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Abstract

Understanding representation transfer in mul-
tilingual neural machine translation (MNMT)
can reveal the reason for the zero-shot transla-
tion deficiency. In this work, we systematically
analyze the representational issue of MNMT
models. We first introduce the identity pair,
translating a sentence to itself, to address the
lack of the base measure in multilingual inves-
tigations, as the identity pair can reflect the
representation of a language within the model.
Then, we demonstrate that the encoder trans-
fers the source language to the representational
subspace of the target language instead of the
language-agnostic state. Thus, the zero-shot
translation deficiency arises because the rep-
resentation of a translation is entangled with
other languages and not transferred to the tar-
get language effectively. Based on our find-
ings, we propose two methods: 1) low-rank
language-specific embedding at the encoder,
and 2) language-specific contrastive learning
of the representation at the decoder. The exper-
imental results on Europarl-15, TED-19, and
OPUS-100 datasets show that our methods sub-
stantially enhance the performance of zero-shot
translations without sacrifices in supervised di-
rections by improving language transfer capac-
ity, thereby providing practical evidence to sup-
port our conclusions. Codes are available at
https://github.com/zhiqu22/ZeroTrans.

1 Introduction

State-of-the-art neural machine translation systems
are adaptable to multilingualism, resulting in a sin-
gle encoder-decoder model that executes arbitrary
translations by adding a tag specified to the target
language at the beginning of source sentence (Firat
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Figure 1: Different analytical methods lead to different
conclusions. 1a means the target language family clus-
ters the representations of translations from English (en)
to other languages through the encoder. 1b indicates the
encoder semantically aligns different source languages.
Language codes in this work follow ISO 639-1, and
Appendix D provides details of those figures.

et al., 2016; Johnson et al., 2017; Wu et al., 2021).
Multilingual neural machine translation (MNMT)
is theoretically attractive because zero-shot transla-
tions, i.e., translations unseen in training, allow the
training of a multilingual model with minimal cost.
Unfortunately, the performance of zero-shot trans-
lations always lags behind (Aharoni et al., 2019;
Arivazhagan et al., 2019a; Gu et al., 2019; Yang
et al., 2021; Pan et al., 2021; Chen et al., 2023a).

Representational analysis in MNMT models can
guide the improvement of zero-shot translation.
However, two contrary opinions are demonstrated
by prior works: (1) the encoder clusters transla-
tion representations based on the target language
(Kudugunta et al., 2019; Liu et al., 2021; Tan and
Monz, 2023; Stap et al., 2023; Sun et al., 2024),
as illustrated in Figure la; (2) an ideal encoder
is expected to learn language-agnostic representa-
tions, capturing general cross-lingual features that
are transferable across languages (Pan et al., 2021;
Gu and Feng, 2022; Gao et al., 2023; Bu et al.,
2024), as shown in Figure 1b. In this work, we aim
to analyze and reconcile this discrepancy. We first
introduce the identity pair, a pseudo pair translating
a sentence to itself. Specifically, the analyses con-
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ducted by those prior works rely on real translation
pairs, leading to inaccurate results, as a translation
pair cannot serve as a base measure for another pair.
The identity pair, however, addresses this issue by
serving as a proxy for the optimal representation of
a language instead of a translation pair. Then, mul-
tiple analytical methods are employed to show the
representation transfer within MNMT models. Our
findings offer a unified perspective on these two
opinions: the encoder transfers translation repre-
sentations into the target language subspace, where
different source languages are semantically aligned.
Thus, the zero-shot translation deficiency stems
from the failure to transfer the translation represen-
tation to the target language, as it becomes entan-
gled with representations of other languages in the
encoder.

Guided by our findings, we propose two meth-
ods for the encoder and decoder, respectively, to
improve multilingual representations: Low-Rank
Language-specific Embedding (LOLE) is applied
to bias the representations in the subspaces of target
languages at the encoder; and Language-specific
Contrastive Learning of Representations (LCLR)
is applied at the decoder to isolate representational
space across languages. We evaluated the proposed
methods on three benchmarks, Europarl-15 (Koehn
et al., 2005), TED-19 (Ye et al., 2018), and OPUS-
100 (Zhang et al., 2020a; Yang et al., 2021), for
two automatic metrics, SacreBLEU (Post, 2018)
and BERTScore (Zhang et al., 2020b). The experi-
mental results show that our methods outperform
strong baselines in training from scratch because
of improved representational transferability. Our
methods also perform effectively in fine-tuning,
even though pre-trained models are trained by dif-
ferent strategies of language tags, which proves
that target language information on the encoder
side consistently benefits MNMT.

2 Background

2.1 Multilingual Neural Machine Translation

Johnson et al. (2017); Wu et al. (2021) demon-
strated that the training strategy of adding a lan-
guage tag at the beginning of the input sentence
on the encoder side boosts the zero-shot trans-
lation capacity of the MNMT model. Given a
multilingual corpus C that covers a set of ¢ lan-
guages, a set of their corresponding language tags
exists: L = {l1,ly,...,0;}. For a source-target
sentence pair (x,y), i.e., ¢ = x1, %2, ..., T, and
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Y = Y1,Y2, - - -, Ym, the training data consists of a
pair in form of (x,[,y), where [ is the language
tag of y that instructs translation from « into lan-
guage [. The model is trained over all pairs in C to
optimize the following cross-entropy loss:

Lee=— Y logp(yll,x;0),
x,l,yeC

)

where p(y|l, x; 0) is the probability distribution of
y and 6 represents the model parameters.

2.2 The Discrepancy in Prior Works

Pan et al. (2021); Gao et al. (2023); Bu et al. (2024)
state that, for an encoder-decoder MNMT model,
an ideal encoder is regarded as transferring the
source sentence into a language-agnostic state, pre-
serving only semantic information.! As evidence,
the t-distributed stochastic neighbor embedding (t-
SNE) (van der Maaten and Hinton, 2008), which
can convert similarities between vectors into joint
probabilities, has been used to show that represen-
tations of sentences from different languages are
aligned at the output of the encoder when sharing
the same semantics. However, this result contrasts
with the findings of Kudugunta et al. (2019); Stap
et al. (2023); Tan and Monz (2023). Specifically,
using the singular value canonical correlation anal-
ysis (SVCCA) (Raghu et al., 2017) to compare the
similarity between two vectors, i.e., the sentence
representations of two translations, reveals that the
encoder tends to transfer the representation into a
state with target language features.

We argue that this discrepancy stems from the
lack of a base measure. Namely, those works al-
ways compare the representations of real trans-
lation pairs in which different analysis methods
lead to different results. For instance, the transla-
tion from English to German, denoted by en—de,
cannot be accurately measured by comparing it
with another translation from a different language
x—de, because en—de is expected to be measured
by the language representation of either de or en.
Thus, proposing a base measure is necessary to
draw the same conclusion from different analysis
methods, e.g., t-SNE or SVCCAZ.

