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Abstract

Understanding how humans perceive and de-
scribe food is essential for NLP applications
such as semantic search, recommendation, and
structured food communication. However, tex-
tual similarity often fails to reflect perceptual
similarity, which is shaped by sensory expe-
rience, wine knowledge, and individual con-
text. To address this, we introduce Sensory An-
chors—structured reference points that align
textual and perceptual representations. Using
Red Wine as a case study, we collect free-
form descriptions, metaphor-style responses,
and perceptual similarity rankings from partic-
ipants with varying levels of wine knowledge.
These rankings reflect holistic perceptual judg-
ments, with wine knowledge emerging as a key
factor. Participants with higher wine knowl-
edge produced more consistent rankings and
moderately aligned descriptions, while those
with lower knowledge showed greater variabil-
ity. These findings suggest that structured de-
scriptions based on higher wine knowledge
may not generalize across users, underscoring
the importance of modeling perceptual diver-
sity. We also find that metaphor-style prompts
enhance alignment between language and per-
ception, particularly for less knowledgeable
participants. Sensory Anchors thus provide
a flexible foundation for capturing perceptual
variability in food language, supporting the de-
velopment of more inclusive and interpretable
NLP systems.

1 Introduction

Understanding how humans perceive and describe
food is essential for developing NLP-driven ap-
plications in food analysis. These include struc-
tured food descriptions, personalized recommen-
dations, pairing systems, and models that integrate
human sensory perception. While traditional NLP
approaches often rely on textual similarity (Agirre
et al., 2012; Reimers and Gurevych, 2019), human
food perception is influenced by a combination of
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Figure 1: Overview of the Sensory Anchors Framework.

sensory experience, domain knowledge, cultural
context, and personal preference (Majid, 2021).

This raises a critical question: Can textual simi-
larity alone adequately reflect perceptual similarity
in the human experience of food?

Prior work has explored knowledge-driven rep-
resentations of food perception, such as expert-
defined flavor wheels and structured lexicons
(Barbe et al., 2021), as well as consumer-generated
taxonomies (Rodríguez-Mendoza et al., 2024).
However, these frameworks typically assume a
fixed vocabulary and are not easily adaptable to
users with different knowledge levels or interpre-
tive styles. Moreover, most perceptual modeling
has focused on specific products (e.g., branded
wines), whereas category-level modeling (e.g., Red
Wine) remains underexplored. Yet, modeling per-
ception at the category level is essential for build-
ing generalizable systems that align with human
conceptual organization (Rosch et al., 1976) and
support perception-aware NLP.

Perceptual framing differs substantially by
knowledge level. High-knowledge individuals tend
to describe food using structured sensory cate-
gories (e.g., Black Fruits, Red Fruits, Oak), while
low-knowledge individuals often rely on more im-
pressionistic, less differentiated expressions (Parr
et al., 2011). Interestingly, prior research suggests
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that despite these differences in language, their un-
derlying sensory perceptions may be quite similar
(Parr et al., 2011). This implies that the divergence
in descriptions arises not from differences in raw
sensory sensitivity, but from differences in prior ex-
posure and conceptual organization. As individuals
gain more experience, their representations of sim-
ilarity become increasingly refined—not necessar-
ily because perception itself changes, but because
experience reshapes how similarity is conceptual-
ized (McAuley and Leskovec, 2013).

This variability poses a challenge for NLP sys-
tems, which must bridge divergent perceptual struc-
tures across users (Hamilton et al., 2023; Croij-
mans and Majid, 2016). Models based solely on
textual similarity may fail to capture meaningful
sensory similarity, particularly when they overlook
how knowledge shapes both perception and lan-
guage use (Iatropoulos et al., 2018; Speed and Ma-
jid, 2020).

Although prior work in computational gastron-
omy and sensory science has advanced models of
flavor networks (Ahn et al., 2011), ingredient pair-
ings (Maruyama and Spranger, 2022), and multi-
sensory integration (Prescott, 2015), few efforts
have addressed perceptual modeling at the cat-
egory level or across diverse knowledge levels.
While large-scale food NLP datasets have been
enabled by crowdsourced annotations (Callison-
Burch, 2009; Snow et al., 2008), the subjectivity
of perception—especially among heterogeneous
users—remains a core obstacle. We respond to
this challenge by proposing a flexible framework
that can capture diverse sources of perceptual varia-
tion—including domain knowledge, sensory expe-
rience, and cultural background—without attempt-
ing to reduce perceptual judgments to any one fac-
tor.

