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Abstract

While parameter-efficient fine-tuning (PEFT)
techniques like Low-Rank Adaptation (LoRA)
offer computationally efficient adaptations of
Large Language Models (LLMs), their practi-
cal deployment often assumes centralized data
and training environments. However, real-
world scenarios frequently involve distributed,
privacy-sensitive datasets that require decen-
tralized solutions. Federated learning (FL) ad-
dresses data privacy by coordinating model
updates across clients without sharing raw
data. While most federated fine-tuning meth-
ods adopt centralized FL, which relies on a
parameter server for aggregating model up-
dates—introducing potential bottlenecks and
communication constraints—decentralized FL
enables direct peer-to-peer communication
among clients, bypassing the need for a server
as an intermediary. Despite its advantages,
decentralized fine-tuning for LLMs remains
largely unexplored in the literature. To ad-
dress this gap, we introduce Dec-LoRA, a decen-
tralized fine-tuning algorithm based on LoRA.
We conduct extensive experiments using BERT
and LLaMA-2 models to benchmark Dec-LoRA
against centralized LoRA and several other pop-
ular PEFT approaches in decentralized settings.
Our results demonstrate that Dec-LoRA consis-
tently achieves performance on par with cen-
tralized LoRA under various conditions, includ-
ing data heterogeneity and quantization con-
straints. These findings highlight the potential
of Dec-LoRA for scalable LLM fine-tuning in
decentralized environments.

1 Introduction

The advent of Large Language Models (LLMs)
such as GPT-4 (Achiam et al., 2023), LLaMA (Tou-
vron et al., 2023), and BERT (Devlin et al., 2018)
has revolutionized artificial intelligence by
enabling remarkable capabilities in tasks such as
translation and summarization (Bommasani et al.,
2021), powered by sophisticated architectures like

Transformers (Vaswani, 2017). These versatile
models can be fine-tuned for domain-specific ap-
plications such as toxicity classification (Oskouie
et al., 2025) using targeted datasets (Howard and
Ruder, 2018), showcasing their adaptability across
diverse fields. However, the sheer scale of these
models, often comprising billions of parameters,
makes complete fine-tuning computationally
prohibitive and prone to overfitting. To address
this, parameter-efficient fine-tuning (PEFT) tech-
niques—such as Adapters (Houlsby et al., 2019),
Prompt-Tuning (Lester et al., 2021), LoRA (Hu
et al., 2021)—have emerged as practical solutions.
These approaches selectively adjust only a fraction
of the model parameters while keeping the rest
static, significantly cutting computational demands
without compromising performance (Ding et al.,
2023). Among these, LoRA is preferred in certain
applications and has been shown to have excellent
efficiency, making it the focal point of our study.

Traditional PEFT methods often assume that LLMs
are fine-tuned using data from a single machine
or client. However, in real-world scenarios,
sensitive data sets, such as medical records or
legal documents, are frequently distributed across
multiple devices (Manoel et al., 2023; Shoham and
Rappoport, 2023; Soltanmohammadi and Hikmet,
2024). Privacy concerns make centralizing such
data impractical, creating the urgent need for
fine-tuning techniques capable of adapting LLMs
at the edge while maintaining strict data privacy.
In response to this challenge, Federated Learning
(FL) (McMabhan et al., 2017) emerges as a pow-
erful solution by ensuring sensitive information
remains on local devices throughout the training
process. Instead of transferring raw data to a
centralized server for training, FL enables clients
to update model parameters locally and share
only aggregated information, such as gradients or
parameters (McMahan et al., 2017). Consequently,
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FL has been seamlessly integrated into PEFT
approaches (Zhang et al., 2023; Fan et al., 2023;
Zhao et al., 2023; Ghiasvand et al., 2024c), with
federated fine-tuning of LoRA receiving particular
attention for its ability to efficiently balance
privacy, communication overhead, and model
adaptability across different clients (Babakniya
et al., 2023; Yan et al., 2024; Cho et al., 2023; Bai
et al., 2024; Wang et al., 2024; Kuo et al., 2024;
Sun et al., 2024; Chen et al.; Amini et al., 2025).

