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Abstract

This work presents the details and findings
of the first mentorship in speech translation
(SpeechT), which took place in December
2024 and January 2025. To fulfil the
mentorship requirements, the participants
engaged in key activities, including data
preparation, modelling, and advanced research.
The participants explored data augmentation
techniques and compared end-to-end and
cascaded speech translation systems. The
projects covered various languages other than
English, including Arabic, Bengali, Galician,
Indonesian, Japanese, and Spanish.

1 Introduction

At the beginning of the mentorship on speech trans-
lation, the participants were provided with the fol-
lowing descriptions and guidelines for each task:

Data: Define, collect, and process bilingual
speech data in a chosen language. Your dataset
should consist of “train”, “dev/validation”, and
“test” splits. By the end of the task, each participant
should share a Hugging Face link to their datasets.
The dataset page metadata should include sections
for data sources, processing steps you applied in
detail, and credits/citations of the original datasets.

Modelling: Choose one of the popular models,
e.g. Whisper (Radford et al., 2022) or Wav2Vec
(Baevski et al., 2020), and fine-tune it on the data
prepared in the first task. Experimenting with dif-
ferent fine-tuning approaches and hyperparameters
is encouraged. By the end of the task, the partic-
ipants should share their fine-tuned models, and
evaluation scores on the test dataset.

Advanced Research: Enhance the quality of
your model through experimenting with advanced
approaches, including creating synthetic data (Lam
et al., 2022; Moslem, 2024), comparing end-to-end
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Figure 1: Cascaded Speech-to-Text System: Two models are
trained, one for ASR, and one for MT of the transcriptions.

Figure 2: End-to-End Speech-to-Text System: One model is
trained to generate the translation directly.

systems to cascaded systems (Agarwal et al., 2023),
using language models (e.g. n-grams) (Baevski
et al., 2020), domain adaptation (Samarakoon et al.,
2018), or any other valid approach. By the end
of the task, the participants should share their ad-
vanced models. They should also clarify how the
advanced approach improved the speech translation
quality compared to the original fine-tuned model.

Release & Publication: Write the project details
to publish as a paper. Moreover, the outcomes of
all the projects are publicly accessible.1

2 End-to-End vs. Cascaded systems

Speech translation systems can be (a) “cascaded”
systems, or (b) “end-to-end” systems (Agarwal
et al., 2023; Ahmad et al., 2024). Cascaded speech
translation systems use two models, one for auto-

1https://huggingface.co/SpeechT
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matic speech recognition (ASR) and one for textual
machine translation (MT) (cf. Figure 1). End-to-
end speech translation systems use one model for
the whole process (cf. Figure 2).

2.1 Cascaded Speech Translation
Cascaded speech systems involve sequential mod-
ules for Automatic Speech Recognition (ASR),
Machine Translation (MT), and optionally Text-to-
Speech (TTS), simultaneously combined to deliver
the output to the end user. The ASR system gener-
ates transcriptions from the input audio, and then
the MT model translates the transcriptions into the
target language. Among the advantages of building
“cascaded” systems are:

• Better quality in production.

• Each component (ASR, MT, TTS) can be in-
dividually optimized.

• Domain-specific (e.g. legal or medical) MT
can be easily integrated.

2.2 End-to-End (E2E) Speech Translation
In end-to-end (E2E) speech systems, one model
produces the whole process. E2E systems can also
be extended with “cascaded” components. Among
the advantages of building E2E systems are:

• Simpler deployment

• Better performance (lower latency)

3 Approaches to synthetic data

When the data is limited for the language or do-
main, synthetic data can be used to augment the
authentic data. Synthetic data for speech transla-
tion systems can be generated in diverse methods,
including:

• Using TTS models to generate synthetic
source audio for authentic translations
(Moslem, 2024)

• Using MT models to generate translations of
audio transcriptions

• Sampling, translating, recombining: Lam et al.
(2022) used an advanced approach to create
synthetic data, by first chunking segments and
transcriptions, creating a memory of prefix-
suffix chunks based on part-of-speech tagging.
Then they retrieve chunks from the memory
to augment prefix chunks with similar suffix

chunks. Finally, they translate the new tran-
scription with MT. Tools such as WhisperX
(Bain et al., 2023) (based on Whisper) can be
used for creating alignments based on word-
level timestamps.

