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Abstract

To enhance the accessibility of scientific lit-
erature in multiple languages and facilitate
the exchange of information among scholars
and a wider audience, there is a need for
high-performing specialized machine transla-
tion (MT) engines. However, this requires ef-
ficient filtering and the use of domain-specific
data. This study examines whether translation
quality improves when we increase training
data through combining two methods: (1) data
selection via topic filtering to identify relevant
sentences from larger corpora, and (2) more ef-
ficient use of data by exploiting fuzzy matches
(similar translations to a given input). We apply
these techniques both to sequence-to-sequence
MT models and off-the-shelf multilingual large
language models (LLMs) in three scientific dis-
ciplines, namely neuroscience, climatology and
mobility. Our results suggest that the combina-
tion of topic filtering and FM augmentation is
an effective strategy for training neural machine
translation (NMT) models from scratch, not
only surpassing baseline NMT models but also
delivering improved translation performance
compared to smaller LLMs in terms of the num-
ber of parameters. Furthermore, we find that
although FM augmentation through in-context
learning generally improves LLM translation
performance, limited domain-specific datasets
can yield results comparable to those achieved
with additional multi-domain datasets.

1 Introduction

The use of a lingua franca like English for schol-
arly communication is, on the one hand, beneficial
as it facilitates knowledge dissemination to a cer-
tain extent in the international research landscape.
On the other hand, it leads to inequalities among
researchers (in terms of understanding and writ-
ing) and scientific information written in different
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languages reaches a limited audience (Ramirez-
Castafieda, 2020; Bitetti and Ferreras, 2017). Ma-
chine translation (MT) is an important support for
mitigating this problem and improving knowledge
dissemination. For instance, with the support of
MT systems, providing translations of abstracts,
keywords, and full articles could become standard
practice for research programs spanning multiple
languages (Amano et al., 2021). More broadly,
adopting translation as a standard practice could
improve access to scientific research for scientists,
students, educators, policymakers, journalists, and
society as a whole (Steigerwald et al., 2022).

Translating scientific texts is challenging due to
specialized terminology, complex syntax, domain-
specific discourse, and the fluid boundaries of sci-
entific disciplines (Byrne, 2014). Moreover, these
unique characteristics of scientific literature and
the limited language resources for training MT sys-
tems further complicate the task for such systems.
In the Translations and Open Science project (Fior-
ini et al., 2023), which we refer to henceforth as
Ta0S, custom MT engines were trained for various
scientific disciplines. This effort showed that it is
challenging to collect parallel training data for sci-
entific disciplines, as many texts are only available
in one language (translation is not an activity that
is habitually applied in scholarly communication
because of disciplinary standards and because there
is a shortage of human resources).

In this paper, we approach the scarcity of sci-
entifically oriented parallel training data for the
English—French language direction by (1) apply-
ing data selection (using topic-based classifiers)
to efficiently filter larger corpora in order to iden-
tify potentially relevant training material for build-
ing sequence-to-sequence neural MT (NMT) mod-
els from scratch, and (2) exploiting fuzzy match
(FM) augmentation techniques (i.e. leveraging the
translation of sentences similar to a given input) to
make more efficient use of the available data for
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NMT models as well as off-the-shelf LLMs. In this
study, we mainly focus on training NMT models
from scratch and less to LLMs for various reasons:
LLMs (the training data of which are typically
unknown) may present data leakage and thus suf-
fer from unrepresentative evaluations; they require
more substantial computational infrastructure for
inference (NMT models can run on CPU, whereas
this is far less obvious for LLM models); and fi-
nally, the answers of instruct variants of LLMs
need some post-processing. Therefore, we do not
provide a comprehensive comparison between (pre-
trained) NMT models and LLMs: while fine-tuning
pre-trained NMT models and LLMs are common
and effective, we merely focus on out-of-the-box
translation capabilities of LLMs (i.e. zero-shot)
and through in-context learning.

2 Related Research

2.1 NMT and LLMs in Specialized Domains

Advancements in NMT, driven mainly by adopting
the transformer architecture (Vaswani et al., 2017a),
have greatly enhanced translation quality across
various domains. In recent years, further improve-
ments have been achieved in MT performance with
LLMs, which leverage extensive training data and
advanced architectures and enhance translation ac-
curacy, fluency, and adaptability across diverse con-
texts. While LLMs have consistently outperformed
traditional models in general-domain MT tasks in
recent years, such as for news, literary texts, and
social media (Kocmi et al., 2023, 2024), their effec-
tiveness in specialized domains remains less con-
clusive. In the WMT 2024 patent translation task,
transformer-based NMT systems from previous
years (2019 and 2020) achieved the best translation
performance as measured by automatic evaluation
metrics for multiple language pairs (Higashiyama,
2024). Furthermore, a recent study by Wassie et
al. (2025) shows that even large fine-tuned LLMs
underperform compared to transformer-based mul-
tilingual encoder-decoder models when trained on
domain-specific medical translation data. These
findings highlight the importance of assessing the
performance of NMT systems alongside LLMs for
domain-specific MT, as traditional NMT models
may still offer competitive or even superior perfor-
mance in such scenarios.
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2.2 Science-oriented Data and NMT Models