As an instantiation of this framework, we in-
troduce Sensory Anchors—structured reference
points designed to align perceptual similarity judg-
ments and textual expressions across user groups.
While this study focuses on participants’ knowl-
edge level as the analytic lens, the framework itself
is general and can accommodate other sources of
perceptual variability, such as sensory experience
or cultural background, by substituting the group-
ing axis and comparative analysis accordingly.

Using Red Wine as a case study, we collect both
free-form descriptions and perceptual similarity
rankings from participants with varying levels of
wine knowledge. For clarity, we refer to partici-

pants with higher or lower wine knowledge scores
as “high-knowledge” and “low-knowledge” partic-
ipants, respectively. We treat the similarity rank-
ings as holistic judgments, potentially shaped by
a range of factors including direct sensory experi-
ence, conceptual associations, and prior exposure.
Rather than disentangling these factors, we focus
our analysis on how domain knowledge influences
the relationship between perception and language.

To support participants in articulating nuanced
perceptual similarities, we incorporate metaphor-
style prompts that encourage them to frame their
judgments using familiar conceptual language.

Our study makes the following contributions:

• We propose a novel framework for analyzing
perceptual similarity by systematically com-
paring textual and perceptual rankings across
knowledge levels.

• We show that high-knowledge participants
produce more consistent perceptual rankings
and moderately aligned descriptions for pro-
totypical Red Wine attributes such as Black
Fruits, Red Fruits, and Oak.

• We demonstrate that structured descriptions
from high-knowledge participants do not gen-
eralize to low-knowledge perception, under-
scoring the need to model conceptual and per-
ceptual diversity.

• We find that metaphor-style prompts improve
alignment between language and perception,
especially for low-knowledge participants,
highlighting the value of linguistic scaffold-
ing.

• We extend the Sensory Anchors framework
to category-level modeling, enabling more ro-
bust and knowledge-aware NLP applications.

By bridging the gap between textual and per-
ceptual similarity, this study offers insights that
may inform the design of perception-aware NLP
systems to support inclusive, interpretable, and
user-aligned food communication. Such systems
could enhance tasks such as search and retrieval,
knowledge-sensitive recommendations, and struc-
tured description generation. More broadly, our
framework may contribute to applications in di-
etary education, accessibility, and culturally-aware
food design—supporting socially relevant goals
aligned with the potential of NLP technologies.
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2 Related Work

2.1 Diversity in Food Perception

Food perception is inherently diverse, influenced
by factors such as cultural background, prior expe-
rience, and individual differences. Studies have
examined how multisensory interactions shape
food preferences and descriptions (Spence, 2015;
Prescott, 2015), how cultural variations contribute
to differences in perception (Jeong and Lee, 2021;
Ahn et al., 2011), and how linguistic patterns shape
food descriptions across cultures (Speed and Majid,
2020).

While these studies highlight the variability in
food perception, they often rely on experimental
or qualitative methods, lacking systematic compu-
tational modeling approaches. Recent efforts have
begun to address this gap through computational
methods, including cross-lingual analyses of culi-
nary perception (Leng et al., 2019) and machine
learning-based modeling of taste perception (Aliya
et al., 2024; Androutsos et al., 2024). However,
these approaches often depend on predefined tax-
onomies, which may not fully capture the nuances
of food perception across different cultures and
individual preferences.

2.2 Structured Representations of Food
Perception

Traditional approaches to food description rely
on structured sensory lexicons, expert-defined tax-
onomies, and flavor wheels that provide standard-
ized vocabularies for characterizing sensory ex-
periences (Rodríguez-Mendoza et al., 2024; Su
et al., 2022; Lawless and Heymann, 2010). While
widely used in professional sensory evaluation,
these frameworks often fail to capture the variabil-
ity and subjectivity found in consumer-generated
descriptions.

Expert-oriented frameworks typically use techni-
cal terms and fixed categories, whereas consumers
tend to describe sensory experiences in more intu-
itive, emotionally grounded language. This mis-
match creates a gap between professional and ev-
eryday food descriptions (Croijmans and Majid,
2016; Croijmans et al., 2020).

To address these limitations, recent work has
proposed data-driven methods for modeling sen-
sory perception, including the integration of com-
putational approaches into flavor perception analy-
sis (Hamilton, 2022), computational modeling of
flavor compounds (Ahn et al., 2011), comparisons

between expert and consumer language (Hamilton
et al., 2023), and integration of chemical and lin-
guistic data (Prescott, 2015). Further, multimodal
embeddings and domain-specific large language
models have shown promise for representing food
knowledge in structured NLP systems (Rodríguez-
Mendoza et al., 2024; Huang et al., 2024).

