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Abstract

Amid rising numbers of organizations produc-
ing counterfeit scholarly articles, it is important
to quantify the prevalence of scientific miscon-
duct. We assess the feasibility of automated
text-based methods to determine the rate of sci-
entific misconduct by analyzing linguistic dif-
ferences between retracted and non-retracted
papers. We find that retracted works show dis-
tinct phrase patterns and higher word repetition.
Motivated by this, we evaluate two misconduct
detection methods, a mixture distribution ap-
proach and a Transformer-based one. The best
models achieve high accuracy (>0.9 F1) on de-
tection of paper mill articles and automatically
generated content, making them viable tools for
flagging papers for closer review. We apply the
classifiers to more than 300,000 paper abstracts,
to quantify misconduct over time and find that
our estimation methods accurately reproduce
trends observed in the real data.

1 Introduction

The integrity of scientific research is increasingly
threatened by the rise of so-called paper mills, for-
profit organizations that produce and sell fraudulent
academic manuscripts to researchers, academics, or
students who are under pressure to publish in peer-
reviewed journals (Candal-Pedreira et al., 2022;
Abalkina, 2023). Often disguised as editing or
translation services, paper mills sell manuscripts,
author slots on peer-reviewed papers, and cita-
tions for existing papers (COPE, 2025; Christopher,
2021). Papers produced by paper mills can have
negative consequences for society as they circulate
false claims, erode trust in science, or lead to un-
justified academic promotions (Byrne et al., 2022;
Fanelli et al., 2021).

Since 2010, at least 5402 retracted papers have
been connected to paper mills according to the Re-
traction Watch database (The Center for Scientific
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Figure 1: We create a dataset of retracted papers by
merging resources from retractionwatch.org and
openalex.org. We add to that a reference dataset of
non-retracted articles to train various classifiers for iden-
tifying papers with scientific misconduct. Finally, we
estimate the development of misconduct over time by
running a classifier on a large inference dataset of pa-
pers from diverse domains.

Integrity, 2018). This would be around 2 in every
10,000 papers indexed by Scopus in the same time
frame. However, this number reflects only cases
where the paper mill activity was uncovered. The
real number of fabricated papers is likely consider-
ably higher due to their convincing nature (Oransky
et al., 2021; Brainard and You, 2018).

In this paper, we evaluate the feasibility of es-
timating the true rate of scientific misconduct by
analyzing linguistic differences between retracted
and non-retracted papers and specifically papers re-
tracted for reasons of scientific misconduct. Based
on preliminary data review, the central hypothesis
is that paper mill articles share a distinctive writing
style characterized by words and phrases stemming
from the methods used to produce these articles.
We conjecture that the automated tools and/or hu-
man ghostwriters share a common style or produce
unusual expressions (Cabanac et al., 2021).

To investigate this hypothesis, we construct a
text corpus of retracted and non-retracted articles
(Figure 1 and Section 2) and assess linguistic char-
acteristics of retracted papers (Section 3). Next,
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we evaluate the performance of two text-based mis-
conduct detection methods – a mixture distribution
model and a Transformer-based text classifier –
and apply them to an inference corpus stretching a
42-year time-frame (Sections 4 & 5).

We find that (1) retracted articles have distinc-
tive language patterns and lower lexical diversity
than non-retracted articles, (2) paper mill content
is detected with an F1 score of 0.93, (3) there is
high correlation (𝜌 = 0.79) between the models’
estimates and the observed rate of misconduct re-
tractions, and (4) predicted rates of misconduct
are hard to interpret but accurately capture trends.
More details on the results can be found in Section
6 and a relation to previous work in Section 7.

The main contributions of our work are (1) a
balanced dataset of retracted and non-retracted arti-
cles, containing abstracts and full-text sections, (2)
a quantification model based on a mixture distri-
bution to directly estimate the rate of papers con-
taining misconduct from a collection of articles
and (3) three Transformer-based classifiers each
classifying one of the labels paper mill, randomly
generated content and falsification.

We make our code, data, and trained models
available on GitHub1.

2 A Dataset of Retractions

Figure 1 gives an overview of the provenance and
size of the datasets used in this study. We uti-
lize a dataset of retracted papers originating from
the blog retractionwatch.com merged with in-
formation from the scientific publication reposi-
tory openalex.org (see Subsection 2.1). Then,
we crawl open-access PDF articles from the web
to add full-text data to this dataset (see Subsection
2.2). For comparative analysis, we create a refer-
ence corpus of non-retracted articles with the same
temporal and topical distribution (see Subsection
2.3).