To address the lack of parallel data for scientific
texts in underrepresented European languages, the
SciPar corpus was created and made publicly avail-
able through the ELRC-SHARE repository (Rous-
sis et al., 2022). Additionally, as part of the TaOS
project we mentioned earlier, Fiorini et al. (2023)
compiled 316,701 parallel sentences across three
scientific disciplines: (i) Climatology and Climate
Change (code PE10 in the European Research
Council nomenclature), (ii) Neuroscience and Dis-
orders of the Nervous System (LS5), and (iii) Hu-
man Mobility, Environment, and Space (SH7). The
sentences originated from several publication types,
such as journal articles, journal article abstracts
and thesis abstracts). In a more recent effort, Rous-
sis et al. (2024) collected approximately 11 mil-
lion sentence pairs for English-Spanish, English-
Portuguese, and English-French from 62 academic
repositories, covering Cancer Research, Energy
Research, Neuroscience, Transportation Research,
and general academic texts (this dataset is not pub-
licly available).

Efforts have also been made to develop MT sys-
tems for scientific literature. In the TaOS project,
NMT engines were trained for the three above-
mentioned scientific disciplines for the language
directions English—French and French—English.
The engines were trained using a combination of
publicly available corpora covering a variety of
domains and the abovementioned compiled sen-
tences. The results were evaluated by various per-
sonas, i.e. professional translators, researchers,
and students without specific knowledge of the
disciplines in question. Both automatic and hu-
man evaluation showed that the specialized engines
have a substantially better translation quality than
the baseline, i.e. engines merely trained on the
public corpora. Similarly, Roussis et al. applied
domain adaptation by fine-tuning a pre-trained
NMT model (OPUS-MT) for the language di-
rections Spanish—English, Portuguese—English,
and French—English, demonstrating that scientific
texts enhance MT performance according to auto-
matic evaluation metrics.

2.3 Data Selection for NMT

In order to increase the amount of domain-specific
training data, various data selection approaches can
be applied to corpora that cover a variety of topics.
An overview of data selection techniques for do-



main adaptation in NMT can be found in Chu and
Wang (2018). One possible approach is to create
classifiers that are trained on data belonging to a
domain (positive examples) and data not belonging
to it (negative examples) and to extract potentially
relevant training sentences from other corpora, as
illustrated by Defauw et al. (2019). Other poten-
tial approaches consist of comparing sentences
between the multi-domain corpora and domain-
specific resources using metrics like embedding
similarity, see e.g. Pourmostafa et al. (2021), or the
application of topic clustering to sentences, for in-
stance using Latent Dirichlet Allocation (Blei et al.,
2001).

2.4 FM Augmentation for NMT and LLMs

Numerous approaches have been implemented to
enhance domain-specific NMT performance by
leveraging FMs from bilingual resources in the
given domain. Some methods modify transformer-
based architectures by adjusting the decoding pro-
cess (Cao and Xiong, 2018; Reheman et al., 2023),
integrating lexical memory into the NMT archi-
tecture (Feng et al., 2017), introducing additional
attention layers to capture information from trans-
lation memories (TMs) (He et al., 2021), or propos-
ing a new architecture that can effectively edit FMs
to produce MT output (Bouthors et al., 2023). FMs
have also been effectively integrated into NMT
through data augmentation; they leverage source
text similarity to retrieve FMs and incorporate them
by augmenting the source sentences in training, val-
idation and test datasets (Xu et al., 2020; Tezcan
et al., 2021). This approach has proven particularly
effective in specialized domains starting from train-
ing sets of approximately 300K sentence pairs, with
further improvements observed for larger datasets
(Tezcan et al., 2024).

FM augmentation approaches do not only en-
hance NMT performance. LLMs have also shown
the ability to leverage FMs in domain-specific sce-
narios through in-context learning: highly similar
FMs are added to a given input sentence in LLM
prompts, enabling the LLM to replicate previously
observed translation patterns (Moslem et al., 2023a;
Mu et al., 2023). Furthermore, incorporating FMs
(Moslem et al., 2023b) or randomly selected ex-
amples from domain-specific datasets (Alves et al.,
2023) into the fine-tuning process, alongside in-
put prompts has been shown to enhance the MT
performance of LLMs.
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3 Methodology

3.1 Data Selection

We performed topic filtering by applying science-
oriented classifiers that extract potentially relevant
training sentences from other corpora. A classifier
determines how likely a target-language sentence
originates from a scientific discipline. We used
the FastText tool! to create classifiers based on the
target-language part of discipline-specific TaOS
training data (the positive examples consist of a
random sample of sentences from one discipline,
and the negative examples originate from the two
other disciplines). When applying the classifier to
an unseen sentence, we required a minimal score
to accept it as an example of the class. This score
is the lowest score observed at the best trade-off
point of the ROC curve for the training examples,
i.e. the point where the formula T'"PR— F' PR (true
positive ratio minus false positive ratio) reaches its
maximum.

