEval-2020 Task 5: Detecting Counterfactual Statements with BERT and Ensembles
Yang Bai
|
Xiaobing Zhou
We participate in the classification tasks of SemEval-2020 Task: Subtask1: Detecting counterfactual statements of semeval-2020 task5(Detecting Counterfactuals). This paper examines different approaches and models towards detecting counterfactual statements classification. We choose the Bert model. However, the output of Bert is not a good summary of semantic information, so in order to obtain more abundant semantic information features, we modify the upper layer structure of Bert. Finally, our system achieves an accuracy of 88.90% and F1 score of 86.30% by hard voting, which ranks 6th on the final leader board of the in subtask 1 competition.
pdf
bib
abs
ETHAN at SemEval-2020 Task 5: Modelling Causal Reasoning in Language Using Neuro-symbolic Cloud Computing
Len Yabloko
I present ETHAN: Experimental Testing of Hybrid AI Node implemented entirely on free cloud computing infrastructure. The ultimate goal of this research is to create modular reusable hybrid neuro-symbolic architecture for Artificial Intelligence. As a test case I model natural language comprehension of causal relations from open domain text corpus that combines semi-supervised language model (Huggingface Transformers) with constituency and dependency parsers (Allen Institute for Artificial Intelligence.)
pdf
bib
abs
Ferryman as SemEval-2020 Task 5: Optimized BERT for Detecting Counterfactuals
Weilong Chen
|
Yan Zhuang
|
Peng Wang
|
Feng Hong
|
Yan Wang
|
Yanru Zhang
The main purpose of this article is to state the effect of using different methods and models for counterfactual determination and detection of causal knowledge. Nowadays, counterfactual reasoning has been widely used in various fields. In the realm of natural language process(NLP), counterfactual reasoning has huge potential to improve the correctness of a sentence. In the shared Task 5 of detecting counterfactual in SemEval 2020, we pre-process the officially given dataset according to case conversion, extract stem and abbreviation replacement. We use last-5 bidirectional encoder representation from bidirectional encoder representation from transformer (BERT)and term frequency–inverse document frequency (TF-IDF) vectorizer for counterfactual detection. Meanwhile, multi-sample dropout and cross validation are used to improve versatility and prevent problems such as poor generosity caused by overfitting. Finally, our team Ferryman ranked the 8th place in the sub-task 1 of this competition.
pdf
bib
abs
ISCAS at SemEval-2020 Task 5: Pre-trained Transformers for Counterfactual Statement Modeling
Yaojie Lu
|
Annan Li
|
Hongyu Lin
|
Xianpei Han
|
Le Sun
ISCAS participated in two subtasks of SemEval 2020 Task 5: detecting counterfactual statements and detecting antecedent and consequence. This paper describes our system which is based on pretrained transformers. For the first subtask, we train several transformer-based classifiers for detecting counterfactual statements. For the second subtask, we formulate antecedent and consequence extraction as a query-based question answering problem. The two subsystems both achieved third place in the evaluation. Our system is openly released at
https://github.com/casnlu/ISCASSemEval2020Task5.
pdf
bib
abs
Lee at SemEval-2020 Task 5: ALBERT Model Based on the Maximum Ensemble Strategy and Different Data Sampling Methods for Detecting Counterfactual Statements
Junyi Li
|
Yuhang Wu
|
Bin Wang
|
Haiyan Ding
This article describes the system submitted to SemEval 2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactuals. In this task, we only participate in the subtask A which is detecting counterfactual statements. In order to solve this sub-task, first of all, because of the problem of data balance, we use the undersampling and oversampling methods to process the data set. Second, we used the ALBERT model and the maximum ensemble method based on the ALBERT model. Our methods achieved a F1 score of 0.85 in subtask A.
pdf
bib
abs
NLU-Co at SemEval-2020 Task 5: NLU/SVM Based Model Apply Tocharacterise and Extract Counterfactual Items on Raw Data
Elvis Mboning Tchiaze
|
Damien Nouvel
In this article, we try to solve the problem of classification of counterfactual statements and extraction of antecedents/consequences in raw data, by mobilizing on one hand Support vector machine (SVMs) and on the other hand Natural Language Understanding (NLU) infrastructures available on the market for conversational agents. Our experiments allowed us to test different pipelines of two known platforms (Snips NLU and Rasa NLU). The results obtained show that a Rasa NLU pipeline, built with a well-preprocessed dataset and tuned algorithms, allows to model accurately the structure of a counterfactual event, in order to facilitate the identification and the extraction of its components.
pdf
bib
abs
Pheonix at SemEval-2020 Task 5: Masking the Labels Lubricates Models for Sequence Labeling
Pouria Babvey
|
Dario Borrelli
|
Yutong Zhao
|
Carlo Lipizzi
This paper presents the deep-learning model that is submitted to the SemEval-2020 Task 5 competition: “Detecting Counterfactuals”. We participated in both Subtask1 and Subtask2. The model proposed in this paper ranked 2nd in Subtask2 “Detecting antecedent and consequence”. Our model approaches the task as a sequence labeling. The architecture is built on top of BERT, and a multi-head attention layer with label masking is used to benefit from the mutual information between nearby labels. Also, for prediction, a multi-stage algorithm is used in which the model finalize some predictions with higher certainty in each step and use them in the following. Our results show that masking the labels not only is an efficient regularization method but also improves the accuracy of the model compared with other alternatives like CRF. Label masking can be used as a regularization method in sequence labeling. Also, it improves the performance of the model by learning the specific patterns in the target variable.
pdf
bib
abs
YNU-oxz at SemEval-2020 Task 5: Detecting Counterfactuals Based on Ordered Neurons LSTM and Hierarchical Attention Network
Xiaozhi Ou
|
Shengyan Liu
|
Hongling Li
This paper describes the system and results of our team’s participation in SemEval-2020 Task5: Modelling Causal Reasoning in Language: Detecting Counterfactuals, which aims to simulate counterfactual semantics and reasoning in natural language. This task contains two subtasks: Subtask1–Detecting counterfactual statements and Subtask2–Detecting antecedent and consequence. We only participated in Subtask1, aiming to determine whether a given sentence is counterfactual. In order to solve this task, we proposed a system based on Ordered Neurons LSTM (ON-LSTM) with Hierarchical Attention Network (HAN) and used Pooling operation for dimensionality reduction. Finally, we used the K-fold approach as the ensemble method. Our model achieved an F1 score of 0.7040 in Subtask1 (Ranked 16/27).
pdf
bib
abs
BERTatDE at SemEval-2020 Task 6: Extracting Term-definition Pairs in Free Text Using Pre-trained Model
Huihui Zhang
|
Feiliang Ren
Definition extraction is an important task in Nature Language Processing, and it is used to identify the terms and definitions related to terms. The task contains sentence classification task (i.e., classify whether it contains definition) and sequence labeling task (i.e., find the boundary of terms and definitions). The paper describes our system BERTatDE1 in sentence classification task (subtask 1) and sequence labeling task (subtask 2) in the definition extraction (SemEval-2020 Task 6). We use BERT to solve the multi-domain problems including the uncertainty of term boundary that is, different areas have different ways to definite the domain related terms. We use BERT, BiLSTM and attention in subtask 1 and our best result achieved 79.71% in F1 and the eighteenth place in subtask 1. For the subtask 2, we use BERT, BiLSTM and CRF to sequence labeling, and achieve 40.73% in Macro-averaged F1.
pdf
bib
abs
DeftPunk at SemEval-2020 Task 6: Using RNN-ensemble for the Sentence Classification.
Jekaterina Kaparina
|
Anna Soboleva
This paper describes participation in DeftEval 2020 (part of SemEval sharing task competition), and is focused on the sentence classification. Our approach to the task was to create an ensemble of several RNNs combined with fasttext and ELMo embeddings. Results show that various types of models in an ensemble give a performance boost in comparison to standard models. Our model achieved F1-score of 78% for a positive class on the DeftEval dataset.
pdf
bib
abs
Defx at SemEval-2020 Task 6: Joint Extraction of Concepts and Relations for Definition Extraction
Marc Hübner
|
Christoph Alt
|
Robert Schwarzenberg
|
Leonhard Hennig
Definition Extraction systems are a valuable knowledge source for both humans and algorithms. In this paper we describe our submissions to the DeftEval shared task (SemEval-2020 Task 6), which is evaluated on an English textbook corpus. We provide a detailed explanation of our system for the joint extraction of definition concepts and the relations among them. Furthermore we provide an ablation study of our model variations and describe the results of an error analysis.
pdf
bib
abs
DSC IIT-ISM at SemEval-2020 Task 6: Boosting BERT with Dependencies for Definition Extraction
Aadarsh Singh
|
Priyanshu Kumar
|
Aman Sinha
We explore the performance of Bidirectional Encoder Representations from Transformers (BERT) at definition extraction. We further propose a joint model of BERT and Text Level Graph Convolutional Network so as to incorporate dependencies into the model. Our proposed model produces better results than BERT and achieves comparable results to BERT with fine tuned language model in DeftEval (Task 6 of SemEval 2020), a shared task of classifying whether a sentence contains a definition or not (Subtask 1).
pdf
bib
abs
RGCL at SemEval-2020 Task 6: Neural Approaches to DefinitionExtraction
Tharindu Ranasinghe
|
Alistair Plum
|
Constantin Orasan
|
Ruslan Mitkov
This paper presents the RGCL team submission to SemEval 2020 Task 6: DeftEval, subtasks 1 and 2. The system classifies definitions at the sentence and token levels. It utilises state-of-the-art neural network architectures, which have some task-specific adaptations, including an automatically extended training set. Overall, the approach achieves acceptable evaluation scores, while maintaining flexibility in architecture selection.
pdf
bib
abs
TüKaPo at SemEval-2020 Task 6: Def(n)tly Not BERT: Definition Extraction Using pre-BERT Methods in a post-BERT World
Madeeswaran Kannan
|
Haemanth Santhi Ponnusamy
We describe our system (TüKaPo) submitted for Task 6: DeftEval, at SemEval 2020. We developed a hybrid approach that combined existing CNN and RNN methods and investigated the impact of purely-syntactic and semantic features on the task of definition extraction. Our final model achieved a F1-score of 0.6851 in subtask 1, i.e, sentence classification.
pdf
bib
abs
UNIXLONG at SemEval-2020 Task 6: A Joint Model for Definition Extraction
ShuYi Xie
|
Jian Ma
|
Haiqin Yang
|
Jiang Lianxin
|
Mo Yang
|
Jianping Shen
Definition Extraction is the task to automatically extract terms and their definitions from text. In recent years, it attracts wide interest from NLP researchers. This paper describes the unixlong team’s system for the SemEval 2020 task6: DeftEval: Extracting term-definition pairs in free text. The goal of this task is to extract definition, word level BIO tags and relations. This task is challenging due to the free style of the text, especially the definitions of the terms range across several sentences and lack explicit verb phrases. We propose a joint model to train the tasks of definition extraction and the word level BIO tagging simultaneously. We design a creative format input of BERT to capture the location information between entity and its definition. Then we adjust the result of BERT with some rules. Finally, we apply TAG_ID, ROOT_ID, BIO tag to predict the relation and achieve macro-averaged F1 score 1.0 which rank first on the official test set in the relation extraction subtask.
pdf
bib
abs
UPB at SemEval-2020 Task 6: Pretrained Language Models for Definition Extraction
Andrei-Marius Avram
|
Dumitru-Clementin Cercel
|
Costin Chiru
This work presents our contribution in the context of the 6th task of SemEval-2020: Extracting Definitions from Free Text in Textbooks (DeftEval). This competition consists of three subtasks with different levels of granularity: (1) classification of sentences as definitional or non-definitional, (2) labeling of definitional sentences, and (3) relation classification. We use various pretrained language models (i.e., BERT, XLNet, RoBERTa, SciBERT, and ALBERT) to solve each of the three subtasks of the competition. Specifically, for each language model variant, we experiment by both freezing its weights and fine-tuning them. We also explore a multi-task architecture that was trained to jointly predict the outputs for the second and the third subtasks. Our best performing model evaluated on the DeftEval dataset obtains the 32nd place for the first subtask and the 37th place for the second subtask. The code is available for further research at:
https://github.com/avramandrei/DeftEvalpdf
bib
abs
SemEval-2020 Task 7: Assessing Humor in Edited News Headlines
Nabil Hossain
|
John Krumm
|
Michael Gamon
|
Henry Kautz
This paper describes the SemEval-2020 shared task “Assessing Humor in Edited News Headlines.” The task’s dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using crowdsourcing. This task includes two subtasks, the first of which is to estimate the funniness of headlines on a humor scale in the interval 0-3. The second subtask is to predict, for a pair of edited versions of the same original headline, which is the funnier version. To date, this task is the most popular shared computational humor task, attracting 48 teams for the first subtask and 31 teams for the second.
pdf
bib
abs
SemEval-2020 Task 8: Memotion Analysis- the Visuo-Lingual Metaphor!
Chhavi Sharma
|
Deepesh Bhageria
|
William Scott
|
Srinivas PYKL
|
Amitava Das
|
Tanmoy Chakraborty
|
Viswanath Pulabaigari
|
Björn Gambäck
Information on social media comprises of various modalities such as textual, visual and audio. NLP and Computer Vision communities often leverage only one prominent modality in isolation to study social media. However, computational processing of Internet memes needs a hybrid approach. The growing ubiquity of Internet memes on social media platforms such as Facebook, Instagram, and Twitter further suggests that we can not ignore such multimodal content anymore. To the best of our knowledge, there is not much attention towards meme emotion analysis. The objective of this proposal is to bring the attention of the research community towards the automatic processing of Internet memes. The task Memotion analysis released approx 10K annotated memes- with human annotated labels namely sentiment(positive, negative, neutral), type of emotion(sarcastic,funny,offensive, motivation) and their corresponding intensity. The challenge consisted of three subtasks: sentiment (positive, negative, and neutral) analysis of memes,overall emotion (humor, sarcasm, offensive, and motivational) classification of memes, and classifying intensity of meme emotion. The best performances achieved were F1 (macro average) scores of 0.35, 0.51 and 0.32, respectively for each of the three subtasks.
pdf
bib
abs
SemEval-2020 Task 9: Overview of Sentiment Analysis of Code-Mixed Tweets
Parth Patwa
|
Gustavo Aguilar
|
Sudipta Kar
|
Suraj Pandey
|
Srinivas PYKL
|
Björn Gambäck
|
Tanmoy Chakraborty
|
Thamar Solorio
|
Amitava Das
In this paper, we present the results of the SemEval-2020 Task 9 on Sentiment Analysis of Code-Mixed Tweets (SentiMix 2020). We also release and describe our Hinglish (Hindi-English)and Spanglish (Spanish-English) corpora annotated with word-level language identification and sentence-level sentiment labels. These corpora are comprised of 20K and 19K examples, respectively. The sentiment labels are - Positive, Negative, and Neutral. SentiMix attracted 89 submissions in total including 61 teams that participated in the Hinglish contest and 28 submitted systems to the Spanglish competition. The best performance achieved was 75.0% F1 score for Hinglish and 80.6% F1 for Spanglish. We observe that BERT-like models and ensemble methods are the most common and successful approaches among the participants.
pdf
bib
abs
Hitachi at SemEval-2020 Task 7: Stacking at Scale with Heterogeneous Language Models for Humor Recognition
Terufumi Morishita
|
Gaku Morio
|
Hiroaki Ozaki
|
Toshinori Miyoshi
This paper describes the winning system for SemEval-2020 task 7: Assessing Humor in Edited News Headlines. Our strategy is Stacking at Scale (SaS) with heterogeneous pre-trained language models (PLMs) such as BERT and GPT-2. SaS first performs fine-tuning on numbers of PLMs with various hyperparameters and then applies a powerful stacking ensemble on top of the fine-tuned PLMs. Our experimental results show that SaS outperforms a naive average ensemble, leveraging weaker PLMs as well as high-performing PLMs. Interestingly, the results show that SaS captured non-funny semantics. Consequently, the system was ranked 1st in all subtasks by significant margins compared with other systems.
pdf
bib
abs
SESAM at SemEval-2020 Task 8: Investigating the Relationship between Image and Text in Sentiment Analysis of Memes
Lisa Bonheme
|
Marek Grzes
This paper presents our submission to task 8 (memotion analysis) of the SemEval 2020 competition. We explain the algorithms that were used to learn our models along with the process of tuning the algorithms and selecting the best model. Since meme analysis is a challenging task with two distinct modalities, we studied the impact of different multimodal representation strategies. The results of several approaches to dealing with multimodal data are therefore discussed in the paper. We found that alignment-based strategies did not perform well on memes. Our quantitative results also showed that images and text were uncorrelated. Fusion-based strategies did not show significant improvements and using one modality only (text or image) tends to lead to better results when applied with the predictive models that we used in our research.
pdf
bib
abs
Kk2018 at SemEval-2020 Task 9: Adversarial Training for Code-Mixing Sentiment Classification
Jiaxiang Liu
|
Xuyi Chen
|
Shikun Feng
|
Shuohuan Wang
|
Xuan Ouyang
|
Yu Sun
|
Zhengjie Huang
|
Weiyue Su
Code switching is a linguistic phenomenon which may occur within a multilingual setting where speakers share more than one language. With the increasing communication between groups with different languages, this phenomenon is more and more popular. However, there are little research and data in this area, especially in code-mixing sentiment classification. In this work, the domain transfer learning from state-of-the-art uni-language model ERNIE is tested on the code-mixing dataset, and surprisingly, a strong baseline is achieved. And further more, the adversarial training with a multi-lingual model is used to achieved 1st place of SemEval-2020 Task9 Hindi-English sentiment classification competition.
pdf
bib
abs
Buhscitu at SemEval-2020 Task 7: Assessing Humour in Edited News Headlines Using Hand-Crafted Features and Online Knowledge Bases
Kristian Nørgaard Jensen
|
Nicolaj Filrup Rasmussen
|
Thai Wang
|
Marco Placenti
|
Barbara Plank
This paper describes a system that aims at assessing humour intensity in edited news headlines as part of the 7th task of SemEval-2020 on “Humor, Emphasis and Sentiment”. Various factors need to be accounted for in order to assess the funniness of an edited headline. We propose an architecture that uses hand-crafted features, knowledge bases and a language model to understand humour, and combines them in a regression model. Our system outperforms two baselines. In general, automatic humour assessment remains a difficult task.
pdf
bib
abs
Hasyarasa at SemEval-2020 Task 7: Quantifying Humor as Departure from Expectedness
Ravi Theja Desetty
|
Ranit Chatterjee
|
Smita Ghaisas
This paper describes our system submission Hasyarasa for the SemEval-2020 Task-7: Assessing Humor in Edited News Headlines. This task has two subtasks. The goal of Subtask 1 is to predict the mean funniness of the edited headline given the original and the edited headline. In Subtask 2, given two edits on the original headline, the goal is to predict the funnier of the two. We observed that the departure from expected state/ actions of situations/ individuals is the cause of humor in the edited headlines. We propose two novel features: Contextual Semantic Distance and Contextual Neighborhood Distance to estimate this departure and thus capture the contextual absurdity and hence the humor in the edited headlines. We have used these features together with a Bi-LSTM Attention based model and have achieved 0.53310 RMSE for Subtask 1 and 60.19% accuracy for Subtask 2.
pdf
bib
abs
JokeMeter at SemEval-2020 Task 7: Convolutional Humor
Martin Docekal
|
Martin Fajcik
|
Josef Jon
|
Pavel Smrz
This paper describes our system that was designed for Humor evaluation within the SemEval-2020 Task 7. The system is based on convolutional neural network architecture. We investigate the system on the official dataset, and we provide more insight to model itself to see how the learned inner features look.
pdf
bib
abs
KDEhumor at SemEval-2020 Task 7: A Neural Network Model for Detecting Funniness in Dataset Humicroedit
Rida Miraj
|
Masaki Aono
This paper describes our contribution to SemEval-2020 Task 7: Assessing Humor in Edited News Headlines. Here we present a method based on a deep neural network. In recent years, quite some attention has been devoted to humor production and perception. Our team KDEhumor employs recurrent neural network models including Bi-Directional LSTMs (BiLSTMs). Moreover, we utilize the state-of-the-art pre-trained sentence embedding techniques. We analyze the performance of our method and demonstrate the contribution of each component of our architecture.
pdf
bib
abs
LRG at SemEval-2020 Task 7: Assessing the Ability of BERT and Derivative Models to Perform Short-Edits Based Humor Grading
Siddhant Mahurkar
|
Rajaswa Patil
In this paper, we assess the ability of BERT and its derivative models (RoBERTa, DistilBERT, and ALBERT) for short-edits based humor grading. We test these models for humor grading and classification tasks on the Humicroedit and the FunLines dataset. We perform extensive experiments with these models to test their language modeling and generalization abilities via zero-shot inference and cross-dataset inference based approaches. Further, we also inspect the role of self-attention layers in humor-grading by performing a qualitative analysis over the self-attention weights from the final layer of the trained BERT model. Our experiments show that all the pre-trained BERT derivative models show significant generalization capabilities for humor-grading related tasks.
pdf
bib
abs
SSN_NLP at SemEval-2020 Task 7: Detecting Funniness Level Using Traditional Learning with Sentence Embeddings
Kayalvizhi S
|
Thenmozhi D.
|
Aravindan Chandrabose
Assessing the funniness of edited news headlines task deals with estimating the humorness in the headlines edited with micro-edits. This task has two sub-tasks in which one has to calculate the mean predicted score of humor level and other deals with predicting the best funnier sentence among given two sentences. We have calculated the humorness level using microtc and predicted the funnier sentence using microtc, universal sentence encoder classifier, many other traditional classifiers that use the vectors formed with universal sentence encoder embeddings, sentence embeddings and majority algorithm within these approaches. Among these approaches, microtc with 6 folds, 24 processes and 3 folds, 36 processes achieve the least Root Mean Square Error for development and test set respectively for subtask 1. For subtask 2, Universal sentence encoder classifier achieves the highest accuracy for development set and Multi-Layer Perceptron applied on vectors vectorized using universal sentence encoder embeddings for the test set.