! Although Pan et al. (2021) proposed that the ideal output of
the encoder is language-agnostic by adding a source language
tag at the beginning of the encoder, the follow-up works (Gao
etal., 2023; Bu et al., 2024) practiced this concept with adding
a target language tag, which is the main strategy investigated
in this work.

>We follow Liu et al. (2021) to measure SVCCA scores at the
sentence level, which is introduced in Appendix A.
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Figure 3: Visualizations of layer-wise SVCCA scores for the encoders with 8 and 10 layers on diverse languages in
Europarl-15, as a comparison of Figure 2 to prove the generalization.

3 Investigating Representation Transfer
in MNMT

We conduct preliminary experiments to investi-
gate representations by introducing identity pairs
as base measures using two different datasets,
Europarl-15 (Koehn et al., 2005) and TED-19 (Ye
et al., 2018), which are introduced in Appendix B
in detail. Then, following Kudugunta et al. (2019),
our investigation is based on Transformer models
with 6 encoder and decoder layers. We also in-
vestigate scenarios with 8 and 10 encoder layers.
Appendix C introduces the detailed model settings.

3.1 Identity Pairs

An identity pair refers to a sentence pair translat-
ing from one sentence into itself to represent the
optimal state of processing language features, i.e.,
the semantics and syntax of the source sentence by
the model. Notably, our models are only trained
by translating from one language to another. In
this setup, the identity pair is a zero-shot transla-
tion, which does not simply copy the input to the
output.’ On the encoder side, we derive the repre-
sentation from a language translating to itself, i.e.,
(z,l',x), where I’ is the language tag of x, with

3This claim is supported by Qu and Watanabe (2022), which
demonstrate another zero-shot scenario: removing the lan-
guage tag during inference results in any source sentence
being translated into English. Thus, the identity pair indeed
presents a translation process by adding a language tag.

&3

the aim of recovering the source sentence from the
hidden representations without inference on the de-
coder side. We also derive the representation in the
decoder from the gold translation of (x,!’, x).

We use SacreBLEU (Papineni et al., 2002; Post,
2018) to evaluate the translation quality of 6 iden-
tity pairs, which are generated by inference. The
scores of en—en, de—de, and pt—pt in Europarl-
15 are 73.49, 61.04, and 71.97, which significantly
outperform 44.04 of de—en, 36.63 of en—de, and
46.24 of en—pt, respectively. Similarly, en—en,
tr—tr, and vi—vi in TED-19 obtain scores of
72.52, 36.58 and 59.26, which are higher than
34.92 of de—en, 14.81 of en—tr, and 29.78 of
en—vi, respectively. Such high scores in the iden-
tity pair are caused by that short sentences are re-
covered from hidden representations perfectly, and
long sentences only have a few changes in word se-
lection. Such evidence suggests that identity pairs
can serve as base measures for comparing represen-
tations because the identity pair is a proxy for the
optimal representation of a language, specifically,
x—en are expected to be close to en—en in the
representational space.

3.2 Language Transfer Within the Encoder

Given two languages @ and @, we follow Pan et al.
(2021); Liu et al. (2021) to obtain sentence-level
representations for « in @ and y in @ by applying
mean pooling over token representations. We then
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shows the more details.

organize the comparisons into three cases to ana-
lyze the variation in encoder representations: (i)
comparing (z,1%, x) and (y,!®, x) to show how
target language features are encoded; (ii) compar-
ing (x,1®, ) and (x,1®,y) to show how source
language features are encoded; (iii) comparing two
different identities, (x,[®, x) and (y, 1%, y)*.

The two models trained by Europarl-15 and
TED-19 show the same tendency in Figure 2, i.e.,
the language features for @ of (i) consistently in-
crease in both cases involving the central language,
i.e., English, in Figures 2a and 2c, and non-central
languages in Figures 2b and 2d. The target lan-
guage feature of @ emerges as the primary factor
that affects representations at the fifth and sixth lay-
ers when the cases of (i), (ii), and (iii) are compared.
Therefore, we can conclude that the language fea-
tures of the representations are transferred to the
target side within the encoder. Meanwhile, we ob-
serve that the scores of (iii) are close to or even
exceed those of (ii) at some layers both in Figure 2.
This proves that the feature of the source language
is not the primary factor for encoding representa-
tions because representations are transferred to the
subspaces of target languages. Thus, the compar-
ison between (ii) and (iii) supports that language
transfer is completed within the encoder.

To validate the generality of this conclusion, we

4(:(:, °, x) indicates the identity of @, ie., @—®, and
(y, 1%, x) indicates a sentence of @ translating to the sentence
of @ instructed by the language tag of @, i.e., @—.
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Figure 5: Visualizations for the encoder’s output by
t-SNE and BiKDE. 5a, 5b and 5c are measured in
Europarl-15. 5d, Se and 5f are measured in TED-19.

extend our analysis to models with 8 and 10 en-
coder layers (Figure 3). The same trends hold: (i)
continues to show increasing similarity scores, with
the final values even higher than in the 6-layer set-
ting, suggesting stronger target language alignment.
Again, the relationship between (ii) and (iii) re-
mains consistent, further confirming that the source
language is not the dominant factor in shaping en-
coder representations. These results demonstrate
that language transfer within the encoder is robust
across different architectural depths.

On the other hand, identity pairs also allow the
measurement of the alignment of different lan-
guages in the target language space through t-SNE.
Compared with the sentence-level measurement of
Pan et al. (2021); Gao et al. (2023), we measure the
alignment of representations at the token level. As
shown in Figure 4, semantic similarity causes the
representations to cluster together. Moreover, as
shown in Appendix G, these representations are not
clustered before being processed by the encoder,
and the case with different target languages has a
higher overall variance. Combined with the find-
ing that the encoder transfers the representation
of the source language to the target language, the
evidence further suggests that there is no general
and cross-lingual state for directly sharing semantic
information within the encoder, and the alignment
shown in Figure 1b occurs in the representational
subspace of the target language.

3.3 Entanglements Hindering the Transfer

Although the investigation in Section 3.2 shows
that the representations gradually transfer to the tar-
get language in a translation pair, the representation
spaces of multiple languages may potentially entan-
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gle with each other, resulting in the failure of the
zero-shot translation (Qu and Watanabe, 2022). To
further illustrate the relationship between different
languages, we use t-SNE and BiKDE to visualize
the representations at the output of the encoder
for the several identity pairs in Europarl-15 and
TED-19. Figures 5a and 5d show that different
identity pairs are uniformly distributed in the rep-
resentational space. This distribution proves again
that the encoder is language-specific because each
language has an isolated representational subspace.