We applied the classifiers to corpora covering
various scientifically oriented and other topics.
Given that the target-language sentences satisfy
the minimal score, we retrieved the corresponding
source-language sentences from the corpora and
obtained additional sentence pairs to be used as
NMT training data.

3.2 FM Augmentation

For FM retrieval, we followed the neural fuzzy
repair (NFR) approach of Tezcan et al. (2021).2
Given a bilingual dataset consisting of source/target
sentence pairs S, T', for each source sentence s; €
S with the translations {¢1,...,t,} € T, we re-
trieved the n the most similar source sentences in
the same dataset {s1,...,s,} € S (i.e., these are
FMs), where s; ¢ {s1,...,s,} (i.e. we excluded
exact matches), given that the FM similarity score
is above a fixed threshold: A > 0.5. To this end, we
measured the FM score F'M (s;, 5;) between two
source sentences s; and s; as the cosine similarity
between their sentence embeddings e; and e;:

6i'6j

FM(si,8;) = — 29
(56:50) = el > N1

€]
where ||e]| is the magnitude of vector e.

We generated the sentence embeddings using
sent2vec (Pagliardini et al., 2018), while we effi-

lhttps://1°ast’cex’c.cc/
2https://github.com/1t3/nfr
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ciently retrieved FMs using a FAISS index (John-
son et al., 2021). The hyperparameters for sentence
embedding generation and FAISS index construc-
tion are detailed in Appendices A.2 and A.3, respec-
tively. Before FM retrieval, all sentences were seg-
mented into subwords using SentencePiece (Kudo
and Richardson, 2018), more specifically using the
XLM-RoBERTa (base) tokenizer.> Table 1 illus-
trates the FM retrieval process.

S We found three studies for inclusion
in the review.

score | 0.9309

FMs | We identified nine eligible studies for inclusion
in the review.

F My | Nous avons identifié neuf études éligibles pour
I’inclusion dans la revue.

T Nous avons trouvé trois études pour
I’inclusion dans la revue.

Table 1: An example of FM retrieval for the

English—French language direction in the neuroscience
discipline for a given source sentence S and the refer-
ence translation T'. F'Mg and F' M refer to the source
and target sides of the retrieved FM with the FM sim-
ilarity score, which is indicated as score. The non-
matching parts are marked in bold.

The work of Tezcan et al. (2021) demonstrated
that, in the context of transformer-based NMT sys-
tems, the augmentation of a given source sentence
with the best FM yields notable improvements in
MT performance but the effectiveness of incorpo-
rating additional FMs is less clear. Following this
work, for the NMT systems, FM augmentation
was implemented using (only) the best FM (i.e.
FM with the highest similarity score), where FM-
augmented source sentences S* consist of the orig-
inal source sentence, concatenated by the transla-
tion of the retrieved FM, using a separator token (S
<sep> F'Mr). The training data consists of both
the original and the FM-augmented source/target
sentence pairs S, T" and S*, T, respectively. During
inference (i.e. on the test and validation sets), each
source sentence is augmented using the same FM
retrieval method described earlier. If no FMs are
retrieved above the threshold A > 0.5, the original
(non-augmented) source sentence is used as input
to the FM-augmented NMT model.

FM augmentation for LLM experiments is im-
plemented by adding n-best F'Mg/F My pairs to
the instruction prompts to leverage the in-context
learning abilities of the given LLM alongside the

Shttps://huggingface.co/docs/transformers/vé4.22.
2/en/model_doc/x1m-roberta#overview
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input sentence S for which the MT output is pro-
duced. The prompt templates are provided in Ap-
pendix A.6.

4 Experimental Setup

4.1 Data

We randomly split the TaOS data* for the three
disciplines into training, validation, and test sets,
ensuring that there is no overlap between them in
terms of sentence pairs. The maximum number of
tokens per sentence (prior to sub-word tokeniza-
tion) in all partitions was limited to a maximum
of 100. Additionally, sentences consisting of a
single token were removed in the validation and
test sets. Finally, we ensured that there were no
unaligned sentence pairs (i.e. sentence pairs with
very low translation equivalence) by analyzing the
source-target pairs in the validation and test sets us-
ing the SentenceTransformer model LaBSE> (Feng
et al., 2022) setting a minimum equivalence score
of 0.6. The number of sentence pairs in the final
partitions are provided in Table 2 while the aver-
age token count for each dataset can be found in
Appendix A.1.