pdf
bib
abs
YNU-HPCC at SemEval-2020 Task 7: Using an Ensemble BiGRU Model to Evaluate the Humor of Edited News Titles
Joseph Tomasulo
|
Jin Wang
|
Xuejie Zhang
This paper describes an ensemble model designed for Semeval-2020 Task 7. The task is based on the Humicroedit dataset that is comprised of news titles and one-word substitutions designed to make them humorous. We use BERT, FastText, Elmo, and Word2Vec to encode these titles then pass them to a bidirectional gated recurrent unit (BiGRU) with attention. Finally, we used XGBoost on the concatenation of the results of the different models to make predictions.
pdf
bib
abs
DSC IIT-ISM at SemEval-2020 Task 8: Bi-Fusion Techniques for Deep Meme Emotion Analysis
Pradyumna Gupta
|
Himanshu Gupta
|
Aman Sinha
Memes have become an ubiquitous social media entity and the processing and analysis of such multimodal data is currently an active area of research. This paper presents our work on the Memotion Analysis shared task of SemEval 2020, which involves the sentiment and humor analysis of memes. We propose a system which uses different bimodal fusion techniques to leverage the inter-modal dependency for sentiment and humor classification tasks. Out of all our experiments, the best system improved the baseline with macro F1 scores of 0.357 on Sentiment Classification (Task A), 0.510 on Humor Classification (Task B) and 0.312 on Scales of Semantic Classes (Task C).
pdf
bib
abs
IIITG-ADBU at SemEval-2020 Task 8: A Multimodal Approach to Detect Offensive, Sarcastic and Humorous Memes
Arup Baruah
|
Kaushik Das
|
Ferdous Barbhuiya
|
Kuntal Dey
In this paper, we present a multimodal architecture to determine the emotion expressed in a meme. This architecture utilizes both textual and visual information present in a meme. To extract image features we experimented with pre-trained VGG-16 and Inception-V3 classifiers and to extract text features we used LSTM and BERT classifiers. Both FastText and GloVe embeddings were experimented with for the LSTM classifier. The best F1 scores our classifier obtained on the official analysis results are 0.3309, 0.4752, and 0.2897 for Task A, B, and C respectively in the Memotion Analysis task (Task 8) organized as part of International Workshop on Semantic Evaluation 2020 (SemEval 2020). In our study, we found that combining both textual and visual information expressed in a meme improves the performance of the classifier as opposed to using standalone classifiers that use only text or visual data.
pdf
bib
abs
NLP_UIOWA at SemEval-2020 Task 8: You’re Not the Only One Cursed with Knowledge - Multi Branch Model Memotion Analysis
Ingroj Shrestha
|
Jonathan Rusert
We propose hybrid models (HybridE and HybridW) for meme analysis (SemEval 2020 Task 8), which involves sentiment classification (Subtask A), humor classification (Subtask B), and scale of semantic classes (Subtask C). The hybrid model consists of BLSTM and CNN for text and image processing respectively. HybridE provides equal weight to BLSTM and CNN performance, while HybridW provides weightage based on the performance of BLSTM and CNN on a validation set. The performances (macro F1) of our hybrid model on Subtask A are 0.329 (HybridE), 0.328 (HybridW), on Subtask B are 0.507 (HybridE), 0.512 (HybridW), and on Subtask C are 0.309 (HybridE), 0.311 (HybridW).
pdf
bib
abs
NUAA-QMUL at SemEval-2020 Task 8: Utilizing BERT and DenseNet for Internet Meme Emotion Analysis
Xiaoyu Guo
|
Jing Ma
|
Arkaitz Zubiaga
This paper describes our contribution to SemEval 2020 Task 8: Memotion Analysis. Our system learns multi-modal embeddings from text and images in order to classify Internet memes by sentiment. Our model learns text embeddings using BERT and extracts features from images with DenseNet, subsequently combining both features through concatenation. We also compare our results with those produced by DenseNet, ResNet, BERT, and BERT-ResNet. Our results show that image classification models have the potential to help classifying memes, with DenseNet outperforming ResNet. Adding text features is however not always helpful for Memotion Analysis.
pdf
bib
abs
PRHLT-UPV at SemEval-2020 Task 8: Study of Multimodal Techniques for Memes Analysis
Gretel Liz De la Peña Sarracén
|
Paolo Rosso
|
Anastasia Giachanou
This paper describes the system submitted by the PRHLT-UPV team for the task 8 of SemEval-2020: Memotion Analysis. We propose a multimodal model that combines pretrained models of the BERT and VGG architectures. The BERT model is used to process the textual information and VGG the images. The multimodal model is used to classify memes according to the presence of offensive, sarcastic, humorous and motivating content. Also, a sentiment analysis of memes is carried out with the proposed model. In the experiments, the model is compared with other approaches to analyze the relevance of the multimodal model. The results show encouraging performances on the final leaderboard of the competition, reaching good positions in the ranking of systems.
pdf
bib
abs
YNU-HPCC at SemEval-2020 Task 8: Using a Parallel-Channel Model for Memotion Analysis
Li Yuan
|
Jin Wang
|
Xuejie Zhang
this paper proposed a parallel-channel model to process the textual and visual information in memes and then analyze the sentiment polarity of memes. In the shared task of identifying and categorizing memes, we preprocess the dataset according to the language behaviors on social media. Then, we adapt and fine-tune the Bidirectional Encoder Representations from Transformers (BERT), and two types of convolutional neural network models (CNNs) were used to extract the features from the pictures. We applied an ensemble model that combined the BiLSTM, BIGRU, and Attention models to perform cross domain suggestion mining. The officially released results show that our system performs better than the baseline algorithm
pdf
bib
abs
CS-Embed at SemEval-2020 Task 9: The Effectiveness of Code-switched Word Embeddings for Sentiment Analysis
Frances Adriana Laureano De Leon
|
Florimond Guéniat
|
Harish Tayyar Madabushi
The growing popularity and applications of sentiment analysis of social media posts has naturally led to sentiment analysis of posts written in multiple languages, a practice known as code-switching. While recent research into code-switched posts has focused on the use of multilingual word embeddings, these embeddings were not trained on code-switched data. In this work, we present word-embeddings trained on code-switched tweets, specifically those that make use of Spanish and English, known as Spanglish. We explore the embedding space to discover how they capture the meanings of words in both languages. We test the effectiveness of these embeddings by participating in SemEval 2020 Task 9: Sentiment Analysis on Code-Mixed Social Media Text. We utilised them to train a sentiment classifier that achieves an F-1 score of 0.722. This is higher than the baseline for the competition of 0.656, with our team (codalab username francesita) ranking 14 out of 29 participating teams, beating the baseline.
pdf
bib
abs
FII-UAIC at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using CNN
Lavinia Aparaschivei
|
Andrei Palihovici
|
Daniela Gîfu
The “Sentiment Analysis for Code-Mixed Social Media Text” task at the SemEval 2020 competition focuses on sentiment analysis in code-mixed social media text , specifically, on the combination of English with Spanish (Spanglish) and Hindi (Hinglish). In this paper, we present a system able to classify tweets, from Spanish and English languages, into positive, negative and neutral. Firstly, we built a classifier able to provide corresponding sentiment labels. Besides the sentiment labels, we provide the language labels at the word level. Secondly, we generate a word-level representation, using Convolutional Neural Network (CNN) architecture. Our solution indicates promising results for the Sentimix Spanglish-English task (0.744), the team, Lavinia_Ap, occupied the 9th place. However, for the Sentimix Hindi-English task (0.324) the results have to be improved.
pdf
bib
abs
HinglishNLP at SemEval-2020 Task 9: Fine-tuned Language Models for Hinglish Sentiment Detection
Meghana Bhange
|
Nirant Kasliwal
Sentiment analysis for code-mixed social media text continues to be an under-explored area. This work adds two common approaches: fine-tuning large transformer models and sample efficient methods like ULMFiT. Prior work demonstrates the efficacy of classical ML methods for polarity detection. Fine-tuned general-purpose language representation models, such as those of the BERT family are benchmarked along with classical machine learning and ensemble methods. We show that NB-SVM beats RoBERTa by 6.2% (relative) F1. The best performing model is a majority-vote ensemble which achieves an F1 of 0.707. The leaderboard submission was made under the codalab username nirantk, with F1 of 0.689.
pdf
bib
abs
HPCC-YNU at SemEval-2020 Task 9: A Bilingual Vector Gating Mechanism for Sentiment Analysis of Code-Mixed Text
Jun Kong
|
Jin Wang
|
Xuejie Zhang
It is fairly common to use code-mixing on a social media platform to express opinions and emotions in multilingual societies. The purpose of this task is to detect the sentiment of code-mixed social media text. Code-mixed text poses a great challenge for the traditional NLP system, which currently uses monolingual resources to deal with the problem of multilingual mixing. This task has been solved in the past using lexicon lookup in respective sentiment dictionaries and using a long short-term memory (LSTM) neural network for monolingual resources. In this paper, we present a system that uses a bilingual vector gating mechanism for bilingual resources to complete the task. The model consists of two main parts: the vector gating mechanism, which combines the character and word levels, and the attention mechanism, which extracts the important emotional parts of the text. The results show that the proposed system outperforms the baseline algorithm. We achieved fifth place in Spanglish and 19th place in Hinglish.
pdf
bib
abs
IIITG-ADBU at SemEval-2020 Task 9: SVM for Sentiment Analysis of English-Hindi Code-Mixed Text
Arup Baruah
|
Kaushik Das
|
Ferdous Barbhuiya
|
Kuntal Dey
In this paper, we present the results that the team IIITG-ADBU (codalab username ‘abaruah’) obtained in the SentiMix task (Task 9) of the International Workshop on Semantic Evaluation 2020 (SemEval 2020). This task required the detection of sentiment in code-mixed Hindi-English tweets. Broadly, we performed two sets of experiments for this task. The first experiment was performed using the multilingual BERT classifier and the second set of experiments was performed using SVM classifiers. The character-based SVM classifier obtained the best F1 score of 0.678 in the test set with a rank of 21 among 62 participants. The performance of the multilingual BERT classifier was quite comparable with the SVM classifier on the development set. However, on the test set it obtained an F1 score of 0.342.
pdf
bib
abs
MSR India at SemEval-2020 Task 9: Multilingual Models Can Do Code-Mixing Too
Anirudh Srinivasan
In this paper, we present our system for the SemEval 2020 task on code-mixed sentiment analysis. Our system makes use of large transformer based multilingual embeddings like mBERT. Recent work has shown that these models posses the ability to solve code-mixed tasks in addition to their originally demonstrated cross-lingual abilities. We evaluate the stock versions of these models for the sentiment analysis task and also show that their performance can be improved by using unlabelled code-mixed data. Our submission (username Genius1237) achieved the second rank on the English-Hindi subtask with an F1 score of 0.726.
pdf
bib
abs
NLP-CIC at SemEval-2020 Task 9: Analysing Sentiment in Code-switching Language Using a Simple Deep-learning Classifier
Jason Angel
|
Segun Taofeek Aroyehun
|
Antonio Tamayo
|
Alexander Gelbukh
Code-switching is a phenomenon in which two or more languages are used in the same message. Nowadays, it is quite common to find messages with languages mixed in social media. This phenomenon presents a challenge for sentiment analysis. In this paper, we use a standard convolutional neural network model to predict the sentiment of tweets in a blend of Spanish and English languages. Our simple approach achieved a F1-score of 0:71 on test set on the competition. We analyze our best model capabilities and perform error analysis to expose important difficulties for classifying sentiment in a code-switching setting.
pdf
bib
abs
Palomino-Ochoa at SemEval-2020 Task 9: Robust System Based on Transformer for Code-Mixed Sentiment Classification
Daniel Palomino
|
José Ochoa-Luna
We present a transfer learning system to perform a mixed Spanish-English sentiment classification task. Our proposal uses the state-of-the-art language model BERT and embed it within a ULMFiT transfer learning pipeline. This combination allows us to predict the polarity detection of code-mixed (English-Spanish) tweets. Thus, among 29 submitted systems, our approach (referred to as dplominop) is ranked 4th on the Sentimix Spanglish test set of SemEval 2020 Task 9. In fact, our system yields the weighted-F1 score value of 0.755 which can be easily reproduced — the source code and implementation details are made available.
pdf
bib
abs
ULD@NUIG at SemEval-2020 Task 9: Generative Morphemes with an Attention Model for Sentiment Analysis in Code-Mixed Text
Koustava Goswami
|
Priya Rani
|
Bharathi Raja Chakravarthi
|
Theodorus Fransen
|
John P. McCrae
Code mixing is a common phenomena in multilingual societies where people switch from one language to another for various reasons. Recent advances in public communication over different social media sites have led to an increase in the frequency of code-mixed usage in written language. In this paper, we present the Generative Morphemes with Attention (GenMA) Model sentiment analysis system contributed to SemEval 2020 Task 9 SentiMix. The system aims to predict the sentiments of the given English-Hindi code-mixed tweets without using word-level language tags instead inferring this automatically using a morphological model. The system is based on a novel deep neural network (DNN) architecture, which has outperformed the baseline F1-score on the test data-set as well as the validation data-set. Our results can be found under the user name “koustava” on the “Sentimix Hindi English” page.
pdf
bib
abs
XLP at SemEval-2020 Task 9: Cross-lingual Models with Focal Loss for Sentiment Analysis of Code-Mixing Language
Yili Ma
|
Liang Zhao
|
Jie Hao
In this paper, we present an approach for sentiment analysis in code-mixed language on twitter defined in SemEval-2020 Task 9. Our team (referred as LiangZhao) employ different multilingual models with weighted loss focused on complexity of code-mixing in sentence, in which the best model achieved f1-score of 0.806 and ranked 1st of subtask- Sentimix Spanglish. The performance of method is analyzed and each component of our architecture is demonstrated.
pdf
bib
abs
Amobee at SemEval-2020 Task 7: Regularization of Language Model Based Classifiers
Alon Rozental
|
Dadi Biton
|
Ido Blank
This paper describes Amobee’s participation in SemEval-2020 task 7: “Assessing Humor in Edited News Headlines”, sub-tasks 1 and 2. The goal of this task was to estimate the funniness of human modified news headlines. in this paper we present methods to fine-tune and ensemble various language models (LM) based classifiers to for this task. This technique used for both sub-tasks and reached the second place (out of 49) in sub-tasks 1 with RMSE score of 0.5, and the second (out of 32) place in sub-task 2 with accuracy of 66% without using any additional data except the official training set.
pdf
bib
abs
Duluth at SemEval-2020 Task 7: Using Surprise as a Key to Unlock Humorous Headlines
Shuning Jin
|
Yue Yin
|
XianE Tang
|
Ted Pedersen
We use pretrained transformer-based language models in SemEval-2020 Task 7: Assessing the Funniness of Edited News Headlines. Inspired by the incongruity theory of humor, we use a contrastive approach to capture the surprise in the edited headlines. In the official evaluation, our system gets 0.531 RMSE in Subtask 1, 11th among 49 submissions. In Subtask 2, our system gets 0.632 accuracy, 9th among 32 submissions.
pdf
bib
abs
ECNU at SemEval-2020 Task 7: Assessing Humor in Edited News Headlines Using BiLSTM with Attention
Tiantian Zhang
|
Zhixuan Chen
|
Man Lan
In this paper we describe our system submitted to SemEval 2020 Task 7: “Assessing Humor in Edited News Headlines”. We participated in all subtasks, in which the main goal is to predict the mean funniness of the edited headline given the original and the edited headline. Our system involves two similar sub-networks, which generate vector representations for the original and edited headlines respectively. And then we do a subtract operation of the outputs from two sub-networks to predict the funniness of the edited headline.
pdf
bib
abs
ELMo-NB at SemEval-2020 Task 7: Assessing Sense of Humor in EditedNews Headlines Using ELMo and NB
Enas Khwaileh
|
Muntaha A. Al-As’ad
Our approach is constructed to improve on a couple of aspects; preprocessing with an emphasis on humor sense detection, using embeddings from state-of-the-art language model(Elmo), and ensembling the results came up with using machine learning model Na ̈ıve Bayes(NB) with a deep learning pre-trained models. Elmo-NB participation has scored (0.5642) on the competition leader board, where results were measured by Root Mean Squared Error (RMSE).
pdf
bib
abs
Ferryman at SemEval-2020 Task 7: Ensemble Model for Assessing Humor in Edited News Headlines
Weilong Chen
|
Jipeng Li
|
Chenghao Huang
|
Wei Bai
|
Yanru Zhang
|
Yan Wang
Natural language processing (NLP) has been applied to various fields including text classification and sentiment analysis. In the shared task of assessing the funniness of edited news headlines, which is a part of the SemEval 2020 competition, we preprocess datasets by replacing abbreviation, stemming words, then merge three models including Light Gradient Boosting Machine (LightGBM), Long Short-Term Memory (LSTM), and Bidirectional Encoder Representation from Transformer (BERT) by taking the average to perform the best. Our team Ferryman wins the 9th place in Sub-task 1 of Task 7 - Regression.
pdf
bib
abs
Funny3 at SemEval-2020 Task 7: Humor Detection of Edited Headlines with LSTM and TFIDF Neural Network System
Xuefeng Luo
|
Kuan Tang
This paper presents a neural network system where we participate in the first task of SemEval-2020 shared task 7 “Assessing the Funniness of Edited News Headlines”. Our target is to create to neural network model that can predict the funniness of edited headlines. We build our model using a combination of LSTM and TF-IDF, then a feed-forward neural network. The system manages to slightly improve RSME scores regarding our mean score baseline.
pdf
bib
abs
HumorAAC at SemEval-2020 Task 7: Assessing the Funniness of Edited News Headlines through Regression and Trump Mentions
Anna-Katharina Dick
|
Charlotte Weirich
|
Alla Kutkina
In this paper we describe our contribution to the Semeval-2020 Humor Assessment task. We essentially use three different features that are passed into a ridge regression to determine a funniness score for an edited news headline: statistical, count-based features, semantic features and contextual information. For deciding which one of two given edited headlines is funnier, we additionally use scoring information and logistic regression. Our work was mostly concentrated on investigating features, rather than improving prediction based on pre-trained language models. The resulting system is task-specific, lightweight and performs above the majority baseline. Our experiments indicate that features related to socio-cultural context, in our case mentions of Donald Trump, generally perform better than context-independent features like headline length.
pdf
bib
abs
LMML at SemEval-2020 Task 7: Siamese Transformers for Rating Humor in Edited News Headlines
Pramodith Ballapuram
This paper contains a description of my solution to the problem statement of SemEval 2020: Assessing the Funniness of Edited News Headlines. I propose a Siamese Transformer based approach, coupled with a Global Attention mechanism that makes use of contextual embeddings and focus words, to generate important features that are fed to a 2 layer perceptron to rate the funniness of the edited headline. I detail various experiments to show the performance of the system. The proposed approach outperforms a baseline Bi-LSTM architecture and finished 5th (out of 49 teams) in sub-task 1 and 4th (out of 32 teams) in sub-task 2 of the competition and was the best non-ensemble model in both tasks.
pdf
bib
abs
LT3 at SemEval-2020 Task 7: Comparing Feature-Based and Transformer-Based Approaches to Detect Funny Headlines
Bram Vanroy
|
Sofie Labat
|
Olha Kaminska
|
Els Lefever
|
Veronique Hoste
This paper presents two different systems for the SemEval shared task 7 on Assessing Humor in Edited News Headlines, sub-task 1, where the aim was to estimate the intensity of humor generated in edited headlines. Our first system is a feature-based machine learning system that combines different types of information (e.g. word embeddings, string similarity, part-of-speech tags, perplexity scores, named entity recognition) in a Nu Support Vector Regressor (NuSVR). The second system is a deep learning-based approach that uses the pre-trained language model RoBERTa to learn latent features in the news headlines that are useful to predict the funniness of each headline. The latter system was also our final submission to the competition and is ranked seventh among the 49 participating teams, with a root-mean-square error (RMSE) of 0.5253.
pdf
bib
abs
MLEngineer at SemEval-2020 Task 7: BERT-Flair Based Humor Detection Model (BFHumor)
Fara Shatnawi
|
Malak Abdullah
|
Mahmoud Hammad
Task 7, Assessing the Funniness of Edited News Headlines, in the International Workshop SemEval2020 introduces two sub-tasks to predict the funniness values of edited news headlines from the Reddit website. This paper proposes the BFHumor model of the MLEngineer team that participates in both sub-tasks in this competition. The BFHumor’s model is defined as a BERT-Flair based humor detection model that is a combination of different pre-trained models with various Natural Language Processing (NLP) techniques. The Bidirectional Encoder Representations from Transformers (BERT) regressor is considered the primary pre-trained model in our approach, whereas Flair is the main NLP library. It is worth mentioning that the BFHumor model has been ranked 4th in sub-task1 with a root mean square error (RMSE) value of 0.51966, and it is 0.02 away from the first ranked model. Also, the team is ranked 12th in the sub-task2 with an accuracy of 0.62291, which is 0.05 away from the top-ranked model. Our results indicate that the BFHumor model is one of the top models for detecting humor in the text.
pdf
bib
abs
Smash at SemEval-2020 Task 7: Optimizing the Hyperparameters of ERNIE 2.0 for Humor Ranking and Rating
J. A. Meaney
|
Steven Wilson
|
Walid Magdy
The use of pre-trained language models such as BERT and ULMFiT has become increasingly popular in shared tasks, due to their powerful language modelling capabilities. Our entry to SemEval uses ERNIE 2.0, a language model which is pre-trained on a large number of tasks to enrich the semantic and syntactic information learned. ERNIE’s knowledge masking pre-training task is a unique method for learning about named entities, and we hypothesise that it may be of use in a dataset which is built on news headlines and which contains many named entities. We optimize the hyperparameters in a regression and classification model and find that the hyperparameters we selected helped to make bigger gains in the classification model than the regression model.