Despite these advances, modeling fine-grained
sensory distinctions remains a challenge. For ex-
ample, recent work using large language models
(LLMs) as virtual tasters has shown that these mod-
els tend to produce generic or overly positive de-
scriptions, failing to capture subtle perceptual dif-
ferences (Torrico, 2025). Similarly, deep learn-
ing models trained on whisky reviews—authored
by a mix of professional and semi-professional
tasters—perform well in identifying descriptors,
but the underlying corpora may not reflect the vari-
ability found in general consumer language (Miller
et al., 2021).

2.3 Crowdsourcing and Annotation for Food
NLP

Crowdsourcing has played a central role in food
NLP, enabling the large-scale collection of sensory
descriptions, ingredient categorizations, and recipe
annotations (Min et al., 2019), and has been further
expanded through computational gastronomy ap-
proaches that leverage user-generated content for
modeling food perception (Trattner and Elsweiler,
2017).

However, food perception poses unique chal-
lenges due to its subjective nature. A growing
body of work shows that individuals with higher
domain knowledge produce more structured and
precise sensory descriptions than those with less
knowledge (Croijmans and Majid, 2016; Parr et al.,
2011). Similar patterns have been observed in wine
and coffee, where expertise correlates with more
consistent and abstract flavor language. These find-
ings highlight the need for modeling strategies that
account for differences in knowledge level and de-
scriptive style.

In sensory science, structured reference points
such as sensory lexicons and calibrated reference
samples are used to enhance consistency and re-
producibility in evaluations (Lawless and Hey-
mann, 2010). These techniques provide struc-
tured methodologies that can help improve the
quality and consistency of data collection in sub-
jective domains like food perception. In NLP,
structured annotation formats such as Best-Worst
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Scaling have proven effective in improving inter-
annotator agreement in sentiment analysis and may
be adapted to food-related tasks (Kiritchenko and
Mohammad, 2017).

2.4 Positioning Sensory Anchors

Building on the limitations identified above, we
propose Sensory Anchors as a structured yet adapt-
able framework for modeling perceptual similarity
in food NLP. Unlike existing approaches that rely
on fixed taxonomies or unstructured textual data,
Sensory Anchors offer a mechanism for systemati-
cally comparing perceptual judgments and textual
descriptions across users with different levels of
domain knowledge.

The framework centers on category-level refer-
ence points (e.g., Black Fruits, Red Fruits, Oak) se-
lected from established sensory taxonomies such as
those used in professional tasting protocols. These
Anchors serve as consistent points of comparison,
enabling perceptual and linguistic responses to be
aligned even when participants use diverse descrip-
tive strategies or vocabulary.

By linking perceived similarity and language
through interpretable reference categories, Sen-
sory Anchors support the analysis of how sensory
concepts are represented across knowledge levels.
This suggests their potential usefulness in applica-
tions such as food recommendation, search, and
structured description generation, where sensitivity
to variation in user background and expression is
essential.

3 Data Collection and Annotation

This section describes the data collection method-
ology, the selection of Sensory Anchors, and the
annotation process.

3.1 Data Collection Methodology

We conducted a pilot study to investigate how indi-
viduals describe and evaluate food perception, re-
cruiting 34 participants through Amazon Mechani-
cal Turk (MTurk). To ensure response quality, we
required participants to have a HIT approval rate of
≥98% and at least 1,500 approved HITs. All par-
ticipants were based in the United States. Prior to
participation, all participants were presented with
a consent form outlining the nature and purpose of
the study and the intended use of their responses.
Only those who provided informed consent were
allowed to proceed.

Each participant completed two main tasks: (1) a
food description task and (2) a perceptual similarity
ranking task.

In the first task, participants provided open-
ended descriptions of the sole target food item
(Red Wine) and seven Sensory Anchors, focus-
ing on sensory attributes such as taste, aroma, and
texture. Participants were instructed to base their
descriptions on their general impressions of each
item, for example by recalling the last time they
consumed red wine, rather than referring to a spe-
cific brand or product label. This approach was
designed to elicit intuitive, memory-based repre-
sentations grounded in personal experience, while
avoiding brand-driven or overly idiosyncratic de-
scriptions. In addition to free-text descriptions, par-
ticipants responded to a series of metaphor-style
prompts designed to elicit intuitive associations
with specific sensory dimensions. For each food
item, they were asked to complete sentences such
as “The sweetness of the red wine is like ____.”
across a set of predefined attributes including basic
tastes (e.g., sweetness, bitterness, sourness), tex-
ture (e.g., smoothness), and intensity-related quali-
ties (e.g., potency, acidity). If a sensory dimension
was not relevant to a given food item, participants
were allowed to skip that prompt. A complete list
of prompts is provided in the Appendix B.

In the second task, participants ranked the seven
Sensory Anchors based on their perceptual similar-
ity in taste and flavor to the target food.