2.1 Retraction Watch Text Corpus

Scientific publishers usually issue paper retractions
through their platforms in the form of retraction
notices. Typically, retraction notices don’t contain
extensive information about the backgrounds of
a retraction and often go unnoticed by the com-
munity (Marcus and Oransky, 2014). To combat
this, journalists Ivan Oransky and Adam Marcus

1https://github.com/Christof93/
language-of-scientific-misconduct.git

started their blog retractionwatch.com, where
they publish retractions alongside the background
stories they manage to investigate. This also led
to the creation of the Retraction Watch database
consisting of 55,520 entries of retracted articles
with associated reasons and nature of retraction.

Reason labels. In the data, there are 106 distinct
reason labels, and each record can be assigned mul-
tiple reasons (3.6 on average). We identify the
biggest reasons linked to scientific misconduct that
are potentially recognizable from the paper’s text as
Paper Mill, Falsification/Fabrication of Data, and
Randomly Generated Data. Filtering the retrac-
tions by these three reasons results in sub-datasets
containing 3,605, 3,090, and 1,016 articles, respec-
tively. Whenever we speak of misconduct hereafter,
it will refer to papers tagged with one of these three
reasons.

OpenAlex data. The Retraction Watch dataset
does not include any content-related data. We use
the platform openalex.org (Priem et al., 2022)
to gather the text of abstracts as well as informa-
tion about authors, publishers, affiliations, and top-
ics of the papers. OpenAlex is a repository of
more than 240 million scholarly documents, which
mainly consists of data from the Microsoft Aca-
demic Graph (Sinha et al., 2015) and Crossref2,
but also combines information from other meta-
data sources. Merging the Retraction Watch data
with OpenAlex reduces the number of articles in
the corpus to 30,901, of which 19,472 have a plain
text abstract available. In some cases of retractions,
instead of the abstract, we find a retraction notice.
Considering that we want to find latent signals of
retracted articles, we filter out these cases by ex-
cluding abstracts containing the substring “retract”.

Domains and fields. OpenAlex employs a three-
tiered hierarchy for the research area of a paper,
with the domain at the top, following a field and
subfield categories. These categorizations allow us
to conduct our analyses within and across fields.

2.2 Full-Text Extraction

OpenAlex does not publish any full-text content of
articles. Instead, we can often retrieve PDF links
of open-access papers through the API. We collect
these PDF documents where possible. The PDF
documents are converted to raw text by a PDF to

2https://www.crossref.org/
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Section Number of Articles

Abstract 19,472
Introduction 6,783
Related Work 1,589
Methods 1,301
Result & Discussion 5,177
Conclusion 5,300

Table 1: Count of retracted articles grouped by success-
fully extracted sections.

markdown converter3. To extract content-related
text snippets from the full-text, we employ a simple
regular expression matching algorithm that detects
sections according to a number of section title vari-
ants. We determine the section titles by looking at
the frequency distribution of all section titles and
choosing titles that fulfill two requirements: (1) the
section they preface is likely content-related and (2)
they occur very frequently. We group the resulting
list of section titles into these five categories: intro-
duction, related work, method, results/discussion,
and conclusion (see in Table 5 in Appendix A) for
the mapping of titles to categories. This approach
ensures that we keep the article contents instead
of appendices, tables, references, or even meta in-
formation such as the retraction notice prepended
to many retracted articles. It also allows filtering
and analyzing the content by section type. About
50% of the PDF links allow automated retrieval,
and we manually download an additional 1,306
documents to bolster the record. Table 1 shows the
total articles and sections obtained.

2.3 Reference Corpus

For our analysis, we construct a parallel refer-
ence corpus of non-retracted articles sampled from
OpenAlex. Since a random sample of research
articles might potentially include a small number
of soon-to-be-retracted papers we try to reduce
noise by extracting only the top cited articles from
OpenAlex, assuming that they are less likely to be
fraudulent. For each year and field in the retraction
corpus, we collect exactly the same number of arti-
cles for the reference corpus. We gather the same
information for this dataset and download freely
accessible PDF documents where possible.

3https://pypi.org/project/pymupdf4llm/

3 Language Characteristics of Retracted
Papers

To analyze linguistic differences between retracted
and non-retracted papers, we compare log-odds of
word and n-gram occurrences (Subsection 3.1) and
investigate the significance of differences in word
repetitions (Subsection 3.2).

3.1 Characteristic Expressions
We conduct a log-odds analysis, identifying words
that are significantly overrepresented in one corpus
versus the other. We apply a chi-square indepen-
dence test to assess whether frequency differences
between corpora were statistically significant, only
considering tokens and n-grams meeting the sig-
nificance threshold of 𝑝 < 0.05. According to the
analysis, retracted papers overuse certain adverbs
and verbs across all domains in the dataset. Illus-
trative examples can be found when restricting the
dataset by domains and fields.