pdf
bib
abs
SO at SemEval-2020 Task 7: DeepPavlov Logistic Regression with BERT Embeddings vs SVR at Funniness Evaluation
Anita Soloveva
This paper describes my efforts in evaluating how editing news headlines can make them funnier within the frames of SemEval 2020 Task 7. I participated in both of the sub-tasks: Sub-Task 1 “Regression” and Sub-task 2 “Predict the funnier of the two edited versions of an original headline”. I experimented with a number of different models, but ended up using DeepPavlov logistic regression (LR) with BERT English cased embeddings for the first sub-task and support vector regression model (SVR) for the second. RMSE score obtained for the first task was 0.65099 and accuracy for the second – 0.32915.
pdf
bib
abs
UniTuebingenCL at SemEval-2020 Task 7: Humor Detection in News Headlines
Charlotte Ammer
|
Lea Grüner
This paper describes the work done by the team UniTuebingenCL for the SemEval 2020 Task 7: “Assessing the Funniness of Edited News Headlines”. We participated in both sub-tasks: sub-task A, given the original and the edited headline, predicting the mean funniness of the edited headline; and sub-task B, given the original headline and two edited versions, predicting which edited version is the funnier of the two. A Ridge Regression model using Elmo and Glove embeddings as well as Truncated Singular Value Decomposition was used as the final model. A long short term memory model recurrent network (LSTM) served as another approach for assessing the funniness of a headline. For the first sub-task, we experimented with the extraction of multiple features to achieve lower Root Mean Squared Error. The lowest Root Mean Squared Error achieved was 0.575 for sub-task A, and the highest Accuracy was 0.618 for sub-task B.
pdf
bib
abs
UTFPR at SemEval-2020 Task 7: Using Co-occurrence Frequencies to Capture Unexpectedness
Gustavo Henrique Paetzold
We describe the UTFPR system for SemEval-2020’s Task 7: Assessing Humor in Edited News Headlines. Ours is a minimalist unsupervised system that uses word co-occurrence frequencies from large corpora to capture unexpectedness as a mean to capture funniness. Our system placed 22nd on the shared task’s Task 2. We found that our approach requires more text than we used to perform reliably, and that unexpectedness alone is not sufficient to gauge funniness for humorous content that targets a diverse target audience.
pdf
bib
abs
WUY at SemEval-2020 Task 7: Combining BERT and Naive Bayes-SVM for Humor Assessment in Edited News Headlines
Cheng Zhang
|
Hayato Yamana
This paper describes our participation in SemEval 2020 Task 7 on assessment of humor in edited news headlines, which includes two subtasks, estimating the humor of micro-editd news headlines (subtask A) and predicting the more humorous of the two edited headlines (subtask B). To address these tasks, we propose two systems. The first system adopts a regression-based fine-tuned single-sequence bidirectional encoder representations from transformers (BERT) model with easy data augmentation (EDA), called “BERT+EDA”. The second system adopts a hybrid of a regression-based fine-tuned sequence-pair BERT model and a combined Naive Bayes and support vector machine (SVM) model estimated on term frequency–inverse document frequency (TFIDF) features, called “BERT+NB-SVM”. In this case, no additional training datasets were used, and the BERT+NB-SVM model outperformed BERT+EDA. The official root-mean-square deviation (RMSE) score for subtask A is 0.57369 and ranks 31st out of 48, whereas the best RMSE of BERT+NB-SVM is 0.52429, ranking 7th. For subtask B, we simply use a sequence-pair BERT model, the official accuracy of which is 0.53196 and ranks 25th out of 32.
pdf
bib
abs
XSYSIGMA at SemEval-2020 Task 7: Method for Predicting Headlines’ Humor Based on Auxiliary Sentences with EI-BERT
Jian Ma
|
ShuYi Xie
|
Meizhi Jin
|
Jiang Lianxin
|
Mo Yang
|
Jianping Shen
This paper describes xsysigma team’s system for SemEval 2020 Task 7: Assessing the Funniness of Edited News Headlines. The target of this task is to assess the funniness changes of news headlines after minor editing and is divided into two subtasks: Subtask 1 is a regression task to detect the humor intensity of the sentence after editing; and Subtask 2 is a classification task to predict funnier of the two edited versions of an original headline. In this paper, we only report our implement of Subtask 2. We first construct sentence pairs with different features for Enhancement Inference BERT(EI-BERT)’s input. We then conduct data augmentation strategy and Pseudo-Label method. After that, we apply feature enhancement interaction on the encoding of each sentence for classification with EI-BERT. Finally, we apply weighted fusion algorithm to the logits results which obtained by different pre-trained models. We achieve 64.5% accuracy in subtask2 and rank the first and the fifth in dev and test dataset 1 , respectively.
pdf
bib
abs
BennettNLP at SemEval-2020 Task 8: Multimodal sentiment classification Using Hybrid Hierarchical Classifier
Ambuje Gupta
|
Harsh Kataria
|
Souvik Mishra
|
Tapas Badal
|
Vipul Mishra
Memotion analysis is a very crucial and important subject in today’s world that is dominated by social media. This paper presents the results and analysis of the SemEval-2020 Task-8: Memotion analysis by team Kraken that qualified as winners for the task. This involved performing multimodal sentiment analysis on memes commonly posted over social media. The task comprised of 3 subtasks, Task A was to find the overall sentiment of a meme and classify it into positive, negative or neutral, Task B was to classify it into the different types which were namely humour, sarcasm, offensive or motivation where a meme could have more than one category, Task C was to further quantify the classifications achieved in task B. An imbalanced data of 6992 rows was utilized for this which contained images (memes), text (extracted OCR) and their annotations in 17 classes provided by the task organisers. In this paper, the authors proposed a hybrid neural Naïve-Bayes Support Vector Machine and logistic regression to solve a multilevel 17 class classification problem. It achieved the best result in Task B i.e 0.70 F1 score. The authors were ranked third in Task B.
pdf
bib
abs
BERT at SemEval-2020 Task 8: Using BERT to Analyse Meme Emotions
Adithya Avvaru
|
Sanath Vobilisetty
Sentiment analysis, being one of the most sought after research problems within Natural Language Processing (NLP) researchers. The range of problems being addressed by sentiment analysis is increasing. Till now, most of the research focuses on predicting sentiment, or sentiment categories like sarcasm, humor, offense and motivation on text data. But, there is very limited research that is focusing on predicting or analyzing the sentiment of internet memes. We try to address this problem as part of “Task 8 of SemEval 2020: Memotion Analysis”. We have participated in all the three tasks under Memotion Analysis. Our system built using state-of-the-art Transformer-based pre-trained Bidirectional Encoder Representations from Transformers (BERT) performed better compared to baseline models for the two tasks A and C and performed close to the baseline model for task B. In this paper, we present the data used, steps used by us for data cleaning and preparation, the fine-tuning process for BERT based model and finally predict the sentiment or sentiment categories. We found that the sequence models like Long Short Term Memory(LSTM) and its variants performed below par in predicting the sentiments. We also performed a comparative analysis with other Transformer based models like DistilBERT and XLNet.
pdf
bib
abs
CN-HIT-MI.T at SemEval-2020 Task 8: Memotion Analysis Based on BERT
Zhen Li
|
Yaojie Zhang
|
Bing Xu
|
Tiejun Zhao
Internet memes emotion recognition is focused by many researchers. In this paper, we adopt BERT and ResNet for evaluation of detecting the emotions of Internet memes. We focus on solving the problem of data imbalance and data contains noise. We use RandAugment to enhance the data of the picture, and use Training Signal Annealing (TSA) to solve the impact of the imbalance of the label. At the same time, a new loss function is designed to ensure that the model is not affected by input noise which will improve the robustness of the model. We participated in sub-task a and our model based on BERT obtains 34.58% macro F1 score, ranking 10/32.
pdf
bib
abs
CSECU_KDE_MA at SemEval-2020 Task 8: A Neural Attention Model for Memotion Analysis
Abu Nowshed Chy
|
Umme Aymun Siddiqua
|
Masaki Aono
A meme is a pictorial representation of an idea or theme. In the age of emerging volume of social media platforms, memes are spreading rapidly from person to person and becoming a trending ways of opinion expression. However, due to the multimodal characteristics of meme contents, detecting and analyzing the underlying emotion of a meme is a formidable task. In this paper, we present our approach for detecting the emotion of a meme defined in the SemEval-2020 Task 8. Our team CSECU_KDE_MA employs an attention-based neural network model to tackle the problem. Upon extracting the text contents from a meme using an optical character reader (OCR), we represent it using the distributed representation of words. Next, we perform the convolution based on multiple kernel sizes to obtain the higher-level feature sequences. The feature sequences are then fed into the attentive time-distributed bidirectional LSTM model to learn the long-term dependencies effectively. Experimental results show that our proposed neural model obtained competitive performance among the participants’ systems.
pdf
bib
abs
Gundapusunil at SemEval-2020 Task 8: Multimodal Memotion Analysis
Sunil Gundapu
|
Radhika Mamidi
Recent technological advancements in the Internet and Social media usage have resulted in the evolution of faster and efficient platforms of communication. These platforms include visual, textual and speech mediums and have brought a unique social phenomenon called Internet memes. Internet memes are in the form of images with witty, catchy, or sarcastic text descriptions. In this paper, we present a multi-modal sentiment analysis system using deep neural networks combining Computer Vision and Natural Language Processing. Our aim is different than the normal sentiment analysis goal of predicting whether a text expresses positive or negative sentiment; instead, we aim to classify the Internet meme as a positive, negative, or neutral, identify the type of humor expressed and quantify the extent to which a particular effect is being expressed. Our system has been developed using CNN and LSTM and outperformed the baseline score.
pdf
bib
abs
Guoym at SemEval-2020 Task 8: Ensemble-based Classification of Visuo-Lingual Metaphor in Memes
Yingmei Guo
|
Jinfa Huang
|
Yanlong Dong
|
Mingxing Xu
In this paper, we describe our ensemble-based system designed by guoym Team for the SemEval-2020 Task 8, Memotion Analysis. In our system, we utilize five types of representation of data as input of base classifiers to extract information from different aspects. We train five base classifiers for each type of representation using five-fold cross-validation. Then the outputs of these base classifiers are combined through data-based ensemble method and feature-based ensemble method to make full use of all data and representations from different aspects. Our method achieves the performance within the top 2 ranks in the final leaderboard of Memotion Analysis among 36 Teams.
pdf
bib
abs
Hitachi at SemEval-2020 Task 8: Simple but Effective Modality Ensemble for Meme Emotion Recognition
Terufumi Morishita
|
Gaku Morio
|
Shota Horiguchi
|
Hiroaki Ozaki
|
Toshinori Miyoshi
Users of social networking services often share their emotions via multi-modal content, usually images paired with text embedded in them. SemEval-2020 task 8, Memotion Analysis, aims at automatically recognizing these emotions of so-called internet memes. In this paper, we propose a simple but effective Modality Ensemble that incorporates visual and textual deep-learning models, which are independently trained, rather than providing a single multi-modal joint network. To this end, we first fine-tune four pre-trained visual models (i.e., Inception-ResNet, PolyNet, SENet, and PNASNet) and four textual models (i.e., BERT, GPT-2, Transformer-XL, and XLNet). Then, we fuse their predictions with ensemble methods to effectively capture cross-modal correlations. The experiments performed on dev-set show that both visual and textual features aided each other, especially in subtask-C, and consequently, our system ranked 2nd on subtask-C.
pdf
bib
abs
IITK at SemEval-2020 Task 8: Unimodal and Bimodal Sentiment Analysis of Internet Memes
Vishal Keswani
|
Sakshi Singh
|
Suryansh Agarwal
|
Ashutosh Modi
Social media is abundant in visual and textual information presented together or in isolation. Memes are the most popular form, belonging to the former class. In this paper, we present our approaches for the Memotion Analysis problem as posed in SemEval-2020 Task 8. The goal of this task is to classify memes based on their emotional content and sentiment. We leverage techniques from Natural Language Processing (NLP) and Computer Vision (CV) towards the sentiment classification of internet memes (Subtask A). We consider Bimodal (text and image) as well as Unimodal (text-only) techniques in our study ranging from the Na ̈ıve Bayes classifier to Transformer-based approaches. Our results show that a text-only approach, a simple Feed Forward Neural Network (FFNN) with Word2vec embeddings as input, performs superior to all the others. We stand first in the Sentiment analysis task with a relative improvement of 63% over the baseline macro-F1 score. Our work is relevant to any task concerned with the combination of different modalities.
pdf
bib
abs
Infotec + CentroGEO at SemEval-2020 Task 8: Deep Learning and Text Categorization approach for Memes classification
Guillermo Ruiz
|
Eric S. Tellez
|
Daniela Moctezuma
|
Sabino Miranda-Jiménez
|
Tania Ramírez-delReal
|
Mario Graff
The information shared on social media is increasingly important; both images and text, and maybe the most popular combination of these two kinds of data are the memes. This manuscript describes our participation in Memotion task at SemEval 2020. This task is about to classify the memes in several categories related to the emotional content of them. For the proposed system construction, we used different strategies, and the best ones were based on deep neural networks and a text categorization algorithm. We obtained results analyzing the text and images separately, and also in combination. Our better performance was achieved in Task A, related to polarity classification.
pdf
bib
abs
KAFK at SemEval-2020 Task 8: Extracting Features from Pre-trained Neural Networks to Classify Internet Memes
Kaushik Amar Das
|
Arup Baruah
|
Ferdous Ahmed Barbhuiya
|
Kuntal Dey
This paper presents two approaches for the internet meme classification challenge of SemEval-2020 Task 8 by Team KAFK (cosec). The first approach uses both text and image features, while the second approach uses only the images. Error analysis of the two approaches shows that using only the images is more robust to the noise in the text on the memes. We utilize pre-trained DistilBERT and EfficientNet to extract features from the text and image of the memes respectively. Our classification systems obtained macro f1 score of 0.3286 for Task A and 0.5005 for Task B.
pdf
bib
abs
LT3 at SemEval-2020 Task 8: Multi-Modal Multi-Task Learning for Memotion Analysis
Pranaydeep Singh
|
Nina Bauwelinck
|
Els Lefever
Internet memes have become a very popular mode of expression on social media networks today. Their multi-modal nature, caused by a mixture of text and image, makes them a very challenging research object for automatic analysis. In this paper, we describe our contribution to the SemEval-2020 Memotion Analysis Task. We propose a Multi-Modal Multi-Task learning system, which incorporates “memebeddings”, viz. joint text and vision features, to learn and optimize for all three Memotion subtasks simultaneously. The experimental results show that the proposed system constantly outperforms the competition’s baseline, and the system setup with continual learning (where tasks are trained sequentially) obtains the best classification F1-scores.
pdf
bib
abs
Memebusters at SemEval-2020 Task 8: Feature Fusion Model for Sentiment Analysis on Memes Using Transfer Learning
Mayukh Sharma
|
Ilanthenral Kandasamy
|
W.b. Vasantha
In this paper, we describe our deep learning system used for SemEval 2020 Task 8: Memotion analysis. We participated in all the subtasks i.e Subtask A: Sentiment classification, Subtask B: Humor classification, and Subtask C: Scales of semantic classes. Similar multimodal architecture was used for each subtask. The proposed architecture makes use of transfer learning for images and text feature extraction. The extracted features are then fused together using stacked bidirectional Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) model with attention mechanism for final predictions. We also propose a single model for predicting semantic classes (Subtask B) as well as their scales (Subtask C) by branching the final output of the post LSTM dense layers. Our model was ranked 5 in Subtask B and ranked 8 in Subtask C and performed nicely in Subtask A on the leader board. Our system makes use of transfer learning for feature extraction and fusion of image and text features for predictions.
pdf
bib
abs
MemoSYS at SemEval-2020 Task 8: Multimodal Emotion Analysis in Memes
Irina Bejan
Internet memes are one of the most viral types of content in social media and are equally used in promoting hate speech. Towards a more broad understanding of memes, this paper describes the MemoSys system submitted in Task 8 of SemEval 2020, which aims to classify the sentiment of Internet memes and provide a minimum description of the type of humor it depicts (sarcastic, humorous, offensive, motivational) and its semantic scale. The solution presented covers four deep model architectures which are based on a joint fusion between the VGG16 pre-trained model for extracting visual information and the canonical BERT model or TF-IDF for text understanding. The system placed 5th of 36 participating systems in the task A, offering promising prospects to the use of transfer learning to approach Internet memes understanding.
pdf
bib
abs
NIT-Agartala-NLP-Team at SemEval-2020 Task 8: Building Multimodal Classifiers to Tackle Internet Humor
Steve Durairaj Swamy
|
Shubham Laddha
|
Basil Abdussalam
|
Debayan Datta
|
Anupam Jamatia
The paper describes the systems submitted to SemEval-2020 Task 8: Memotion by the ‘NIT-Agartala-NLP-Team’. A dataset of 8879 memes was made available by the task organizers to train and test our models. Our systems include a Logistic Regression baseline, a BiLSTM +Attention-based learner and a transfer learning approach with BERT. For the three sub-tasks A, B and C, we attained ranks 24/33, 11/29 and 15/26, respectively. We highlight our difficulties in harnessing image information as well as some techniques and handcrafted features we employ to overcome these issues. We also discuss various modelling issues and theorize possible solutions and reasons as to why these problems persist.
pdf
bib
abs
SIS@IIITH at SemEval-2020 Task 8: An Overview of Simple Text Classification Methods for Meme Analysis
Sravani Boinepelli
|
Manish Shrivastava
|
Vasudeva Varma
Memes are steadily taking over the feeds of the public on social media. There is always the threat of malicious users on the internet posting offensive content, even through memes. Hence, the automatic detection of offensive images/memes is imperative along with detection of offensive text. However, this is a much more complex task as it involves both visual cues as well as language understanding and cultural/context knowledge. This paper describes our approach to the task of SemEval-2020 Task 8: Memotion Analysis. We chose to participate only in Task A which dealt with Sentiment Classification, which we formulated as a text classification problem. Through our experiments, we explored multiple training models to evaluate the performance of simple text classification algorithms on the raw text obtained after running OCR on meme images. Our submitted model achieved an accuracy of 72.69% and exceeded the existing baseline’s Macro F1 score by 8% on the official test dataset. Apart from describing our official submission, we shall elucidate how different classification models respond to this task.
pdf
bib
abs
UI at SemEval-2020 Task 8: Text-Image Fusion for Sentiment Classification
Andi Suciati
|
Indra Budi
This paper describes our system, UI, for task A: Sentiment Classification in SemEval-2020 Task 8 Memotion Analysis. We use a common traditional machine learning, which is SVM, by utilizing the combination of text and images features. The data consist text that extracted from memes and the images of memes. We employ n-gram language model for text features and pre-trained model,VGG-16,for image features. After obtaining both features from text and images in form of 2-dimensional arrays, we concatenate and classify the final features using SVM. The experiment results show SVM achieved 35% for its F1 macro, which is 0.132 points or 13.2% above the baseline model.
pdf
bib
abs
UoR at SemEval-2020 Task 8: Gaussian Mixture Modelling (GMM) Based Sampling Approach for Multi-modal Memotion Analysis
Zehao Liu
|
Emmanuel Osei-Brefo
|
Siyuan Chen
|
Huizhi Liang
Memes are widely used on social media. They usually contain multi-modal information such as images and texts, serving as valuable data sources to analyse opinions and sentiment orientations of online communities. The provided memes data often face an imbalanced data problem, that is, some classes or labelled sentiment categories significantly outnumber other classes. This often results in difficulty in applying machine learning techniques where balanced labelled input data are required. In this paper, a Gaussian Mixture Model sampling method is proposed to tackle the problem of class imbalance for the memes sentiment classification task. To utilise both text and image data, a multi-modal CNN-LSTM model is proposed to jointly learn latent features for positive, negative and neutral category predictions. The experiments show that the re-sampling model can slightly improve the accuracy on the trial data of sub-task A of Task 8. The multi-modal CNN-LSTM model can achieve macro F1 score 0.329 on the test set.
pdf
bib
abs
UPB at SemEval-2020 Task 8: Joint Textual and Visual Modeling in a Multi-Task Learning Architecture for Memotion Analysis
George-Alexandru Vlad
|
George-Eduard Zaharia
|
Dumitru-Clementin Cercel
|
Costin Chiru
|
Stefan Trausan-Matu
Users from the online environment can create different ways of expressing their thoughts, opinions, or conception of amusement. Internet memes were created specifically for these situations. Their main purpose is to transmit ideas by using combinations of images and texts such that they will create a certain state for the receptor, depending on the message the meme has to send. These posts can be related to various situations or events, thus adding a funny side to any circumstance our world is situated in. In this paper, we describe the system developed by our team for SemEval-2020 Task 8: Memotion Analysis. More specifically, we introduce a novel system to analyze these posts, a multimodal multi-task learning architecture that combines ALBERT for text encoding with VGG-16 for image representation. In this manner, we show that the information behind them can be properly revealed. Our approach achieves good performance on each of the three subtasks of the current competition, ranking 11th for Subtask A (0.3453 macro F1-score), 1st for Subtask B (0.5183 macro F1-score), and 3rd for Subtask C (0.3171 macro F1-score) while exceeding the official baseline results by high margins.
pdf
bib
abs
Urszula Walińska at SemEval-2020 Task 8: Fusion of Text and Image Features Using LSTM and VGG16 for Memotion Analysis
Urszula Walińska
|
Jędrzej Potoniec
In this paper, we describe the entry to the task of Memotion Analysis. The sentiment analysis of memes task, is motivated by a pervasive problem of offensive content spread in social media, up to the present time. In fact, memes are an important medium of expressing opinion and emotions, therefore they can be hateful at many times. In order to identify emotions expressed by memes we construct a tool based on neural networks and deep learning methods. It takes an advantage of a multi-modal nature of the task and performs fusion of image and text features extracted by models dedicated to this task. Moreover, we show that visual information might be more significant in the sentiment analysis of memes than textual one. Our solution achieved 0.346 macro F1-score in Task A – Sentiment Classification, which brought us to the 7th place in the official rank of the competition.