Compared with identity pairs that represent the
ideal capability of the model in processing lan-
guages, the distributions plotted in Figures 5b and
Se reflect the actual capacity for the supervised
translation of en—x. Figures 5b and 5e show the
distribution of representations in the pairs trans-
lating from en, which are similar to that of iden-
tity pairs. The difference between identity pairs
and supervised language pairs can be attributed to
the influence of the source language information,
which hinders the full use of the target language
information learned by the encoder.

Moreover, the language-specific subspaces can-
not be clearly separated for zero-shot translations,
as shown in Figures 5c and 5f. Specifically, all rep-
resentations are entangled around the supervised
language pair of x—en, which hinders these rep-
resentations from transferring into the ideal sub-
spaces of the target language. This aligns with Qu
and Watanabe (2022) and Stap et al. (2023) that
multilingual representations are entangled, which
explains the weakness of zero-shot translation com-
pared with supervised translation, suggesting that
improving the transferability of representations is
attributed to the extent of language transfer within
the encoder.

3.4 Language Features in the Decoder

We further investigate the importance of target lan-
guage features versus semantics in the decoder.

85

Given two sentences x of language @ and y of lan-
guage @, the decoder representation of (z, 1%, y)
is considered as the base measure. We group two
cases: (iv) For each sentence in a test set, we iden-
tify the pair (2/,1%, y') with the lowest SVCCA
score in the encoder representation to derive a ’
that is distant from &. Then, we compare it with the
base measure to show the importance of target lan-
guage features; (v) We compare the base measure
and (y, 1%, y) to show the importance of semantics.
The two scenarios shown in Figure 6 present the
same trend, which is that (iv) maintains high scores
despite their semantics being entirely different. At
the top layers of the decoder, the gradually increas-
ing difference between (iv) and (v) confirms that
the decoder tends to learn the target language speci-
ficity (Sen et al., 2019). However, Figure 6 shows
that, for (iv), a wider interquartile range exists at
the bottom layers of the decoder, and its scores are
close to those of (v), which implies the weakness in
distinguishing languages for zero-shot translations.

4 Encouraging Representation Transfer

To validate the findings in Section 3, we propose
two methods on the encoder and decoder sides, re-
spectively, to improve transferability. Based on
the findings in Sections 3.2 and 3.3, improving
the extent of language transfer in the encoder can
overcome the hindered representations of zero-shot
language pairs. We introduce a learnable embed-
ding referred to as Low-rank Language-specific
Embedding (LOLE). It serves as biases to force
representations to transfer into the target language
with negligible cost. Based on the findings in Sec-
tion 3.4, the capacity for multilingual features is
insufficient at the lower layers of the decoder. We
introduce Language-specific Contrastive Learning
of Representations (LCLR) as an training extra
task to regularize the representations to specify the
representational boundary for each language.

4.1 Low-Rank Embedding for the Encoder

LetE = {e!,e?,..., e}, e/ € R? be aset of em-
beddings that correspond one-to-one with the lan-
guages in L. For a translation (x, [, y), the embed-
ding in [E corresponding to [ is denoted by e'. The
hidden representation H?* {hi,h3, ... hg},
where H* € R%%?_is extracted before the feed-
forward network (FFN) (Khandelwal et al., 2021;
Xu et al., 2023; Deguchi et al., 2023) at the z-
th encoder layer. Then, we broadcast €' to El,
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E! € R7%? and we bias H? to H>:

h; = hi +el, 2
where HZ is the input for the FFN of the z-th en-
coder layer (Figure 7a). We execute this biasing at
the second-top encoder layer to ensure sufficient
capacity for fusing representations and language
information, while implicitly allowing lower layers
to focus on surface-level information.

The simple language categorization by embed-
ding may lead to a risk of dimensional collapse
in the latent space (Jing et al., 2022). Thus, we
reduce the dimension of [E to d° to allow biasing in
a low rank, and add it to the head of h; to simul-
taneously encourage language transfer and mini-
mize the influence on representations (Hu et al.,
2021). Figure 7b is a spectrum used to illustrate
dimensional collapse using a comparison of differ-
ent d° in Europarl-15. The spectrum shows that
larger dimensions are primarily composed of noise,
whereas a dimension that is too small adversely
affects the learning of key features.

4.2 Contrastive Learning for the Decoder

Given a training batch, we extract hidden repre-
sentations from the output of each decoder layer
and apply averaged pooling to obtain a fixed-
dimensional representation for each sentence. To
avoid dimensional collapse (Tian, 2022; Jing et al.,
2022), we also use the head of the representation
for contrastive learning, i.e., the vectors in the batch
B = {El,ﬁg, .. },El S Rdh, dh <d.

To prevent a potential invalid training objective
in sampling caused by the skewed distribution in
a batch, we first define B C B by omitting in-
stances that do not share their target language with
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any other instance in B. For a given instance of
h®* ¢ B/, which is the anchor in contrastive learn-
ing, we let B™ denote the subset of B’, including
instances with the same target language as h*"°,
where |BT| > 1. Likewise, we define a subset for
negative instance B~ = B’ \ B™. For contrastive
learning, we randomly sample the positive instance
hP° from B+ and sample k negative instances h"®
from B~. Additionally, if & > |B~|, we dynam-
ically clip & to |B~|. Formally, the objective of
LCLR is formulated as
st

Ectr = - I ‘ 2 —

paep €5 4D i et

5T = sim(h*, hP*), hP*® ¢ BT,

= sim(h*, h}®), R}t € B,

(2

log

3
s;

where sim(-) calculates the similarity of representa-
tions using the cosine similarity. The final training
objective is the sum of Equations 1 and 2, i.e.,

L= £ce + Ectr- (4)

5 Experiments

5.1 Setup

Datasets Our experiments comprise three popu-
lar English-centric datasets, i.e., the training and
validation sets only involving translation pairs
translating to en or from en, including Europarl-15
(Koehn et al., 2005; Dabre and Kurohashi, 2019),
TED-19 (Ye et al., 2018) and OPUS-100 (Zhang
et al., 2020a; Yang et al., 2021). The details of
those datasets can be found in Appendix B.

Evaluation We evaluate the performance of mod-
els on the test sets of those three datasets and set
the beam size to 4 in inference. We employ Sacre-
BLEU (Papineni et al., 2002; Post, 2018) to evalu-
ate the quality of inferences at the word level and
report BERTScore (Zhang et al., 2020b) of infer-
ences at the representation level. We measure the
off-target ratio on zero-shot translations as a sup-
plement. We also conduct statistical significance
testing (Koehn, 2004). We describe our motiva-
tion in selecting evaluation metrics, the evaluation
details, and the implementation of statistical signif-
icance testing in Appendix H.