Train  Validation Test
Neuroscience 98,857 1,552 1,543
Climatology 95,694 1,630 1,609
Mobility 106,282 1,784 1,752

Table 2: The number of sentences partitioned from the
TaOS data as training, validation and test sets per disci-
pline.

In order to generate additional MT training data,
we first created a classifier for each of the three
disciplines in the TaOS data, using the method
described in 3.1. We then applied these classifiers
to the French sentences in the three below multi-
domain corpora, filtered out low-scoring sentences,
and retrieved their English pendant to obtain a set
of sentence pairs:

* SciPar:% a collection of parallel corpora from

scientific abstracts;

* EuroPat:” a parallel corpus of European

patent data;
*The data supporting the findings of this study are available
upon request by contacting the corresponding author(s). The
data are provided for research purposes only.
5https://huggingface.co/sentence—transformers/
LaBSE
(’https://opus. nlpl.eu/ELRC-5067-SciPar/en&es/v1/
ELRC-5067-SciPar

7https ://europat.net/ and https://opus.nlpl.eu/
EuroPat/en&fr/v3/EuroPat
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s ParaCrawl:® a parallel data set extracted from
a large set of downloaded web pages.

Before applying the classifiers, we filtered out
additional sentences from the three datasets using
the following approaches:

* We filtered out sentences with a low transla-
tion equivalence using the LaBSE model set-
ting a minumum equivalence score of 0.6, as
the construction of these corpora involved au-
tomated alignment, which sometimes leads to
sentence pairs that are not or are only partially
equivalent’. We only applied the equivalence
detection to a 10M sample of ParaCrawl be-
cause of the high computation cost; therefore,
the topic filtering is only applied to this sam-
ple.

¢ We filtered out short sentences (less than 10
words).

The number of sentence pairs used from the ad-

ditional datasets are provided in Table 3.

Europat ParaCrawl SciPar
Original 11,032,300 9,765,499 1,063,329
TF Neurosci. 2,156,482 2,508,710 392,037
TF Climat. 6,998,414 2,713,013 474,472
TF Mobility 2,610,923 5,879,689 334,144

Table 3: The number of sentence pairs used as addi-
tional training data for the NMT systems and for FM
augmentation (for both NMT and LLM experiments),
obtained from three datasets, before and after topic fil-
tering (indicated as Original and TF, respectively), per
discipline.

4.2 NMT Models

We trained NMT models from scratch, using con-
figurations varying on two aspects: (i) training data
and (ii) FM augmentation. All systems utilized val-
idation sets for the given scientific discipline (i.e.
neuroscience, climatology, or mobility).

Regarding the first aspect, we tested the follow-

ing training data configurations:

e ]d: TaOS data for a given discipline;

e 3d: all TaOS data (i.e. combination of all
three disciplines);

* 3d+Ext: all TaOS data combined with all ex-
tra (i.e. original) multi-domain datasets (i.e.
ParaCrawl, EuroPat and SciPar);

* 3d+ExtTF: all TaOS data combined with the
results of topic filtering (TF), as described in

8https ://paracrawl.eu/ and https://opus.nlpl.eu/
ParaCrawl/corpus/version/ParaCrawl

Based on the test sets held out from the TaOS data, it appeared
that virtually all sentences minimally had this score.
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Section 3.1, on the extra datasets for the given
discipline.

Regarding the second aspect, the above config-
urations were combined with FM augmentation'?,
as described in Section 3.2. This increases the size
of the training data for all configurations.

An overview of the training set sizes of the con-
figurations is provided in Appendix A.4. All the
NMT systems trained from these datasets utilized
the transformer architecture (Vaswani et al., 2017b)
and the OpenNMT-py toolkit'! (Klein et al., 2017).
Prior to training, all sentences were segmented into
sub-words using SentencePiece, as described in
Section 3.2. The resulting vocabulary sizes per sys-
tem are provided in Appendix A.4. All systems
were trained with shuffled training datasets and
early stopping with 10 validation rounds in terms
of accuracy and perplexity. All training runs were
initialized with the same seed. For the systems
that do not utilize FM augmentation, the maximum
source and target lengths were set to 200 tokens.
The maximum source length was doubled to 400
tokens for the systems that utilize FM augmenta-
tion. Other details regarding the hyper-parameters
used for training the NMT systems are provided in
Appendix A.5.

4.3 LLMs

We utilized LLMs in zero-shot and FM-augmented
settings through in-context learning. We tested four
models: Mistral 7B (base)'? and 24B (instruct)!3
(Jiang et al., 2023), Tower 7B (instruct)'* (Alves
et al., 2024), which was fine-tuned on Mistral for
translation-related tasks, and Mistral Nemo 12B
(instruct).!> The instruct variants were necessary
in case of the larger models, as they proved more
suitable for translation tasks without additional fine-
tuning steps.