pdf
bib
abs
BAKSA at SemEval-2020 Task 9: Bolstering CNN with Self-Attention for Sentiment Analysis of Code Mixed Text
Ayush Kumar
|
Harsh Agarwal
|
Keshav Bansal
|
Ashutosh Modi
Sentiment Analysis of code-mixed text has diversified applications in opinion mining ranging from tagging user reviews to identifying social or political sentiments of a sub-population. In this paper, we present an ensemble architecture of convolutional neural net (CNN) and self-attention based LSTM for sentiment analysis of code-mixed tweets. While the CNN component helps in the classification of positive and negative tweets, the self-attention based LSTM, helps in the classification of neutral tweets, because of its ability to identify correct sentiment among multiple sentiment bearing units. We achieved F1 scores of 0.707 (ranked 5th) and 0.725 (ranked 13th) on Hindi-English (Hinglish) and Spanish-English (Spanglish) datasets, respectively. The submissions for Hinglish and Spanglish tasks were made under the usernames ayushk and harsh_6 respectively.
pdf
bib
abs
C1 at SemEval-2020 Task 9: SentiMix: Sentiment Analysis for Code-Mixed Social Media Text Using Feature Engineering
Laksh Advani
|
Clement Lu
|
Suraj Maharjan
In today’s interconnected and multilingual world, code-mixing of languages on social media is a common occurrence. While many Natural Language Processing (NLP) tasks like sentiment analysis are mature and well designed for monolingual text, techniques to apply these tasks to code-mixed text still warrant exploration. This paper describes our feature engineering approach to sentiment analysis in code-mixed social media text for SemEval-2020 Task 9: SentiMix. We tackle this problem by leveraging a set of hand-engineered lexical, sentiment, and metadata fea- tures to design a classifier that can disambiguate between “positive”, “negative” and “neutral” sentiment. With this model we are able to obtain a weighted F1 score of 0.65 for the “Hinglish” task and 0.63 for the “Spanglish” tasks.
pdf
bib
abs
Deep Learning Brasil - NLP at SemEval-2020 Task 9: Sentiment Analysis of Code-Mixed Tweets Using Ensemble of Language Models
Manoel Veríssimo dos Santos Neto
|
Ayrton Amaral
|
Nádia Silva
|
Anderson da Silva Soares
In this paper, we describe a methodology to predict sentiment in code-mixed tweets (hindi-english). Our team called verissimo.manoel in CodaLab developed an approach based on an ensemble of four models (MultiFiT, BERT, ALBERT, and XLNET). The final classification algorithm was an ensemble of some predictions of all softmax values from these four models. This architecture was used and evaluated in the context of the SemEval 2020 challenge (task 9), and our system got 72.7% on the F1 score.
pdf
bib
abs
FiSSA at SemEval-2020 Task 9: Fine-tuned for Feelings
Bertelt Braaksma
|
Richard Scholtens
|
Stan van Suijlekom
|
Remy Wang
|
Ahmet Üstün
In this paper, we present our approach for sentiment classification on Spanish-English code-mixed social media data in the SemEval-2020 Task 9. We investigate performance of various pre-trained Transformer models by using different fine-tuning strategies. We explore both monolingual and multilingual models with the standard fine-tuning method. Additionally, we propose a custom model that we fine-tune in two steps: once with a language modeling objective, and once with a task-specific objective. Although two-step fine-tuning improves sentiment classification performance over the base model, the large multilingual XLM-RoBERTa model achieves best weighted F1-score with 0.537 on development data and 0.739 on test data. With this score, our team jupitter placed tenth overall in the competition.
pdf
bib
abs
Gundapusunil at SemEval-2020 Task 9: Syntactic Semantic LSTM Architecture for SENTIment Analysis of Code-MIXed Data
Sunil Gundapu
|
Radhika Mamidi
The phenomenon of mixing the vocabulary and syntax of multiple languages within the same utterance is called Code-Mixing. This is more evident in multilingual societies. In this paper, we have developed a system for SemEval 2020: Task 9 on Sentiment Analysis of Hindi-English code-mixed social media text. Our system first generates two types of embeddings for the social media text. In those, the first one is character level embeddings to encode the character level information and to handle the out-of-vocabulary entries and the second one is FastText word embeddings for capturing morphology and semantics. These two embeddings were passed to the LSTM network and the system outperformed the baseline model.
pdf
bib
abs
HCMS at SemEval-2020 Task 9: A Neural Approach to Sentiment Analysis for Code-Mixed Texts
Aditya Srivastava
|
V. Harsha Vardhan
Problems involving code-mixed language are often plagued by a lack of resources and an absence of materials to perform sophisticated transfer learning with. In this paper we describe our submission to the Sentimix Hindi-English task involving sentiment classification of code-mixed texts, and with an F1 score of 67.1%, we demonstrate that simple convolution and attention may well produce reasonable results.
pdf
bib
abs
IIT Gandhinagar at SemEval-2020 Task 9: Code-Mixed Sentiment Classification Using Candidate Sentence Generation and Selection
Vivek Srivastava
|
Mayank Singh
Code-mixing is the phenomenon of using multiple languages in the same utterance. It is a frequently used pattern of communication on social media sites such as Facebook, Twitter, etc. Sentiment analysis of the monolingual text is a well-studied task. Code-mixing adds to the challenge of analyzing the sentiment of the text on various platforms such as social media, online gaming, forums, product reviews, etc. We present a candidate sentence generation and selection based approach on top of the Bi-LSTM based neural classifier to classify the Hinglish code-mixed text into one of the three sentiment classes positive, negative, or neutral. The proposed candidate sentence generation and selection based approach show an improvement in the system performance as compared to the Bi-LSTM based neural classifier. We can extend the proposed method to solve other problems with code-mixing in the textual data, such as humor-detection, intent classification, etc.
pdf
bib
abs
IRLab_DAIICT at SemEval-2020 Task 9: Machine Learning and Deep Learning Methods for Sentiment Analysis of Code-Mixed Tweets
Apurva Parikh
|
Abhimanyu Singh Bisht
|
Prasenjit Majumder
The paper describes systems that our team IRLab_DAIICT employed for the shared task Sentiment Analysis for Code-Mixed Social Media Text in SemEval 2020. We conducted our experiments on a Hindi-English CodeMixed Tweet dataset which was annotated with sentiment labels. F1-score was the official evaluation metric and our best approach, an ensemble of Logistic Regression, Random Forest and BERT, achieved an F1-score of 0.693.
pdf
bib
abs
IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using Deep Neural Networks and Linear Baselines
Soroush Javdan
|
Taha Shangipour ataei
|
Behrouz Minaei-Bidgoli
Sentiment Analysis is a well-studied field of Natural Language Processing. However, the rapid growth of social media and noisy content within them poses significant challenges in addressing this problem with well-established methods and tools. One of these challenges is code-mixing, which means using different languages to convey thoughts in social media texts. Our group, with the name of IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to develop a system to predict the sentiment of a given code-mixed tweet. We used different preprocessing techniques and proposed to use different methods that vary from NBSVM to more complicated deep neural network models. Our best performing method obtains an F1 score of 0.751 for the Spanish-English sub-task and 0.706 over the Hindi-English sub-task.
pdf
bib
abs
JUNLP at SemEval-2020 Task 9: Sentiment Analysis of Hindi-English Code Mixed Data Using Grid Search Cross Validation
Avishek Garain
|
Sainik Mahata
|
Dipankar Das
Code-mixing is a phenomenon which arises mainly in multilingual societies. Multilingual people, who are well versed in their native languages and also English speakers, tend to code-mix using English-based phonetic typing and the insertion of anglicisms in their main language. This linguistic phenomenon poses a great challenge to conventional NLP domains such as Sentiment Analysis, Machine Translation, and Text Summarization, to name a few. In this work, we focus on working out a plausible solution to the domain of Code-Mixed Sentiment Analysis. This work was done as participation in the SemEval-2020 Sentimix Task, where we focused on the sentiment analysis of English-Hindi code-mixed sentences. our username for the submission was “sainik.mahata” and team name was “JUNLP”. We used feature extraction algorithms in conjunction with traditional machine learning algorithms such as SVR and Grid Search in an attempt to solve the task. Our approach garnered an f1-score of 66.2% when tested using metrics prepared by the organizers of the task.
pdf
bib
abs
LIMSI_UPV at SemEval-2020 Task 9: Recurrent Convolutional Neural Network for Code-mixed Sentiment Analysis
Somnath Banerjee
|
Sahar Ghannay
|
Sophie Rosset
|
Anne Vilnat
|
Paolo Rosso
This paper describes the participation of LIMSI_UPV team in SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text. The proposed approach competed in SentiMix HindiEnglish subtask, that addresses the problem of predicting the sentiment of a given Hindi-English code-mixed tweet. We propose Recurrent Convolutional Neural Network that combines both the recurrent neural network and the convolutional network to better capture the semantics of the text, for code-mixed sentiment analysis. The proposed system obtained 0.69 (best run) in terms of F1 score on the given test data and achieved the 9th place (Codalab username: somban) in the SentiMix Hindi-English subtask.
pdf
bib
abs
LT3 at SemEval-2020 Task 9: Cross-lingual Embeddings for Sentiment Analysis of Hinglish Social Media Text
Pranaydeep Singh
|
Els Lefever
This paper describes our contribution to the SemEval-2020 Task 9 on Sentiment Analysis for Code-mixed Social Media Text. We investigated two approaches to solve the task of Hinglish sentiment analysis. The first approach uses cross-lingual embeddings resulting from projecting Hinglish and pre-trained English FastText word embeddings in the same space. The second approach incorporates pre-trained English embeddings that are incrementally retrained with a set of Hinglish tweets. The results show that the second approach performs best, with an F1-score of 70.52% on the held-out test data.
pdf
bib
abs
MeisterMorxrc at SemEval-2020 Task 9: Fine-Tune Bert and Multitask Learning for Sentiment Analysis of Code-Mixed Tweets
Qi Wu
|
Peng Wang
|
Chenghao Huang
Natural language processing (NLP) has been applied to various fields including text classification and sentiment analysis. In the shared task of sentiment analysis of code-mixed tweets, which is a part of the SemEval-2020 competition, we preprocess datasets by replacing emoji and deleting uncommon characters and so on, and then fine-tune the Bidirectional Encoder Representation from Transformers(BERT) to perform the best. After exhausting top3 submissions, Our team MeisterMorxrc achieves an averaged F1 score of 0.730 in this task, and and our codalab username is MeisterMorxrc
pdf
bib
abs
NITS-Hinglish-SentiMix at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text Using an Ensemble Model
Subhra Jyoti Baroi
|
Nivedita Singh
|
Ringki Das
|
Thoudam Doren Singh
Sentiment Analysis refers to the process of interpreting what a sentence emotes and classifying them as positive, negative, or neutral. The widespread popularity of social media has led to the generation of a lot of text data and specifically, in the Indian social media scenario, the code-mixed Hinglish text i.e, the words of Hindi language, written in the Roman script along with other English words is a common sight. The ability to effectively understand the sentiments in these texts is much needed. This paper proposes a system titled NITS-Hinglish to effectively carry out the sentiment analysis of such code-mixed Hinglish text. The system has fared well with a final F-Score of 0.617 on the test data.
pdf
bib
abs
Reed at SemEval-2020 Task 9: Fine-Tuning and Bag-of-Words Approaches to Code-Mixed Sentiment Analysis
Vinay Gopalan
|
Mark Hopkins
We explore the task of sentiment analysis on Hinglish (code-mixed Hindi-English) tweets as participants of Task 9 of the SemEval-2020 competition, known as the SentiMix task. We had two main approaches: 1) applying transfer learning by fine-tuning pre-trained BERT models and 2) training feedforward neural networks on bag-of-words representations. During the evaluation phase of the competition, we obtained an F-score of 71.3% with our best model, which placed 4th out of 62 entries in the official system rankings.
pdf
bib
abs
Team_Swift at SemEval-2020 Task 9: Tiny Data Specialists through Domain-Specific Pre-training on Code-Mixed Data
Aditya Malte
|
Pratik Bhavsar
|
Sushant Rathi
Code-mixing is an interesting phenomenon where the speaker switches between two or more languages in the same text. In this paper, we describe an unconventional approach to tackling the SentiMix Hindi-English challenge (UID: aditya_malte). Instead of directly fine-tuning large contemporary Transformer models, we train our own domain-specific embeddings and make use of them for downstream tasks. We also discuss how this technique provides comparable performance while making for a much more deployable and lightweight model. It should be noted that we have achieved the stated results without using any ensembling techniques, thus respecting a paradigm of efficient and production-ready NLP. All relevant source code shall be made publicly available to encourage the usage and reproduction of the results.
pdf
bib
abs
TueMix at SemEval-2020 Task 9: Logistic Regression with Linguistic Feature Set
Elizabeth Bear
|
Diana Constantina Hoefels
|
Mihai Manolescu
Commonly occurring in settings such as social media platforms, code-mixed content makes the task of identifying sentiment notably more challenging and complex due to the lack of structure and noise present in the data. SemEval-2020 Task 9, SentiMix, was organized with the purpose of detecting the sentiment of a given code-mixed tweet comprising Hindi and English. We tackled this task by comparing the performance of a system, TueMix - a logistic regression algorithm trained with three feature components: TF-IDF n-grams, monolingual sentiment lexicons, and surface features - with a neural network approach. Our results showed that TueMix outperformed the neural network approach and yielded a weighted F1-score of 0.685.
pdf
bib
abs
UPB at SemEval-2020 Task 9: Identifying Sentiment in Code-Mixed Social Media Texts Using Transformers and Multi-Task Learning
George-Eduard Zaharia
|
George-Alexandru Vlad
|
Dumitru-Clementin Cercel
|
Traian Rebedea
|
Costin Chiru
Sentiment analysis is a process widely used in opinion mining campaigns conducted today. This phenomenon presents applications in a variety of fields, especially in collecting information related to the attitude or satisfaction of users concerning a particular subject. However, the task of managing such a process becomes noticeably more difficult when it is applied in cultures that tend to combine two languages in order to express ideas and thoughts. By interleaving words from two languages, the user can express with ease, but at the cost of making the text far less intelligible for those who are not familiar with this technique, but also for standard opinion mining algorithms. In this paper, we describe the systems developed by our team for SemEval-2020 Task 9 that aims to cover two well-known code-mixed languages: Hindi-English and Spanish-English. We intend to solve this issue by introducing a solution that takes advantage of several neural network approaches, as well as pre-trained word embeddings. Our approach (multlingual BERT) achieves promising performance on the Hindi-English task, with an average F1-score of 0.6850, registered on the competition leaderboard, ranking our team 16 out of 62 participants. For the Spanish-English task, we obtained an average F1-score of 0.7064 ranking our team 17th out of 29 participants by using another multilingual Transformer-based model, XLM-RoBERTa.
pdf
bib
abs
Voice@SRIB at SemEval-2020 Tasks 9 and 12: Stacked Ensemblingmethod for Sentiment and Offensiveness detection in Social Media
Abhishek Singh
|
Surya Pratap Singh Parmar
In social-media platforms such as Twitter, Facebook, and Reddit, people prefer to use code-mixed language such as Spanish-English, Hindi-English to express their opinions. In this paper, we describe different models we used, using the external dataset to train embeddings, ensembling methods for Sentimix, and OffensEval tasks. The use of pre-trained embeddings usually helps in multiple tasks such as sentence classification, and machine translation. In this experiment, we have used our trained code-mixed embeddings and twitter pre-trained embeddings to SemEval tasks. We evaluate our models on macro F1-score, precision, accuracy, and recall on the datasets. We intend to show that hyper-parameter tuning and data pre-processing steps help a lot in improving the scores. In our experiments, we are able to achieve 0.886 F1-Macro on OffenEval Greek language subtask post-evaluation, whereas the highest is 0.852 during the Evaluation Period. We stood third in Spanglish competition with our best F1-score of 0.756. Codalab username is asking28.
pdf
bib
abs
WESSA at SemEval-2020 Task 9: Code-Mixed Sentiment Analysis Using Transformers
Ahmed Sultan
|
Mahmoud Salim
|
Amina Gaber
|
Islam El Hosary
In this paper, we describe our system submitted for SemEval 2020 Task 9, Sentiment Analysis for Code-Mixed Social Media Text alongside other experiments. Our best performing system is a Transfer Learning-based model that fine-tunes XLM-RoBERTa, a transformer-based multilingual masked language model, on monolingual English and Spanish data and Spanish-English code-mixed data. Our system outperforms the official task baseline by achieving a 70.1% average F1-Score on the official leaderboard using the test set. For later submissions, our system manages to achieve a 75.9% average F1-Score on the test set using CodaLab username “ahmed0sultan”.
pdf
bib
abs
Will_go at SemEval-2020 Task 9: An Accurate Approach for Sentiment Analysis on Hindi-English Tweets Based on Bert and Pesudo Label Strategy
Wei Bao
|
Weilong Chen
|
Wei Bai
|
Yan Zhuang
|
Mingyuan Cheng
|
Xiangyu Ma
Mixing languages are widely used in social media, especially in multilingual societies like India. Detecting the emotions contained in these languages, which is of great significance to the development of society and political trends. In this paper, we propose an ensemble of pesudo-label based Bert model and TFIDF based SGDClassifier model to identify the sentiments of Hindi-English (Hi-En) code-mixed data. The ensemble model combines the strengths of rich semantic information from the Bert model and word frequency information from the probabilistic ngram model to predict the sentiment of a given code-mixed tweet. Finally our team got an average F1 score of 0.731 on the final leaderboard,and our codalab username is will_go.
pdf
bib
abs
Zyy1510 Team at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text with Sub-word Level Representations
Yueying Zhu
|
Xiaobing Zhou
|
Hongling Li
|
Kunjie Dong
This paper reports the zyy1510 team’s work in the International Workshop on Semantic Evaluation (SemEval-2020) shared task on Sentiment analysis for Code-Mixed (Hindi-English, English-Spanish) Social Media Text. The purpose of this task is to determine the polarity of the text, dividing it into one of the three labels positive, negative and neutral. To achieve this goal, we propose an ensemble model of word n-grams-based Multinomial Naive Bayes (MNB) and sub-word level representations in LSTM (Sub-word LSTM) to identify the sentiments of code-mixed data of Hindi-English and English-Spanish. This ensemble model combines the advantage of rich sequential patterns and the intermediate features after convolution from the LSTM model, and the polarity of keywords from the MNB model to obtain the final sentiment score. We have tested our system on Hindi-English and English-Spanish code-mixed social media data sets released for the task. Our model achieves the F1 score of 0.647 in the Hindi-English task and 0.682 in the English-Spanish task, respectively.
pdf
bib
abs
SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
Amirreza Shirani
|
Franck Dernoncourt
|
Nedim Lipka
|
Paul Asente
|
Jose Echevarria
|
Thamar Solorio
In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task’s website.
pdf
bib
abs
IDS at SemEval-2020 Task 10: Does Pre-trained Language Model Know What to Emphasize?
Jaeyoul Shin
|
Taeuk Kim
|
Sang-goo Lee
We propose a novel method that enables us to determine words that deserve to be emphasized from written text in visual media, relying only on the information from the self-attention distributions of pre-trained language models (PLMs). With extensive experiments and analyses, we show that 1) our zero-shot approach is superior to a reasonable baseline that adopts TF-IDF and that 2) there exist several attention heads in PLMs specialized for emphasis selection, confirming that PLMs are capable of recognizing important words in sentences.
pdf
bib
abs
SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles
Giovanni Da San Martino
|
Alberto Barrón-Cedeño
|
Henning Wachsmuth
|
Rostislav Petrov
|
Preslav Nakov
We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.
pdf
bib
abs
ApplicaAI at SemEval-2020 Task 11: On RoBERTa-CRF, Span CLS and Whether Self-Training Helps Them
Dawid Jurkiewicz
|
Łukasz Borchmann
|
Izabela Kosmala
|
Filip Graliński
This paper presents the winning system for the propaganda Technique Classification (TC) task and the second-placed system for the propaganda Span Identification (SI) task. The purpose of TC task was to identify an applied propaganda technique given propaganda text fragment. The goal of SI task was to find specific text fragments which contain at least one propaganda technique. Both of the developed solutions used semi-supervised learning technique of self-training. Interestingly, although CRF is barely used with transformer-based language models, the SI task was approached with RoBERTa-CRF architecture. An ensemble of RoBERTa-based models was proposed for the TC task, with one of them making use of Span CLS layers we introduce in the present paper. In addition to describing the submitted systems, an impact of architectural decisions and training schemes is investigated along with remarks regarding training models of the same or better quality with lower computational budget. Finally, the results of error analysis are presented.
pdf
bib
abs
SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020)
Marcos Zampieri
|
Preslav Nakov
|
Sara Rosenthal
|
Pepa Atanasova
|
Georgi Karadzhov
|
Hamdy Mubarak
|
Leon Derczynski
|
Zeses Pitenis
|
Çağrı Çöltekin
We present the results and the main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval-2020). The task included three subtasks corresponding to the hierarchical taxonomy of the OLID schema from OffensEval-2019, and it was offered in five languages: Arabic, Danish, English, Greek, and Turkish. OffensEval-2020 was one of the most popular tasks at SemEval-2020, attracting a large number of participants across all subtasks and languages: a total of 528 teams signed up to participate in the task, 145 teams submitted official runs on the test data, and 70 teams submitted system description papers.
pdf
bib
abs
Galileo at SemEval-2020 Task 12: Multi-lingual Learning for Offensive Language Identification Using Pre-trained Language Models
Shuohuan Wang
|
Jiaxiang Liu
|
Xuan Ouyang
|
Yu Sun
This paper describes Galileo’s performance in SemEval-2020 Task 12 on detecting and categorizing offensive language in social media. For Offensive Language Identification, we proposed a multi-lingual method using Pre-trained Language Models, ERNIE and XLM-R. For offensive language categorization, we proposed a knowledge distillation method trained on soft labels generated by several supervised models. Our team participated in all three sub-tasks. In Sub-task A - Offensive Language Identification, we ranked first in terms of average F1 scores in all languages. We are also the only team which ranked among the top three across all languages. We also took the first place in Sub-task B - Automatic Categorization of Offense Types and Sub-task C - Offence Target Identification.