4 Projects

Most of the projects used a mix of data augmen-
tation of authentic data with synthetic data, fine-
tuning models, and comparing the performance of
“end-to-end” speech systems to “cascaded” systems
(cf. Section 2).

Participants used the Hugging Face Transform-
ers library to fine-tune pretrained models. They
fine-tuned Whisper (Radford et al., 2022) for “end-
to-end” speech translation, and for ASR in the “cas-
caded” system. Moreover, they fine-tuned NLLB-
200 (Costa-jussà et al., 2022) for text-to-text trans-
lation as part of “cascaded” speech translation sys-
tems. For evaluation, they used the sacreBLEU li-
brary (Post, 2018) to obtain BLEU (Papineni et al.,
2002) and ChrF++ (Popović, 2017) scores. In ad-
dition, one of the participants calculated COMET
scores (Rei et al., 2020). For inference, they either
used the Transformers library or Faster-Whisper
(based on CTranslate2 (Klein et al., 2020)) for
audio translation and transcription with Whisper.
For text-to-text translation with OPUS and NLLB-
200 models, some of them used the Transformer
library directly while others used CTranslate2 with
float16 quantization, which is more efficient. For
synthetic data generation, they used ChatGPT (Ope-
nAI, 2023) and OPUS (Tiedemann and Thottingal,
2020) models.

Given that each participant chose a language
pair, we dedicate a section for each project
based on the language pair, including Galician-
to-English, Indonesian-to-English, Spanish-to-
Japanese, Arabic-to-English, and Bengali-to-
English. Each language section describes data,
modelling, and evaluation of each project.

4.1 Galician-to-English
4.1.1 Data [GL-EN]
In this project, two different Galician-to-English
Speech Translation datasets have been curated.
First, we compiled the dataset OpenHQ-SpeechT-
GL-EN from the crowdsourced high-quality
Galician speech data set by Kjartansson et al.
(2020). After deduplicating the Galician audio-
transcription pairs, we have applied a machine
translation step to generate the corresponding En-
glish translations. More specifically, we have used
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Language Pair Train Dev Test Dataset

AR-EN 2,228 278 279 farahabdou/FLEURS-AR-EN-split
BN-EN 41,984 9,000 1,000 satarupa22/indic-en-bn
ES-JA 9,972 1,440 1,345 Marianoleiras/voxpopuli_es-ja
GL-EN 4,798 507 282 juanjucm/OpenHQ-SpeechT-GL-EN
GL-EN 2,742 496 212 juanjucm/FLEURS-SpeechT-GL-EN
ID-EN 1,243 792 844 cobrayyxx/COVOST2_ID-EN

Table 1: Data Statistics

GPT-4o (Brown et al., 2020; OpenAI, 2023) with
the following prompt:

[{"role":"system", "content": "You are a help-
ful assistant that translates Galician (gl-ES) to
English (en-XX).", },

{"role": "user", "content": {source_text}}]

Given the absence of reference translation, we
assessed the translation quality using CometKiwi
(wmt23-cometkiwi-da-xl) (Rei et al., 2023), measur-
ing an average score of 0.75. In total, this dataset
contains approximately ten hours and twenty min-
utes of audio.

The second dataset is FLEURS-SpeechT-GL-EN.
This is a subset of the FLEURS (Conneau et al.,
2023) dataset, which contains two thousand paral-
lel audio-transcription pairs in a hundred and two
languages. For assembling our dataset, each Gali-
cian audio-transcription pair has been aligned with
the corresponding English text. For this dataset,
we used the same method for measuring translation
quality, achieving an average score of 0.76. After
cleaning and deduplication, this dataset contains
around ten hours of audio. Table 1 shows more
details about the data.