Computer science. For example, in the field of
computer science (a subfield of the physical sci-
ences domain) phrases such as becoming more and
more, relatively, and developed rapidly had sig-
nificantly higher log-odds ratios compared to non-
retracted papers. Verbs like analyzes, brought, and
realized are also disproportionately more common
in computer science retractions.

Physical sciences. In the overall physical sci-
ences domain we find a significantly higher fre-
quency of adverbs such as erefore (likely an error
in PDF conversion of therefore), gradually, compre-
hensively, vigorously, and organically in retracted
works. These adverbs are rather vague and unspe-
cific, which might be a reason why they occur less
in evidence-based non-retracted papers.

Social science. In the Social Sciences domain,
similar patterns emerged. Adverbs like accurately,
vigorously, and scientifically were more frequent
in retracted papers, suggesting that authors need-
lessly overemphasize results. Non-retracted papers
in all domains displayed a higher frequency of cau-
tious and precise language. Terms like i.e., thereof,
ideally and likely were more common.

3.2 Lexical Diversity
Examining some of the retracted articles, we no-
tice that they often feature repeated use of the
same words, sometimes even within the same sen-
tence. To test this assumption, we calculate the
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Sentence Level Document Level

POS Tag Ret TTR Ref TTR CLES Ret TTR Ref TTR CLES

VERB 0.982 0.987 0.492 0.794 0.873 0.348
ADJ 0.960 0.974 0.480 0.683 0.771 0.368
NOUN 0.924 0.946 0.456 0.571 0.679 0.326
ADV 0.988 0.992 0.497 0.805 0.890 0.377

Table 2: Mean type-token ratio (TTR) for retracted
(Ret) and reference (Ref) texts and Common Language
Effect Size (CLES) values between them, at sentence
and document level.

type-token ratio (TTR) as a measure of lexical di-
versity (Baayen, 2001) for selected parts of speech
(adjective, adverb, noun, and verb) at both the doc-
ument and sentence levels (see Table 2).

We consider a Mann-Whitney 𝑈 test (Mann
and Whitney, 1947) to establish the significance
of differences in TTR between retracted and
non-retracted sentences and documents. The
Kolmogorov-Smirnov test (Massey, 1951) con-
firms that TTR distributions in both corpora are
not normal, justifying the use of Mann-Whitney.
According to the test, differences between retracted
and non-retracted type-token ratios are significant
for all selected POS tags (𝑝 < 0.001).

TTR difference effect size. The Common Lan-
guage Effect Size (CLES) scores (see Table 2) in-
dicate that differences in lexical diversity within
sentences are very small between retracted and ref-
erence papers (close to 0.5, which would indicate
no difference). Per document, the differences are
more pronounced. Lower CLES values at the doc-
ument level, particularly for nouns (0.3258) and
adjectives (0.3681), suggest that retracted papers
exhibit lower lexical diversity, meaning they rely
more on repetitive phrasing or expressions.

4 Identifying Scientific Misconduct

The language analysis results in Section 2 suggest
that retracted papers can be identified through sta-
tistical methods based on the differing linguistic
structure. Building on this, we focus on specifically
identifying retractions involving scientific miscon-
duct next. We present two methods to achieve this,
a quantification framework based on a mixture dis-
tribution (Subsection 4.1) and a classifier fine-tuned
on a pre-trained Transformer model (Subsection
4.2).

4.1 Distributional Quantification Framework
Inspired by recent successes in measuring usage
of LLM-generated language, we adapt the distribu-
tional LLM quantification framework from Liang
et al. (2024b) to measure the fraction of research ar-
ticles that contain language typical of scientific mis-
conduct. The Distributional Quantification Frame-
work (DQF) determines the most likely mixture
ratio of two probability distributions pre-calculated
on the training data. Let 𝒫 denote the distribution
of the reference text and 𝒬 that of the type of text
we want to quantify. 𝒫(𝑥) and 𝒬(𝑥) will denote
the likelihood of text 𝑥 under 𝒫 or 𝒬 respectively.
A collection of texts is described by a mixture of
these two distributions:

𝒟𝛼(𝑋) = (1 − 𝛼)𝒫(𝑋) + 𝛼𝒬(𝑋) (1)

where 𝛼 is the mixture parameter determining the
fraction of examples belonging to the text type.

𝒫 and 𝒬 are estimated from training data – in
our case a corpus of non-retracted articles 𝑋𝒫 and
a collection of retracted scientific articles 𝑋𝒬 (Sec-
tion 2).