Models When training from scratch, we imple-
ment a Transformer model with 6 encoder and de-
coder layers. Given that those three datasets have
different sizes, we set different hyper-parameters in



Europarl-15 TED-19 OPUS-100

BLEU B.S. BLEU B.S. BLEU B.S.
MCIhOd en— —en Zero. en— —en Zero. en— —en Zero. en— —en Zero. en— —en Zero. Zero.
VANILLA 3749 4339 2465 8850 9571 8427 2453 29.67 1198 83.77 93.54 7774 2337 2830 504  69.98
DisPos  37.15 4337 2589 8839 9572 8469 2408 2943 12.80 83.62 9349 7836 2272 2824 558 7074
TLP 3741 4328 2496 8847 9571 8440 2444 2962 1274 8373 9353 7824 2341 2830 4.60  69.40
SEMALI 3727 43.06 2525 8842 9569 8443 2355 2867 1345' 8343 9336 78911 2235 2829 642  72.00
LOLE 37.62 4350 26091 88.51 9572 8481 2439 2972 1320 8374 9354 78.65 23.15 2828 7.921 73.32f
LCLR 3744 4343 2571 8846 9572 8466 2446 2966 1212 8376 9354 77.87 2334 2837 511  70.04
BOTH 37.67 4351 26200 8850 9572 84.851 2449 2979 13317 8376 93.56 78.761 2340 2827 797" 73.10f

Table 1: Averaged scores for experiments of training from scratch. BOTH means using LOLE and LCLR
together; en— and —en abbreviates en—x and x—en; zero. means zero-shot language pairs; and B.S. abbreviates
BERTScore. We only report zero-shot language pairs of OPUS-100 because BERTScore does not support some
pairs in supervised translations, but zero-shot translation pairs of OPUS-100 are involved only with 6 languages,
which are supported. The bold number indicates the best result and the numbers with t are significantly better than
VANILLA according to the significance test with p < 0.05. The off-target ratios are reported in Appendix I.

training. Then, three open-source models are uti-
lized in fine-tuning experiments, including M2M-
418M, M2M-1.2B (Fan et al., 2020) and mBARTS50
(Tang et al., 2020). The hyper-parameter settings
can be found in Appendix C. Additionally, hyper-
parameters are selected based on the ablation stud-
ies conducted on the validation sets, which is re-
ported in Appendix E.

Baselines Vanilla Transformer (Vaswani et al.,
2017; Johnson et al., 2017) is one of the baselines,
denoted by VANILLA in the experiments of training
from scratch. Then, the baseline in fine-tuning ex-
periments is the full-parameter fine-tuning, denoted
by F.T.. Moreover, three representative methods
are reproduced in our experiments of training from
scratch, the standard of baseline selection is as fol-
lows:

¢ SEMALI: Pan et al. (2021) think the encoder
output is language-agnostic, so they align
the semantic information across different lan-
guages at the output of the encoder. How-
ever, our analysis shows that this viewpoint is
inaccurate because the semantic information
is aligned by the subspace of the target lan-
guage instead of the real language-agnostic.
When there are not any additional parame-
ters introduced, SEMALI still is the de-facto
SOTA based on regularizing representations
in MNMT.

DisPos: Liu et al. (2021) have the same ob-
jective as LoLE, however, they suggest reduc-
ing the constraint on the encoder (Gu et al.,
Note that, those models are trained by adding a source lan-

guage tag at the encoder and a target language tag at the
decoder. In fine-tuning, we keep the original strategy.

87

2019) by removing the residual connection,
which is a different style that corresponds to
the idea of biasing we used in LoLE.

TLP: Yang et al. (2021) aim to add a loss
to predict the language id at the top layer of
the decoder, which is contrary to LCLR and
our analysis in Section 3.4 where we argue
that the bottom layers of the decoder are more
sensitive to the language features.

5.2 Results

First of all, Gu et al. (2019); Liu et al. (2021)
pointed out that the vanilla Transformer is superior
in supervised translation directions, i.e., en<->X,
because the model excessively focuses on English,
which is the language dominating the training set,
to lose its generalization on non-English languages,
i.e., the zero-shot translation. Moreover, Huang
et al. (2023); Chen et al. (2023b) showed that im-
proving the zero-shot may come at the expense of
supervised performance. In this work, our meth-
ods significantly improve the zero-shot translation
without degrading the supervised performance in
both training from scratch and fine-tuning.

Table 1 shows the experimental results of train-
ing from scratch. In supervised translations of
Europarl-15/TED-19/0PUS-100, LOLE shows di-
vergent results of 0.13/-0.04/-0.22 on en—x and
0.11/0.05/-0.02 on x—en. Similarly, LCLR shows
diverse results of -0.05/-0.01/-0.03 and 0.04/-
0.01/0.07, respectively. Then, BOTH achieves the
results of 0.18/-0.02/0.03 on en—x and 0.12/0.12/-
0.03 on x—en. In zero-shot translations, BOTH
outperforms VANILLA 1.55/1.33/2.93 for BLEU
and 0.58/1.02/3.12 for BERTScore. Our models
perform best in zero-shot translations of Europarl-



BLEU BERTScore
Method en— —en zero.* en— —en zero*
M2M-418M  21.88 2643 1451 8252 9325 79.26
E.T. 26.68 3295 1746 8447 9430 80.79
LOLE 26.81 3316 17.52 8451 9431 80.84
LCLR 26.81  33.677 17.65 8447 9440 80.88
BOTH 26.83  33.631 17.68 8449 9438  80.90
M2M-1.2B 2432 2894 1595 83.17 9372 79.75
E.T. 2771 3497 1848 8471 9453 8l.14
LOLE 28297 3412  18.67 84917 9448  81.26'
LCLR 28267 3454  18.64 84907 9450 81.22
BOTH 28377 3459  18.69 84.92f 9451 81.23
mBART50 2528 3350 692  83.93 9443 7291
F.T. 27.17 3396 558  84.64 9436 72.96
LOLE 27.19 3393 728" 8460 9437 73.86
LCLR 27.07 3402  9.697 8459 9438 75311
BOTH 2736 34.04 9557  84.66 9436 75.55F

Table 2: Averaged scores for experiments of fine-tuning.
F.T. means fine-tuning without any trick. * is added
to zero. to show it is not a real zero-shot scenario for
M2M. The bold number indicates the best result, and
the numbers with T are significantly better than F.T..
The off-target ratios are reported in Appendix L.