4.1.2 Modelling [GL-EN]
We first employed Whisper to train an “end-to-
end” speech translation system. Whisper is a set of
strong automatic speech recognition (ASR) archi-
tectures, trained on multilingual and multitask au-
dio data. They can be further fine-tuned for speech
translation. It supports Galician audio and text,
making it a good choice for our data. Given our
compute limitations, we experimented with two
different backbones: whisper-small and whisper-
large-v3-turbo, a simplified architecture of whisper-
large with fewer parameters in the decoder section.
We fine-tuned both models over our two datasets
(cf. Section 4.1.1).

To further improve our “end-to-end” results, we
trained a “cascaded” system which splits the speech

translation task into two consecutive steps (cf. Sec-
tion 2). Intuitively, this separation allows each
model to specialise in a specific step of the pipeline,
while adding one extra level of explainability to
the whole process. The first module consists of a
whisper-large-v3-turbo, this time in transcription
mode, for generating Galician text given the input
audio. Thereafter, on the same train split, we fine-
tuned the MT model NLLB-200-distilled-600M on
Galician-to-English text translation.

Inference was performed using the Transformers
library. More specifically, we used its pipeline func-
tionality to encapsulate pre-processing and post-
processing steps. Training and inference were run
on one RTX 4090 GPU.

4.1.3 Evaluation [GL-EN]
For the FLEURS-SpeechT-GL-EN dataset, the most
performant “end-to-end” system was based on
whisper-small, achieving a BLEU score of 22.62
and a ChrF++ score of 46.11. For the OpenHQ-
SpeechT-GL-EN dataset, whisper-large-v3-turbo
was better, with a BLEU score of 55.65 and a
ChrF++ score of 72.19. Regarding our cascaded
system for FLEURS-SpeechT-GL-EN, after using
the MT model to translate the transcription gen-
erated by the ASR model, we obtained a BLEU
score of 37.19 and a ChrF++ score of 61.33. For
OpenHQ-SpeechT-GL-EN, the cascaded approach
resulted in a BLEU score of 66.05 and a ChrF++
score of 79.58. Hence, the cascaded approach, de-
spite being more computationally demanding, al-
lows for a better specialization for each part of
the system, hence generating significantly better
results (cf. Table 2).

4.2 Indonesian-to-English

4.2.1 Data [ID-EN]
The dataset was compiled by extracting the English
and Indonesian datasets from CoVoST2 (Wang
et al., 2021b), a speech dataset in 21 languages,
including Indonesian. Columns besides the index,
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Indonesian audio with its transcription, and English
transcription were removed. The next preprocess-
ing step was checking duplicate indices within each
split and identifying overlapping indices across
the splits. This dataset was first used to train
an “end-to-end” speech-translation system. For
speech translation using a “cascaded” system, two
models were trained: an automatic speech recogni-
tion (ASR) model and a machine translation (MT)
model. Hence, the audio and transcription columns
were used to train the ASR model, while textual
source and target columns were used to train the
text-to-text MT model.

4.2.2 Modelling [ID-EN]
We employed different approaches for the speech-
translation tasks, an “end-to-end” system and a
“cascaded” system (cf. Section 2). The pretrained
model whisper-small was used for training the
“end-to-end” system. We fine-tuned the model with
the Indonesian audio and English transcription di-
rectly. Meanwhile, in the “cascaded” system, the
model was fine-tuned to predict the audio transcrip-
tion in the same language, which is Indonesian.
As a “cascaded” system requires an MT model for
translating Indonesian transcription into English,
we fine-tuned nllb-200-distilled-600M, with batch
size of 2 and gradient accumulation steps of 8 to
simulate the effect of larger batch sizes. The model
was trained for 10 epochs, saving the best epoch in
the end.