To account for individual differences in do-
main knowledge, participants completed the Wine
Knowledge Assessment Test. We adapted 24 ques-
tions from the knowledge test employed in Qi et al.
(2024), which was originally developed in Velikova
et al. (2015).

Participants were categorized into high-
knowledge (18 participants) and low-knowledge
(16 participants) groups based on their scores,
using the median score (23) as the threshold.
Given the relatively small sample size (N = 34),
we employed a median split to create a simple
and approximately balanced grouping. The
distribution was concentrated around a score of
23, with a few participants scoring lower, resulting
in a slight asymmetry toward the lower end (see
Appendix Figure 2).

Overall, we collected 272 food descriptions (34
participants × 8 food items: Red Wine and 7 Sen-
sory Anchors) and 34 perceptual similarity rank-
ings for Red Wine, forming the dataset for subse-
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quent analysis.

3.2 Sensory Anchor Selection

To provide structured stimuli for perceptual com-
parison, we selected seven Sensory Anchors from
established wine flavor categories defined in the
WSET tasting framework (WSET, 2020). Each cat-
egory represents a class of food descriptors com-
monly used in wine education (e.g., Red Fruits,
Citrus Fruits, Oak).

For each participant, one representative food
item (e.g., strawberry, orange, coffee) was ran-
domly selected from each sensory category to serve
as the anchor. This ensured variation at the item
level while maintaining consistent coverage across
the seven categories. The selected categories cap-
ture key aromatic and taste dimensions relevant to
wine perception and are listed in Appendix Table 7,
along with their corresponding food items.

3.3 Annotation of Sensory Terms and
Description Quality

We manually annotated all descriptions to identify
sensory-related terms across seven perceptual cate-
gories: Acidity, Aroma, Aftertaste, Flavor, Taste,
Weight, and Texture (see Appendix Table 5). Wine-
specific attributes (e.g., "Body”) were mapped to
general categories (e.g., Weight) to ensure compat-
ibility with our cross-domain sensory framework.

Each description was also rated for overall de-
scriptive quality and categorized into one of three
levels:

• High: Multiple concrete sensory terms; spe-
cific and informative enough to meaningfully
distinguish the target item.

• Mid: Generally relevant but lacking detail or
precision.

• Low: Vague, generic, or minimally sensory.

To assess annotation reliability, 72 responses
(26%) were independently labeled by two trained
coders. Inter-rater agreement was moderate
(κ = 0.430; Landis and Koch (1977)), consis-
tent with prior work on free-form sensory descrip-
tions. Disagreements occurred mainly in border-
line cases—especially between Mid and High or
Low and Mid—reflecting subjective differences in
assessing specificity, relevance, and informative-
ness. For example, annotators sometimes differed
on whether vague but technically accurate sensory

terms merited mid- or low-quality labels. These
cases were resolved through discussion, leading
to a shared understanding and refinement of the
annotation guidelines.

Following this calibration, the remaining re-
sponses were annotated by a single trained coder
using the finalized guidelines.

Among all 272 responses, 20.6% were rated as
high-quality, 66.9% as mid-quality, and 12.5% as
low-quality. These annotations formed the basis
for the analysis in Section 4.1, which examined the
relationship between knowledge level and descrip-
tive clarity.

4 Experimental Analysis

This section investigates how domain knowledge
affects both perceptual similarity judgments and
sensory descriptions, using Sensory Anchors as
structured reference points. We analyze (1) the
quality and content of free-form descriptions, (2)
the structure of perceptual similarity rankings and
their alignment with textual data, and (3) the im-
plications of these patterns for perception-aware
NLP.

4.1 Data Quality and Sensory Word Usage

This analysis focuses on participants’ free-form
descriptions, which allow for meaningful variation
in lexical and structural features.

To assess how domain knowledge affects the
quality of sensory descriptions, we compared
several textual features between high- and low-
knowledge participants. These included word
count, lexical diversity (MSTTR), normalized
Shannon entropy, and coverage of predefined sen-
sory categories (see Appendix A for details of
metrics, and Appendix Table 5 for predefined sen-
sory categories). To further assess descriptive clar-
ity, we examined the distribution of quality labels
across groups and conducted a chi-square test of
independence.

Table 1 summarizes the comparison of free-
form descriptions. High-knowledge participants
produced longer descriptions (p = 0.001), with
greater lexical variety (entropy: p < 0.001)
and broader sensory category coverage (p <
0.001). Lexical diversity did not differ signifi-
cantly (MSTTR). While these results indicate that
domain knowledge is associated with greater struc-
tural and topical variation in sensory language, they
do not directly assess semantic accuracy or domain-
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specific relevance. We acknowledge that metrics
such as word count and entropy capture surface-
level variation and do not reflect the semantic accu-
racy or specificity of the descriptions. To address
this, we complement the structural analysis with
human-annotated quality labels, as discussed be-
low.