pdf
bib
abs
ERNIE at SemEval-2020 Task 10: Learning Word Emphasis Selection by Pre-trained Language Model
Zhengjie Huang
|
Shikun Feng
|
Weiyue Su
|
Xuyi Chen
|
Shuohuan Wang
|
Jiaxiang Liu
|
Xuan Ouyang
|
Yu Sun
This paper describes the system designed by ERNIE Team which achieved the first place in SemEval-2020 Task 10: Emphasis Selection For Written Text in Visual Media. Given a sentence, we are asked to find out the most important words as the suggestion for automated design. We leverage the unsupervised pre-training model and finetune these models on our task. After our investigation, we found that the following models achieved an excellent performance in this task: ERNIE 2.0, XLM-ROBERTA, ROBERTA and ALBERT. We combine a pointwise regression loss and a pairwise ranking loss which is more close to the final Match m metric to finetune our models. And we also find that additional feature engineering and data augmentation can help improve the performance. Our best model achieves the highest score of 0.823 and ranks first for all kinds of metrics.
pdf
bib
abs
Aschern at SemEval-2020 Task 11: It Takes Three to Tango: RoBERTa, CRF, and Transfer Learning
Anton Chernyavskiy
|
Dmitry Ilvovsky
|
Preslav Nakov
We describe our system for SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. We developed ensemble models using RoBERTa-based neural architectures, additional CRF layers, transfer learning between the two subtasks, and advanced post-processing to handle the multi-label nature of the task, the consistency between nested spans, repetitions, and labels from similar spans in training. We achieved sizable improvements over baseline fine-tuned RoBERTa models, and the official evaluation ranked our system 3rd (almost tied with the 2nd) out of 36 teams on the span identification subtask with an F1 score of 0.491, and 2nd (almost tied with the 1st) out of 31 teams on the technique classification subtask with an F1 score of 0.62.
pdf
bib
abs
CyberWallE at SemEval-2020 Task 11: An Analysis of Feature Engineering for Ensemble Models for Propaganda Detection
Verena Blaschke
|
Maxim Korniyenko
|
Sam Tureski
This paper describes our participation in the SemEval-2020 task Detection of Propaganda Techniques in News Articles. We participate in both subtasks: Span Identification (SI) and Technique Classification (TC). We use a bi-LSTM architecture in the SI subtask and train a complex ensemble model for the TC subtask. Our architectures are built using embeddings from BERT in combination with additional lexical features and extensive label post-processing. Our systems achieve a rank of 8 out of 35 teams in the SI subtask (F1-score: 43.86%) and 8 out of 31 teams in the TC subtask (F1-score: 57.37%).
pdf
bib
abs
Inno at SemEval-2020 Task 11: Leveraging Pure Transfomer for Multi-Class Propaganda Detection
Dmitry Grigorev
|
Vladimir Ivanov
The paper presents the solution of team ”Inno” to a SEMEVAL 2020 task 11 ”Detection of propaganda techniques in news articles”. The goal of the second subtask is to classify textual segments that correspond to one of the 18 given propaganda techniques in news articles dataset. We tested a pure Transformer-based model with an optimized learning scheme on the ability to distinguish propaganda techniques between each other. Our model showed 0:6 and 0:58 overall F1 score on validation set and test set accordingly and non-zero F1 score on each class on both sets.
pdf
bib
abs
NoPropaganda at SemEval-2020 Task 11: A Borrowed Approach to Sequence Tagging and Text Classification
Ilya Dimov
|
Vladislav Korzun
|
Ivan Smurov
This paper describes our contribution to SemEval-2020 Task 11: Detection Of Propaganda Techniques In News Articles. We start with simple LSTM baselines and move to an autoregressive transformer decoder to predict long continuous propaganda spans for the first subtask. We also adopt an approach from relation extraction by enveloping spans mentioned above with special tokens for the second subtask of propaganda technique classification. Our models report an F-score of 44.6% and a micro-averaged F-score of 58.2% for those tasks accordingly.
pdf
bib
abs
NTUAAILS at SemEval-2020 Task 11: Propaganda Detection and Classification with biLSTMs and ELMo
Anastasios Arsenos
|
Georgios Siolas
This paper describes the NTUAAILS submission for SemEval 2020 Task 11 Detection of Propaganda Techniques in News Articles. This task comprises of two different sub-tasks, namely A: Span Identification (SI), B: Technique Classification (TC). The goal for the SI sub-task is to identify specific fragments, in a given plain text, containing at least one propaganda technique. The TC sub-task aims to identify the applied propaganda technique in a given text fragment. A different model was trained for each sub-task. Our best performing system for the SI task consists of pre-trained ELMo word embeddings followed by residual bidirectional LSTM network. For the TC sub-task pre-trained word embeddings from GloVe fed to a bidirectional LSTM neural network. The models achieved rank 28 among 36 teams with F1 score of 0.335 and rank 25 among 31 teams with 0.463 F1 score for SI and TC sub-tasks respectively. Our results indicate that the proposed deep learning models, although relatively simple in architecture and fast to train, achieve satisfactory results in the tasks on hand.
pdf
bib
abs
Team DoNotDistribute at SemEval-2020 Task 11: Features, Finetuning, and Data Augmentation in Neural Models for Propaganda Detection in News Articles
Michael Kranzlein
|
Shabnam Behzad
|
Nazli Goharian
This paper presents our systems for SemEval 2020 Shared Task 11: Detection of Propaganda Techniques in News Articles. We participate in both the span identification and technique classification subtasks and report on experiments using different BERT-based models along with handcrafted features. Our models perform well above the baselines for both tasks, and we contribute ablation studies and discussion of our results to dissect the effectiveness of different features and techniques with the goal of aiding future studies in propaganda detection.
pdf
bib
abs
YNU-HPCC at SemEval-2020 Task 11: LSTM Network for Detection of Propaganda Techniques in News Articles
Jiaxu Dao
|
Jin Wang
|
Xuejie Zhang
This paper summarizes our studies on propaganda detection techniques for news articles in the SemEval-2020 task 11. This task is divided into the SI and TC subtasks. We implemented the GloVe word representation, the BERT pretraining model, and the LSTM model architecture to accomplish this task. Our approach achieved good results for both the SI and TC subtasks. The macro- F 1 - score for the SI subtask is 0.406, and the micro- F 1 - score for the TC subtask is 0.505. Our method significantly outperforms the officially released baseline method, and the SI and TC subtasks rank 17th and 22nd, respectively, for the test set. This paper also compares the performances of different deep learning model architectures, such as the Bi-LSTM, LSTM, BERT, and XGBoost models, on the detection of news promotion techniques.
pdf
bib
abs
AdelaideCyC at SemEval-2020 Task 12: Ensemble of Classifiers for Offensive Language Detection in Social Media
Mahen Herath
|
Thushari Atapattu
|
Hoang Anh Dung
|
Christoph Treude
|
Katrina Falkner
This paper describes the systems our team (AdelaideCyC) has developed for SemEval Task 12 (OffensEval 2020) to detect offensive language in social media. The challenge focuses on three subtasks – offensive language identification (subtask A), offense type identification (subtask B), and offense target identification (subtask C). Our team has participated in all the three subtasks. We have developed machine learning and deep learning-based ensembles of models. We have achieved F1-scores of 0.906, 0.552, and 0.623 in subtask A, B, and C respectively. While our performance scores are promising for subtask A, the results demonstrate that subtask B and C still remain challenging to classify.
pdf
bib
abs
ANDES at SemEval-2020 Task 12: A Jointly-trained BERT Multilingual Model for Offensive Language Detection
Juan Manuel Pérez
|
Aymé Arango
|
Franco Luque
This paper describes our participation in SemEval-2020 Task 12: Multilingual Offensive Language Detection. We jointly-trained a single model by fine-tuning Multilingual BERT to tackle the task across all the proposed languages: English, Danish, Turkish, Greek and Arabic. Our single model had competitive results, with a performance close to top-performing systems in spite of sharing the same parameters across all languages. Zero-shot and few-shot experiments were also conducted to analyze the transference performance among these languages. We make our code public for further research
pdf
bib
abs
BhamNLP at SemEval-2020 Task 12: An Ensemble of Different Word Embeddings and Emotion Transfer Learning for Arabic Offensive Language Identification in Social Media
Abdullah I. Alharbi
|
Mark Lee
Social media platforms such as Twitter offer people an opportunity to publish short posts in which they can share their opinions and perspectives. While these applications can be valuable, they can also be exploited to promote negative opinions, insults, and hatred against a person, race, or group. These opinions can be spread to millions of people at the click of a mouse. As such, there is a need to develop mechanisms by which offensive language can be automatically detected in social media channels and managed in a timely manner. To help achieve this goal, SemEval 2020 offered a shared task (OffensEval 2020) that involved the detection of offensive text in Arabic. We propose an ensemble approach that combines different levels of word embedding models and transfers learning from other sources of emotion-related tasks. The proposed system ranked 9th out of the 52 entries within the Arabic Offensive language identification subtask.
pdf
bib
abs
FBK-DH at SemEval-2020 Task 12: Using Multi-channel BERT for Multilingual Offensive Language Detection
Camilla Casula
|
Alessio Palmero Aprosio
|
Stefano Menini
|
Sara Tonelli
In this paper we present our submission to sub-task A at SemEval 2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval2). For Danish, Turkish, Arabic and Greek, we develop an architecture based on transfer learning and relying on a two-channel BERT model, in which the English BERT and the multilingual one are combined after creating a machine-translated parallel corpus for each language in the task. For English, instead, we adopt a more standard, single-channel approach. We find that, in a multilingual scenario, with some languages having small training data, using parallel BERT models with machine translated data can give systems more stability, especially when dealing with noisy data. The fact that machine translation on social media data may not be perfect does not hurt the overall classification performance.
pdf
bib
abs
GruPaTo at SemEval-2020 Task 12: Retraining mBERT on Social Media and Fine-tuned Offensive Language Models
Davide Colla
|
Tommaso Caselli
|
Valerio Basile
|
Jelena Mitrović
|
Michael Granitzer
We introduce an approach to multilingual Offensive Language Detection based on the mBERT transformer model. We download extra training data from Twitter in English, Danish, and Turkish, and use it to re-train the model. We then fine-tuned the model on the provided training data and, in some configurations, implement transfer learning approach exploiting the typological relatedness between English and Danish. Our systems obtained good results across the three languages (.9036 for EN, .7619 for DA, and .7789 for TR).
pdf
bib
abs
GUIR at SemEval-2020 Task 12: Domain-Tuned Contextualized Models for Offensive Language Detection
Sajad Sotudeh
|
Tong Xiang
|
Hao-Ren Yao
|
Sean MacAvaney
|
Eugene Yang
|
Nazli Goharian
|
Ophir Frieder
Offensive language detection is an important and challenging task in natural language processing. We present our submissions to the OffensEval 2020 shared task, which includes three English sub-tasks: identifying the presence of offensive language (Sub-task A), identifying the presence of target in offensive language (Sub-task B), and identifying the categories of the target (Sub-task C). Our experiments explore using a domain-tuned contextualized language model (namely, BERT) for this task. We also experiment with different components and configurations (e.g., a multi-view SVM) stacked upon BERT models for specific sub-tasks. Our submissions achieve F1 scores of 91.7% in Sub-task A, 66.5% in Sub-task B, and 63.2% in Sub-task C. We perform an ablation study which reveals that domain tuning considerably improves the classification performance. Furthermore, error analysis shows common misclassification errors made by our model and outlines research directions for future.
pdf
bib
abs
IIITG-ADBU at SemEval-2020 Task 12: Comparison of BERT and BiLSTM in Detecting Offensive Language
Arup Baruah
|
Kaushik Das
|
Ferdous Barbhuiya
|
Kuntal Dey
Task 12 of SemEval 2020 consisted of 3 subtasks, namely offensive language identification (Subtask A), categorization of offense type (Subtask B), and offense target identification (Subtask C). This paper presents the results our classifiers obtained for the English language in the 3 subtasks. The classifiers used by us were BERT and BiLSTM. On the test set, our BERT classifier obtained macro F1 score of 0.90707 for subtask A, and 0.65279 for subtask B. The BiLSTM classifier obtained macro F1 score of 0.57565 for subtask C. The paper also performs an analysis of the errors made by our classifiers. We conjecture that the presence of few misleading instances in the dataset is affecting the performance of the classifiers. Our analysis also discusses the need of temporal context and world knowledge to determine the offensiveness of few comments.
pdf
bib
abs
LT@Helsinki at SemEval-2020 Task 12: Multilingual or Language-specific BERT?
Marc Pàmies
|
Emily Öhman
|
Kaisla Kajava
|
Jörg Tiedemann
This paper presents the different models submitted by the LT@Helsinki team for the SemEval 2020 Shared Task 12. Our team participated in sub-tasks A and C; titled offensive language identification and offense target identification, respectively. In both cases we used the so-called Bidirectional Encoder Representation from Transformer (BERT), a model pre-trained by Google and fine-tuned by us on the OLID and SOLID datasets. The results show that offensive tweet classification is one of several language-based tasks where BERT can achieve state-of-the-art results.
pdf
bib
abs
NLPDove at SemEval-2020 Task 12: Improving Offensive Language Detection with Cross-lingual Transfer
Hwijeen Ahn
|
Jimin Sun
|
Chan Young Park
|
Jungyun Seo
This paper describes our approach to the task of identifying offensive languages in a multilingual setting. We investigate two data augmentation strategies: using additional semi-supervised labels with different thresholds and cross-lingual transfer with data selection. Leveraging the semi-supervised dataset resulted in performance improvements compared to the baseline trained solely with the manually-annotated dataset. We propose a new metric, Translation Embedding Distance, to measure the transferability of instances for cross-lingual data selection. We also introduce various preprocessing steps tailored for social media text along with methods to fine-tune the pre-trained multilingual BERT (mBERT) for offensive language identification. Our multilingual systems achieved competitive results in Greek, Danish, and Turkish at OffensEval 2020.
pdf
bib
abs
Nova-Wang at SemEval-2020 Task 12: OffensEmblert: An Ensemble ofOffensive Language Classifiers
Susan Wang
|
Zita Marinho
This paper presents our contribution to the Offensive Language Classification Task (English SubTask A) of Semeval 2020. We propose different Bert models trained on several offensive language classification and profanity datasets, and combine their output predictions in an ensemble model. We experimented with different ensemble approaches, such as SVMs, Gradient boosting, AdaBoosting and Logistic Regression. We further propose an under-sampling approach of the current SOLID dataset, which removed the most uncertain partitions of the dataset, increasing the recall of the dataset. Our best model, an average ensemble of four different Bert models, achieved 11th place out of 82 participants with a macro F1 score of 0.91344 in the English SubTask A.
pdf
bib
abs
NUIG at SemEval-2020 Task 12: Pseudo Labelling for Offensive Content Classification
Shardul Suryawanshi
|
Mihael Arcan
|
Paul Buitelaar
This work addresses the classification problem defined by sub-task A (English only) of the OffensEval 2020 challenge. We used a semi-supervised approach to classify given tweets into an offensive (OFF) or not-offensive (NOT) class. As the OffensEval 2020 dataset is loosely labelled with confidence scores given by unsupervised models, we used last year’s offensive language identification dataset (OLID) to label the OffensEval 2020 dataset. Our approach uses a pseudo-labelling method to annotate the current dataset. We trained four text classifiers on the OLID dataset and the classifier with the highest macro-averaged F1-score has been used to pseudo label the OffensEval 2020 dataset. The same model which performed best amongst four text classifiers on OLID dataset has been trained on the combined dataset of OLID and pseudo labelled OffensEval 2020. We evaluated the classifiers with precision, recall and macro-averaged F1-score as the primary evaluation metric on the OLID and OffensEval 2020 datasets. This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
pdf
bib
abs
PRHLT-UPV at SemEval-2020 Task 12: BERT for Multilingual Offensive Language Detection
Gretel Liz De la Peña Sarracén
|
Paolo Rosso
The present paper describes the system submitted by the PRHLT-UPV team for the task 12 of SemEval-2020: OffensEval 2020. The official title of the task is Multilingual Offensive Language Identification in Social Media, and aims to identify offensive language in texts. The languages included in the task are English, Arabic, Danish, Greek and Turkish. We propose a model based on the BERT architecture for the analysis of texts in English. The approach leverages knowledge within a pre-trained model and performs fine-tuning for the particular task. In the analysis of the other languages the Multilingual BERT is used, which has been pre-trained for a large number of languages. In the experiments, the proposed method for English texts is compared with other approaches to analyze the relevance of the architecture used. Furthermore, simple models for the other languages are evaluated to compare them with the proposed one. The experimental results show that the model based on BERT outperforms other approaches. The main contribution of this work lies in this study, despite not obtaining the first positions in most cases of the competition ranking.
pdf
bib
abs
PUM at SemEval-2020 Task 12: Aggregation of Transformer-based Models’ Features for Offensive Language Recognition
Piotr Janiszewski
|
Mateusz Skiba
|
Urszula Walińska
In this paper, we describe the PUM team’s entry to the SemEval-2020 Task 12. Creating our solution involved leveraging two well-known pretrained models used in natural language processing: BERT and XLNet, which achieve state-of-the-art results in multiple NLP tasks. The models were fine-tuned for each subtask separately and features taken from their hidden layers were combinedand fed into a fully connected neural network. The model using aggregated Transformer featurescan serve as a powerful tool for offensive language identification problem. Our team was ranked7th out of 40 in Sub-task C - Offense target identification with 64.727% macro F1-score and 64thout of 85 in Sub-task A - Offensive language identification (89.726% F1-score).
pdf
bib
abs
SINAI at SemEval-2020 Task 12: Offensive Language Identification Exploring Transfer Learning Models
Flor Miriam Plaza del Arco
|
M. Dolores Molina González
|
Alfonso Ureña-López
|
Maite Martin
This paper describes the participation of SINAI team at Task 12: OffensEval 2: Multilingual Offensive Language Identification in Social Media. In particular, the participation in Sub-task A in English which consists of identifying tweets as offensive or not offensive. We preprocess the dataset according to the language characteristics used on social media. Then, we select a small set from the training set provided by the organizers and fine-tune different Transformerbased models in order to test their effectiveness. Our team ranks 20th out of 85 participants in Subtask-A using the XLNet model.
pdf
bib
abs
Team Oulu at SemEval-2020 Task 12: Multilingual Identification of Offensive Language, Type and Target of Twitter Post Using Translated Datasets
Md Saroar Jahan
With the proliferation of social media platforms, anonymous discussions together with easy online access, reports on offensive content have caused serious concern to both authorities and research communities. Although there is extensive research in identifying textual offensive language from online content, the dynamic discourse of social media content, as well as the emergence of new forms of offensive language, especially in a multilingual setting, calls for future research in the issue. In this work, we tackled Task A, B, and C of Offensive Language Challenge at SemEval2020. We handled offensive language in five languages: English, Greek, Danish, Arabic, and Turkish. Specifically, we pre-processed all provided datasets and developed an appropriate strategy to handle Tasks (A, B, & C) for identifying the presence/absence, type and the target of offensive language in social media. For this purpose, we used OLID2019, OLID2020 datasets, and generated new datasets, which we made publicly available. We used the provided unsupervised machine learning implementation for automated annotated datasets and the online Google translation tools to create new datasets as well. We discussed the limitations and the success of our machine learning-based approach for all the five different languages. Our results for identifying offensive posts (Task A) yielded satisfactory accuracy of 0.92 for English, 0.81 for Danish, 0.84 for Turkish, 0.85 for Greek, and 0.89 for Arabic. For the type detection (Task B), the results are significantly higher (.87 accuracy) compared to target detection (Task C), which yields .81 accuracy. Moreover, after using automated Google translation, the overall efficiency improved by 2% for Greek, Turkish, and Danish.
pdf
bib
abs
UHH-LT at SemEval-2020 Task 12: Fine-Tuning of Pre-Trained Transformer Networks for Offensive Language Detection
Gregor Wiedemann
|
Seid Muhie Yimam
|
Chris Biemann
Fine-tuning of pre-trained transformer networks such as BERT yield state-of-the-art results for text classification tasks. Typically, fine-tuning is performed on task-specific training datasets in a supervised manner. One can also fine-tune in unsupervised manner beforehand by further pre-training the masked language modeling (MLM) task. Hereby, in-domain data for unsupervised MLM resembling the actual classification target dataset allows for domain adaptation of the model. In this paper, we compare current pre-trained transformer networks with and without MLM fine-tuning on their performance for offensive language detection. Our MLM fine-tuned RoBERTa-based classifier officially ranks 1st in the SemEval 2020 Shared Task 12 for the English language. Further experiments with the ALBERT model even surpass this result.
pdf
bib
abs
EL-BERT at SemEval-2020 Task 10: A Multi-Embedding Ensemble Based Approach for Emphasis Selection in Visual Media
Chandresh Kanani
|
Sriparna Saha
|
Pushpak Bhattacharyya
In visual media, text emphasis is the strengthening of words in a text to convey the intent of the author. Text emphasis in visual media is generally done by using different colors, backgrounds, or font for the text; it helps in conveying the actual meaning of the message to the readers. Emphasis selection is the task of choosing candidate words for emphasis, it helps in automatically designing posters and other media contents with written text. If we consider only the text and do not know the intent, then there can be multiple valid emphasis selections. We propose the use of ensembles for emphasis selection to improve over single emphasis selection models. We show that the use of multi-embedding helps in enhancing the results for base models. To show the efficacy of proposed approach we have also done a comparison of our results with state-of-the-art models.
pdf
bib
abs
FPAI at SemEval-2020 Task 10: A Query Enhanced Model with RoBERTa for Emphasis Selection
Chenyang Guo
|
Xiaolong Hou
|
Junsong Ren
|
Lianxin Jiang
|
Yang Mo
|
Haiqin Yang
|
Jianping Shen
This paper describes the model we apply in the SemEval-2020 Task 10. We formalize the task of emphasis selection as a simplified query-based machine reading comprehension (MRC) task, i.e. answering a fixed question of “Find candidates for emphasis”. We propose our subword puzzle encoding mechanism and subword fusion layer to align and fuse subwords. By introducing the semantic prior knowledge of the informative query and some other techniques, we attain the 7th place during the evaluation phase and the first place during train phase.