For inference, we used Faster-Whisper for both
translation and transcription with Whisper after
converting the model into the CTranslate2 formate
with float16 quantization, with a batch size 5 and
the VAD filter enabled.2 Similarly, for textual trans-
lation with NLLB-200, we used CTranslate2 with
float16 quantization. Training was run on the T4
GPU from Google Colab, while inference used an
RTX 2000 Ada GPU.

4.2.3 Evaluation [ID-EN]
The evaluation result of the “cascaded” system out-
performs the “end-to-end” system on the CoVoST2
test set. The “end-to-end” system achieved a BLEU
score of 37.02 and ChrF++ score of 56.04 after
fine-tuning Whisper Small, considerably improving
the baseline (whose scores were BLEU 25.87 and
ChrF++ 43.79). The “cascaded” system which fine-
tuned both Whisper for transcription and NLLB-
200 for translation achieved 48.60 BLEU score and

2Voice Audio Detection (VAD) removes low-amplitude
samples from an audio signal, which might represent silence
or noise.

65.10 ChrF++ score, which outperforms both the
baseline (BLEU 38.24 and ChrF++ 56.88) and the
fine-tuned end-to-end model (cf. Table 2).

4.3 Spanish-to-Japanese

4.3.1 Data [ES-JA]
The foundational dataset is VoxPopuli (Wang et al.,
2021a), from which we extracted audio and Span-
ish transcriptions. We generated Japanese transla-
tions using OPUS models (Tiedemann and Thot-
tingal, 2020), initially translating from Spanish
to English and then from English to Japanese.
While multilingual options existed, this two-step
approach was chosen due to the strong performance
of high-resource language pairs. Post-processing
was necessary to refine the dataset. First, we
removed blank spaces, which are not typical in
Japanese writing, ensuring proper formatting and
consistency. Then, we eliminated empty texts and
employed quality estimation with a threshold of
0.7 to filter out low-quality translations, using the
CometKiwi (wmt23-cometkiwi-da-xl) model. This
process helped maintain alignment between the au-
dio, transcriptions, and translations, resulting in
a final dataset of approximately 12.7k rows. Re-
garding content, the dataset consists of European
Parliament event recordings featuring various Span-
ish accents. As a result, models trained on this data
are likely to perform better in similar parliamentary
or formal discourse scenarios (cf. Table 1).

4.3.2 Modelling [ES-JA]
We built two systems for the Spanish-to-Japanese
(ES-JA) speech translation task, an “end-to-end”
system and a “cascaded” system (cf. Section
2). The backbone of the “end-to-end” model is
whisper-small, which has been trained on the ES-
JA VoxPopuli dataset 4.3.1. This whisper-small
model has been fine-tuned specifically for direct
speech-to-text translation, meaning that the Span-
ish audio is encoded and directly decoded into
Japanese, without requiring any intermediate tran-
scription step. This approach offers a simpler archi-
tecture and a lower computational cost, since only
one model is used, training and inference are more
efficient.

On the contrary, the “cascaded” approach in-
volves two separate models, (i) the whisper-small
for transcribing Spanish audio into text, and (ii)
the nllb-200-distilled-600M for translating the tran-
scribed Spanish text into Japanese. While this
method is more resource-intensive, it allows in-
dependent optimization of each component.
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For inference, both approaches process Span-
ish audio inputs into Japanese text output. In the
“end-to-end” approach, the model directly trans-
lates Spanish speech into Japanese in a single step
(only one model is executed, taking less time and
resources). However, in the “cascaded” approach
there is a sequential process: The output of the
model that transcribes Spanish into text is the input
to the model that translates Spanish into Japanese
(Two models are used, making it possible to op-
timize each of them but using more resources),
providing a higher quality in terms of translation
quality metrics. For this, we used the Hugging Face
Transformers library pipelines: “automatic-speech-
recognition” and “translation”. As for infrastruc-
ture, we conducted both training and inference of
the models on one RTX 4090 GPU.