Appendix Table 6 shows the distribution of de-
scription quality. A chi-square test revealed a sig-
nificant association between knowledge level and
quality (χ2 = 31.303, p < 0.001), indicating that
knowledge level is systematically related to de-
scriptive clarity. While mid-quality descriptions
were common across groups, low-knowledge par-
ticipants were more likely to produce low-quality
responses. In contrast, high-knowledge partici-
pants more often provided specific and structured
descriptions that better support perceptual model-
ing.

These findings suggest that domain knowledge
influences not only what is described, but also how
clearly and specifically sensory attributes are ex-
pressed. This pattern is evident in both structural
metrics and human annotation.

4.2 Knowledge-Level Variation in Perceptual
and Textual Similarity

We examine how perceptual similarity judgments
vary by knowledge level, and how well free-form
and metaphor-style responses align with these judg-
ments. Perceptual similarity serves as the ground
truth. We assess (1) structural and variability
differences in rankings between high- and low-
knowledge participants, and (2) alignment between
perception and text across input types.

4.2.1 Structure and Variability of Perceptual
Similarity Rankings

Participants ranked seven Sensory Anchors by their
perceived similarity to Red Wine. According to
wine education frameworks (e.g., WSET), Black
Fruits and Red Fruits are typical descriptors of
Red Wine, while Green Fruits, Citrus, Stone, and
Tropical Fruits are more common in White Wine.
Oak appears in both.

Table 2 and Table 3 summarize the rankings
across knowledge groups. Mode ranks reveal
group-level tendencies: for example, both groups
most frequently ranked Black Fruits as most sim-
ilar (mode = 1). Red Fruits also ranked highly
in both groups, with a slightly lower mean rank
among high-knowledge participants. Oak had a

mid-range mode in the high-knowledge group but
ranked lower on average in the low-knowledge
group.

To further explore distributional differences
and interpretation consistency, we analyzed
three categories—Red Fruits, Oak, and Green
Fruits—selected to reflect different degrees of as-
sociation with Red Wine. As shown in Appendix
Figure 3, Red Fruits was generally perceived as
similar across groups, but high-knowledge par-
ticipants showed occasional divergence, suggest-
ing participants may interpret specific items (e.g.,
“cranberry” vs. “strawberry”) differently within
the same category. Oak showed stronger con-
trasts: high-knowledge participants often rated
it moderately, while low-knowledge participants
more frequently ranked it as dissimilar. Green
Fruits revealed the clearest consistency gap, with
high-knowledge participants forming a clear peak
and low-knowledge participants exhibiting broader
spread.

These findings indicate that domain knowledge
shapes not only category-level associations but
also how consistently participants apply them.
Mode ranks identify dominant perceptual intu-
itions, while remaining variability underscores
item-specific interpretation.

4.2.2 Alignment Between Textual and
Perceptual Similarity

To evaluate whether participants’ textual responses
reflect their perceptual judgments, we computed
Spearman’s rank correlations between textual and
perceptual similarity scores across the seven Sen-
sory Anchors. Perceptual similarity scores were
defined as the inverse of the mean rank (1 / Mean
Rank), such that anchors perceived as more similar
to Red Wine received higher scores. This transfor-
mation ensured that both similarity metrics were
directionally aligned for correlation analysis.

Textual similarity scores were computed using
TF-IDF cosine similarity under two conditions: (1)
free-form descriptions, and (2) free-form descrip-
tions combined with metaphor-style responses.
These two input types enabled a direct compari-
son between unconstrained language and language
scaffolded by structured prompts. Only participant-
generated text was included in the computation of
metaphor-style responses; prompt templates were
excluded.

We used TF-IDF instead of contextual embed-
dings to avoid introducing external knowledge
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Metric High-Knowledge Mean Low-Knowledge Mean Mann-Whitney U p-value

Word Count 23.306 21.211 11322.0 p = 0.001
MSTTR 0.888 0.901 8336.0 p = 0.174
Normalized Shannon Entropy 0.748 0.721 11222.5 p < 0.001
Sensory Category Coverage 0.444 0.371 8843.5 p < 0.001

Table 1: Comparison of Text Characteristics and Sensory Category Coverage

Rank Sensory Anchor Mean Rank Mode Rank

1 Black Fruits 2.056 1
2 Red Fruits 2.778 3
3 Green Fruits 3.944 4
4 Oak 4.056 4
5 Citrus Fruits 4.778 6
6 Stone Fruits 4.833 6
7 Tropical Fruits 5.556 7