Almost all previous work on federated fine-
tuning focuses on centralized FL, which relies on a
centralized server to coordinate the aggregation of
model updates. This dependency poses challenges,
particularly in scenarios where communication
resources are limited or where a centralized server
introduces potential bottlenecks. Another FL
architecture, called decentralized FL, enables
direct peer-to-peer communication among clients,
bypassing the need for a server as an interme-
diary (Yuan et al., 2024), while still preserving
the key advantages of centralized FL. Recent
advances have demonstrated the effectiveness of
decentralization in LLM-based multi-agent sys-
tems, facilitating scalable and robust collaboration
among distributed agents (Guo et al., 2024; Chen
et al., 2024). Despite its broader applicability and
critical role in emerging applications, decentralized
fine-tuning for LLMs remains largely unexplored
in the literature. In this work, we address this
gap by proposing a decentralized fine-tuning
algorithm and provide both empirical evidence and
theoretical guarantees of its effectiveness.

Before delving into details, we summarize
our contributions:

¢ We introduce Dec-LoRA, which, to the best
of our knowledge, is the first FL algorithm
designed to fine-tune LLMs in a decentralized
setting.

* We benchmark Dec-LoRA against several pop-
ular PEFT approaches in decentralized set-
tings and show that it consistently achieves
superior accuracy and faster convergence on
average across various tasks and settings.

* We conduct extensive experiments using
BERT and LLaMA-2 family models, com-
paring centralized LoRA and Dec-LoRA under
diverse settings, including data heterogeneity

and quantization constraints. The results show
that Dec-LoRA is an effective and practical so-
lution for decentralized fine-tuning of LLMs.

2 Related Work

2.1 Parameter Efficient Fine-Tuning on LLMs

LLMs such as GPT-4 (Achiam et al., 2023),
LLaMA (Touvron et al., 2023), and BERT (De-
vlin et al., 2018) have achieved remarkable per-
formance across various tasks like translation and
summarization (Bommasani et al., 2021) due to
architectures like Transformers (Vaswani, 2017).
However, these models typically contain billions
of trainable parameters, making full fine-tuning
(FFT) computationally expensive and inefficient,
particularly for task-specific adaptations. To ad-
dress this, PEFT methods have been introduced,
enabling adaptation with significantly fewer train-
able parameters while maintaining performance
close to FFT. PEFT methods can be generally di-
vided into three categories (Han et al., 2024). Addi-
tive introduces a small set of trainable parameters
while keeping the original model frozen, as seen
in Serial Adapter (Houlsby et al., 2019), Parallel
Adapter (He et al., 2021), Prefix-Tuning (Li and
Liang, 2021), and Prompt-Tuning (Lester et al.,
2021). Selective PEFT fine-tunes only a subset of
existing model parameters, with techniques like
BitFit (Zaken et al., 2021) and PaFi (Liao et al.,
2023). Reparameterized PEFT introduces a low-
rank parameterization of pre-trained weights for
training, with methods such as LoRA (Hu et al.,
2021) and DoRA (Liu et al., 2024). Among these,
LoRA stands out for its efficiency, effectiveness, and
adaptability, making it a compelling choice for fine-
tuning LLMs. In this work, we specifically focus on
the decentralization of LoRA.