pdf
bib
abs
Hitachi at SemEval-2020 Task 10: Emphasis Distribution Fusion on Fine-Tuned Language Models
Gaku Morio
|
Terufumi Morishita
|
Hiroaki Ozaki
|
Toshinori Miyoshi
This paper shows our system for SemEval-2020 task 10, Emphasis Selection for Written Text in Visual Media. Our strategy is two-fold. First, we propose fine-tuning many pre-trained language models, predicting an emphasis probability distribution over tokens. Then, we propose stacking a trainable distribution fusion DistFuse system to fuse the predictions of the fine-tuned models. Experimental results show tha DistFuse is comparable or better when compared with a naive average ensemble. As a result, we were ranked 2nd amongst 31 teams.
pdf
bib
abs
IITK at SemEval-2020 Task 10: Transformers for Emphasis Selection
Vipul Singhal
|
Sahil Dhull
|
Rishabh Agarwal
|
Ashutosh Modi
We propose an end-to-end model that takes as input the text and corresponding to each word gives the probability of the word to be emphasized. Our results show that transformer-based models are particularly effective in this task. We achieved an evaluation score of 0.810 and were ranked third on the leaderboard.
pdf
bib
abs
LAST at SemEval-2020 Task 10: Finding Tokens to Emphasise in Short Written Texts with Precomputed Embedding Models and LightGBM
Yves Bestgen
To select tokens to be emphasised in short texts, a system mainly based on precomputed embedding models, such as BERT and ELMo, and LightGBM is proposed. Its performance is low. Additional analyzes suggest that its effectiveness is poor at predicting the highest emphasis scores while they are the most important for the challenge and that it is very sensitive to the specific instances provided during learning.
pdf
bib
abs
MIDAS at SemEval-2020 Task 10: Emphasis Selection Using Label Distribution Learning and Contextual Embeddings
Sarthak Anand
|
Pradyumna Gupta
|
Hemant Yadav
|
Debanjan Mahata
|
Rakesh Gosangi
|
Haimin Zhang
|
Rajiv Ratn Shah
This paper presents our submission to the SemEval 2020 - Task 10 on emphasis selection in written text. We approach this emphasis selection problem as a sequence labeling task where we represent the underlying text with various contextual embedding models. We also employ label distribution learning to account for annotator disagreements. We experiment with the choice of model architectures, trainability of layers, and different contextual embeddings. Our best performing architecture is an ensemble of different models, which achieved an overall matching score of 0.783, placing us 15th out of 31 participating teams. Lastly, we analyze the results in terms of parts of speech tags, sentence lengths, and word ordering.
pdf
bib
abs
Randomseed19 at SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
Aleksandr Shatilov
|
Denis Gordeev
|
Alexey Rey
This paper describes our approach to emphasis selection for written text in visual media as a solution for SemEval 2020 Task 10. We used an ensemble of several different Transformer-based models and cast the task as a sequence labeling problem with two tags: ‘I’ as ‘emphasized’ and ‘O’ as ‘non-emphasized’ for each token in the text.
pdf
bib
abs
TextLearner at SemEval-2020 Task 10: A Contextualized Ranking System in Solving Emphasis Selection in Text
Zhishen Yang
|
Lars Wolfsteller
|
Naoaki Okazaki
This paper describes the emphasis selection system of the team TextLearner for SemEval 2020 Task 10: Emphasis Selection For Written Text in Visual Media. The system aims to learn the emphasis selection distribution using contextual representations extracted from pre-trained language models and a two-staged ranking model. The experimental results demonstrate the strong contextual representation power of the recent advanced transformer-based language model RoBERTa, which can be exploited using a simple but effective architecture on top.
pdf
bib
abs
TëXtmarkers at SemEval-2020 Task 10: Emphasis Selection with Agreement Dependent Crowd Layers
Kevin Glocker
|
Stefanos Andreas Markianos Wright
In visual communication, the ability of a short piece of text to catch someone’s eye in a single glance or from a distance is of paramount importance. In our approach to the SemEval-2020 task “Emphasis Selection For Written Text in Visual Media”, we use contextualized word representations from a pretrained model of the state-of-the-art BERT architecture together with a stacked bidirectional GRU network to predict token-level emphasis probabilities. For tackling low inter-annotator agreement in the dataset, we attempt to model multiple annotators jointly by introducing initialization with agreement dependent noise to a crowd layer architecture. We found our approach to both perform substantially better than initialization with identities for this purpose and to outperform a baseline trained with token level majority voting. Our submission system reaches substantially higher Match m on the development set than the task baseline (0.779), but only slightly outperforms the test set baseline (0.754) using a three model ensemble.
pdf
bib
abs
UIC-NLP at SemEval-2020 Task 10: Exploring an Alternate Perspective on Evaluation
Philip Hossu
|
Natalie Parde
In this work we describe and analyze a supervised learning system for word emphasis selection in phrases drawn from visual media as a part of the Semeval 2020 Shared Task 10. More specifically, we begin by briefly introducing the shared task problem and provide an analysis of interesting and relevant features present in the training dataset. We then introduce our LSTM-based model and describe its structure, input features, and limitations. Our model ultimately failed to beat the benchmark score, achieving an average match() score of 0.704 on the validation data (0.659 on the test data) but predicted 84.8% of words correctly considering a 0.5 threshold. We conclude with a thorough analysis and discussion of erroneous predictions with many examples and visualizations.
pdf
bib
abs
YNU-HPCC at SemEval-2020 Task 10: Using a Multi-granularity Ordinal Classification of the BiLSTM Model for Emphasis Selection
Dawei Liao
|
Jin Wang
|
Xuejie Zhang
In this study, we propose a multi-granularity ordinal classification method to address the problem of emphasis selection. In detail, the word embedding is learned from Embeddings from Language Model (ELMO) to extract feature vector representation. Then, the ordinal classifica-tions are implemented on four different multi-granularities to approximate the continuous em-phasize values. Comparative experiments were conducted to compare the model with baseline in which the problem is transformed to label distribution problem.
pdf
bib
abs
3218IR at SemEval-2020 Task 11: Conv1D and Word Embedding in Propaganda Span Identification at News Articles
Dimas Sony Dewantara
|
Indra Budi
|
Muhammad Okky Ibrohim
In this paper, we present the result of our experiment with a variant of 1 Dimensional Convolutional Neural Network (Conv1D) hyper-parameters value. We describe the system entered by the team of Information Retrieval Lab. Universitas Indonesia (3218IR) in the SemEval 2020 Task 11 Sub Task 1 about propaganda span identification in news articles. The best model obtained an F1 score of 0.24 in the development set and 0.23 in the test set. We show that there is a potential for performance improvement through the use of models with appropriate hyper-parameters. Our system uses a combination of Conv1D and GloVe as Word Embedding to detect propaganda in the fragment text level.
pdf
bib
abs
BPGC at SemEval-2020 Task 11: Propaganda Detection in News Articles with Multi-Granularity Knowledge Sharing and Linguistic Features Based Ensemble Learning
Rajaswa Patil
|
Somesh Singh
|
Swati Agarwal
Propaganda spreads the ideology and beliefs of like-minded people, brainwashing their audiences, and sometimes leading to violence. SemEval 2020 Task-11 aims to design automated systems for news propaganda detection. Task-11 consists of two sub-tasks, namely, Span Identification - given any news article, the system tags those specific fragments which contain at least one propaganda technique; and Technique Classification - correctly classify a given propagandist statement amongst 14 propaganda techniques. For sub-task 1, we use contextual embeddings extracted from pre-trained transformer models to represent the text data at various granularities and propose a multi-granularity knowledge sharing approach. For sub-task 2, we use an ensemble of BERT and logistic regression classifiers with linguistic features. Our results reveal that the linguistic features are the strong indicators for covering minority classes in a highly imbalanced dataset.
pdf
bib
abs
DUTH at SemEval-2020 Task 11: BERT with Entity Mapping for Propaganda Classification
Anastasios Bairaktaris
|
Symeon Symeonidis
|
Avi Arampatzis
This report describes the methods employed by the Democritus University of Thrace (DUTH) team for participating in SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. Our team dealt with Subtask 2: Technique Classification. We used shallow Natural Language Processing (NLP) preprocessing techniques to reduce the noise in the dataset, feature selection methods, and common supervised machine learning algorithms. Our final model is based on using the BERT system with entity mapping. To improve our model’s accuracy, we mapped certain words into five distinct categories by employing word-classes and entity recognition
pdf
bib
abs
Hitachi at SemEval-2020 Task 11: An Empirical Study of Pre-Trained Transformer Family for Propaganda Detection
Gaku Morio
|
Terufumi Morishita
|
Hiroaki Ozaki
|
Toshinori Miyoshi
In this paper, we show our system for SemEval-2020 task 11, where we tackle propaganda span identification (SI) and technique classification (TC). We investigate heterogeneous pre-trained language models (PLMs) such as BERT, GPT-2, XLNet, XLM, RoBERTa, and XLM-RoBERTa for SI and TC fine-tuning, respectively. In large-scale experiments, we found that each of the language models has a characteristic property, and using an ensemble model with them is promising. Finally, the ensemble model was ranked 1st amongst 35 teams for SI and 3rd amongst 31 teams for TC.
pdf
bib
abs
JUST at SemEval-2020 Task 11: Detecting Propaganda Techniques Using BERT Pre-trained Model
Ola Altiti
|
Malak Abdullah
|
Rasha Obiedat
This paper presents the submission to semeval-2020 task 11, Detection of Propaganda Techniques in News Articles. Knowing that there are two subtasks in this competition, we have participated in the Technique Classification subtask (TC), which aims to identify the propaganda techniques used in a specific propaganda span. We have used and implemented various models to detect propaganda. Our proposed model is based on BERT uncased pre-trained language model as it has achieved state-of-the-art performance on multiple NLP benchmarks. The performance results of our proposed model have scored 0.55307 F1-Score, which outperforms the baseline model provided by the organizers with 0.2519 F1-Score, and our model is 0.07 away from the best performing team. Compared to other participating systems, our submission is ranked 15th out of 31 participants.
pdf
bib
abs
LTIatCMU at SemEval-2020 Task 11: Incorporating Multi-Level Features for Multi-Granular Propaganda Span Identification
Sopan Khosla
|
Rishabh Joshi
|
Ritam Dutt
|
Alan W Black
|
Yulia Tsvetkov
In this paper we describe our submission for the task of Propaganda Span Identification in news articles. We introduce a BERT-BiLSTM based span-level propaganda classification model that identifies which token spans within the sentence are indicative of propaganda. The ”multi-granular” model incorporates linguistic knowledge at various levels of text granularity, including word, sentence and document level syntactic, semantic and pragmatic affect features, which significantly improve model performance, compared to its language-agnostic variant. To facilitate better representation learning, we also collect a corpus of 10k news articles, and use it for fine-tuning the model. The final model is a majority-voting ensemble which learns different propaganda class boundaries by leveraging different subsets of incorporated knowledge.
pdf
bib
abs
newsSweeper at SemEval-2020 Task 11: Context-Aware Rich Feature Representations for Propaganda Classification
Paramansh Singh
|
Siraj Sandhu
|
Subham Kumar
|
Ashutosh Modi
This paper describes our submissions to SemEval 2020 Task 11: Detection of Propaganda Techniques in News Articles for each of the two subtasks of Span Identification and Technique Classification. We make use of pre-trained BERT language model enhanced with tagging techniques developed for the task of Named Entity Recognition (NER), to develop a system for identifying propaganda spans in the text. For the second subtask, we incorporate contextual features in a pre-trained RoBERTa model for the classification of propaganda techniques. We were ranked 5th in the propaganda technique classification subtask.
pdf
bib
abs
NLFIIT at SemEval-2020 Task 11: Neural Network Architectures for Detection of Propaganda Techniques in News Articles
Matej Martinkovic
|
Samuel Pecar
|
Marian Simko
Since propaganda became more common technique in news, it is very important to look for possibilities of its automatic detection. In this paper, we present neural model architecture submitted to the SemEval-2020 Task 11 competition: “Detection of Propaganda Techniques in News Articles”. We participated in both subtasks, propaganda span identification and propaganda technique classification. Our model utilizes recurrent Bi-LSTM layers with pre-trained word representations and also takes advantage of self-attention mechanism. Our model managed to achieve score 0.405 F1 for subtask 1 and 0.553 F1 for subtask 2 on test set resulting in 17th and 16th place in subtask 1 and subtask 2, respectively.
pdf
bib
abs
PsuedoProp at SemEval-2020 Task 11: Propaganda Span Detection Using BERT-CRF and Ensemble Sentence Level Classifier
Aniruddha Chauhan
|
Harshita Diddee
This paper explains our teams’ submission to the Shared Task of Fine-Grained Propaganda Detection in which we propose a sequential BERT-CRF based Span Identification model where the fine-grained detection is carried out only on the articles that are flagged as containing propaganda by an ensemble SLC model. We propose this setup bearing in mind the practicality of this approach in identifying propaganda spans in the exponentially increasing content base where the fine-tuned analysis of the entire data repository may not be the optimal choice due to its massive computational resource requirements. We present our analysis on different voting ensembles for the SLC model. Our system ranks 14th on the test set and 22nd on the development set and with an F1 score of 0.41 and 0.39 respectively.
pdf
bib
abs
SkoltechNLP at SemEval-2020 Task 11: Exploring Unsupervised Text Augmentation for Propaganda Detection
Daryna Dementieva
|
Igor Markov
|
Alexander Panchenko
This paper presents a solution for the Span Identification (SI) task in the “Detection of Propaganda Techniques in News Articles” competition at SemEval-2020. The goal of the SI task is to identify specific fragments of each article which contain the use of at least one propaganda technique. This is a binary sequence tagging task. We tested several approaches finally selecting a fine-tuned BERT model as our baseline model. Our main contribution is an investigation of several unsupervised data augmentation techniques based on distributional semantics expanding the original small training dataset as applied to this BERT-based sequence tagger. We explore various expansion strategies and show that they can substantially shift the balance between precision and recall, while maintaining comparable levels of the F1 score.
pdf
bib
abs
SocCogCom at SemEval-2020 Task 11: Characterizing and Detecting Propaganda Using Sentence-Level Emotional Salience Features
Gangeshwar Krishnamurthy
|
Raj Kumar Gupta
|
Yinping Yang
This paper describes a system developed for detecting propaganda techniques from news articles. We focus on examining how emotional salience features extracted from a news segment can help to characterize and predict the presence of propaganda techniques. Correlation analyses surfaced interesting patterns that, for instance, the “loaded language” and “slogan” techniques are negatively associated with valence and joy intensity but are positively associated with anger, fear and sadness intensity. In contrast, “flag waving” and “appeal to fear-prejudice” have the exact opposite pattern. Through predictive experiments, results further indicate that whereas BERT-only features obtained F1-score of 0.548, emotion intensity features and BERT hybrid features were able to obtain F1-score of 0.570, when a simple feedforward network was used as the classifier in both settings. On gold test data, our system obtained micro-averaged F1-score of 0.558 on overall detection efficacy over fourteen propaganda techniques. It performed relatively well in detecting “loaded language” (F1 = 0.772), “name calling and labeling” (F1 = 0.673), “doubt” (F1 = 0.604) and “flag waving” (F1 = 0.543).
pdf
bib
abs
Solomon at SemEval-2020 Task 11: Ensemble Architecture for Fine-Tuned Propaganda Detection in News Articles
Mayank Raj
|
Ajay Jaiswal
|
Rohit R.R
|
Ankita Gupta
|
Sudeep Kumar Sahoo
|
Vertika Srivastava
|
Yeon Hyang Kim
This paper describes our system (Solomon) details and results of participation in the SemEval 2020 Task 11 ”Detection of Propaganda Techniques in News Articles”. We participated in Task ”Technique Classification” (TC) which is a multi-class classification task. To address the TC task, we used RoBERTa based transformer architecture for fine-tuning on the propaganda dataset. The predictions of RoBERTa were further fine-tuned by class-dependent-minority-class classifiers. A special classifier, which employs dynamically adapted Least Common Sub-sequence algorithm, is used to adapt to the intricacies of repetition class. Compared to the other participating systems, our submission is ranked 4th on the leaderboard.
pdf
bib
abs
syrapropa at SemEval-2020 Task 11: BERT-based Models Design for Propagandistic Technique and Span Detection
Jinfen Li
|
Lu Xiao
This paper describes the BERT-based models proposed for two subtasks in SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. We first build the model for Span Identification (SI) based on SpanBERT, and facilitate the detection by a deeper model and a sentence-level representation. We then develop a hybrid model for the Technique Classification (TC). The hybrid model is composed of three submodels including two BERT models with different training methods, and a feature-based Logistic Regression model. We endeavor to deal with imbalanced dataset by adjusting cost function. We are in the seventh place in SI subtask (0.4711 of F1-measure), and in the third place in TC subtask (0.6783 of F1-measure) on the development set.
pdf
bib
abs
Team DiSaster at SemEval-2020 Task 11: Combining BERT and Hand-crafted Features for Identifying Propaganda Techniques in News
Anders Kaas
|
Viktor Torp Thomsen
|
Barbara Plank
The identification of communication techniques in news articles such as propaganda is important, as such techniques can influence the opinions of large numbers of people. Most work so far focused on the identification at the news article level. Recently, a new dataset and shared task has been proposed for the identification of propaganda techniques at the finer-grained span level. This paper describes our system submission to the subtask of technique classification (TC) for the SemEval 2020 shared task on detection of propaganda techniques in news articles. We propose a method of combining neural BERT representations with hand-crafted features via stacked generalization. Our model has the added advantage that it combines the power of contextual representations from BERT with simple span-based and article-based global features. We present an ablation study which shows that even though BERT representations are very powerful also for this task, BERT still benefits from being combined with carefully designed task-specific features.
pdf
bib
abs
Transformers at SemEval-2020 Task 11: Propaganda Fragment Detection Using Diversified BERT Architectures Based Ensemble Learning
Ekansh Verma
|
Vinodh Motupalli
|
Souradip Chakraborty
In this paper, we present our approach for the ’Detection of Propaganda Techniques in News Articles’ task as a part of the 2020 edition of International Workshop on Semantic Evaluation. The specific objective of this task is to identify and extract the text segments in which propaganda techniques are used. We propose a multi-system deep learning framework that can be used to identify the presence of propaganda fragments in a news article and also deep dive into the diverse enhancements of BERT architecture which are part of the final solution. Our proposed final model gave an F1-score of 0.48 on the test dataset.
pdf
bib
abs
TTUI at SemEval-2020 Task 11: Propaganda Detection with Transfer Learning and Ensembles
Moonsung Kim
|
Steven Bethard
In this paper, we describe our approaches and systems for the SemEval-2020 Task 11 on propaganda technique detection. We fine-tuned BERT and RoBERTa pre-trained models then merged them with an average ensemble. We conducted several experiments for input representations dealing with long texts and preserving context as well as for the imbalanced class problem. Our system ranked 20th out of 36 teams with 0.398 F1 in the SI task and 14th out of 31 teams with 0.556 F1 in the TC task.
pdf
bib
abs
UAIC1860 at SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles
Vlad Ermurachi
|
Daniela Gifu
The “Detection of Propaganda Techniques in News Articles” task at the SemEval 2020 competition focuses on detecting and classifying propaganda, pervasive in news article. In this paper, we present a system able to evaluate on sentence level, three traditional text representation techniques for these study goals, using: tf*idf, word and character n-grams. Firstly, we built a binary classifier able to provide corresponding propaganda labels, propaganda or non-propaganda. Secondly, we build a multilabel multiclass model to identify applied propaganda.
pdf
bib
abs
UMSIForeseer at SemEval-2020 Task 11: Propaganda Detection by Fine-Tuning BERT with Resampling and Ensemble Learning
Yunzhe Jiang
|
Cristina Garbacea
|
Qiaozhu Mei
We describe our participation at the SemEval 2020 “Detection of Propaganda Techniques in News Articles” - Techniques Classification (TC) task, designed to categorize textual fragments into one of the 14 given propaganda techniques. Our solution leverages pre-trained BERT models. We present our model implementations, evaluation results and analysis of these results. We also investigate the potential of combining language models with resampling and ensemble learning methods to deal with data imbalance and improve performance.
pdf
bib
abs
UNTLing at SemEval-2020 Task 11: Detection of Propaganda Techniques in English News Articles
Maia Petee
|
Alexis Palmer
Our system for the PropEval task explores the ability of semantic features to detect and label propagandistic rhetorical techniques in English news articles. For Subtask 2, labeling identified propagandistic fragments with one of fourteen technique labels, our system attains a micro-averaged F1 of 0.40; in this paper, we take a detailed look at the fourteen labels and how well our semantically-focused model detects each of them. We also propose strategies to fill the gaps.
pdf
bib
abs
UPB at SemEval-2020 Task 11: Propaganda Detection with Domain-Specific Trained BERT
Andrei Paraschiv
|
Dumitru-Clementin Cercel
|
Mihai Dascalu
Manipulative and misleading news have become a commodity for some online news outlets and these news have gained a significant impact on the global mindset of people. Propaganda is a frequently employed manipulation method having as goal to influence readers by spreading ideas meant to distort or manipulate their opinions. This paper describes our participation in the SemEval-2020, Task 11: Detection of PropagandaTechniques in News Articles competition. Our approach considers specializing a pre-trained BERT model on propagandistic and hyperpartisan news articles, enabling it to create more adequate representations for the two subtasks, namely propaganda Span Identification (SI) and propaganda Technique Classification (TC). Our proposed system achieved a F1-score of 46.060% in subtask SI, ranking 5th in the leaderboard from 36 teams and a micro-averaged F1 score of 54.302% for subtask TC, ranking 19th from 32 teams.
pdf
bib
abs
UTMN at SemEval-2020 Task 11: A Kitchen Solution to Automatic Propaganda Detection
Elena Mikhalkova
|
Nadezhda Ganzherli
|
Anna Glazkova
|
Yuliya Bidulya
The article describes a fast solution to propaganda detection at SemEval-2020 Task 11, based on feature adjustment. We use per-token vectorization of features and a simple Logistic Regression classifier to quickly test different hypotheses about our data. We come up with what seems to us the best solution, however, we are unable to align it with the result of the metric suggested by the organizers of the task. We test how our system handles class and feature imbalance by varying the number of samples of two classes (Propaganda and None) in the training set, the size of a context window in which a token is vectorized and combination of vectorization means. The result of our system at SemEval2020 Task 11 is F-score=0.37.