To estimate 𝒫 as �̂�, the method relies on occur-
rence probabilities of the tokens 𝑡 from both text
corpora. The estimated probability ̂𝑝(𝑡) of a token
in the reference corpus is defined as:

̂𝑝(𝑡) =
∑𝑥∈𝑋𝒫

𝟙{𝑡 ∈ 𝑥}
|𝑋𝒫|

(2)

i.e., the number of texts containing the token di-
vided by the total number of texts in the specific
corpus. Analogously for 𝑋𝒬, ̂𝒬, and ̂𝑞(𝑡). The
probability of a text 𝑥 under �̂� is subsequently
given by:

�̂�(𝑥) = ∏
𝑡∈𝑥

̂𝑝(𝑡) × ∏
𝑡∉𝑥

(1 − ̂𝑝(𝑡)) (3)

and ̂𝒬(𝑥) can be derived similarly using ̂𝑞(𝑡).
Finally, to infer the coefficient 𝛼 for an unseen

collection of texts {𝑥𝑖}𝑛
𝑖=1,the DQF uses maximum

likelihood estimation under the estimated mixture
distribution �̂� = (1 − 𝛼)�̂�(𝑋𝒫) + 𝛼 ̂𝒬(𝑋𝒬):

̂𝛼 = argmax
𝛼∈[0,1]

𝑛
∑
𝑖=1

𝑙𝑜𝑔((1 − 𝛼)�̂�(𝑥𝑖) + 𝛼 ̂𝒬(𝑥𝑖))

(4)
This step will be used to infer an 𝛼 estimator repre-
senting the fraction of texts in a collection exhibit-
ing the style of 𝒬.
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4.2 Transformer-based Classifier

As a comparison to the DQF, we also train
Transformer-based classifiers. We adopt the com-
monly used fine-tuning paradigm and train a ran-
domly initialized classification head on top of a pre-
trained Transformer encoder model.4 Specifically,
we use four Transformer encoders pre-trained on
general text (BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), DeBERTa-v3 (He et al., 2021),
ModernBert (Warner et al., 2024)) and three en-
coders adapted to the scientific domain (SciBERT
(Beltagy et al., 2019), SciDeBERTa (Kim et al.,
2023), and ClinicalBERT (Wang et al., 2023)). We
fine-tune these classifiers with a batch size of 16
and a learning rate of 2 ⋅ 10−5, and select the best
model across five epochs based on evaluation set
performances. To ensure the reliability of our re-
sults, we repeat this process for five different ran-
domly generated seeds and report the average per-
formance.

5 Experiments

We evaluate the DQF and Transformer approaches
at the level of the document collection and the in-
dividual documents. First, we infer the ratio of
papers retracted for misconduct from a collection
of articles using the DQF (Section 5.1). Second, we
compare both approaches by classifying miscon-
duct on the document level (Section 5.2). Finally,
we use both the best-performing Transformer from
Section 5.2 and the DQF to quantify misconduct
through inference on a collection of randomly sam-
pled research articles to explore temporal trends
(Section 5.3).

5.1 Quantification of Misconduct

With the DQF, we can infer the ratio of papers in-
volved in misconduct directly from a collection of
articles. To evaluate the performance of the DQF
on this task, we test its predicted 𝛼 on constructed
mixtures of retracted and non-retracted text frag-
ments and determine how close the estimate is to
the true ratio. We follow these steps:

1. We split the data into 50% training and 50%
test examples for both the retracted and refer-
ence corpus. We run an experiment for each
combination of considered sections (e.g. ab-
stract + introduction) and parts of speech.

4See Appendix B.1 for more details.

2. From the test set, we construct 11 variants
with different ratios of retracted and reference
examples, going from 0% retracted examples
to 100% in increments of 10%.

3. We evaluate if the model predicts the appro-
priate 𝛼 ratio by considering the difference
between prediction and true ratio. For sub-
sequent experiments, we choose the configu-
ration with the closest 𝛼 estimate to the true
ratio.

4. We repeat steps 1 and 2 using the best model
from step 3 on subsets of the data filtered by
all combinations of domain, field, and retrac-
tion reason.

In the following, we report the results of this evalu-
ation approach for the DQF method.

Relying on verbs and adverbs leads to the best
estimate. The results of the configuration search
from step 3 for the DQF estimator can be found in
Table 3. Generally, including the sections abstract,
introduction, and conclusion and the POS-tags verb
and adverb leads to the best results. Only relying
on adverbs leads to the closest estimates in social
sciences, but the bootstrapping variance is high due
to data scarcity. the DQF can estimate the ratio 𝛼
on the document or the sentence level. Running it
on the sentence level increases performance across
all domains.

Domain Sections POS Tags Mean Error
Health Sciences A, I VERB, ADV 0.075 ± 0.011
Life Sciences A, I VERB, ADV 0.081 ± 0.010
Social Sciences A, I, C ADV 0.063 ± 0.036
Physical Sciences I, C VERB, ADV 0.064 ± 0.013

Table 3: Best-performing mixture model per domain
with corresponding setting of document sections and
POS Tags. A, I, and C stand for abstract, introduction,
and conclusion, respectively. ADV means adverbs.