2.2 PEFT in Federated Setting

In their studies, (Zhang et al., 2023; Fan et al.,
2023) evaluate and compare various PEFT meth-
ods, including Adapters, LoRA, Prompt Tuning,
and BitFit in FL. Several adaptations of LoRA have
been introduced to enhance its efficiency in highly
heterogeneous federated settings. For instance,
SLoRA (Babakniya et al., 2023; Yan et al., 2024)
modifies the initialization process to better han-
dle data heterogeneity, while HetLoRA (Cho et al.,
2023) and FlexLoRA (Bai et al., 2024) dynamically
adjust LoRA ranks per client to account for sys-
tem heterogeneity. More recently, FLoORA (Wang
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et al., 2024) introduces slack matrices A and B for
all clients and multiplies the resulting matrices to
mitigate interference caused by the FedAvg algo-
rithm. To reduce communication overhead in feder-
ated LoRA, (Kuo et al., 2024) propose sparse fine-
tuning techniques. Meanwhile, FFA-LoRA (Sun
et al., 2024) and RoLoRA (Chen et al.) aim to
enhance model accuracy in heterogeneous environ-
ments while minimizing the number of trainable
parameters. Additionally, FedTT (Ghiasvand et al.,
2024c) integrates tensorized adapters for federated
fine-tuning, significantly reducing trainable param-
eters and improving communication efficiency. Al-
though extensive research has explored PEFT meth-
ods, particularly LoRA in centralized FL, no study
has examined their performance in a fully decen-
tralized setting without a central server, despite its
relevance to many real-world applications.

2.3 Decentralized Optimization/Learning

The exploration of decentralized optimization
techniques dates back to at least the 1980s (Tsitsik-
lis, 1984). These algorithms, often called gossip
algorithms (Kempe et al., 2003; Boyd et al., 2006),
are characterized by the absence of a central
authority for spreading information. Instead,
information propagates through the network,
similar to how gossip spreads along the edges
defined by the communication graph. Among the
most commonly used methods in decentralized
optimization are those based on (sub)gradient
descent (Nedic and Ozdaglar, 2009; Johansson
et al., 2010).

Decentralized optimization has recently fa-
cilitated the growth of decentralized learning,
which has found applications in various domains,
including autonomous vehicles (Chellapandi et al.,
2023), healthcare systems (Warnat-Herresthal
et al., 2021), industrial IoT environments (Qiu
et al., 2022; Hexmoor and Maghsoudlou, 2024;
Ghajari et al., 2025), and social networks (He et al.,
2022). In particular, decentralization has demon-
strated exceptional effectiveness in LLM-based
multi-agent systems, enabling scalable and robust
collaboration among distributed agents (Guo et al.,
2024; Chen et al., 2024). Although PEFT methods,
such as LoRA, can be beneficial for decentralized
FL of LLMs due to the large scale of these models,
there is a lack of analysis on the use of such
methods in decentralized scenarios. This paper
aims to address this gap.

3 Preliminaries

3.1 Low-Rank Adaptation: LoRA

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is
one of the most promising PEFT methods, enabling
effective fine-tuning of large language models by
freezing the entire model and adding low-rank
trainable matrices in each layer. LoRA has been
shown to outperform other PEFT methods, even in
federated learning settings (Kuang et al., 2024).

In LoRA, for a pre-trained weight matrix Wy €
R¥** the weight update is performed by a low-
rank decomposition:

Wo + AW = Wy + BA, ()

where the training occurs on matrices A € R™**
and B € R¥", with r < min(d, k). Throughout
the paper, we refer to r as the rank of LoRA, which
is typically selected from {2, 4,8, 16}.

Beyond good performance, the low number
of trainable parameters makes LoRA a practical
solution for decentralized fine-tuning of language
models, where clients have limited training
resources and communication between clients is
costly.

3.2 Decentralized Fine-Tuning

We consider a connected network of n clients, de-
noted by C = {c1,...,¢cn}, withedges E CC x C
representing the communication links between
clients. The network collaboratively aims to solve
the following optimization problem:

n

. 1
min ((Wo+ BA) =~ ;zi(wo + BA)|,

where W) is the pre-trained model that is shared
and fixed across all clients, and the local loss func-
tions ¢; : R™* — R are distributed among n
clients and are given in stochastic form:

0;(Wo + BA) = E¢,p,[Li(Wo + BA; &;)].