Table 2: Perceptual Similarity Rankings for the High-
Knowledge Group: Mean and Mode

Rank Sensory Anchor Mean Rank Mode Rank

1 Black Fruits 2.188 1
2 Red Fruits 3.062 2
3 Green Fruits 3.750 5
4 Citrus Fruits 4.312 7
5 Oak 4.688 6
6 Stone Fruits 4.938 4
7 Tropical Fruits 5.062 6

Table 3: Perceptual Similarity Rankings for the Low-
Knowledge Group: Mean and Mode

from pretrained models, ensuring that similarities
reflect only participant-generated text.

Table 4 presents the correlation results. In the
free-form condition, high-knowledge participants
showed moderate alignment between textual and
perceptual similarity scores. Low-knowledge par-
ticipants exhibited weaker and more variable align-
ment. We also tested whether high-knowledge
descriptions could explain the perceptual judg-
ments of low-knowledge participants—a common
assumption in prior work. These low correla-
tions suggest that descriptions grounded in domain
knowledge may not effectively generalize to users
with less expertise or different perceptual frame-
works.

The inclusion of metaphor-style responses led
to stronger correlations in both groups. Although
the differences did not reach conventional thresh-
olds for statistical significance (p < 0.05), the
trend suggests that structured prompts helped par-
ticipants—particularly those in the low-knowledge
group—produce descriptions whose textual simi-
larity more closely reflected their own perceptual
rankings.

Taken together, these findings indicate that do-
main knowledge facilitates more consistent cor-
respondence between linguistic and perceptual
similarity structures. However, when guided by
metaphor-style prompts, even participants with less
domain knowledge were able to generate descrip-
tions that more closely matched their own percep-
tual judgments. This highlights the potential value
of structured elicitation for improving the corre-
spondence between language and perception in

modeling applications.

4.3 Summary: Sensory Anchors for
Perception-Aware NLP

Our findings demonstrate that Sensory Anchors
provide an effective framework for analyzing how
perceived similarity is shaped by domain knowl-
edge. By examining sensory descriptions, percep-
tual similarity rankings, and the relationship be-
tween the two, we identify three key insights.

First, high-knowledge participants produced
more specific and structured sensory descrip-
tions, as evidenced by both lexical measures and
annotation-based quality ratings. This was accom-
panied by more stable perceptual similarity rank-
ings, particularly for categories strongly associated
with Red Wine, such as Red Fruits and Oak. How-
ever, variation persisted in how individual items
were interpreted, even within these categories, sug-
gesting that domain knowledge does not fully elim-
inate interpretive diversity.

Second, descriptions produced by high-
knowledge participants did not generalize well
to the perceptual judgments of low-knowledge
participants. Correlations across groups were
low, challenging the assumption that language
grounded in expert discourse can reliably explain
perceptual similarity for less experienced users.

Third, metaphor-style scaffolding improved the
correspondence between language and perception
in both groups. Notably, participants with lower do-
main knowledge—who showed weaker alignment
in the free-form condition—produced metaphor-
style responses that more closely reflected their
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Comparison Spearman ρ p-value

Free-Form Descriptions
High-knowledge Text vs. High-knowledge Perceptual 0.536 0.215
Low-knowledge Text vs. Low-knowledge Perceptual 0.286 0.535
High-knowledge Text vs. Low-knowledge Perceptual 0.357 0.432

Free-Form + Metaphor-Style Responses
High-knowledge Text vs. High-knowledge Perceptual 0.679 0.094
Low-knowledge Text vs. Low-knowledge Perceptual 0.679 0.094
High-knowledge Text vs. Low-knowledge Perceptual 0.500 0.253

Table 4: Spearman rank correlations between textual and perceptual similarity scores, computed over the seven
Sensory Anchors for each language condition and participant group.

own perceptual judgments. This suggests that
structured prompts can help elicit more percep-
tually grounded language, particularly when prior
knowledge is limited.

Together, these results demonstrate that Sensory
Anchors offer a useful framework for analyzing
perceptual variation and its relationship to lan-
guage across knowledge levels. They underscore
the importance of domain knowledge and linguis-
tic scaffolding in the design of perception-aware
NLP systems.

While this study focused on Red Wine as a case
domain, the Sensory Anchors framework is de-
signed to be applicable to other food categories
with structured sensory representations.