15 and OPUS-100, and the improvements in zero-
shot translations are always statistically significant.
Note that, although SEMALI achieves the best zero-
shot translation performance in TED-19, the super-
vised performance of SEMALI is significantly de-
graded compared to VANILLA, which is a common
and unresolved problem (Gu et al., 2019; Zhang
et al., 2020a; Liu et al., 2021). On the contrary,
our methods not only perform competitively with
SEMALI in zero-shot translations but also bene-
fit the supervised translation capacity. Moreover,
these two proposed methods are orthogonal, which
can be proved by assessing LOLE, LCLR and
BoOTH individually: (1) LOLE achieves gains of
1.53/1.22/2.85 for BLEU and 0.54/0.91/3.34 for
BERTScore; (2) LCLR improves 1.06/0.14/0.09
and 0.39/0.13/0.06 scores; (3) The gains of BOTH
are always higher than LOLE and LCLR. In ad-
dition, we can observe that the improvement of
LCLR is limited in TED-19 and OPUS-100, which
can be attributed to the diverse languages involving
in these two datasets and being easily distinguished
by the vanilla decoder. This result also supports
that the main challenge of MNMT is the transfer
within the encoder. Thus, we can conclude that our
methods substantially benefit the zero-shot transla-
tion capacity of MNMT models.

Table 2 shows the experimental results of fine-
tuning. For M2M-418M, compared with F.T., our
methods obtain up to 0.15/0.72/0.22 for BLEU
scores and 0.04/0.10/0.11 for BERTScore in en—X,
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(a) BLEU

Figure 8: Differences between our model and VANILLA.
X-axis is the target language family where en is consid-
ered solely. Hence, we plot the color ladder by column
where the darker the color, the bigger the difference.

x—en and zero-shot translations, respectively; For
M2M-1.2B, the gain is up to 0.66/-0.38/0.21 for
BLEU scores and 0.21/-0.02/0.12 for BERTScore;
For mBARTS50, the gain is up to 0.19/0.08/4.11 for
BLEU scores and 0.02/0.02/1.69 for BERTScore.
Those scores show that the improvement on M2M
is marginal compared with training from scratch.
This derives M2M is trained by interconnected
translation pairs instead of an English-centric
dataset, which results in the robust transferabil-
ity of multilingual representations. However, the
degeneration on F.T. of mBARTS50 shows that fine-
tuning drastically influences the zero-shot transla-
tion capacity. For instance, the BLUE scores of
fr—vi decrease to 11.84 from 20.57 and fr—zh
increase to 13.52 from 1.90, but our model obtains
18.47 and 17.19, respectively. Such results and the
significant testing indicate again the advantage of
our proposed methods in improving multilingual
representations for zero-shot translation capacity.

6 Discussion

6.1 Correlation between Representational
Disentanglements and Improvements

Table 1 shows the overall results by taking averages
across all language pairs, which may overlook pair-
specific tendencies. Therefore, we group Europarl-
15 by the language families and report the average
scores of translating from one language family to
another. Figure 8a shows the difference in BLEU
scores between our models and VANILLA. As
shown in Figure 8b, we also compute the SVCCA
scores between the identity of the non-central lan-
guage and the identity of the central language at
the encoder’s output and group them in the same
manner. Given the similar distribution in Figure
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Figure 9: Visualizations for the encoder that incorpo-
rates LOLE and LCLR, showing improvements com-
pared with VANILLA. Additionally, the model plotted
in 9e only incorporates LCLR.

8, we conduct Pearson correlation analysis (Pear-
son, 1896) of all language pairs instead of language
families in Europarl-15, and we compute the coeffi-
cients and p-values of Pearson correlation by target
languages to maintain fairness. We observe two
key points: 1) The coefficient and p-value of en
are -0.087 and 0.76, respectively. This result sug-
gests that there is no statistical correlation, which
is predictable because x—en is not affected by rep-
resentational entanglements. 2) The coefficient and
p-value of non-central languages are in the ranges
of 0.585 to 0.855 and 4e-5 to 0.021, respectively.
In more detail, the mean values are 0.770 and 0.002
and the variances are 0.04 and 3e-5, respectively.
This analysis proves that the degree of representa-
tional disentanglement positively correlates with
the improvement of zero-shot translations.

6.2 Analysis of Improved Representation

We measure representation transfer in the model
incorporating our proposed methods to verify our
findings further. As shown in Figures 9a and 9b,
both scenarios exhibit improvements on (i). Mean-
while, Figures 9c and 9d indicate that the entan-
glement of representations among languages at the
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encoder is resolved. The evidence suggests that
LOLE effectively enhances representation transfer
in the encoder. Additionally, (ii) and (iii) in Figures
9a and 9b also achieve higher scores at lower layers
of the encoder, which suggests that LOLE indeed
makes lower layers of the encoder focus on surface-
level information. By contrast, as shown in Figures
9¢ and 9f, the more stable trend of (iv) in both
scenarios suggests that LCLR can improve the ca-
pacity of lower layers of the decoder to distinguish
languages to improve zero-shot translations. In ad-
dition, Appendix F provides the representational
analysis for fine-tuning models, which proves that
target language features are consistently beneficial
in the encoder.

7 Related Works

Prior studies on analyzing multilingual representa-
tion in Section 2.2 led to several effective methods
in MNMT. Some works focused on updating and
constraining the encoder to improve multilingual
representations, and the findings in discrepancy
mentioned in Section 2.2 led to two distinct ap-
proaches. First, Pan et al. (2021); Gu and Feng
(2022); Gao et al. (2023); Bu et al. (2024) sug-
gested regularizing the encoder for aligning seman-
tic information across different source languages
by introducing additional training objectives. Sim-
ilarly, Pham et al. (2019); Zhu et al. (2020) ex-
plicitly modified the output form of the encoder
to transfer the representation of the source sen-
tence toward a language-agnostic state. Second,
Gu et al. (2019); Liu et al. (2021); Sun et al. (2024)
introduced specialized modeling constraints to im-
prove the encoder to transfer source sentence rep-
resentations to the target language without adding
extra parameters, and Zhang et al. (2021); Pires
et al. (2023) enhanced the representation of target
language information by simply adding language-
specific modules. Additionally, Yang et al. (2021);
Qu and Watanabe (2022); Bu et al. (2024) focused
on improving the target language representation on
the decoder side or adding modules specified to the
target language to the decoder. Given that the above
works can all be encompassed within our analyses,
we argue that this work offers insights for future
improvements in MNMT. Specifically, enhancing
the encoder to transfer source language represen-
tations into the target language subspace and align
semantic information within those subspaces is the
key to improving MNMT.



In addition, a critical factor of this work is the in-
troduction of the identity pair as an analytical tool.
Specifically, while identity pairs have been heuristi-
cally used in prior works (Tiedemann and Scherrer,
2019; Thompson and Post, 2020; Bu et al., 2024),
as an assumed indicator of language-specific rep-
resentation states, they have not been subject to
systematic or quantitative analysis. In contrast, we
explicitly define, validate, and utilize identity pairs
to probe representational properties in a controlled
and measurable way. This not only strengthens the
empirical basis of our conclusions but also consti-
tutes an important methodological contribution of
this work.