Here, the expectation is taken with respect to a
randomly selected sample set & ~ D;, where
D; denotes the local data distribution specific to
client ¢;. Standard empirical risk minimization is
an important special case of this problem, when
each D; presents a finite number m,; of elements
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0:(Wo + BA) = mi Zﬁ <Wo + BA; gg) :
i

& } Then ¢; can be rewritten as

In this decentralized setting, the clients commu-
nicate with each other along the edges e € €&,
which means that each client can communicate
with its neighboring clients. Furthermore, each
edge in the graph is associated with a positive mix-
ing weight, and we denote the mixing matrix by
Q = [gi;] € R™*™. Additionally, we define:

W = W() + BA,
VLi(W) = VL(W;&).
3.3 Mixing Matrix

As previously discussed, in our decentralized
framework, clients communicate exclusively along
the edges of a fixed communication graph that con-
nects n nodes. Each edge in this graph is associ-
ated with a positive mixing weight. These weights
are collectively represented by the mixing matrix
@ € R™"™. We assume that the mixing matrix
Q is symmetric and doubly stochastic, which is
a common assumption in the letreture to ensure
the consensus (Koloskova et al., 2020; Ghiasvand
et al., 2024a). In this work, we utilize two widely
used network topologies, which are described as
follows:

* Ring topology consists of nodes arranged
in a closed-loop structure, where each node
communicates only with its immediate neigh-
bors, leading to a sparse mixing matrix ¢) with
nonzero entries corresponding to these direct
connections. While this structured and deter-
ministic communication pattern simplifies the-
oretical analysis, the limited communication
range can slow down information diffusion,
potentially hindering the overall convergence
speed of the learning process. We use this
challenging topology in many parts of our ex-
periment section.

Erdos-Rényi topology is a random graph
model where each edge between nodes exists
with an independent probability p., but the
connectivity structure remains fixed through-
out training. The mixing matrix for the
Erd6s-Rényi topology is defined as () =
I — mL, where L is the Laplacian ma-
trix of an Erdés-Rényi graph with edge proba-
bility p.. While a larger p. results in a more

Algorithm 1 Dec-LoRA

1: for communication round ¢t <— 1to 7" do

2 for clients ¢; € C in parallel do

3 for local update k < 1 to K do

4 AT = A0 s (WO
5 BOHEHL — Otk _ G r, (W}”*’C)
6 end for

7 Client ¢; sends A5 and B (o their neigh-

bors

8: end for (ee1) (4K

9: At Client ¢;: Ai(t“) =2, qijAJ(tHK
10: By =2245B;
11: end for

connected network, facilitating faster informa-
tion exchange, a smaller p. leads to sparser
connectivity, which may slow down conver-
gence. This relationship will be tested for
LLMs in the experiment section.

4 Proposed Algorithm

We present the Dec-LoRA algorithm, described
in detail in Alg. 1. At the start of the fine-
tuning process, the full model’s architec-
ture and initial weights (A® ~ A(0,02?),
BO) = 0) are distributed to all clients in the set
C = {c1, -+ ,cn}.Dec-LoRA operates across T
communication rounds, where each client performs
K local updates on its trainable LoRA parameters
in each round.

During a communication round ¢, each client
¢; € C initializes its local LoRA matrices with the
obtained LoRA matrices from the previous round,

AZ@ and B (t), and then performs local training on

i
its local dataset for K local updates:

Al(t)-&-k:-i-l _ Agt)+kz _ U@Aﬁz‘ (Wi(t)—i-k) 7

BOFk+L _ Bi(t)+k - U@Bﬁi (Wi(t)+k) ’

7

where 7 is the learning rate, and AEtHk and BZ.(t)Jrk

refer to the LoRA matrices for client ¢; during
communication round ¢ and local update k.

Once the updates are complete, each client

AO+E

transmits its updated parameters, and

Bl.(t)JrK, to its neighboring clients. The clients
then aggregate the parameters received from their

neighbors using the mixing matrix (). The updated
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Figure 1: Illustration of the Dec-LoRA algorithm. The process includes three stages: (1) local training of low-rank
matrices A and B on each client for K iterations using their private data, (2) communication of updated parameters
between neighboring clients in the network, and (3) aggregation of received updates by each client using the mixing

matrix @ to compute the next round’s parameters.