Quantifying paper mill content works better
than falsified data. DQF results for specific mis-
conduct retraction reasons can be found in Figure 2.
In the case of paper mill quantification, we observe
that the method overestimates the true ratio by max-
imally 15% if the test data entirely consists of non-
retracted sentences and underestimates it by around
11% for completely retracted data. The top subplot
in Figure 2 shows that the method does not per-
form well for the retraction reason of falsification.
A possible explanation would be that falsification
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Model PM RGC F&F

BERT 0.905 0.920 0.770
RoBERTa 0.905 0.904 0.779
DeBERTa-v3 0.916 0.911 0.770
ModernBert 0.914 0.903 0.779
ClinicalBERT 0.895 0.886 0.709
SciBERT 0.911 0.914 0.797
SciDeBERTa 0.926 0.934 0.797

DQF 0.854 0.798 0.727

Table 4: Different models’ F1 on detecting misconduct
types: Paper Mill (PM), Randomly Generated Content
(RGC), and Falsification and Fabrication of Data (F&F).

happens on the level of experimental results or data
and is not directly visible in the article text. This
finding is also confirmed by the Transformer-based
classifier (see Figure 4b) and inference results (see
Figure 8 in Appendix B.3). We also evaluate the
performance for the categories randomly generated
content and peer review fraud, which both have
similar results (see Figure 5 in Appendix B.2).

5.2 Document-Level Detection
For the misconduct classifier, we look at individ-
ual articles. For all misconduct reason subsets of
the retraction corpus, we sample an equal-sized
subset from the reference corpus matching the dis-
tributions of years and scientific fields. Then, we
further split the data into training, development,
and test sets according to a 60:15:25 split, keeping
the label distribution balanced for all sets. We sep-
arately fine-tune different Transformer classifiers
to perform binary classification for each reason of
misconduct. The results are shown in Table 4.

SciDeBERTa is the strongest model on average.
Detecting falsification is again the hardest task, as
discussed in the previous experiment. Generally,
models pre-trained on scientific text perform better
than their base models, as we can see when we
compare SciBERT to BERT and SciDeBERTa to
DeBERTa.

DQF performs worse at classification. To as-
sess the performance of the DQF in a docu-
ment classification setting and compare it to the
Transformer-based classifiers, we replicate the ex-
periment for this approach. We first learn estima-
tors for the distributions 𝒫 and 𝒬 on the training set.
Then, we infer the estimated 𝛼 parameter for each
document in the development set and measure pre-
cision and recall for different classification thresh-
olds. The corresponding precision-recall curve for

Figure 2: Differences between true ratio and DQF 𝛼
on a test set of retracted and non-retracted sentences,
constructed with ratios {0, 0.1, ..., 0.9, 1}. Retractions
are due to Falsification (top) and Paper Mill (bottom).
Error bars indicate the confidence interval.

the paper mill detector on the development set can
be found in Figure 6 in Appendix B.2. We take
the 𝛼 threshold producing the best F1 score on the
development set to create the final classifier eval-
uated on the test set. Table 4 shows that the DQF
approach performs considerably worse on the test
set than the Transformer-based classifiers.

5.3 Misconduct over Time

Next, we turn to estimating scientific misconduct
over time by running our best-performing Trans-
former classifier and the DQF on a much larger
inference dataset. We sample 12,000 papers per
year from 1980 to 2024 from the OpenAlex API.
The sample is divided equally among the four do-
mains defined by OpenAlex: Health Sciences, Life
Sciences, Physical Sciences, and Social Sciences.
Any reportedly retracted articles are excluded from
the sampling process. In total, we find 526,876 ar-
ticles, 390,474 of which have an abstract available.
We apply the best DQF model from Section 5.1
for each misconduct reason and each of the four
domains to the inference dataset’s paper abstracts.

The results for the paper mill model can be found
in Figure 3, and for falsification and randomly gen-
erated content in Figures 7 and 8 in Appendix B.3.
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Figure 3: DQF 𝛼 value signifying the fraction of articles attributed to the paper mill category with confidence
interval in the shaded area (left y-axis) compared to confirmed paper mill retractions as a fraction of total published
articles (right y-axis) per domain. 𝜌 denotes Pearson correlation between the two curves with associated p-value.

To get an impression of the reliability of these re-
sults, we overlay the number of confirmed retrac-
tions per 100,000 publications listed by the Retrac-
tion Watch dataset on the right y-axis. While the
𝛼 estimate is several orders of magnitude larger
than the confirmed retraction ratio, we can observe
that the correlation is significant, especially for the
domains of Life and Physical Sciences.