We tested two types of prompting strategies: (i)
a zero-shot setting with a simple translation instruc-
tion, and (ii) a 12-shot setting, following the work
of (2023a), in which prompts were augmented with

10As an exception, due to the limited size of the /d training
sets, we did not apply further FM augmentation for this con-
figuration.
Uhttps://github.com/OpenNMT/OpenNMT-py, v. 3.5.1.
12https://huggingface.co/mistralai/Mistral—7B—v®.
3

13https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501
“https://huggingface.co/Unbabel/
TowerInstruct-Mistral-7B-v@.2
15https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407
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12-best FMs (source/target pairs), as described in
Section 3.2. To test the usefulness of FM augmen-
tation in different data configurations, FMs were
retrieved from the four different training datasets
used for NMT training, i.e. /d, 3d, Ext and ExtTF.

4.4 Evaluation

We made use of the automated evaluation metrics
SacreBLEU, ' (Post, 2018), chrF (Popovié, 2015),
and COMET!” (Rei et al., 2020) to assess the qual-
ity of the (detokenized) MT output. To verify
whether differences between the automated quality
metric scores of the different MT systems are sta-
tistically significant, we used bootstrap resampling
tests (Koehn, 2004). We performed both the auto-
mated evaluations and bootstrap resampling tests
using the MATEO toolkit'® (Vanroy et al., 2023),
with the default settings for each metric.

5 Results
5.1 NMT Models

Table 4 provides the automated evaluation results
for the translations generated by the different MT
models on the discipline-specific test sets.

Examining the NMT models, we observe that in-
creasing the training set size from single-discipline
datasets (/d) to utilizing all available data from the
three scientific disciplines, along with additional
out-of-domain data (3d_Ext), positively impacted
translation performance. Furthermore, applying
topic filtering to the out-of-domain datasets (ExtTF)
and incorporating FM augmentation (¥M) further
enhanced the automatic metric scores across all
datasets and disciplines, highlighting the effective-
ness of both techniques. The best-performing sys-
tem leveraged the combined datasets from all three
scientific disciplines with topic-filtered extra data
(3d+ExtTF_FM) and FM augmentation, achiev-
ing statistically significant improvements over all
other configurations. Notably, regarding the NMT
experiments, FM augmentation proved most effec-
tive when paired with the dataset configuration that
leveraged topic-filtered multi-domain datasets, de-
livering greater improvements than when applied
to the full, unfiltered datasets.

Ynhttps://github.com/mjpost/sacrebleu v. 2.4.1.
(SacreBLEU and chrF)
"https://huggingface.co/Unbabel/wmt22-comet-da

18https: //mateo.ivdnt.org/
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5.2 LLMs

When analyzing the results across different LLMs,
we can make multiple observations.  Firstly,
FM augmentation through in-context learning en-
hanced the performance of all tested LLMs, across
all metrics and disciplines, with one exception:
Mistral Nemo 13B model generally achieved the
highest automatic metric scores in zero-shot set-
ting without FM augmentation. Secondly, the
impact of the additional datasets is inconclusive
for the Tower, Nemo, and Mistral 24B models,
while FM augmentation improved performance.
Expanding the pool of sentences in the limited
discipline-specific datasets (i.e. /d) for FM re-
trieval, whether by merging training data from all
three disciplines or incorporating additional multi-
domain datasets with or without topic filtering, did
not consistently lead to improvements or, at best,
resulted in only marginal gains. For instance, the
Mistral 24B model achieved the highest COMET
scores in the climatology and mobility disciplines
utilizing only the discipline-specific datasets for
FM augmentation. It could be argued that given
the additional computational resources required for
extracting FMs from more extensive data sets, re-
stricting the pool of sentences for FM retrieval to
the given scientific discipline (using approximately
100K sentences) offers a more favourable balance
between efficiency and quality. Please also see
Figure 1 for an overview of the best-performing
configuration per model and discipline.