5 Conclusion & Future Work

This study investigated how domain knowledge
shapes food perception and description, introduc-
ing Sensory Anchors as structured reference points
for modeling perceptual similarity in language.
Analyses of participants’ descriptions and simi-
larity rankings indicate that perceptual structures
vary across knowledge levels, and that descriptions
from high-knowledge participants may not general-
ize well to those with lower knowledge. Metaphor-
style prompts improved alignment in both groups,
highlighting the role of linguistic scaffolding in
supporting consistent mappings between percep-
tion and language.

Sensory Anchors offer a flexible and inter-
pretable framework for linking textual and per-
ceptual representations in food-related NLP. Al-
though this study focused on Red Wine and used
wine knowledge as the primary axis of variation,
the framework is not inherently limited to domain
knowledge. It can extend to other sources of per-
ceptual variation—such as sensory experience, cul-
tural background, or affective associations. Im-

portantly, our study deliberately targeted category-
level rather than instance-level perception. This
design allows us to investigate how people concep-
tualize and describe broad sensory categories (e.g.,
Red Wine) based on general experience, which is
crucial for building scalable, knowledge-sensitive,
and conceptually robust NLP systems. Applica-
tions include inclusive recommendation and re-
trieval systems, culturally adaptive food commu-
nication, food and beverage pairing support, and
personalized sensory education tools—advancing
the broader goal of aligning language with percep-
tion across diverse user groups.

Limitations. This study has several limita-
tions. First, the sample size was relatively small
(N = 34) and restricted to U.S.-based participants,
limiting generalizability and cultural diversity. Sec-
ond, participants were grouped by a median split
(threshold = 23), which may obscure fine-grained
differences near the cutoff. Third, while we as-
sessed descriptive quality using structural metrics
and human annotation, we did not evaluate se-
mantic accuracy or domain-specific vocabulary us-
age, which could clarify how meaning varies with
knowledge. Lastly, our exploratory correlation
analyses did not include correction for multiple
comparisons, raising the risk of spurious correla-
tions.

Future Work. Future research could extend the
framework to other food domains and investigate
perception across cultural or linguistic groups. In-
corporating finer group definitions (e.g., percentile-
based or continuous modeling) and controlled ex-
perimental conditions may help disentangle differ-
ent sources of perceptual variability. Additionally,
integrating semantic evaluation techniques could
further improve our understanding of how percep-
tual similarity is reflected in language.
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Ethical and Societal Implications

Ethical Considerations and Limitations

Our dataset was collected through crowd-sourced
tasks involving perceptual similarity judgments
and textual descriptions. While quality control
measures were implemented on MTurk, such
as minimum approval rates and task completion
thresholds, the participant sample may still be bi-
ased toward specific demographic groups. This
limits the generalizability of our findings and high-
lights the need for broader participant recruitment
in future studies (Ross et al., 2010; Snow et al.,
2008).

Additionally, our approach relies on structured
Sensory Anchors that draw from expert-oriented
taxonomies, such as those defined by the Wine &
Spirit Education Trust (WSET, 2020). While these
frameworks offer consistency and interpretability,
they may not fully capture culturally diverse in-
terpretations of food perception (Prescott, 1998;
Spence, 2015). Future work could expand the de-
sign of Sensory Anchors by incorporating region-
ally and culturally grounded descriptors to support
more inclusive modeling of perceptual variability.

Although participants also provided confidence
ratings alongside their perceptual similarity judg-
ments, we excluded these scores from the cur-
rent analysis due to their subjective nature and
the complexity of modeling inter-individual cal-
ibration. Future work may leverage confidence
information for weighting similarity rankings, in-
terpreting alignment strength, or identifying per-
ceptual uncertainty, particularly in low-knowledge
populations.

Overall, our study underscores the importance
of considering both participant diversity and the
conceptual framing of perceptual categories when
designing perception-aware NLP systems.

Societal Impact and Accessibility

This research contributes to more equitable and
accessible food-related NLP systems by modeling
perceptual variability across users. Representing
food perception in a structured way can improve
the quality and clarity of textual food descriptions,
which is particularly valuable for individuals with
olfactory or gustatory impairments. Prior stud-
ies have shown that sensory disorders can signifi-
cantly affect dietary decisions, quality of life, and
food-related communication (Croy et al., 2014;
Miwa et al., 2001). By enabling the generation and

retrieval of interpretable descriptions that reflect
user-specific sensory expectations, our approach
supports more personalized and inclusive recom-
mendation systems.

In addition, NLP and AI-driven structured
knowledge representation have been explored in
accessibility applications, including assistive rec-
ommendation systems (Gavat et al., 2023; Chris-
tensen et al., 2019). Recent work on knowledge
graph–based systems has shown that structured in-
formation can improve retrieval for health-related
queries, including those related to smell and taste
disorders (Tauqeer et al., 2023). Our research con-
tributes to this direction by modeling perceptual
similarity in a structured format, enabling the iden-
tification of perceptual gaps across user groups.
This facilitates the collection of more inclusive
and user-tailored food descriptions, making food-
related NLP systems better equipped to accommo-
date diverse sensory profiles.