Further, we run inference with a Transformer-
based classifier on the same dataset. The results in
Figure 4 are produced by SciDeBERTa, the best-
performing classifier on paper mill and randomly
generated content detection. The Figure shows the
averaged results across all domains, for the reasons
of paper mill and falsification.

Correlation between confirmed and predicted
ratios is high. We see a high correlation to the re-
ported retraction for the best-performing paper mill
classifier (Figure 4a) and a slightly negative cor-
relation for the falsification classifier (Figure 4b).
As mentioned above, we expect that the retractions
that fall into the falsification category do not have a
strong signal since the falsification might often be
limited to study data as opposed to textual content –
especially in the health sciences domain where this
type of misconduct is most prevalent. The results
for the randomly generated content category are
omitted from Figure 4, but reported in Table 6 in
Appendix B.4. Similar to paper mill, the classifica-
tion of randomly generated content is significantly
correlated with the reported results at 𝜌 = 0.75.

SciDeBERTa classifier estimates are higher than
those of other methods. Compared to the DQF

results, the SciDeBERTa classifier produces a
higher rate of misconduct papers at up to 20% pre-
dicted positive rate. This is double the rate pre-
dicted by ModernBERT and the DQF. We list the
inferred rates of the paper mill papers from the
Transformer-based classifier grouped by domains
in Figure 9 in Appendix B.4. The estimate seems
more stable in the health sciences compared to the
DQF results in Figure 3.

6 Discussion

In this section, we revisit the most important results
and discuss implications of the findings.

The DQF estimates seem as accurate as the
classifier-based ones except in health sciences.
We observe that the DQF approach seems to func-
tion well in the domains of life sciences and physi-
cal sciences and a little less in social sciences. For
health sciences, it returns seemingly overestimated
and highly varying results. This might be explained
by the widespread use of formulaic language in the
health sciences domain.

The 𝛼 is not a precise estimate for the true ra-
tio of misconduct. Our methods estimate that
10–15% of papers are involved in misconduct. The
evaluation in Figure 2 shows that the method tends
to overestimate the 𝛼 for a low ground-truth ratio.
This indicates that the actual ratio is likely smaller.
This method may not be precise enough to reliably
detect small effects. Rather than providing an exact
fraction of misconduct cases, the 𝛼 value should be
interpreted as the proportion of papers that exhibit
writing style similarities with paper-milled papers
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(a) 𝜌 = 0.79 (𝑝 < 0.0001) (b) 𝜌 = −0.17 (𝑝 = 0.266)

Figure 4: SciDeBERTa-based positive prediction rate for detection of paper mill (a) and falsification/fabrication (b)
on the left y-axis compared to confirmed retractions per 100,000 publications on the right y-axis. Pearson correlation
𝜌 between the two curves is given with the associated p-value.

or have a slightly higher-than-average probability
of resulting from misconduct. In many cases, the
estimated ratio correlates strongly with the reported
number of misconduct-related retractions, as the
inference study shows.

Trend analysis is a promising application of
these models. The practical use case of this be-
comes clear if we examine the median delay be-
tween the date of publication and the date of re-
traction in our data, which is 475 days, with the
80th percentile at 3.6 years. The DQF method de-
livers a computationally efficient way to estimate
how the incidence of certain types of misconduct
changes in real time in a large collection of scien-
tific articles. This could be used, for example, to
measure the effectiveness of anti-fraud policies at
large publishers.

7 Related Work

Many studies examine the phenomenon of retrac-
tions and misconduct (Wray and Andersen, 2018;
Candal-Pedreira et al., 2022; Feng et al., 2020;
Nath et al., 2006; Parker et al., 2024) but they pri-
marily focus on metadata such as citation infor-
mation rather than textual content. (Sharma et al.,
2024) use the Retraction Watch dataset to analyze
author collaboration networks. (Hu and Xu, 2020)
and (Vuong, 2019) study linguistic characteristics
of retraction notices but not the article content. We
do not find any datasets that combine information
about retractions with the content of the associated
articles. Especially looking at the full text and not
only abstracts.

Detection of scientific misconduct. The exten-
sive use of LLM chatbots has led to numerous
works focusing on identifying AI-generated con-
tent in scientific articles and peer reviews. (Liang

et al., 2024b,a) and (Yu et al., 2024) investigate
detecting modified sentences by OpenAI’s GPT-3
and GPT-4o models. Earlier work from (Gehrmann
et al., 2019) trains a model to distinguish human-
written sentences from GPT-2 generated ones. (Ca-
banac and Labbé, 2021) present a detection method
that identifies “tortured phrases” which they at-
tribute to using scientific text generators such as
SciGen. However, their work is limited to articles
from a single journal.