When comparing different LLMs, we ob-
serve that the translation performances of the
general-purpose models (e.g., Mistral, Mistral
Nemo) improved with the increasing number
of parameters. The Tower 7B models deviated
from this general pattern, outperforming the
smaller Mistral 7B models using the same data
configurations, as well as the larger Nemo 13B
models across all metrics and disciplines. These
results confirm the effectiveness of the Tower
model compared to other LLMs of similar size
in the MT task (Kocmi et al., 2024). In the
context of LLM parameter size, it should also
be highlighted that although the larger models
generally resulted in higher scores, the smallest
Mistral model (7B) achieved the highest relative
gains from FM augmentation compared to the
zero-shot setting. For instance, in the neuroscience
discipline, Mistral 7B_FM_3d+ExtTF outperforms
Mistral 7B by +2.78 COMET, whereas Mistral
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Neuroscience Climatology Mobility

NMT model BLEU chrF COMET | BLEU chrF COMET | BLEU chrfF  COMET
1d 3911 65.15 7928 | 2957 5799 76.05 | 30.14 59.45 7698
3d 4311 6840 83.06 | 3524 6262 8101 | 3396 6232 8173
3d_FM 43.67 6874 8347 | 3538 6255 81.14 | 3396 6240 81.73
3d+Ext 4440 6942 8470 | 3570 6335 8248 | 36.11 6401  84.88
3d+Ext_FM 4478 6958  85.12 | 3632 63.54 8279 | 3609 63.96 84.80
3d+ExtTF 4499 6975 8473 | 3628 6376 8254 | 36.89 6449  84.96
3d+ExtTF_FM 46.33% 70.58¢ 85.307 | 36.97" 64.000 82.82 |37.68° 64.81* 85.27%
LLM

Mistral 7B 3285 6158 81.64 | 28.66 5798 7997 | 29.98 59.19 82.48
Mistral 7B_FM_1d 39.74 6594 8437 | 3276 60.71 8245 | 3355 61.87  85.01
Mistral 7B_FM_3d 3935 6571 8429 | 3269 6056 8235 | 3370 61.88  85.04
Mistral 7B_FM_3d+Ext 4072 6623  84.37 |34.79* 61.90* 8276 | 3535 62.73  85.11
Mistral 7B_FM_3d+ExtTF | 4050 66.28 84.42 | 3442 6152 8270 | 3527 6269  85.08
Tower 7B 4081 6655 8474 | 3428 6192 8277 | 36.18 63.19 85.02
Tower 7B_FM_1d 4197 67.11 8492 | 3522 6228 8292 | 3584 63.02 85.30
Tower 7B_FM_3d 4198 67.11 8490 | 3503 62.16 82.84 | 3592 63.08 85.36
Tower 7B_FM_3d+Ext 43.17° 67.74* 8495 |36.68° 6291 8290 | 37.08 63.55 8522
Tower 7B_FM_3d+ExtTF 4282 6753 8493 | 3643 6284 8296 | 3699 63.62  85.38
Nemo 13B 40.04 67.01* 84.777 | 33.58 62317 82977 | 34.55 63.167 85.447
Nemo 13B_FM_1d 40.63 6584 8395 | 33.16 6054 8195 | 3378 6129  84.46
Nemo I13B_FM_3d 4072 6598  84.04 | 3327 60.77 8215 | 3347 61.07 84.30
Nemo 13B_FM_3d+Ext 4094 66.08 8395 | 3339 6044 81.64 | 3416 6121  84.05
Nemo I3B_FM_3d+ExtTF | 41.05 66.16 83.93 | 3342 6057 81.72 | 33.72 60.99  84.01
Mistral 24B 4223 6849 8551 | 3590 63.70 83.61 | 3746 65.07 86.18
Mistral 24B_FM_1d 4488 69.81 86.10 | 3727 6444 84.13 | 3872 6568 86.72
Mistral 24B_FM _3d 4494 6990 86.18 | 37.24 6443  84.12 | 3857 6554  86.64
Mistral 24B_FM_3d+Ext 4508 6991 86.11 | 37.26 6447 84.12 | 38.85 6568  86.61
Mistral 24B_FM_3d+ExtTF | 4505 69.92 86.18 | 3731 6451 84.12 | 3885 65.69 86.62

Table 4: Results of the automatic evaluations performed for the different MT systems, per discipline. For each
model (i.e. per section), the highest metric scores are highlighted in bold and statistically significant improvements
are denoted by *, T, and 1, representing p < 0.05, p < 0.01, and p < 0.001, respectively, based on the lowest p
values obtained when compared to all other configurations of the same model type.

24B_FM_ExtTF shows an improvement of +0.67
COMET over Mistral 24B.

5.3 Cross-comparison

In a final analysis, we compare the performance
of the best configuration per model type using
COMET as the primary evaluation metric, with Fig-
ure 1 presenting the automated evaluation results
per discipline of the single best-performing setup
for each model type. This figure further includes
the statistical significance of the performance differ-
ences observed between the various model types.
Upon reviewing the overall best-performing
model, we observe that the largest LLM, Mistral
24B, surpassed all other models with respect to
COMET scores, achieving an improvement of up to
+1.26 within the mobility discipline compared to all
other tested models. However, in the neuroscience
discipline, the highest BLEU and chrF scores
were attained by the top-performing NMT config-
uration (3d+ExtTM_FM), with improvements of
+1.28 BLEU and +0.66 chrF compared to the best-
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performing LLM (Mistral 24B). Moreover, the best
NMT configuration surpassed Mistral 7B, Tower
7B and Nemo 13B across all disciplines and met-
rics, with the exception of COMET scores in the
climatology and mobility disciplines, where Tower
7B achieved higher scores. Since BLEU and chrF
emphasize token and character overlap between
the MT output and the reference translations, it
can be hypothesized that while the NMT model
is better at maintaining discipline-specific lexical
choices for the neuroscience domain, the COMET
scores, which measure semantic similarity, sug-
gest that Tower 7B and Mistral 24B better capture
the overall meaning. However, this hypothesis re-
quires validation through manual evaluation and
error analysis of MT performance in subsequent
studies.