8 Conclusion

We systematically investigated the representational
issue of zero-shot translation deficiency in multi-
lingual neural machine translation models. Our
analyses show that the encoder transfers translation
representations from the source language to the
target language, and aligns semantics across dif-
ferent source languages at the target language sub-
space. We applied engineering practices to verify
our findings by proposing two orthogonal methods,
which substantially improve the zero-shot transla-
tion capacity. Thus, our findings are significant for
guiding the improvement of the transferability of
multilingual representations.

9 Limitations
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Figure 10: Illustration of the comparison between the
bidirectional and the unidirectional scenarios. 10a has
the same model settings with Figure 2, but analyzes the
same pairs with 10b.

This work has two limitations. First, the identity
pair is a proxy of language representations based
on bi-directional training, i.e., each non-central
language appears in the encoder and decoder to-
gether. Therefore, we designed an additional study
to investigate the impact by retraining a model by
eliminating n1—en and en—it so that it and nl
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appear only in the encoder and decoder, respec-
tively, based on the analysis in Section 3.2. Then,
we conducted a comparison by taking de as the
middle language to perform the role of identity
pairs in analysis. As shown in Figure 10, the target
language features keep the same trend as shown
in Section 3.2 to support our conclusion again, but
the influence of source language features increases
relatively.

The second limitation is our investigation is
based on adding a language tag specified to the
target language at the beginning of the source sen-
tence for the encoder. Although this is the de facto
MNMT training strategy (Johnson et al., 2017; Aha-
roni et al., 2019; Arivazhagan et al., 2019a; Gu
et al., 2019; Pham et al., 2019; Wu et al., 2021;
Yang et al., 2021; Pan et al., 2021; Qu and Watan-
abe, 2022; Chen et al., 2023a; Gu and Feng, 2022;
Gao et al., 2023), the current open-source models
(Fan et al., 2020; Tang et al., 2020; Team et al.,
2022) are based on another strategy, i.e., adding a
source language tag at the encoder side and adding
a target language tag at the decoder side. Although,
in Section 5, we have shown our proposed methods
also benefit models with this strategy, this effec-
tiveness is proved by empirical experiments. Thus,
our future work is to investigate the representation
transfer of this strategy to guide further improve-
ments.

10 Further Considerations

Ethical Consideration All datasets used in this
work are public data, which are proven harmless.
Moreover, this work is foundational research and
is not tied to particular applications. Thus, there is
no ethical risk existed in this work.

Sustainability statement As noted in Appendix
C, the GPU used in training individual models
is A6000, which has an estimated carbon diox-
ide emission of approximately 0.13 kg per hour.
Specifically, models trained on Europarl-15 and
TED-19 required approximately 48 GPU hours,
while models trained on OPUS-100 necessitated
around 192 GPU hours.
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A Sentence-level SVCCA Score

We use SVCCA (Raghu et al., 2017) to measure
representation similarity in MNMT (Kudugunta
et al., 2019). We follow the approach of Liu et al.
(2021) so that similarity is measured at the sen-
tence level to ensure that each score is computed on
equivalent features without the influence of other
sentences in the set.

Based on the definition of Section 2.1, we de-
note hidden representations of a sentence by H =
{h1,hs...hy}, where H € R?*? ¢ equals to the
length n or m from either the encoder or decoder,
and d is the model dimension. Additionally, the
practical length is n + 1 when H is fed into the
encoder because the encoder receives the input
concatenated by [ and «’. Then, we derive the
sentence-level representation h using average pool-
ing h = # , which mainly represents the
language features and semantics of the source sen-
tence rather than syntactic information because po-
sitional information is reduced.

Given H® and H? derived from two sentences,
SVCCA first performs singular value decompo-
sition on their averaged representations to obtain
subspace representations h” € R4 and R e R,
where noise is reduced (Saphra and Lopez, 2019).
Then we perform canonical correlation analysis
(Hardoon et al., 2004) to determine W € R%*"
and Wb € R&xd", Formally, we compute correla-

tion p between B and i as
Y (WR" WPR")
- —a b,
[Weh™|[[Weh|

&)

where (-, -) indicates the inner product. We use
p to represent the similarity of two sentences. Fi-
nally, we compute the set-level score by taking the
average scores of all sentences over the set.

B Detailed Information of Datasets

This work involves three datasets, i.e., Europarl-
15, TED-19, and OPUS-100, where Europarl-15
and TED-19 are used in preliminary experiments.
The training sets of those three datasets have dif-
ferent sizes, but the validation and test sets of a
pair generally contain 2,000 translation instances.

71 plays the role of translation instruction instead of a token
belonging to the target language with semantics, thus, this
concatenation would not influence the measurement by mixing
target language information into the sentence representation
within the encoder.
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In preliminary experiments, we measure SVCCA
scores in the test sets because those instances are
unseen in the training.

Europarl-15 is collected from MMCR4NLP,
which has high-quality translation instances and
each instance in a language is one-to-one corre-
sponding to other languages, i.e., all language-
specific sets have parallel semantics (Koehn et al.,
2005; Dabre and Kurohashi, 2019), including 15
European languages from 4 language families.
Specifically, Germanic includes en, de, nl, da, Ro-
mance includes es, pt, it, ro, Slavic includes s1,
bg, pl, cs, and Uralic includes fi, et, hu. The
training and validation sets cover 28 supervised
translation pairs where English is the central lan-
guage used to bridge the non-central languages.
The test set consists of all language pairs, includ-
ing 182 zero-shot translation pairs in addition to
supervised translation pairs. Finally, each pair in
the training set comprises 189,310 instances.

In contrast to Europarl-15, which is the seman-
tically aligned dataset, TED-19 consists of 19 lan-
guages, including en, ar, he, ru, ko, it, ja, zh,
es, nl, vi, tr, fr, pl, ro, fa, hr, cs, de, which
belong to various language families without par-
allel semantics, from TED Talks (Ye et al., 2018).
Each translation pair contains 103,093 to 214,111
instances in training, and the training set comprises
6,551,456 instances in total. Because of the un-
parallel semantics of TED-19, we align ar, he, zh,
hr, vi, ja to obtain 967 translation instances for
measuring SVCCA scores. In addition, the rea-
son why the number of languages is 19 is that,
first, TED Talks have 20 high-resource languages,
which are supported in M2M (Fan et al., 2020)
and mBARTS50 (Tang et al., 2020). However, the
tokenization of th is problematic, resulting in dep-
recating th.

OPUS-100 consists of 95 languages, 188 pairs,
and 109.2 million instances in total (Zhang et al.,
2020a; Yang et al., 2021), where 90 pairs comprise
1 million instances and 56 pairs have more than 0.1
million instances. Different from Yang et al. (2021),
we do not include the zero-shot translation pairs in
the validation set to avoid biases when assessing
the transferability of multilingual representations.