Aside from detecting AI-generated text, some
authors explore more general methods to automati-
cally detect fraud and misconduct in science. (Us-
man and Balke, 2024, 2023) use citation informa-
tion from retraction cascades to identify potentially
retractable articles. (Horton et al., 2020) use Ben-
ford’s law to identify falsified data specifically.
Similar to our work, (Razis et al., 2023) use a
Transformer-based model for paper mill content
detection. Our work presents a new dataset for this
task, which stems from a wider range of science
domains and is slightly larger. Further, we extend
their analysis by more pre-trained models and an
analysis of large-scale inference on a longitudinal
dataset.

8 Conclusion

In this work, we find distinct linguistic patterns in
articles retracted for misconduct, such as overuse
of certain expressions and frequent repetition of
adjectives, nouns, and adverbs. Based on these
findings, we train a distributional quantification
framework and a Transformer-based classifier to
track growth trends of scientific misconduct. Our
classifier achieves an F1 score of 0.93 in detecting
paper mill articles and automatically generated con-
tent, making it a viable option for flagging fraud-
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ulent papers for human review. Further, we show
that a computationally simpler approach based on
a mixture distribution model can estimate trends of
misconduct in life and physical sciences. However,
in health sciences, the Transformer-based classifier
performs better. For future work, we will investi-
gate how metadata such as citation networks and
affiliation can be incorporated into detecting mis-
conduct and lead to increased performance in cases
where the text-based approach does not yield suffi-
cient results.

Limitations

This study has several limitations. First, the un-
derlying Retraction Watch dataset is compiled by
volunteer journalists, making its coverage inconsis-
tent. For instance, retractions were reported more
frequently during the platforms early years, dispro-
portionately affecting recently published papers,
and little is known about the annotation process of
reason labels. Additionally, many older retracted
papers may no longer be accessible online, as their
records have likely been lost.

Furthermore, as was shown in the study, 𝛼 values
do not necessarily reflect the true proportion of
paper-milled articles. The estimates can not be
taken at face value but serve as a tool to investigate
trend evolution.

Finally, availability of text (abstracts and full-
text) has limited the size of our text corpus. For
the misconduct reason of falsification, the dataset
is particularly small potentially impacting the ac-
curacy of the resulting classifier. Also, while it
might have a positive impact on performance we
intentionally exclude non-content-related metadata
about publications from the training process to iso-
late the influence of language. Future work will
extend on this.

Ethics Statement

Our work recognizes the ethical implications of
predicting misconduct based on individual articles,
as false positives could lead to serious reputational
harm and may be perceived as slander by the af-
fected authors and/or institutions. Therefore, we
emphasize that our method should not be used for
definitive individual accusations but rather for state-
ments about collections of articles and trend esti-
mation.

Furthermore, we are aware that releasing an
instance-based classification method carries the

risk of reverse engineering, allowing malicious
actors to manipulate accordingly their writing, in
order to evade detection while still perpetrating sci-
entific misconduct. However, we believe that the
benefits of transparency outweigh this risk, as secu-
rity through obscurity is rarely an effective strategy
in the long term.

Finally, we acknowledge that our classifier may
introduce bias against non-native English speak-
ers, as variations in vocabulary and lexical diver-
sity could influence predictions. Furthermore, low-
price text rewriting and translation services may
unintentionally produce text that resembles the lin-
guistic patterns associated with misconduct, po-
tentially leading to unfair penalties for individuals.
Addressing these biases is a critical area for future
work.
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A Dataset Creation

This section contains the table with mappings from
section category to section title variants that were
used to extract full-text of article sections (Table 5).

B Additional Details of the Experiments

In this section, we find all the details needed for
reproducing the experiments (Subsection B.1), val-
idation set performance from the DQF evaluation
(Subsection B.2), and additional results from the
inference study from the DQF (Section B.3 and
Transformer-based classifier (Section B.4).

B.1 Used Language Models
All experiments are conducted on a single Nvidia
RTX A6000 GPU equipped with 48GB of memory.
The models utilized are sourced from the Hugging
Face model hub:

• bert-base-uncased

• roberta-base

• microsoft/deberta-v3-base

• answerdotai/ModernBERT-base

• allenai/scibert_scivocab_uncased

• KISTI-AI/Scideberta-full

• medicalai/ClinicalBERT

B.2 Additional DQF Evaluation Results
This section contains the DQF evaluation results for
peer review fraud and randomly generated content
(Figure 5) and the precision-recall curve from find-
ing the DQF detector threshold on the development
set (Figure 6).

B.3 Additional DQF Inference Results
In this section, results of the DQF approach on the
inference dataset can be found. Figure 7 shows
inference of the randomly generated content, and
Figure 8 shows that of the falsification estimation
model on the large inference corpus.