pdf
bib
abs
WMD at SemEval-2020 Tasks 7 and 11: Assessing Humor and Propaganda Using Unsupervised Data Augmentation
Guillaume Daval-Frerot
|
Yannick Weis
In this work, we combine the state-of-the-art BERT architecture with the semi-supervised learning technique UDA in order to exploit unlabeled raw data to assess humor and detect propaganda in the tasks 7 and 11 of the SemEval-2020 competition. The use of UDA shows promising results with a systematic improvement of the performances over the four different subtasks, and even outperforms supervised learning with the additional labels of the Funlines dataset.
pdf
bib
abs
YNUtaoxin at SemEval-2020 Task 11: Identification Fragments of Propaganda Technique by Neural Sequence Labeling Models with Different Tagging Schemes and Pre-trained Language Model
Xin Tao
|
Xiaobing Zhou
We only participated in the first subtask, and a neural sequence model was used to perform the sequence tagging task. We investigated the effects of different markup strategies on model performance. Bert that performed very well in NLP was used as a feature extractor.
pdf
bib
abs
AlexU-BackTranslation-TL at SemEval-2020 Task 12: Improving Offensive Language Detection Using Data Augmentation and Transfer Learning
Mai Ibrahim
|
Marwan Torki
|
Nagwa El-Makky
Social media platforms, online news commenting spaces, and many other public forums have become widely known for issues of abusive behavior such as cyber-bullying and personal attacks. In this paper, we use the annotated tweets of the Offensive Language Identification Dataset (OLID) to train three levels of deep learning classifiers to solve the three sub-tasks associated with the dataset. Sub-task A is to determine if the tweet is toxic or not. Then, for offensive tweets, sub-task B requires determining whether the toxicity is targeted. Finally, for sub-task C, we predict the target of the offense; i.e. a group, individual, or other entity. In our solution, we tackle the problem of class imbalance in the dataset by using back translation for data augmentation and utilizing the fine-tuned BERT model in an ensemble of deep learning classifiers. We used this solution to participate in the three English sub-tasks of SemEval-2020 task 12. The proposed solution achieved 0.91393, 0.6300, and 0.57607 macro F1-average in sub-tasks A, B, and C respectively. We achieved the 9th, 14th, and 22nd places for sub-tasks A, B and C respectively.
pdf
bib
abs
ALT at SemEval-2020 Task 12: Arabic and English Offensive Language Identification in Social Media
Sabit Hassan
|
Younes Samih
|
Hamdy Mubarak
|
Ahmed Abdelali
This paper describes the systems submitted by the Arabic Language Technology group (ALT) at SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media. We focus on sub-task A (Offensive Language Identification) for two languages: Arabic and English. Our efforts for both languages achieved more than 90% macro-averaged F1-score on the official test set. For Arabic, the best results were obtained by a system combination of Support Vector Machine, Deep Neural Network, and fine-tuned Bidirectional Encoder Representations from Transformers (BERT). For English, the best results were obtained by fine-tuning BERT.
pdf
bib
abs
Amsqr at SemEval-2020 Task 12: Offensive Language Detection Using Neural Networks and Anti-adversarial Features
Alejandro Mosquera
This paper describes a method and system to solve the problem of detecting offensive language in social media using anti-adversarial features. Our submission to the SemEval-2020 task 12 challenge was generated by an stacked ensemble of neural networks fine-tuned on the OLID dataset and additional external sources. For Task-A (English), text normalisation filters were applied at both graphical and lexical level. The normalisation step effectively mitigates not only the natural presence of lexical variants but also intentional attempts to bypass moderation by introducing out of vocabulary words. Our approach provides strong F1 scores for both 2020 (0.9134) and 2019 (0.8258) challenges.
pdf
bib
abs
BRUMS at SemEval-2020 Task 12: Transformer Based Multilingual Offensive Language Identification in Social Media
Tharindu Ranasinghe
|
Hansi Hettiarachchi
In this paper, we describe the team BRUMS entry to OffensEval 2: Multilingual Offensive Language Identification in Social Media in SemEval-2020. The OffensEval organizers provided participants with annotated datasets containing posts from social media in Arabic, Danish, English, Greek and Turkish. We present a multilingual deep learning model to identify offensive language in social media. Overall, the approach achieves acceptable evaluation scores, while maintaining flexibility between languages.
pdf
bib
abs
CoLi at UdS at SemEval-2020 Task 12: Offensive Tweet Detection with Ensembling
Kathryn Chapman
|
Johannes Bernhard
|
Dietrich Klakow
We present our submission and results for SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020) where we participated in offensive tweet classification tasks in English, Arabic, Greek, Turkish and Danish. Our approach included classical machine learning architectures such as support vector machines and logistic regression combined in an ensemble with a multilingual transformer-based model (XLM-R). The transformer model is trained on all languages combined in order to create a fully multilingual model which can leverage knowledge between languages. The machine learning model hyperparameters are fine-tuned and the statistically best performing ones included in the final ensemble.
pdf
bib
abs
CyberTronics at SemEval-2020 Task 12: Multilingual Offensive Language Identification over Social Media
Sayanta Paul
|
Sriparna Saha
|
Mohammed Hasanuzzaman
The SemEval-2020 Task 12 (OffensEval) challenge focuses on detection of signs of offensiveness using posts or comments over social media. This task has been organized for several languages, e.g., Arabic, Danish, English, Greek and Turkish. It has featured three related sub-tasks for English language: sub-task A was to discriminate between offensive and non-offensive posts, the focus of sub-task B was on the type of offensive content in the post and finally, in sub-task C, proposed systems had to identify the target of the offensive posts. The corpus for each of the languages is developed using the posts and comments over Twitter, a popular social media platform. We have participated in this challenge and submitted results for different languages. The current work presents different machine learning and deep learning techniques and analyzes their performance for offensiveness prediction which involves various classifiers and feature engineering schemes. The experimental analysis on the training set shows that SVM using language specific pre-trained word embedding (Fasttext) outperforms the other methods. Our system achieves a macro-averaged F1 score of 0.45 for Arabic language, 0.43 for Greek language and 0.54 for Turkish language.
pdf
bib
abs
DoTheMath at SemEval-2020 Task 12 : Deep Neural Networks with Self Attention for Arabic Offensive Language Detection
Zoher Orabe
|
Bushr Haddad
|
Nada Ghneim
|
Anas Al-Abood
This paper describes our team work and submission for the SemEval 2020 (Sub-Task A) “Offensive Eval: Identifying and Categorizing Offensive Arabic Language in Arabic Social Media”. Our two baseline models were based on different levels of representation: character vs. word level. In word level based representation we implemented a convolutional neural network model and a bi-directional GRU model. In character level based representation we implemented a hyper CNN and LSTM model. All of these models have been further augmented with attention layers for a better performance on our task. We also experimented with three types of static word embeddings: word2vec, FastText, and Glove, in addition to emoji embeddings, and compared the performance of the different deep learning models on the dataset provided by this task. The bi-directional GRU model with attention has achieved the highest score (0.85% F1 score) among all other models.
pdf
bib
abs
Duluth at SemEval-2020 Task 12: Offensive Tweet Identification in English with Logistic Regression
Ted Pedersen
This paper describes the Duluth systems that participated in SemEval–2020 Task 12, Multilingual Offensive Language Identification in Social Media (OffensEval–2020). We participated in the three English language tasks. Our systems provide a simple machine learning baseline using logistic regression. We trained our models on the distantly supervised training data made available by the task organizers and used no other resources. As might be expected we did not rank highly in the comparative evaluation: 79th of 85 in task A, 34th of 43 in task B, and 24th of 39 in task C. We carried out a qualitative analysis of our results and found that the class labels in the gold standard data are somewhat noisy. We hypothesize that the extremely high accuracy (>$ 90%) of the top ranked systems may reflect methods that learn the training data very well but may not generalize to the task of identifying offensive language in English. This analysis includes examples of tweets that despite being mildly redacted are still offensive.
pdf
bib
abs
Ferryman at SemEval-2020 Task 12: BERT-Based Model with Advanced Improvement Methods for Multilingual Offensive Language Identification
Weilong Chen
|
Peng Wang
|
Jipeng Li
|
Yuanshuai Zheng
|
Yan Wang
|
Yanru Zhang
Indiscriminately posting offensive remarks on social media may promote the occurrence of negative events such as violence, crime, and hatred. This paper examines different approaches and models for solving offensive tweet classification, which is a part of the OffensEval 2020 competition. The dataset is Offensive Language Identification Dataset (OLID), which draws 14,200 annotated English Tweet comments. The main challenge of data preprocessing is the unbalanced class distribution, abbreviation, and emoji. To overcome these issues, methods such as hashtag segmentation, abbreviation replacement, and emoji replacement have been adopted for data preprocessing approaches. The main task can be divided into three sub-tasks, and are solved by Term Frequency–Inverse Document Frequency(TF-IDF), Bidirectional Encoder Representation from Transformer (BERT), and Multi-dropout respectively. Meanwhile, we applied different learning rates for different languages and tasks based on BERT and non-BERTmodels in order to obtain better results. Our team Ferryman ranked the 18th, 8th, and 21st with F1-score of 0.91152 on the English Sub-task A, Sub-task B, and Sub-task C, respectively. Furthermore, our team also ranked in the top 20 on the Sub-task A of other languages.
pdf
bib
abs
Garain at SemEval-2020 Task 12: Sequence Based Deep Learning for Categorizing Offensive Language in Social Media
Avishek Garain
SemEval-2020 Task 12 was OffenseEval: Multilingual Offensive Language Identification inSocial Media (Zampieri et al., 2020). The task was subdivided into multiple languages anddatasets were provided for each one. The task was further divided into three sub-tasks: offensivelanguage identification, automatic categorization of offense types, and offense target identification.I participated in the task-C, that is, offense target identification. For preparing the proposed system,I made use of Deep Learning networks like LSTMs and frameworks like Keras which combine thebag of words model with automatically generated sequence based features and manually extractedfeatures from the given dataset. My system on training on 25% of the whole dataset achieves macro averaged f1 score of 47.763%.
pdf
bib
abs
Hitachi at SemEval-2020 Task 12: Offensive Language Identification with Noisy Labels Using Statistical Sampling and Post-Processing
Manikandan Ravikiran
|
Amin Ekant Muljibhai
|
Toshinori Miyoshi
|
Hiroaki Ozaki
|
Yuta Koreeda
|
Sakata Masayuki
In this paper, we present our participation in SemEval-2020 Task-12 Subtask-A (English Language) which focuses on offensive language identification from noisy labels. To this end, we developed a hybrid system with the BERT classifier trained with tweets selected using Statistical Sampling Algorithm (SA) and Post-Processed (PP) using an offensive wordlist. Our developed system achieved 34th position with Macro-averaged F1-score (Macro-F1) of 0.90913 over both offensive and non-offensive classes. We further show comprehensive results and error analysis to assist future research in offensive language identification with noisy labels.
pdf
bib
abs
I2C at SemEval-2020 Task 12: Simple but Effective Approaches to Offensive Speech Detection in Twitter
Victoria Pachón Álvarez
|
Jacinto Mata Vázquez
|
José Manuel López Betanzos
|
José Luis Arjona Fernández
This paper describes the systems developed for I2C Group to participate on Subtasks A and B in English, and Subtask A in Turkish and Arabic in OffensEval (Task 12 of SemEval 2020). In our experiments we compare three architectures we have developed, two based on Transformer and the other based on classical machine learning algorithms. In this paper, the proposed architectures are described, and the results obtained by our systems are presented.
pdf
bib
abs
iCompass at SemEval-2020 Task 12: From a Syntax-ignorant N-gram Embeddings Model to a Deep Bidirectional Language Model
Abir Messaoudi
|
Hatem Haddad
|
Moez Ben Haj Hmida
We describe our submitted system to the SemEval 2020. We tackled Task 12 entitled “Multilingual Offensive Language Identification in Social Media”, specifically subtask 4A-Arabic. We propose three Arabic offensive language identification models: Tw-StAR, BERT and BERT+BiLSTM. Two Arabic abusive/hate datasets were added to the training dataset: L-HSAB and T-HSAB. The final submission was chosen based on the best performances which was achieved by the BERT+BiLSTM model.
pdf
bib
abs
IITP-AINLPML at SemEval-2020 Task 12: Offensive Tweet Identification and Target Categorization in a Multitask Environment
Soumitra Ghosh
|
Asif Ekbal
|
Pushpak Bhattacharyya
In this paper, we describe the participation of IITP-AINLPML team in the SemEval-2020 SharedTask 12 on Offensive Language Identification and Target Categorization in English Twitter data. Our proposed model learns to extract textual features using a BiGRU-based deep neural network supported by a Hierarchical Attention architecture to focus on the most relevant areas in the text. We leverage the effectiveness of multitask learning while building our models for sub-task A and B. We do necessary undersampling of the over-represented classes in the sub-tasks A and C.During training, we consider a threshold of 0.5 as the separation margin between the instances belonging to classes OFF and NOT in sub-task A and UNT and TIN in sub-task B. For sub-task C, the class corresponding to the maximum score among the given confidence scores of the classes(IND, GRP and OTH) is considered as the final label for an instance. Our proposed model obtains the macro F1-scores of 90.95%, 55.69% and 63.88% in sub-task A, B and C, respectively.
pdf
bib
abs
INGEOTEC at SemEval-2020 Task 12: Multilingual Classification of Offensive Text
Sabino Miranda-Jiménez
|
Eric S. Tellez
|
Mario Graff
|
Daniela Moctezuma
This paper describes our participation in OffensEval challenges for English, Arabic, Danish, Turkish, and Greek languages. We used several approaches, such as μTC, TextCategorization, and EvoMSA. Best results were achieved with EvoMSA, which is a multilingual and domain-independent architecture that combines the prediction from different knowledge sources to solve text classification problems.
pdf
bib
abs
IR3218-UI at SemEval-2020 Task 12: Emoji Effects on Offensive Language IdentifiCation
Sandy Kurniawan
|
Indra Budi
|
Muhammad Okky Ibrohim
In this paper, we present our approach and the results of our participation in OffensEval 2020. There are three sub-tasks in OffensEval 2020 namely offensive language identification (sub-task A), automatic categorization of offense types (sub-task B), and offense target identification (sub-task C). We participated in sub-task A of English OffensEval 2020. Our approach emphasizes on how the emoji affects offensive language identification. Our model used LSTM combined with GloVe pre-trained word vectors to identify offensive language on social media. The best model obtained macro F1-score of 0.88428.
pdf
bib
abs
IRLab_DAIICT at SemEval-2020 Task 12: Machine Learning and Deep Learning Methods for Offensive Language Identification
Apurva Parikh
|
Abhimanyu Singh Bisht
|
Prasenjit Majumder
The paper describes systems that our team IRLab_DAIICT employed for shared task OffensEval2020: Multilingual Offensive Language Identification in Social Media shared task. We conducted experiments on the English language dataset which contained weakly labelled data. There were three sub-tasks but we only participated in sub-tasks A and B. We employed Machine learning techniques like Logistic Regression, Support Vector Machine, Random Forest and Deep learning techniques like Convolutional Neural Network and BERT. Our best approach achieved a MacroF1 score of 0.91 for sub-task A and 0.64 for sub-task B.
pdf
bib
abs
IRlab@IITV at SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media Using SVM
Anita Saroj
|
Supriya Chanda
|
Sukomal Pal
This paper describes the IRlab@IIT-BHU system for the OffensEval 2020. We take the SVM with TF-IDF features to identify and categorize hate speech and offensive language in social media for two languages. In subtask A, we used a linear SVM classifier to detect abusive content in tweets, achieving a macro F1 score of 0.779 and 0.718 for Arabic and Greek, respectively.
pdf
bib
abs
JCT at SemEval-2020 Task 12: Offensive Language Detection in Tweets Using Preprocessing Methods, Character and Word N-grams
Moshe Uzan
|
Yaakov HaCohen-Kerner
In this paper, we describe our submissions to SemEval-2020 contest. We tackled subtask 12 - “Multilingual Offensive Language Identification in Social Media”. We developed different models for four languages: Arabic, Danish, Greek, and Turkish. We applied three supervised machine learning methods using various combinations of character and word n-gram features. In addition, we applied various combinations of basic preprocessing methods. Our best submission was a model we built for offensive language identification in Danish using Random Forest. This model was ranked at the 6 position out of 39 submissions. Our result is lower by only 0.0025 than the result of the team that won the 4 place using entirely non-neural methods. Our experiments indicate that char ngram features are more helpful than word ngram features. This phenomenon probably occurs because tweets are more characterized by characters than by words, tweets are short, and contain various special sequences of characters, e.g., hashtags, shortcuts, slang words, and typos.
pdf
bib
abs
KAFK at SemEval-2020 Task 12: Checkpoint Ensemble of Transformers for Hate Speech Classification
Kaushik Amar Das
|
Arup Baruah
|
Ferdous Ahmed Barbhuiya
|
Kuntal Dey
This paper presents the approach of Team KAFK for the English edition of SemEval-2020 Task 12. We use checkpoint ensembling to create ensembles of BERT-based transformers and show that it can improve the performance of classification systems. We explore attention mask dropout to mitigate for the poor constructs of social media texts. Our classifiers scored macro-f1 of 0.909, 0.551 and 0.616 for subtasks A, B and C respectively. The code is publicly released online.
pdf
bib
abs
KDELAB at SemEval-2020 Task 12: A System for Estimating Aggression of Tweets Using Two Layers of BERT Features
Keisuke Hanahata
|
Masaki Aono
In recent years, with the development of social network services and video distribution services, there has been a sharp increase in offensive posts. In this paper, we present our approach for detecting hate speech in tweets defined in the SemEval- 2020 Task 12. Our system precise classification by using features extracted from two different layers of a pre-trained model, the BERT-large, and ensemble them.
pdf
bib
abs
KEIS@JUST at SemEval-2020 Task 12: Identifying Multilingual Offensive Tweets Using Weighted Ensemble and Fine-Tuned BERT
Saja Tawalbeh
|
Mahmoud Hammad
|
Mohammad AL-Smadi
This research presents our team KEIS@JUST participation at SemEval-2020 Task 12 which represents shared task on multilingual offensive language. We participated in all the provided languages for all subtasks except sub-task-A for the English language. Two main approaches have been developed the first is performed to tackle both languages Arabic and English, a weighted ensemble consists of Bi-GRU and CNN followed by Gaussian noise and global pooling layer multiplied by weights to improve the overall performance. The second is performed for other languages, a transfer learning from BERT beside the recurrent neural networks such as Bi-LSTM and Bi-GRU followed by a global average pooling layer. Word embedding and contextual embedding have been used as features, moreover, data augmentation has been used only for the Arabic language.
pdf
bib
abs
KS@LTH at SemEval-2020 Task 12: Fine-tuning Multi- and Monolingual Transformer Models for Offensive Language Detection
Kasper Socha
This paper describes the KS@LTH system for SemEval-2020 Task 12 OffensEval2: Multilingual Offensive Language Identification in Social Media. We compare mono- and multilingual models based on fine-tuning pre-trained transformer models for offensive language identification in Arabic, Greek, English and Turkish. For Danish, we explore the possibility of fine-tuning a model pre-trained on a similar language, Swedish, and additionally also cross-lingual training together with English.
pdf
bib
abs
KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media
Ali Safaya
|
Moutasem Abdullatif
|
Deniz Yuret
In this paper, we describe our approach to utilize pre-trained BERT models with Convolutional Neural Networks for sub-task A of the Multilingual Offensive Language Identification shared task (OffensEval 2020), which is a part of the SemEval 2020. We show that combining CNN with BERT is better than using BERT on its own, and we emphasize the importance of utilizing pre-trained language models for downstream tasks. Our system, ranked 4th with macro averaged F1-Score of 0.897 in Arabic, 4th with score of 0.843 in Greek, and 3rd with score of 0.814 in Turkish. Additionally, we present ArabicBERT, a set of pre-trained transformer language models for Arabic that we share with the community.
pdf
bib
abs
Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-TaskLearning for Offensive Language Detection
Wenliang Dai
|
Tiezheng Yu
|
Zihan Liu
|
Pascale Fung
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BERT-based models. Using a pre-trained language model such as BERT, we can effectively learn the representations for noisy text in social media. Besides, to boost the performance of offensive language detection, we leverage the supervision signals from other related tasks. In the OffensEval-2020 competition, our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place (92.23%F1). An empirical analysis is provided to explain the effectiveness of our approaches.
pdf
bib
abs
Lee at SemEval-2020 Task 12: A BERT Model Based on the Maximum Self-ensemble Strategy for Identifying Offensive Language
Junyi Li
|
Xiaobing Zhou
|
Zichen Zhang
This article describes the system submitted to SemEval 2020 Task 12: OffensEval 2020. This task aims to identify and classify offensive languages in different languages on social media. We only participate in the English part of subtask A, which aims to identify offensive languages in English. To solve this task, we propose a BERT model system based on the transform mechanism, and use the maximum self-ensemble to improve model performance. Our model achieved a macro F1 score of 0.913(ranked 13/82) in subtask A.
pdf
bib
abs
LIIR at SemEval-2020 Task 12: A Cross-Lingual Augmentation Approach for Multilingual Offensive Language Identification
Erfan Ghadery
|
Marie-Francine Moens
This paper presents our system entitled ‘LIIR’ for SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval 2). We have participated in sub-task A for English, Danish, Greek, Arabic, and Turkish languages. We adapt and fine-tune the BERT and Multilingual Bert models made available by Google AI for English and non-English languages respectively. For the English language, we use a combination of two fine-tuned BERT models. For other languages we propose a cross-lingual augmentation approach in order to enrich training data and we use Multilingual BERT to obtain sentence representations.