4.3.3 Evaluation [ES-JA]
The evaluation of the Spanish-to-Japanese trans-
lation models reveals a performance gap between
the “end-to-end” and “cascaded” approaches. The
“end-to-end” model scores on the test split indicate
room for improvement, achieving a BLEU score
of 20.86, a ChrF++ score of 23.36, and a COMET
score of 77.7. This suggests that while the transla-
tions maintain some coherence, they lack the pre-
cision and fluency. In contrast, the “cascaded” ap-
proach outperforms the “end-to-end” model across
all metrics. This system reaches a BLEU score of
35.32, a ChrF++ score of 32.82, and a COMET
score of 89.86, demonstrating superior lexical and
syntactic alignment with reference translations (cf.
Table 2).

4.4 Arabic-to-English & Bengali-to-English
Due to the similarity of the projects of the Arabic-
to-English and Bengali-to-English language pairs,
we combine them in one section. Unlike the afore-
mentioned projects that fine-tuned models for all
systems, these two projects fine-tuned models for
the “end-to-end” system. In addition, the Bengali-
to-English project fine-tuned Whisper for the “cas-
caded” system. However, both project used the
baseline of NLLB-200 600M without fine-tuning.

4.4.1 Data [AR-EN & BN-EN]
The dataset used in the Arabic-to-English project
is a subset of the FLEURS dataset (Conneau et al.,
2023), while the Bengali-to-English project used
the IndicVoices dataset after filtering out segments
whose mining scores are less than 0.7 (Jain et al.,
2024; Javed et al., 2024). The data is split into
training and test sets to facilitate model training and

evaluation. As the datasets include both the tran-
scriptions and translations, it is useful for “end-to-
end” speech translation tasks, as well as “cascaded”
systems that involve separate speech recognition
and machine translation models. Table 1 illustrates
more details about the used data.

4.4.2 Modelling [AR-EN & BN-EN]
Two approaches were employed for the Arabic-to-
English and Bengali-to-English translation tasks:

End-to-End Model: The model utilizes whisper-
small model, which is a pre-trained speech-to-text
model capable of handling “end-to-end” speech
translation. This model directly translates Arabic
or Bengali speech into English text without interme-
diate steps. While the Arabic model was fine-tuned
on the FLEURS dataset, the Bengali models were
fine-tuned with the IndicVoices dataset.

Cascaded Model: This approach combines two
models: (i) Automatic Speech Recognition (ASR)
using the Whisper model to transcribe Arabic
speech into Arabic text, and (ii) Machine Trans-
lation (MT) using NLLB-200 to translate the tran-
scribed Arabic or Bengali text into English.

For Arabic-to-English inference, the Hugging
Face Transformers library was used for both
speech-to-text transcription and text translation
tasks, as well as “end-to-end” speech translation.
For Bengali-to-English “end-to-end” translation,
the FasterWhisper library (based on CTranslate2)
was used after converting the model with float16
quantization, while translation with NLLB-200
600M used CTranslate2. Training and inference
utilized Google Colab, as well as GPU P100 on
Kaggle and a multi-GPU setup comprising two
NVIDIA T4 GPUs on Kaggle.

4.4.3 Evaluation [AR-EN & BN-EN]
As in the case of other projects, the results of
English-to-Arabic and Bengali-to-English speech
translation indicate that the “cascaded” model out-
performs the “end-to-end” model in terms of trans-
lation quality (cf. Table 2).