Table 1: A comparative analysis of various decentralized PEFT methods using the RoOBERTa-Base model. Highest
accuracy is highlighted in bold, and the second highest is underlined.

QNLI SST2 MNLI QQP
Method # Param. - - - - Avg.
Ring ER Ring ER Ring ER Ring ER

_, Dec-LoRA 0.60M 90.99 90.81 93.81 93.92 85.37 85.74 88.19 88.01 89.61
| Dec-Adapter 2.95M  90.52 90.54 93.58 94.38 85.45 84.92 87.92 87.81 89.39
i Dec-BitFit  0.10M 86.47 85.81 9243 92.78 83.76 84.24 8239 83.46 86.42
Dec-IA3 0.65M  89.36 89.05 92.66 92.55 83.61 83.61 85.86 85.53 87.78
- Dec-LoRA 0.60M 91.23 91.63 94.61 94.27 85.94 85.60 85.10 86.76 89.39
| Dec-Adapter 2.95M  90.72 90.08 93.69 94.38 8228 83.65 81.01 85.01 87.60
i Dec-BitFit  0.10M 88.28 89.42 93.35 93.12 8228 82.50 80.59 85.35 86.86
Dec-IA3 0.65M  90.12 89.97 93.00 93.23 84.89 84.50 84.02 87.04 88.35

parameters for client ¢; are computed as:

t+1 t)+K
A = a0

j
Bi(t'H) = Z QijB](-t)+K.
J

The steps of the Dec-LoRA algorithm are illustrated
in Fig. 1.

S Experiments

We conduct extensive experiments to evaluate the
performance of the proposed algorithm across
two language models. For the BERT-family
models, we utilize RoBERTa-base (Liu et al.,

2019), while for large-scale models, we employ
LLaMA-2-7B (Touvron et al., 2023). To evaluate
Dec-LoRA, we consider two topologies: a Ring
topology, where each client connects to two
neighbors, and an Erd8s-Rényi topology. The
mixing matrix for the Erdds-Rényi topology is
defined as Q = I — mL, where L is the
Laplacian matrix of an Erd6s-Rényi graph with
edge probability p.. A larger p. results in a more
connected graph. We perform the experiments on

NVIDIA A6000 and V100 GPUs.

Comparative methods. We compare our
proposed Dec-LoRA method with three widely
used PEFT approaches in a decentralized setting:
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Table 2: A comparative analysis of centralized LoRA and Dec-LoRA with 10 and 20 clients under different ranks,
using the ROBERTa-base model.

Rank  # Param. QNLI SST2 MNLI QQp
LoRA Dec-LoRAjy Dec-LoRAyy LoRA Dec-LoRAjy Dec-LoRAyy LORA Dec-LoRAjg Dec-LoRAyy LORA Dec-LoRAjp Dec-LoRAgg
2 0.07M  91.84 90.65 89.69 93.12 93.12 92.78 84.89 84.62 84.20 87.75 87.25 87.04
4 0.15M  92.49 90.85 90.32 93.58 93.81 94.15 85.54 85.54 84.50 88.28 87.89 87.15
8 0.30M  91.84 90.88 89.44 93.35 94.84 93.46 86.00 85.21 84.79 88.78 88.23 87.54
Avg.  0.17M  91.06 90.79 89.82 93.35 93.92 93.46 85.48 85.12 84.50 88.27 87.79 87.24

Table 3: Dataset descriptions and statistics.

RoBERTa-Base (SST-2)

RoBERTa-Base (QNLI)

1

Task | #Train | #Dev. | Metric
MRPC 3,301 367 F1 Score
SST-2 66,675 674 Accuracy
QNLI 103,695 | 5,463 | Accuracy
QQP 360,210 | 40,430 | Accuracy
MNLI | 388,774 | 9,815 | Accuracy

|
i
I
i
1
I
I
i

—— Adapter
BitFit

— IA3

==+ LoRA

10 15 20
T

Adapter (Houlsby et al., 2019) (Dec-Adapter),
BitFit (Zaken et al., 2021) (Dec-BitFit), and
TIA3 (Liu et al., 2022) (Dec-IA3). These methods
are implemented using the Hugging Face PEFT
library (Mangrulkar et al., 2022). Additionally, we
maintain the default hyperparameter settings for
the baseline methods to ensure consistency and
generalizability across all tasks.