6 Conclusions and Future Work

Developing highly accurate MT systems for spe-
cialized scientific disciplines continues to be a sig-
nificant challenge due to unique textual character-
istics and the scarcity of language resources neces-
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Figure 1: Results of the automatic evaluations for the best-performing configuration per model type selected in
terms of COMET scores (NMT vs. LLMs), per discipline. The highest metric scores per metric and discipline are

highlighted in bold and statistically significant improvements are denoted by *

f, and ¥, representing p < 0.05,

p < 0.01, and p < 0.001, respectively, based on the lowest p values obtained when compared to all other models.

sary for building effective MT systems.

In this study, we combined two existing method-
ologies, aiming to tailor MT systems for the scien-
tific domain, namely topic filtering of large, multi-
domain datasets to extract relevant NMT training
data and FM augmentation to utilize the available
data more efficiently. To this end, we trained NMT
models from scratch and employed four LLMs to
evaluate their zero-shot and in-context learning ca-
pabilities. Our experiments, which covered three
scientific disciplines, namely neuroscience, clima-
tology, and mobility, in the English—French lan-
guage direction, revealed that combining topic fil-
tering with FM augmentation effectively enhances
NMT models trained from scratch. However, al-
though FM augmentation via in-context learning
proved beneficial for most of the LLMs tested, the
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value of additional datasets in this context, regard-
less of whether they included topic filtering, re-
mained inconclusive. Our findings suggest that
smaller, discipline-specific datasets could yield
comparable results to larger datasets when em-
ployed for FM augmentation in this specific setting,
while incurring significantly lower computational
costs.

Furthermore, our findings enable a comparison
between NMT models trained from scratch and
LLMs (without further fine-tuning) for this task.
We demonstrated that specialized NMT models can
achieve superior translation performance compared
to out-of-the-box LLMs in this discipline-specific
scenario, with these improvements being more pro-
nounced when compared to smaller LLMs with
fewer parameters. Therefore, it can be argued that



these improvements in translation quality and other
benefits, such as reduced inference costs, make
NMT systems a viable option for translating sci-
entific literature, particularly when computational
resources are limited. However, given the posi-
tive correlation we observed between translation
performance and the increasing number of LLM
parameters, our findings suggest that larger LLMs,
even in the absence of further fine-tuning, could
deliver better translation performance than such
specialized NMT models.

In future studies, we will test additional config-
urations with given datasets, for example, retriev-
ing FMs for the test/validation sets only from the
discipline-specific datasets while using extra, larger
datasets as additional NMT training data and for
FM augmentation on the training set. Moreover,
we will investigate the effectiveness of additionally
fine-tuning pre-trained NMT models and LLMs
using the in-domain datasets, with or without FM
augmentation (i.e. zero- vs. few-shot settings), as
both approaches have been shown to further im-
prove MT performance in previous studies.

7 Limitations

One of the main limitations of this study is its
limited scope in terms of MT experiments, which
do not explore fine-tuning strategies of pre-trained
NMT models or LLMs. Moreover, our experiments
were limited to automatic assessment of MT per-
formance, which may not fully reflect translation
quality, and to a single language pair, albeit across
three scientific disciplines. Human evaluation of
MT performance and additional experiments in dif-
ferent language directions would be necessary to
validate our findings. Furthermore, our evaluation
focused on the effectiveness of combining specific
data selection and augmentation methods rather
than comparing them against a wider range of al-
ternative approaches. Finally, we did not explore
the efficiency of different n values for integrating
n-best FMs into the LLM prompts or additional
prompting strategies.
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Dataset Avg. No. Tokens (Std. Dev.)
English French
Neuroscience (train) | 23.8 (11.6) 27.5(13.2)
Neuroscience (val.) 23.7 (11.7) 27.4 (13.3)
Neuroscience (test) 23.3(11.7) 27.3 (13.7)
Climatology (train) 25.8 (12.1) 29.2 (13.7)
Climatology (val.) 26.1(12.3) 29.5 (13.6)
Climatology (test) 26.3 (12.8) 29.4 (14.3)
Mobility (train) 26.2 (13.1) 28.3 (13.8)
Mobility (val.) 26.5 (13.2) 28.7 (14.2)
Mobility (test) 26.3 (12.8) 28.4 (13.8)
Scipar 25.1(13.2) 27.9 (14.4)
EuroPat 30.7 (18.6) 30.9 (18.4)
ParaCrawl 223 (11.7) 24.4 (12.9)

Table 5: Average number of tokens per dataset prior
to sub-word tokenization, with the standard deviation
shown in parentheses.