5 Conclusions

The SpeechT mentorship brought together several
practitioners and students from diverse companies
and institutions across the world to explore speech
translation. The participants have diverse back-
grounds, ranging from generic software knowledge
to text-to-text MT experience. Ultimately, five par-
ticipants have made successful submissions and
contributed to this work (cf. Section 6).
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Language Pair System Model Type Dataset BLEU ChrF++

GL-EN

End-to-End Whisper Small Baseline Fleurs 16.01 44.99
End-to-End Whisper Large Turbo Baseline Fleurs 5.09 26.59
Cascaded + NLLB-200 600M Baseline Fleurs 34.47 59.29

End-to-End Whisper Small Fine-tuned Fleurs 22.62 46.11
End-to-End Whisper Large Turbo Fine-tuned Fleurs 18.96 46.00
Cascaded + NLLB-200 600M Fine-tuned Fleurs 37.19 61.33

End-to-End Whisper Small Baseline OpenHQ 21.46 41.12
End-to-End Whisper Large Turbo Baseline OpenHQ 3.38 21.82
Cascaded + NLLB-200 600M Baseline OpenHQ 43.01 64.52

End-to-End Whisper Small Fine-tuned OpenHQ 50.96 69.24
End-to-End Whisper Large Turbo Fine-tuned OpenHQ 55.64 72.19
Cascaded + NLLB-200 600M Fine-tuned OpenHQ 66.05 79.58

ID-EN

End-to-End Whisper Small Baseline CoVoST2 25.87 43.79
Cascaded + NLLB-200 600M Baseline CoVoST2 38.24 56.88

End-to-End Whisper Small Fine-tuned CoVoST2 37.02 56.04
Cascaded + NLLB-200 600M Fine-tuned CoVoST2 48.60 65.10

ES-JA

End-to-End Whisper Small Baseline VoxPopuli 0.48 3.18
Cascaded + NLLB-200 600M Baseline VoxPopuli 21.34 23.21

End-to-End Whisper Small Fine-tuned VoxPopuli 20.86 23.36
Cascaded + NLLB-200 600M Fine-tuned VoxPopuli 35.32 32.82

AR-EN
End-to-End Whisper Small Baseline Fleurs 5.65 31.75

End-to-End Whisper Small Fine-tuned Fleurs 15.06 39.03
Cascaded + NLLB-200 600M Baseline Fleurs 24.38 51.79

BN-EN
End-to-End Whisper Small Baseline IndicVoices 6.33 24.60

End-to-End Whisper Small Fine-tuned IndicVoices 10.08 30.97
Cascaded + NLLB-200 600M Baseline IndicVoices 20.42 42.51

Table 2: Results: Cascaded systems outperform end-to-end systems in speech translation across all language pairs.

Successful submissions incorporated a range of
techniques. In particular, participants experimented
with synthetic data generation with large language
models (e.g. GPT4) and MT models (e.g. OPUS).
The focus of most of the experiments was compar-
ing the speech translation performance of “end-to-
end” systems with “cascaded” systems (cf. Section
2). For this purpose, the participants fine-tuned
pretrained models, including Whisper and NLLB-
200. While the “end-to-end” systems fine-tuned
Whisper for direct speech translation, building the
“cascaded” systems involved two steps, namely
fine-tuning Whisper for ASR, and then employing
an MT model (e.g. NLLB) for translation of the
generated transcription. As Table 2 illustrates, “cas-
caded” systems outperformed “end-to-end” across
all language pairs. In conclusion, this mentorship
has enabled the participants to experiment with

various system designs and fine-tuning strategies,
deepening their understanding of the speech trans-
lation area through hands-on practice.

6 Contributions
• Yasmin Moslem: Organizer and mentor of SpeechT

mentorship in Speech Translation

Participants (alphabetically ordered)

• Farah Abdou: Participant, Arabic-to-English Speech
Translation

• Juan Julián Cea Morán: Participant, Galician-to-
English Speech Translation

• Mariano Gonzalez-Gomez: Participant, Spanish-to-
Japanese Speech Translation

• Muhammad Hazim Al Farouq: Participant,
Indonesian-to-English Speech Translation

• Satarupa Deb: Participant, Bengali-to-English Speech
Translation
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