5.1 Performance on the BERT Family

We conduct experiments using the Generalized Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018), which comprises vari-
ous natural language understanding tasks. These
include sentiment analysis (SST2 (Socher et al.,
2013)), similarity and paraphrasing tasks (MRPC,
QQP (Dagan et al., 2005)), and natural language
inference (MNLI, QNLI (Williams et al., 2017;
Rajpurkar et al., 2018)). The evaluation metrics
for the GLUE benchmark are detailed in Table 3.
We utilize the full training dataset for each task and
report the best validation accuracy. Validation accu-
racies are calculated based on the averaged models
of the clients at the end of each communication
round. A learning rate of 1le — 3 and a batch size
of 32 are applied consistently across all tasks and
methods.

5.1.1 Comparative Analysis of Decentralized
PEFT methods

In this section, we compare the convergence speeds
and accuracies of Dec-LoRA with three other meth-
ods discussed earlier. Table 1 presents the results
after 20 iterations for experiments with K = 1,

RoBERTa-Base (MNLI)

Figure 2: Convergence speed of decentralized PEFT
methods using the Ring topology.

and 10 iterations for experiments with K = 5. We
set the rank to 16 for Dec-LoRA and the bottleneck
size to 64 for Dec-Adapter. The experiments are
conducted using ring and ER topologies with 10
clients. As shown in the table, Dec-LoRA achieves
the highest average accuracy among these meth-
ods, while maintaining a relatively low number
of trainable parameters. Additionally, the conver-
gence speed for the Ring topology with K =1
is depicted in Fig. 2. As illustrated, Dec-LoRA
demonstrates faster convergence compared to the
other methods across various tasks.

5.1.2 Impact of Number of Clients, Edge
Probabilities, and Number of Local
Updates

To illustrate the impact of various parameters dur-
ing the fine-tuning process, we present results for
three methods on the QNLI and MNLI datasets in
Fig. 3. As shown, Dec-LoRA outperforms the base-
lines across most settings. The detailed results are
as follows.

1. Fig. 3 (a) and (b): These plots show the ef-
fect of the number of clients on accuracy for
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Figure 3: (a) and (d): Effect of the number of clients on accuracy for the Ring topology with K = 1. (b) and (e):
Effect of edge probability in the Erds-Rényi topology on accuracy for K = 5. (c¢) and (f): Effect of the number of
local updates (K) on accuracy for the Ring topology.

Table 4: Left half: Performance analysis of Dec-LoRA with 4-bit quantization for 10 clients across different ranks.
Right half: Performance analysis of Dec-LoRA under data heterogeneity with 3 clients across different ranks.

Method (Rank) QNLI SST2 MRPC QQP ‘ QNLI SST2 MNLI QQP

Full  4-bit Full 4-bit Full 4-bit Full 4-bit ‘ iid. non-iid. iid. non-iid. iid. non-iid. iid. non-iid.
Dec-LoRA (2)  90.65 90.35 93.12 94.38 89.31 89.53 87.25 87.32|90.44  89.99  94.84  94.27  85.63  85.39  88.25  86.99
Dec-LoRA (4)  90.85 91.01 93.81 93.69 89.20 88.97 87.89 87.65 | 91.18  90.66  95.18  94.04  85.71 85.58  88.70  88.01
Dec-LoRA (8)  90.88 91.16 94.84 93.69 89.16 91.45 88.23 88.42 | 91.31  89.90  94.61  94.72  86.23  84.15  88.89  88.24
Avg. 90.79 90.84 93.92 93.92 89.22 89.98 87.79 87.80 ‘ 90.98  90.18  94.88  94.34  85.86  85.04  88.61 87.75

the Ring topology with ' = 20 and K = 1.
As expected, the accuracy generally decreases
as the number of clients increases across dif-
ferent tasks.