A Appendix

A.1 Dataset Statistics
A.2 Sent2vec Hyper-parameters

To train sent2vec models, we used the hyper-
parameters that are suggested in the description
paper (Pagliardini et al., 2018) for a sent2vec model
trained on Wikipedia data containing both uni-
grams and bigrams. The hyper-parameters values
are provided in Table 6.

Hyper-parameter Value
embedding dimension 480
minimum word count 8
minimum target word count 20
initial learning rate 0.2
epochs 9
sub-sampling hyper-parameter | 5 x 107°
bigrams dropped per sentence 4
number of negatives sampled 10

Table 6: Hyper-parameters for training sent2vec models.

A.3 FAISS Configuration

For efficient retrieval of FMs, we created a
flat FAISS index with an inverted file system
(IVF) of 4096 clusters. We used cosine sim-
ilarity as the match metric by adding the L2-
normalized vectors of the sentence representation
to the index and using an L2-normalized sen-
tence vector as an input query. For more informa-
tion on FAISS, please see https://github.com/
facebookresearch/faiss/wiki.
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A4 NMT Training Data and Vocabulary Sizes

System Neuroscience Climatology = Mobility
1d 98,857 95,694 106,282
3d 300,833 300,833 300,833
3d_FM 601,666 601,666 601,666
3d+Ext 22,161,961 22,161,961 22,161,961
3d+Ext_ FM 44,323,799 44,323,799 44,323,799
3d+ExtTF 5,358,062 10,486,732 9,125,589
3d+ExtTF_FM 10,708,321 20,969,963 18,249,664

Table 7: The total number of bilingual sentence pairs
used for training the NMT systems, per discipline.

System Lang. Neurosci. Climat. Mobility
1d src 22,216 25,049 27,101
tgt 21,414 24,448 25814
3d src 32,791 32,791 32,791
tgt 32,274 32,274 32,274
3d_FM src 35,936 35,936 35,936
trg 32,274 32,274 32,274
3d+Ext src 67,995 67,995 67,995
tgt 62,333 62,333 62,333
3d+Ext_FM  src 69,031 69,031 69,031
tgt 62,333 62,333 62,333
3d+ExtTF src 55,516 57,280 63,512
tgt 51,869 53,669 58,643
3d+ExtTF_FM src 56,506 58,314 64,248
tgt 51,869 53,669 58,643

Table 8: Vocabulary sizes (source/target) of the NMT
systems, per discipline.

A.5 NMT Hyper-parameters
Hyper-parameter Value
source/target embedding dimension 512
size of hidden layers 512
feed-forward layers 2048
number of heads 8
number of layers 6
batch size 32
gradient accumulation 4
dropout 0.1
warm-up steps 8000
optimizer Adam

Table 9: Common hyper-parameter values used for train-
ing the NMT systems.

We performed evaluations on a given validation set
after every 10% of the training data was processed
during each NMT training (i.e. 10 evaluations per
epoch).

A.6 LLM Prompts

The zero-shot and in-context learning (i.e. few-
shot) experiments employed different prompt
templates depending on the model type. Ta-
ble 10 presents the prompt templates used for the
Mistral-7B-v(.3 base model, following Moslem et


https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki

al. (2023a), and for all the instruct models, follow-
ing Format 1 described in Alves et al. (2023).
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Model | Translation Type | Prompt Template
Base Zero-shot English: (source_segment)
French:
Base Few-shot English: (source_fuzzy_matchy)
(e.g., 2-shot) French: (target_fuzzy_matchs)
English: (source_fuzzy_match;)
French: (target_fuzzy_match;)
English: (source_segment)
French:
Instruct | Zero-shot Translate the source text from X to Y.
Source: (source_segment)
Target:
Instruct | Few-shot Translate the source text from X to Y.
(e.g., 2-shot) Source: (source_fuzzy_matchy)

Target: (target_fuzzy_matchsg)
Translate the source text from X to Y.
Source: (source_fuzzy_match;)

Target: (target_fuzzy_match;)
Translate the source text from X to Y.
Source: (source_segment)

Target:

Table 10: Prompt templates used for zero-shot and few-shot translation with the different LLMs tested in this study.
In the few-shot templates, fuzzy matches are ordered from the nth-most similar match to the most similar (where n
refers to the number of shots), followed by the source segment to be translated.
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