pdf
bib
abs
LISAC FSDM-USMBA Team at SemEval-2020 Task 12: Overcoming AraBERT’s pretrain-finetune discrepancy for Arabic offensive language identification
Hamza Alami
|
Said Ouatik El Alaoui
|
Abdessamad Benlahbib
|
Noureddine En-nahnahi
AraBERT is an Arabic version of the state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) model. The latter has achieved good performance in a variety of Natural Language Processing (NLP) tasks. In this paper, we propose an effective AraBERT embeddings-based method for dealing with offensive Arabic language in Twitter. First, we pre-process tweets by handling emojis and including their Arabic meanings. To overcome the pretrain-finetune discrepancy, we substitute each detected emojis by the special token [MASK] into both fine tuning and inference phases. Then, we represent tweets tokens by applying AraBERT model. Finally, we feed the tweet representation into a sigmoid function to decide whether a tweet is offensive or not. The proposed method achieved the best results on OffensEval 2020: Arabic task and reached a macro F1 score equal to 90.17%.
pdf
bib
abs
NAYEL at SemEval-2020 Task 12: TF/IDF-Based Approach for Automatic Offensive Language Detection in Arabic Tweets
Hamada Nayel
In this paper, we present the system submitted to “SemEval-2020 Task 12”. The proposed system aims at automatically identify the Offensive Language in Arabic Tweets. A machine learning based approach has been used to design our system. We implemented a linear classifier with Stochastic Gradient Descent (SGD) as optimization algorithm. Our model reported 84.20%, 81.82% f1-score on development set and test set respectively. The best performed system and the system in the last rank reported 90.17% and 44.51% f1-score on test set respectively.
pdf
bib
abs
NLP_Passau at SemEval-2020 Task 12: Multilingual Neural Network for Offensive Language Detection in English, Danish and Turkish
Omar Hussein
|
Hachem Sfar
|
Jelena Mitrović
|
Michael Granitzer
This paper describes a neural network (NN) model that was used for participating in the OffensEval, Task 12 of the SemEval 2020 workshop. The aim of this task is to identify offensive speech in social media, particularly in tweets. The model we used, C-BiGRU, is composed of a Convolutional Neural Network (CNN) along with a bidirectional Recurrent Neural Network (RNN). A multidimensional numerical representation (embedding) for each of the words in the tweets that were used by the model were determined using fastText. This allowed for using a dataset of labeled tweets to train the model on detecting combinations of words that may convey an offensive meaning. This model was used in the sub-task A of the English, Turkish and Danish competitions of the workshop, achieving F1 scores of 90.88%, 76.76% and 76.70%, respectively.
pdf
bib
abs
nlpUP at SemEval-2020 Task 12 : A Blazing Fast System for Offensive Language Detection
Ehab Hamdy
|
Jelena Mitrović
|
Michael Granitzer
In this paper, we introduce our submission for the SemEval Task 12, sub-tasks A and B for offensive language identification and categorization in English tweets. This year the data set for Task A is significantly larger than in the previous year. Therefore, we have adapted the BlazingText algorithm to extract embedding representation and classify texts after filtering and sanitizing the dataset according to the conventional text patterns on social media. We have gained both advantages of a speedy training process and obtained a good F1 score of 90.88% on the test set. For sub-task B, we opted to fine-tune a Bidirectional Encoder Representation from a Transformer (BERT) to accommodate the limited data for categorizing offensive tweets. We have achieved an F1 score of only 56.86%, but after experimenting with various label assignment thresholds in the pre-processing steps, the F1 score improved to 64%.
pdf
bib
abs
NTU_NLP at SemEval-2020 Task 12: Identifying Offensive Tweets Using Hierarchical Multi-Task Learning Approach
Po-Chun Chen
|
Hen-Hsen Huang
|
Hsin-Hsi Chen
This paper presents our hierarchical multi-task learning (HMTL) and multi-task learning (MTL) approaches for improving the text encoder in Sub-tasks A, B, and C of Multilingual Offensive Language Identification in Social Media (SemEval-2020 Task 12). We show that using the MTL approach can greatly improve the performance of complex problems, i.e. Sub-tasks B and C. Coupled with a hierarchical approach, the performances are further improved. Overall, our best model, HMTL outperforms the baseline model by 3% and 2% of Macro F-score in Sub-tasks B and C of OffensEval 2020, respectively.
pdf
bib
abs
PGSG at SemEval-2020 Task 12: BERT-LSTM with Tweets’ Pretrained Model and Noisy Student Training Method
Bao-Tran Pham-Hong
|
Setu Chokshi
The paper presents a system developed for the SemEval-2020 competition Task 12 (OffensEval-2): Multilingual Offensive Language Identification in Social Media. We achieve the second place (2nd) in sub-task B: Automatic categorization of offense types and are ranked 55th with a macro F1-score of 90.59 in sub-task A: Offensive language identification. Our solution is using a stack of BERT and LSTM layers, training with the Noisy Student method. Since the tweets data contains a large number of noisy words and slang, we update the vocabulary of the BERT large model pre-trained by the Google AI Language team. We fine-tune the model with tweet sentences provided in the challenge.
pdf
bib
abs
Pin_cod_ at SemEval-2020 Task 12: Injecting Lexicons into Bidirectional Long Short-Term Memory Networks to Detect Turkish Offensive Tweets
Pinar Arslan
This paper describes a system (pin_cod_) built for SemEval 2020 Task 12: OffensEval: Multilingual Offensive Language Identification in Social Media (Zampieri et al., 2020). I present the system based on the architecture of bidirectional long short-term memory networks (BiLSTM) concatenated with lexicon-based features and a social-network specific feature and then followed by two fully connected dense layers for detecting Turkish offensive tweets. The pin cod ’s system achieved a macro F1-score of 0.7496 for Sub-task A - Offensive language identification in Turkish.
pdf
bib
abs
problemConquero at SemEval-2020 Task 12: Transformer and Soft Label-based Approaches
Karishma Laud
|
Jagriti Singh
|
Randeep Kumar Sahu
|
Ashutosh Modi
In this paper, we present various systems submitted by our team problemConquero for SemEval-2020 Shared Task 12 “Multilingual Offensive Language Identification in Social Media”. We participated in all the three sub-tasks of OffensEval-2020, and our final submissions during the evaluation phase included transformer-based approaches and a soft label-based approach. BERT based fine-tuned models were submitted for each language of sub-task A (offensive tweet identification). RoBERTa based fine-tuned model for sub-task B (automatic categorization of offense types) was submitted. We submitted two models for sub-task C (offense target identification), one using soft labels and the other using BERT based fine-tuned model. Our ranks for sub-task A were Greek-19 out of 37, Turkish-22 out of 46, Danish-26 out of 39, Arabic-39 out of 53, and English-20 out of 85. We achieved a rank of 28 out of 43 for sub-task B. Our best rank for sub-task C was 20 out of 39 using BERT based fine-tuned model.
pdf
bib
abs
SalamNET at SemEval-2020 Task 12: Deep Learning Approach for Arabic Offensive Language Detection
Fatemah Husain
|
Jooyeon Lee
|
Sam Henry
|
Ozlem Uzuner
This paper describes SalamNET, an Arabic offensive language detection system that has been submitted to SemEval 2020 shared task 12: Multilingual Offensive Language Identification in Social Media. Our approach focuses on applying multiple deep learning models and conducting in depth error analysis of results to provide system implications for future development considerations. To pursue our goal, a Recurrent Neural Network (RNN), a Gated Recurrent Unit (GRU), and Long-Short Term Memory (LSTM) models with different design architectures have been developed and evaluated. The SalamNET, a Bi-directional Gated Recurrent Unit (Bi-GRU) based model, reports a macro-F1 score of 0.83%
pdf
bib
abs
Smatgrisene at SemEval-2020 Task 12: Offense Detection by AI - with a Pinch of Real I
Peter Juel Henrichsen
|
Marianne Rathje
This paper discusses how ML based classifiers can be enhanced disproportionately by adding small amounts of qualitative linguistic knowledge. As an example we present the Danish classifier Smatgrisene, our contribution to the recent OffensEval Challenge 2020. The classifier was trained on 3000 social media posts annotated for offensiveness, supplemented by rules extracted from the reference work on Danish offensive language (Rathje 2014b). Smatgrisene did surprisingly well in the competition in spite of its extremely simple design, showing an interesting trade-off between technological muscle and linguistic intelligence. Finally, we comment on the perspectives in combining qualitative and quantitative methods for NLP.
pdf
bib
abs
Sonal.kumari at SemEval-2020 Task 12: Social Media Multilingual Offensive Text Identification and Categorization Using Neural Network Models
Sonal Kumari
In this paper, we present our approaches and results for SemEval-2020 Task 12, Multilingual Offensive Language Identification in Social Media (OffensEval 2020). The OffensEval 2020 had three subtasks: A) Identifying the tweets to be offensive (OFF) or non-offensive (NOT) for Arabic, Danish, English, Greek, and Turkish languages, B) Detecting if the offensive tweet is targeted (TIN) or untargeted (UNT) for the English language, and C) Categorizing the offensive targeted tweets into three classes, namely: individual (IND), Group (GRP), or Other (OTH) for the English language. We participate in all the subtasks A, B, and C. In our solution, first we use the pre-trained BERT model for all subtasks, A, B, and C and then we apply the BiLSTM model with attention mechanism (Attn-BiLSTM) for the same. Our result demonstrates that the pre-trained model is not giving good results for all types of languages and is compute and memory intensive whereas the Attn-BiLSTM model is fast and gives good accuracy with fewer resources. The Attn-BiLSTM model is giving better accuracy for Arabic and Greek where the pre-trained model is not able to capture the complete context of these languages due to lower vocab-size.
pdf
bib
abs
Ssn_nlp at SemEval 2020 Task 12: Offense Target Identification in Social Media Using Traditional and Deep Machine Learning Approaches
Thenmozhi D.
|
Nandhinee P.r.
|
Arunima S.
|
Amlan Sengupta
Offensive language identification (OLI) in user generated text is automatic detection of any profanity, insult, obscenity, racism or vulgarity that is addressed towards an individual or a group. Due to immense growth and usage of social media, it has an extensive reach and impact on the society. OLI is helpful for hate speech detection, flame detection and cyber bullying, hence it is used to avoid abuse and hurts. In this paper, we present state of the art machine learning approaches for OLI. We follow several approaches which include classifiers like Naive Bayes, Support Vector Machine(SVM) and deep learning approaches like Recurrent Neural Network(RNN) and Masked LM (MLM). The approaches are evaluated on the OffensEval@SemEval2020 dataset and our team ssn_nlp submitted runs for the third task of OffensEval shared task. The best run of ssn_nlp that uses BERT (Bidirectional Encoder Representations from Transformers) for the purpose of training the OLI model obtained F1 score as 0.61. The model performs with an accuracy of 0.80 and an evaluation loss of 1.0828. The model has a precision rate of 0.72 and a recall rate of 0.58.
pdf
bib
abs
SSN_NLP_MLRG at SemEval-2020 Task 12: Offensive Language Identification in English, Danish, Greek Using BERT and Machine Learning Approach
A Kalaivani
|
Thenmozhi D.
Offensive language identification is to detect the hurtful tweets, derogatory comments, swear words on social media. As an emerging growth of social media communication, offensive language detection has received more attention in the last years; we focus to perform the task on English, Danish and Greek. We have investigated which can be effect more on pre-trained models BERT (Bidirectional Encoder Representation from Transformer) and Machine Learning Approaches. Our investigation shows the difference performance between the three languages and to identify the best performance is evaluated by the classification algorithms. In the shared task SemEval-2020, our team SSN_NLP_MLRG submitted for three languages that are Subtasks A, B, C in English, Subtask A in Danish and Subtask A in Greek. Our team SSN_NLP_MLRG obtained the F1 Scores as 0.90, 0.61, 0.52 for the Subtasks A, B, C in English, 0.56 for the Subtask A in Danish and 0.67 for the Subtask A in Greek respectively.
pdf
bib
abs
SU-NLP at SemEval-2020 Task 12: Offensive Language IdentifiCation in Turkish Tweets
Anil Ozdemir
|
Reyyan Yeniterzi
This paper summarizes our group’s efforts in the offensive language identification shared task, which is organized as part of the International Workshop on Semantic Evaluation (Sem-Eval2020). Our final submission system is an ensemble of three different models, (1) CNN-LSTM, (2) BiLSTM-Attention and (3) BERT. Word embeddings, which were pre-trained on tweets, are used while training the first two models. BERTurk, which is the first BERT model for Turkish, is also explored. Our final submitted approach ranked as the second best model in the Turkish sub-task.
pdf
bib
abs
TAC at SemEval-2020 Task 12: Ensembling Approach for Multilingual Offensive Language Identification in Social Media
Talha Anwar
|
Omer Baig
Usage of offensive language on social media is getting more common these days, and there is a need of a mechanism to detect it and control it. This paper deals with offensive language detection in five different languages; English, Arabic, Danish, Greek and Turkish. We presented an almost similar ensemble pipeline comprised of machine learning and deep learning models for all five languages. Three machine learning and four deep learning models were used in the ensemble. In the OffensEval-2020 competition our model achieved F1-score of 0.85, 0.74, 0.68, 0.81, and 0.9 for Arabic, Turkish, Danish, Greek and English language tasks respectively.
pdf
bib
abs
Team Rouges at SemEval-2020 Task 12: Cross-lingual Inductive Transfer to Detect Offensive Language
Tanvi Dadu
|
Kartikey Pant
With the growing use of social media and its availability, many instances of the use of offensive language have been observed across multiple languages and domains. This phenomenon has given rise to the growing need to detect the offensive language used in social media cross-lingually. In OffensEval 2020, the organizers have released the multilingual Offensive Language Identification Dataset (mOLID), which contains tweets in five different languages, to detect offensive language. In this work, we introduce a cross-lingual inductive approach to identify the offensive language in tweets using the contextual word embedding XLM-RoBERTa (XLM-R). We show that our model performs competitively on all five languages, obtaining the fourth position in the English task with an F1-score of 0.919 and eighth position in the Turkish task with an F1-score of 0.781. Further experimentation proves that our model works competitively in a zero-shot learning environment, and is extensible to other languages.
pdf
bib
abs
TECHSSN at SemEval-2020 Task 12: Offensive Language Detection Using BERT Embeddings
Rajalakshmi Sivanaiah
|
Angel Suseelan
|
S Milton Rajendram
|
Mirnalinee T.t.
This paper describes the work of identifying the presence of offensive language in social media posts and categorizing a post as targeted to a particular person or not. The work developed by team TECHSSN for solving the Multilingual Offensive Language Identification in Social Media (Task 12) in SemEval-2020 involves the use of deep learning models with BERT embeddings. The dataset is preprocessed and given to a Bidirectional Encoder Representations from Transformers (BERT) model with pretrained weight vectors. The model is retrained and the weights are learned for the offensive language dataset. We have developed a system with the English language dataset. The results are better when compared to the model we developed in SemEval-2019 Task6.
pdf
bib
abs
TheNorth at SemEval-2020 Task 12: Hate Speech Detection Using RoBERTa
Pedro Alonso
|
Rajkumar Saini
|
György Kovacs
Hate speech detection on social media platforms is crucial as it helps to avoid severe situations, and severe harm to marginalized people and groups. The application of Natural Language Processing(NLP) and Deep Learning has garnered encouraging results in the task of hate speech detection. The expression of hate, however is varied and ever evolving. Thus, it is important for better detection systems to adapt to this variance. Because of this, researchers keep on collecting data and regularly come up with hate speech detection competitions. In this paper, we discuss our entry to one such competition, namely the English version of sub-task A for the OffensEval competition. Our contribution can be perceived through our results, which were first a F1-score of 0.9089, and with further refinements described here climb up to0.9166. It serves to give more support to our hypothesis that one of the variants of BERT (Devlin et al., 2018), namely RoBERTa can successfully differentiate between offensive and not-offensive tweets, given some preprocessing steps (also outlined here).
pdf
bib
abs
UJNLP at SemEval-2020 Task 12: Detecting Offensive Language Using Bidirectional Transformers
Yinnan Yao
|
Nan Su
|
Kun Ma
In this paper, we built several pre-trained models to participate SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media. In the common task of Offensive Language Identification in Social Media, pre-trained models such as Bidirectional Encoder Representation from Transformer (BERT) have achieved good results. We preprocess the dataset by the language habits of users in social network. Considering the data imbalance in OffensEval, we screened the newly provided machine annotation samples to construct a new dataset. We use the dataset to fine-tune the Robustly Optimized BERT Pretraining Approach (RoBERTa). For the English subtask B, we adopted the method of adding Auxiliary Sentences (AS) to transform the single-sentence classification task into a relationship recognition task between sentences. Our team UJNLP wins the ranking 16th of 85 in English subtask A (Offensive language identification).
pdf
bib
abs
UNT Linguistics at SemEval-2020 Task 12: Linear SVC with Pre-trained Word Embeddings as Document Vectors and Targeted Linguistic Features
Jared Fromknecht
|
Alexis Palmer
This paper outlines our approach to Tasks A & B for the English Language track of SemEval-2020 Task 12: OffensEval 2: Multilingual Offensive Language Identification in Social Media. We use a Linear SVM with document vectors computed from pre-trained word embeddings, and we explore the effectiveness of lexical, part of speech, dependency, and named entity (NE) features. We manually annotate a subset of the training data, which we use for error analysis and to tune a threshold for mapping training confidence values to labels. While document vectors are consistently the most informative features for both tasks, testing on the development set suggests that dependency features are an effective addition for Task A, and NE features for Task B.
pdf
bib
abs
UoB at SemEval-2020 Task 12: Boosting BERT with Corpus Level Information
Wah Meng Lim
|
Harish Tayyar Madabushi
Pre-trained language model word representation, such as BERT, have been extremely successful in several Natural Language Processing tasks significantly improving on the state-of-the-art. This can largely be attributed to their ability to better capture semantic information contained within a sentence. Several tasks, however, can benefit from information available at a corpus level, such as Term Frequency-Inverse Document Frequency (TF-IDF). In this work we test the effectiveness of integrating this information with BERT on the task of identifying abuse on social media and show that integrating this information with BERT does indeed significantly improve performance. We participate in Sub-Task A (abuse detection) wherein we achieve a score within two points of the top performing team and in Sub-Task B (target detection) wherein we are ranked 4 of the 44 participating teams.
pdf
bib
abs
UPB at SemEval-2020 Task 12: Multilingual Offensive Language Detection on Social Media by Fine-tuning a Variety of BERT-based Models
Mircea-Adrian Tanase
|
Dumitru-Clementin Cercel
|
Costin Chiru
Offensive language detection is one of the most challenging problem in the natural language processing field, being imposed by the rising presence of this phenomenon in online social media. This paper describes our Transformer-based solutions for identifying offensive language on Twitter in five languages (i.e., English, Arabic, Danish, Greek, and Turkish), which was employed in Subtask A of the Offenseval 2020 shared task. Several neural architectures (i.e., BERT, mBERT, Roberta, XLM-Roberta, and ALBERT), pre-trained using both single-language and multilingual corpora, were fine-tuned and compared using multiple combinations of datasets. Finally, the highest-scoring models were used for our submissions in the competition, which ranked our team 21st of 85, 28th of 53, 19th of 39, 16th of 37, and 10th of 46 for English, Arabic, Danish, Greek, and Turkish, respectively.
pdf
bib
abs
UTFPR at SemEval 2020 Task 12: Identifying Offensive Tweets with Lightweight Ensembles
Marcos Aurélio Hermogenes Boriola
|
Gustavo Henrique Paetzold
Offensive language is a common issue on social media platforms nowadays. In an effort to address this issue, the SemEval 2020 event held the OffensEval 2020 shared task where the participants were challenged to develop systems that identify and classify offensive language in tweets. In this paper, we present a system that uses an Ensemble model stacking a BOW model and a CNN model that led us to place 29th in the ranking for English sub-task A.
pdf
bib
abs
WOLI at SemEval-2020 Task 12: Arabic Offensive Language Identification on Different Twitter Datasets
Yasser Otiefy
|
Ahmed Abdelmalek
|
Islam El Hosary
Communicating through social platforms has become one of the principal means of personal communications and interactions. Unfortunately, healthy communication is often interfered by offensive language that can have damaging effects on the users. A key to fight offensive language on social media is the existence of an automatic offensive language detection system. This paper presents the results and the main findings of SemEval-2020, Task 12 OffensEval Sub-task A Zampieri et al. (2020), on Identifying and categorising Offensive Language in Social Media. The task was based on the Arabic OffensEval dataset Mubarak et al. (2020). In this paper, we describe the system submitted by WideBot AI Lab for the shared task which ranked 10th out of 52 participants with Macro-F1 86.9% on the golden dataset under CodaLab username “yasserotiefy”. We experimented with various models and the best model is a linear SVM in which we use a combination of both character and word n-grams. We also introduced a neural network approach that enhanced the predictive ability of our system that includes CNN, highway network, Bi-LSTM, and attention layers.
pdf
bib
abs
XD at SemEval-2020 Task 12: Ensemble Approach to Offensive Language Identification in Social Media Using Transformer Encoders
Xiangjue Dong
|
Jinho D. Choi
This paper presents six document classification models using the latest transformer encoders and a high-performing ensemble model for a task of offensive language identification in social media. For the individual models, deep transformer layers are applied to perform multi-head attentions. For the ensemble model, the utterance representations taken from those individual models are concatenated and fed into a linear decoder to make the final decisions. Our ensemble model outperforms the individual models and shows up to 8.6% improvement over the individual models on the development set. On the test set, it achieves macro-F1 of 90.9% and becomes one of the high performing systems among 85 participants in the sub-task A of this shared task. Our analysis shows that although the ensemble model significantly improves the accuracy on the development set, the improvement is not as evident on the test set.
pdf
bib
abs
YNU_oxz at SemEval-2020 Task 12: Bidirectional GRU with Capsule for Identifying Multilingual Offensive Language
Xiaozhi Ou
|
Hongling Li
This article describes the system submitted to SemEval-2020 Task 12 OffensEval 2: Multilingual Offensive Language Recognition in Social Media. The task is to classify offensive language in social media. The shared task contains five languages (English, Greek, Arabic, Danish, and Turkish) and three subtasks. We only participated in subtask A of English to identify offensive language. To solve this task, we proposed a system based on a Bidirectional Gated Recurrent Unit (Bi-GRU) with a Capsule model. Finally, we used the K-fold approach for ensemble. Our model achieved a Macro-average F1 score of 0.90969 (ranked 27/85) in subtask A.