C Detailed Settings of Models

We implement the Transformer (Vaswani et al.,
2017) as the backbone model via Fairseq (Ott et al.,
2019). For the configuration of models trained on



Europarl-15 and TED-19, we follow Kudugunta
et al. (2019) to set 6 encoder and decoder layers.
Based on the ablation study conducted in the val-
idation set in Europarl-15 and TED-19 shown in
Appendix E, we apply LOLE in the fifth encoder
layer, set d° to 128, and set d* and k of LCLR
to 64 and 30, respectively. When we solely apply
LCLR, we set the position to the bottom decoder
layer based on the findings in Section 3.4. When
we integrate both LOLE and LCLR into a model,
we relocate LCLR to the second-bottom decoder
layer because of the improved language features
of the encoder representations. We adopt a shared
vocabulary trained by SentencePiece (Kudo and
Richardson, 2018) with 50,000 tokens for both the
encoder and decoder. The model consists of 4 at-
tention heads, embedding size of 512, inner size of
1024, dropout rate of 0.2, maximum learning rate
of 0.0005 with the inverse square root schedule and
4,000 warmup steps, and label smoothing rate of
0.1. We set the batch size to 8,000 tokens per GPU,
apply Adam (Kingma and Ba, 2017) as the opti-
mizer, and set temperature sampling with 7' = 5
(Arivazhagan et al., 2019b). We train the model
with 60 epochs for Europarl-15 and 30 epochs for
TED-15, and finally average the top 5 checkpoints
using the loss on the validation set. Compared
with the basic configuration, the models trained on
OPUS-100 have 8 attention heads, embedding size
of 512, inner size of 2048, dropout rate of 0.1, and
shared vocabulary size of 64,000. We enlarge d° to
256 and d” to 128 for models trained on OPUS-100
and three pre-trained models because they involve
more languages. We train the model of OPUS-100
for 400,000 update steps with a batch size of 8,000
tokens per GPU for OPUS-100 and directly use
the best checkpoint selected using the loss on the
validation set. Furthermore, models with Europarl-
15 and TED-19 are trained on 8 NVIDIA V100
GPUs, and models with OPUS-100 are trained on
4 NVIDIA A6000 GPUs by setting —update-freq to
2 in Fairseq to simulate 8 GPUs.

Three open-source models are utilized in fine-
tuning experiments. The first is M2M-418M (Fan
et al., 2020), trained on standard multilingual trans-
lation tasks and supporting translation across 100
languages. It is based on Transformer architecture,
configured with 12 encoder and decoder layers,
embedding size of 1024, inner size of 4096, and
vocabulary size of 128,112, which results in a to-
tal of 418 million parameters. The second model,
M2M-1.2B (Fan et al., 2020), enlarges the num-
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Figure 11: Affinities for en—x at each encoder layer.
Language families of Europarl-15 are distinguished by
colors: Germanic by red, Romance by yellow, Slavic by
purple, and Uralic by green.
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Figure 12: Visualizations by t-SNE and BiKDE of

aligning representations between en—en and x—en of
Europarl-15 at the output of the encoder.

ber of layers to 24 and the inner size to 8192 on
M2M-418M, and culminates in 1.2 billion param-
eters. The last model is mBARTS50 (Tang et al.,
2020), trained on monolingual corpora across 50
languages following Lewis et al. (2019); Liu et al.
(2020) and preliminarily fine-tuned for MNMT. It
shares the same parameter setup as M2M-418M
with a vocabulary size of 250,053, which consists
of 611 million parameters. We conduct experi-
ments on TED-19 because all covered languages
are supported by these models.

D Detailed Introductions of Figure 1

In fact, Figure la corresponds to the last sub-
figure of Figure 11 to show the linguistic affin-
ity between translations from English to other
languages, denoted by en—x. Specifically, Fig-



ure 11 shows the layer-wise states of the en-
coder, and Figure la (Figure 11f) demonstrates
the state at the output of the encoder. We em-
ploy sklearn.manifold.SpectralEmbedding, refer-
ring to https://scikit-learn.org, to visualize
the similarities computed by SVCCA (Appendix
A) for every layer in the encoder. Then, we can find
that representations at all encoder layers have cer-
tain clusters influenced by the families of the target
languages, and the clusters become more distinct
as the depth of the encoder layers increases. This
suggests that the transfer of representations to the
target language begins as early as the first layer of
the encoder, with gradual strengthening through fur-
ther layers. Meanwhile, this finding, i.e., even the
initial encoder layers capture target language fea-
tures, complements prior works (Kudugunta et al.,
2019; Pires et al., 2023).

On the other hand, we follow Pan et al. (2021)
and Gao et al. (2023) to measure the alignment of
encoder representations between the identity of en
and source languages from different families to En-
glish using t-distributed stochastic neighbor embed-
ding (t-SNE) (van der Maaten and Hinton, 2008)
and bivariate kernel density estimation (BiKDE)
(Wand and Jones, 1993). As shown in Figure 12,
representations from the four language families are
all highly aligned with the identity pair of en—en,
where the common feature of those translations is
the parallel semantics. Thus, this proves that the
encoder semantically aligns different translations.
However, the deep discussion should be referred to
Section 3.2.

E Selecting Hyper-Parameters

We conduct ablation studies on the validation set of
Europarl-15 to select hyper-parameters for LOLE
and LCLR, which are used in Section 5.1. Fig-
ure 13a shows that LOLE performs optimally with
the dimension of 128, which corroborates our hy-
pothesis in Section 4.1. Figure 13b indicates that
LOLE performs the best at the fifth layer and de-
grades significantly at lower layers, which aligns
with our assertion in Section 3.2 that lower layers
of the encoder are more correlated with the source
language, and enhances the language transfer ben-
efits of transferability (Section 4.1). Figure 13c
is consistent with the theory of contrastive learn-
ing in which full dimensions lead to collapse (Jing
et al., 2022). Figure 13d demonstrates that, as
the position constructed by LCLR increases, the
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Figure 13: Illustrations for the ablation study. A means
the difference between the scores of our methods and the
scores of VANILLA. 13a and 13b present variations of
LoLE in dimensions and layers, respectively; and 13c,
13d, and 13e present variations of LCLR in dimensions,
layers, and k, respectively.

scores decrease, which lends support to our anal-
ysis in Sections 3.4 that the instability of decoder
representations primarily manifests at lower layers,
which also explains the weakness of TLP because
improving the capacity of distinguishing languages
is redundant for the decoder’s top layer. We also
conduct an ablation study for hyperparameter % for
LCLR with a dimension of 64 at the bottom de-
coder layer. The results are shown in Figure 13e,
with an empirically optimal k£ = 30.