Our findings demonstrate that incorporating per-
ceptual similarity into food-related NLP can help
structure sensory information in ways that are more
interpretable and actionable. This improves usabil-
ity across users with varying needs, preferences,
and sensory capabilities.

Environmental Considerations
As NLP systems become increasingly integrated
into food-related domains, it is important to con-
sider their environmental impact. Large language
models (LLMs) offer powerful capabilities but of-
ten require resource-intensive fine-tuning and in-
ference. While our study does not directly evalu-
ate computational efficiency, it contributes toward
more sustainable NLP practices by introducing a
framework that leverages lightweight, structured
inputs—such as perceptual rankings and targeted
textual prompts—to reduce reliance on large-scale
model adaptation.

In particular, the structured nature of Sensory
Anchors enables in-context learning and few-shot
adaptation, which can reduce the need for full
retraining and minimize computational overhead.
This aligns with broader efforts to develop environ-
mentally responsible AI systems (Strubell et al.,
2019; Schwartz et al., 2020). Future research
may explore the integration of perceptual data into
prompt-based learning strategies, further advanc-
ing the efficiency and scalability of food-related
NLP applications.
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A Metrics Calculation

To quantitatively assess textual characteristics and
sensory coverage, we employed the following mea-
sures:

Word Count: The total number of words in
each participant’s response. Stopwords were not
removed to reflect natural language use.

Mean Segmental Type-Token Ratio (MSTTR):
A measure of lexical diversity, calculated by divid-
ing the text into fixed-length segments and comput-
ing the average Type-Token Ratio (TTR) across all
segments.

Normalized Shannon Entropy: A measure of
information richness, computed as follows:

Hnorm =
−∑

i pi log2 pi
log2N

(1)

where pi represents the probability of each
unique word, and N is the total number of words
in the description. This normalization ensures com-
parability across varying text lengths.

Sensory Category Coverage Ratio: The pro-
portion of predefined sensory categories (Sec-
tion 3.3) mentioned in each description, calculated
as:

Coverage = Unique sensory categories mentioned
Total predefined sensory categories (2)

These measures provide a structured approach for
analyzing how knowledge levels influence food
descriptions at different linguistic and perceptual
levels. The results from this section establish the
foundation for the perceptual similarity analysis in
Section 4.2.

B Metaphor-Style Prompt List

Participants completed the following sentence tem-
plates for each sensory anchor and food item:

• The overall taste of the [food] is like ___.

• The sweetness of the [food] is like ___.

• The saltiness of the [food] is like ___.

• The sourness of the [food] is like ___.

• The bitterness of the [food] is like ___.

• The umami of the [food] is like ___.

• The smoothness of the [food] is like ___.

• The potency of the [food] is like ___.

• The acidity of the [food] is like ___.

C Additional Tables and Figures

Sensory Category Example Words
Acidity little tangy, balances the acidity
Aroma earthy, floral

Aftertaste dry finish
Flavor dark fruits, roasted nuts
Taste sweet, deep, slightly bitter

Weight rich, bold, full-bodied
Texture smooth, creamy, velvety

Table 5: Annotated Sensory Categories—Examples of
sensory-related words.

Knowledge Level High (%) Mid (%) Low (%)

High-Knowledge 20.8 77.1 2.1
Low-Knowledge 20.3 55.5 24.2

Table 6: Distribution of Description Quality by Knowl-
edge Level
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Figure 2: Distribution of participant scores (out of 24)
on the wine knowledge test.
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Sensory Anchor Category Example Food Items
Green Fruits Apple, Gooseberry, Pear, Grape
Citrus Fruits Grapefruit, Lemon, Lime, Orange
Stone Fruits Peach, Apricot, Nectarine

Tropical Fruits Banana, Lychee, Mango, Melon, Passion Fruit, Pineapple
Red Fruits Redcurrant, Cranberry, Raspberry, Strawberry, Red Cherry, Red Plum

Black Fruits Blackcurrant, Blackberry, Blueberry, Black Cherry, Black Plum
Oak Vanilla, Cloves, Coconut, Chocolate, Coffee

Table 7: Each Sensory Anchor Category and its corresponding items. One item was randomly selected from each
category.

Figure 3: Distribution of perceptual similarity rankings for three sensory categories (Red Fruits, Oak, and Green
Fruits) across knowledge groups.Each subplot displays the frequency of each assigned rank (1 = most similar)
within each group.
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