B.4 Additional Transformer-based Classifier
Inference Results

This section contains the remaining inference re-
sults of the Transformer-based classifier. Table 6
subsumes the mean positive prediction rate and
Pearson correlation for all models and reasons on
the inference data. More detailed results per do-
main and over the years can be found in Figure 9 for
paper mill detection by the SciDeBERTa model and
for falsification detection by the SciBERT model
(best performing on this task) in Figure 10.
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Section Section Title Variants

Introduction [ Objectives, Objective, Background, Introduction ]
Related Work [ Related Work, Related Works, State of the Art, Literature Review ]
Methods [ Methods, Method, Patients and Methods, Methods and Materials, Methodol-

ogy ]
Result & Discussion [ Discussion, Discussions, Statistical Analysis, Results and Analysis, Results

and Discussion, Result and Discussion, Result Analysis, Result, Results, Analy-
sis of Results, Experimental Results, Analysis of Experimental Results, Result
Analysis and Discussion, Results and Discussions, Experimental Results and
Analysis ]

Conclusion [ Conclusion, Conclusions, Authors Conclusions ]

Table 5: Mapping of Section Title Variants to Standardized Sections.

Figure 5: Differences between true ratio and DQF 𝛼 on a testset partitioned into retracted and non-retracted
sentences according to ratios {0, 0.1, ..., 0.9, 1}. Retractions for reasons of peer review fraud (top) and randomly
generated content (bottom).
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Figure 6: Evaluation of the DQF 𝛼 used as a detector on the same training and development set as the Transformer-
based classifier. The curve shows precision and recall for different thresholds of 𝛼 values to determine whether a
paper should be labeled Paper Mill or not.

Figure 7: DQF 𝛼 value signifying the fraction of articles identified as randomly generated content with confidence
interval in the shaded area (left y-axis) compared to confirmed randomly generated content retractions (right y-axis)
per science domain. 𝜌 denotes Pearson correlation between the two curves with associated p-value.
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Figure 8: DQF 𝛼 value signifying the fraction of articles identified as falsification with confidence interval in the
shaded area (left y-axis) compared to confirmed falsification retractions (right y-axis) per science domain. 𝜌 denotes
Pearson correlation between the two curves with associated p-value.

Figure 9: Predicted positive rate of the SciDeBERTa-based classifier on the paper mill detection task (left y-axis)
compared to confirmed paper mill retractions (right y-axis) per domain. Pearson correlation 𝜌 between the two
curves is displayed with associated p-value.

Figure 10: Predicted positive rate of the SciBERT-based classifier on the falsification detection task (left y-axis)
compared to confirmed paper mill retractions (right y-axis) per domain. Pearson correlation 𝜌 between the two
curves is displayed with associated p-value.
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Model Reason Mean PPR Correlation
SciDeBERTa Paper Mill 0.05 𝜌 = 0.78 (p=0.00000)
SciDeBERTa Falsification 0.25 𝜌 = −0.31 (p=0.04236)
SciDeBERTa Generated Content 0.03 𝜌 = 0.63 (p=0.00000)
BERT Paper Mill 0.07 𝜌 = 0.75 (p=0.00000)
BERT Falsification 0.26 𝜌 = −0.23 (p=0.12545)
BERT Generated Content 0.05 𝜌 = 0.56 (p=0.00007)
SciBERT Paper Mill 0.05 𝜌 = 0.78 (p=0.00000)
SciBERT Falsification 0.25 𝜌 = −0.23 (p=0.12722)
SciBERT Generated Content 0.03 𝜌 = 0.61 (p=0.00001)
ClinicalBERT Paper Mill 0.07 𝜌 = 0.76 (p=0.00000)
ClinicalBERT Falsification 0.17 𝜌 = −0.28 (p=0.06148)
ClinicalBERT Generated Content 0.08 𝜌 = 0.55 (p=0.00010)
ModernBert Paper Mill 0.03 𝜌 = 0.79 (p=0.00000)
ModernBert Falsification 0.31 𝜌 = −0.17 (p=0.26445)
ModernBert Generated Content 0.03 𝜌 = 0.64 (p=0.00000)
DeBERTa-v3 Paper Mill 0.05 𝜌 = 0.80 (p=0.00000)
DeBERTa-v3 Falsification 0.39 𝜌 = −0.24 (p=0.11783)
DeBERTa-v3 Generated Content 0.04 𝜌 = 0.62 (p=0.00001)
RoBERTa Paper Mill 0.03 𝜌 = 0.79 (p=0.00000)
RoBERTa Falsification 0.26 𝜌 = −0.25 (p=0.10302)
RoBERTa Generated Content 0.06 𝜌 = 0.57 (p=0.00006)

Table 6: Mean positive prediction rates (PPR) and correlation coefficients for different models and reasons.
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