F Analysis of Improved Representation
for Fine-tuning Pre-trained Models

Section 6.2 is the representational analysis for mod-
els, which are trained from scratch with proposed
LOLE and LCLR. We also show the representa-
tional analysis for fine-tuning pre-trained models.
Given the positive correlation shown in Section
6.1, we compute SVCCA scores in the same way
as done in Section 3.2 and show the results in Ta-
ble 3. Unlike Section 3.2, we equally consider the
encoder and decoder because the encoder is only
related to the source language and does not transfer
representations to the target language in the training


https://scikit-learn.org

Pairs  Model Method ()  Gi) (i)
vom  FT. 7966 1000 79.66
@ofzh ] LOLE 79.52 9875 7776
@ of ar ET 6397 1000 6397
Encoder ___"U'NU LOLE_ 6352 97.90 6166
Side vov BT 81507 10007 8150
@ofhe 1 LOLE 80.54 98.27 79.88
@ of vi ET 6917 1000 6917
mBART | OLE 7046 9761 67.04
vom FT 9980 9201 9265
Decoder @ofja 1 LOLE 9973 89.81 90.66
Side  ®ofhe ET. ~ 79833 9076 8962
mBART | OLE  98.64 9007 8849

Table 3: SVCCA scores. Each score times 100 for a
clear illustration. (i) compares the identity of @ and
®—®, (ii) compares the identity of @ and @—®, and
(iii) compares identities of @ and ®. Encoder Side
means computing the output of the encoder, and De-
coder Side means computing the output of the 1st layer
of the decoder.

strategy of M2M (Fan et al., 2020) and mBART50
(Tang et al., 2020). Additionally, the different train-
ing strategy is the primary reason that F.T. shows
the same scores in (i) and (iii) and keeps 100.0 in
(ii). Alternatively, although the scores of (i), which
reflect target language features, decrease in our
methods, the scores of (ii) and (iii) also decrease.
As a result, the differences between the scores of
(1), (ii), and (iii) increase, that is, the relative impor-
tance of target language features increases. This
result proves our statements in Sections 3.3 and
6.1 again that target language features are consis-
tently beneficial in the encoder. On the other hand,
the decoder side shows the same tendency as the
encoder side. This fits our motivation in Section
4.2 to further improve the discriminating ability
of lower layers of the decoder, although the train-
ing strategy of M2M and mBARTS50 has already
provided a high capacity in discrimination for the
decoder.

G Token-level Alignments in Other Cases

First of all, the English sentence for semantic anal-
ysis in Figures 4 and 14 is: By the end of this year,
there will be nearly a billion people on this planet
that actively use social networking sites. Compared
with the discussion in Section 3.2, token-level rep-
resentations are not aligned at the embedding layer,
and are relatively aligned in the case of using the
identity pairs, where the degree of divergence is
substantially higher than the case of Figure 4.
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Figure 14: Illustration of the token-level alignment cor-
responding to Figure 1b. Representations shown in 14a
are collected at the embedding layer, whose overall vari-
ance is 1.45. Representations shown in 14b are collected
from identities, whose overall variance is 0.13.

H Evaluation Metrics Selection

In this work, we select two main automatic eval-
uation metrics and a secondary statistic measure-
ment. The first one is SacreBLEU (Post, 2018)
which is an implementation of BLEU (Papineni
et al., 2002). This is the most popular and common
metric used in evaluating the alignment between
inferences and references at the word level. In
order to counter the insufficiency of SacreBLEU,
we also select BERTScore (Zhang et al., 2020b),
which is a representational metric to evaluate the
semantic similarity between inferences and refer-
ences. Furthermore, to show whether the improve-
ments brought by proposed methods are signifi-
cant, we also conduct the statistical significance
testing (Koehn, 2004) using paired bootstrap re-
sampling with 1,000 iterations and 0.5 resampling
ratios, consequently, the case of p < 0.05 means
that the difference is significant.

Additionally, we follow prior works (Yang et al.,



Europarl-15 TED-19 OPUS-100
Method zero.(T) off.(}) zero.(T) off.(}) zero.(T) off.(})
VANILLA  24.65 1.34 11.98 4.08 5.04 70.41
DisPos 25.89 0.84 12.80 3.82 5.58 61.65
TLP 24.96 1.22 12.74 371 4.60 83.29
SEMALI 25.25 0.99 13.45 3.62 6.42 58.25
LOLE 26.09 0.71 13.20 3.69 7.92 50.05
LCLR 25.71 0.79 12.12 3.86 5.11 68.53
BOTH 26.20 0.74 13.31 3.69 7.97 55.06

Table 4: Off-target ratio corresponding to experimental
results in Table 1. zero. indicates the BLEU scores of
zero-shot translations. off. indicates the off-target ratio
counted by all zero-shot translation pairs.

Model Metric PRE. FET. LOLE LCLR BOTH
M2M-41EM Z(ffrfo(ﬁ) 1;6561 137.;:6 137..3522 137.2? 137.5638
N
v ) SR %

Table 5: Off-target ratio corresponding to experimental
results in Table 2. Abbreviations follow Table 2 and
PRE. refers to the model without any fine-tuning. In
addition, compared to Table 4, we switched the horizon-
tal and vertical axes, because there is only one dataset,
TED-19, used in fine-tuning experiments.

2021; Chen et al., 2023a) to report the off-target
ratio, which is measured by fasttext-langdetect®.
The off-target translation refers to a sentence trans-
lated to an incorrect target language rather than
the target language we expected. However, the
off-target ratio is not reliable, because the popular
tools used in measuring off-target ratios are based
on word level and lack support in low-resource lan-
guages. Furthermore, the score of SacreBLEU can
directly show the problem of off-target, because the
evaluation process of SacreBLEU tends to give a
great penalty on an inference, which has a different
writing script from the expected target language.
Therefore, we only report it as a secondary metric
in Appendix L.

I Off-Target Ratio of Results

Tables 4 and 5 show the measurement of the off-
target ratio, which are the supplement of Tables
1 and 2. We can observe that the off-target ratio
is always inversely proportional to BLEU scores,
aligning with our discussion in Appendix H. Addi-
tionally, there are two points worth noting: (1) In
Table 4, the off-target ratio in OPUS-100 is gener-

Shttps://pypi.org/project/fasttext-langdetect
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ally higher. This is not an outlier because result-
ing in a strong zero-shot translation capability in
OPUS-100 is particularly challenging due to the
large number of languages involved and the lim-
ited corpus for individual languages (Zhang et al.,
2020a; Yang et al., 2021). (2) In Table 5, the off-
target ratio counted from mBARTS50 is higher than
other cases. This abnormal value has been dis-
cussed in Section 5.2, that is, the zero-shot ability
of mBARTS50 is weaker than M2M models, and
then, the fine-tuning dramatically changes the be-
havior of the model.


https://pypi.org/project/fasttext-langdetect