Fig. 3 (¢) and (d): These plots highlight the in-
fluence of edge probability in the ER topology
on accuracy, with parameters set to N = 30,
T =5, and K = 5. As demonstrated, a more
connected network, characterized by a higher
edge probability (p.), leads to improved accu-
racy.

Fig. 3 (e) and (f): These figures show the
effect of the number of local updates on ac-
curacy for the Ring topology with N = 30.
In these cases, K x T' = 20 for all experi-
ments. While an increase in the number of
local updates enhances communication effi-
ciency, it results in lower accuracy when the
total gradient computation remains constant.

34

5.1.3 Comparison of Dec-LoRA with
Centralized LoRA

We provide a comparative analysis of centralized
and decentralized LoRA with 10 and 20 clients
across various ranks for the Ring topology, evalu-
ated on four datasets, as presented in Fig. ??. The
results, obtained after 100 communication rounds,
indicate that Dec-LoRA achieves accuracy levels
comparable to centralized LoRA fine-tuning, high-
lighting its viability as an effective solution for
decentralized settings.

5.1.4 Dec-LoRA with Quantization

In this section, we evaluate the use of LoRA
with 4-bit quantization for the pretrained model
(QLoRA) (Dettmers et al., 2024) in a decentralized
setting.  Specifically, QLoRA leverages 4-bit
quantization to compress the base model, making
it much more memory efficient, while still
allowing for fine-tuning using trainable LoRA
adapters. This technique is particularly suited
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Table 5: A comparative analysis of centralized LoRA and Dec-LoRA with 10 clients under different ranks, using the

LLaMA-2-7B model.

Classfication

Multiple Choice Generation

Rank # Param. WIC BoolQ COPA ReCoRD SQuAD DROP
LoRA Dec-LoRAjg LoRA Dec-LoRAjg LoRA Dec-LoRAjg LoRA Dec-LoRAjg LoRA Dec-LoRAjg LoRA Dec-LoRAjg
2 1.06M  73.20 72.57 85.9 84.0 87 87 82.4 81.1 89.76 89.39 48.32 44.35
4 2.10M  T74.61 72.26 85.2 83.5 85 87 81.1 81.2 89.79 89.79 46.56 44.97
8 4.19M  73.04 69.44 85.4 83.7 85 89 81.0 81.3 90.11 89.93 47.59 44.99
Avg.  2.44M  73.62 71.42 85.5 83.7 86 88 81.5 81.2 89.89 89.70 47.49 44.77

Table 6: A comparative analysis of centralized LoRA and Dec-LoRA with 10 clients, using the LLaMA2-13B and

OPT-2.7B models.

LLaMA-2-13B OPT-2.7B
Rank COPA ReCoRD SQuAD SQuAD BoolQ ReCoRD
LoRA Dec-LoRAjp LoRA Dec-LoRAjg LoRA Dec-LoRAjg LoRA Dec-LoRAjp LoRA Dec-LoRA;p LoRA Dec-LoRAjg
8 92 93 84.2 83.9 92.24 90.88 81.93 79.50 63.1 63.6 77.0 75.8

for decentralized environments where computing
resources are often limited, as it enables efficient
training of large models on standard GPUs.

For our experiments, we consider a decen-
tralized setup with 10 clients arranged in a Ring
topology. The results, presented on the left
side of Table 4, show that Dec-LoRA with 4-bit
quantization of the pretrained model performs
nearly identically to the regular Dec-LoRA. This
demonstrates its potential to significantly reduce
memory usage in decentralized settings.

5.1.5 Dec-LoRA under Data Heterogeneity

Data heterogeneity occurs when the training data
is not identically and independently distributed
across clients (non-i.i.d.), causing local models
on individual clients to deviate from the global
model’s optimal state, which can result in slower
convergence (Hsieh et al., 2020; Li et al., 2020).

In this section, we assess the performance
of Dec-LoRA under the condition of data hetero-
geneity using three clients, following a setup
similar to that in (Sun et al., 2024). For the hetero-
geneous setting, we partition the data based on
class labels. For binary classification tasks, the data
is split as [0.15,0.85], [0.85,0.15], and [0.5,0.5],
while for three-class classification tasks, the splits
are [0.6,0.2,0.2], [0.2,0.6,0.2], and [0.2, 0.2, 0.6].

The results are presented on the right side
of Table 4. As observed, there is a slight drop in

performance under the non-i.i.d. setting. A more
detailed discussion of this phenomenon can be
found in Section 7.

5.2 Performance on the Large-Scale
Language Models

Comparison with Other Methods. For large-
scale language models, we conduct experiments
only on centralized LoRA and Dec-LoRA. Apply-
ing Adapters for fine-tuning large-scale models
still requires a significant number of trainable
parameters. For instance, applying Adapters to
LLaMA-2-13B with a bottleneck size of 64—the
same as used for the BERT family—would
require 50.33M trainable parameters, making it
impractical for decentralized scenarios. As shown
in Table 5, the number of trainable parameters
remains relatively small when applying LoRA to
LLaMA-2-7B. Additionally, since LLaMA-2-7B
does not include bias terms, BitFit cannot be
applied, as it updates only the bias parameters.

We evaluate performance using SuperGLUE
tasks (Wang et al., 2019) and question-answering
generation tasks, including SQuAD (Rajpurkar
etal., 2016) and DROP (Dua et al., 2019). For each
task, we randomly select 1000 samples for training
and 1000 samples for validation, reporting the best
validation accuracy. For the experiments involving
large-scale language models, we use a learning
rate of le — 4 and a batch size of 2 across all
tasks and methods. All classification tasks within
the SuperGLUE benchmark are restructured as
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Table 7: The utilized metrics for the SuperGLUE bench-
mark and generation tasks.

Task Name  Metric
WIC Fl1
BoolQ Accuracy
COPA Accuracy
ReCoRD F1
SQuAD F1
DROP F1

language modeling tasks using the prompt-based
fine-tuning approach outlined in (Malladi et al.,
2023). The results shown in Table 5 are obtained
after completing 10 communication rounds/epochs.
The evaluation metrics are presented in Table 7. Ta-
ble 5 presents the results for LoORA and Dec-LoRA
implemented under a Ring topology with 10 clients
and 3 local updates, utilizing the LLaMA-2-7B
model. As shown, for larger models, Dec-LoRA
performs comparably to centralized LoRA on most
tasks, indicating its effectiveness in decentralized
environments. Additional experiments conducted
on LLaMA-2-13B and OPT-2.7B (Zhang et al.,
2022) are presented in Table 6 under the same
setting.

6 Conclusion

In this work, we introduce Dec-LoRA, a method for
decentralized fine-tuning of LLMs using LoRA. By
removing the need for a central server, Dec-LoRA
allows efficient and scalable model adaptation in
distributed settings while preserving data privacy.
We compare Dec-LoRA with other popular PEFT
methods in a decentralized setting and show that
it outperforms them in both accuracy and conver-
gence speed. Our extensive experiments on BERT
and LLaMA-2 family models show that Dec-LoRA
achieves performance comparable to centralized
LoRA, even under challenging conditions such
as data heterogeneity and quantization constraints.
These findings highlight the potential of decentral-
ized fine-tuning as a viable alternative to traditional
federated approaches, opening new opportunities
for future research in collaborative, serverless adap-
tation of LLMs.

7 Limitations

As shown in Section 5.1.5, the Dec-LoRA algorithm
can experience performance degradation under data
heterogeneity. This issue tends to become more

pronounced as the number of clients and local up-
dates increases. In the context of federated LLMs,
methods such as (Babakniya et al., 2023; Yan et al.,
2024) attempt to mitigate this challenge. Similarly,
research like (Ghiasvand et al., 2024b; Ebrahimi
etal.,2024; Niet al., 2025) aims to address data het-
erogeneity in decentralized learning settings more
generally. Investigating these existing approaches
or developing new algorithms to tackle this issue
remains a promising avenue for future research.
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