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Abstract

Large language models (LLMs) demonstrate
significant capabilities in many natural lan-
guage processing tasks. However, their per-
formance in machine translation is still behind
that of the models specially trained for machine
translation with an encoder-decoder architec-
ture. This paper investigates how to improve
neural machine translation (NMT) with LLMs.
Our proposal is based on an empirical insight
that NMT gets worse fluency than human trans-
lation. We propose to use LLMs to enhance
the fluency of NMT’s generation by integrat-
ing a language model at the target side. We
use contrastive learning to constrain fluency so
that it does not exceed the LLMs’ fluency. Our
experiments on three language pairs show that
this method can improve the performance of
NMT. Our empirical analysis further demon-
strates that this method improves the fluency on
the target side. Our experiments also show that
some straightforward post-processing methods
using LLMs, such as re-ranking and refinement,
are not effective.

1

Large Language Models (LLMs) such as GPT
(Ouyang et al., 2022; Achiam et al., 2023) and
LLama (Touvron et al., 2023; Dubey et al., 2024)
have demonstrated significant capabilities in var-
ious domains, including language understanding
and generation tasks (Chang et al., 2024). How-
ever, the evaluations (Hendy et al., 2023; Zhu et al.,
2024) show that LLMs’ performance in machine
translation is still behind the models dedicated
to the task. These dedicated models often use
an encoder-decoder architecture and are trained
with parallel corpora. This raises a question: Can
LLMs still help improve neural machine translation
(NMT)?
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A key translation challenge is the balance be-
tween adequacy and fluency. According to Laubli
et al. (2018), NMT is good at adequacy and weak
at fluency compared to human translation. There
are some post-processing methods to use LLMs on
NMT’s outputs to improve fluency. We can follow
the reranking methods in NMT (Lee et al., 2021;
Bhattacharyya et al., 2021; Fernandes et al., 2022).
LLMs can be used to rerank the candidates that
are output from NMT, and the one with the small-
est perplexity, according to LLM’s evaluation, is
chosen as the final output. Alternatively, we apply
the self-refine method in LLM (Pan et al., 2023;
Li et al., 2024; Han et al., 2024) to NMT’s out-
puts. The translations from NMT are included in
the prompt and an LLM is explicitly asked to re-
fine their fluency. These two methods are used as
baselines in our experiments. Results show that
they cannot consistently improve the performance
of NMT.

We propose to improve the fluency of NMT’s
translation by integrating the language capability
of LLMs during training the NMT model. We use
a two-pass strategy in the decoder. The first pass is
a normal one using parallel sentences. The second
pass only uses the target sentences in the training
data. The objective is to train a target language
model while training the translation model. This is
realized by assigning all ones to the context vectors
from the encoder for the second pass. Furthermore,
we use an LLM to infer the training set and get their
negative log-likelihoods. These data are used with
contrastive learning to constraint the fluency of the
target language model not to exceed the LLM’s.

We conduct experiments on three language pairs:
German-English (De-En), Russian-English (Ru—
En), and French-English (Fr—En). The results show
that our method effectively improves the perfor-
mance of NMT. Our empirical analysis further
demonstrates that our method improves fluency
on the target side, and contrastive learning with
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knowledge from the LLLM plays an important role
in achieving gains.

2 Related Work
2.1 LLMs for Translation

There is a line of research to use prompt engineer-
ing and few shot learning for LLM to translate
(Zhang et al., 2023a; Gao et al., 2023). Evaluations
(Hendy et al., 2023; Zhu et al., 2024) show that
LLMs’ performance in machine translation is still
behind the NMT models dedicated to this task.

Zhang et al. (2023b), Alves et al. (2024) and
Xu et al. (2024) also explore finetuning LLMs
with parallel corpora to get better performance.
Since LLMs have a much larger number of param-
eters than typical NMT, finetuning these models
with a dedicated parallel corpus is not a convinc-
ing method. Such a method also does not follow
the paradigm of LLMs, which aims to be general
for many tasks instead of one specific downstream
task.

Reranking is well investigated in the context of
NMT (Lee et al., 2021; Bhattacharyya et al., 2021;
Fernandes et al., 2022). The reranker is either a
reference-free evaluation method such as COMET
(Fernandes et al., 2022) or a dedicated trained score
model in Lee et al. (2021). To the best of our
knowledge, there is no research using LLMs to
reranking NMT. We implement this method as one
baseline in our experiments.

Using LLM to refine its own output has been in-
vestigated and is effective for some NLP tasks other
than translation (Pan et al., 2023; Li et al., 2024,
Han et al., 2024). Bogoychev and Chen (2023)
use LLM to refine NMT’s results. Their research
focuses on a specific use case: terminology-aware
translation.

2.2 Contrastive Learning (CL) in NLP

Contrastive Learning is applied to NMT by Yang
et al. (2019) and Pan et al. (2021). However, they
address specific issues. Yang et al. (2019) aim to re-
duce the word omission errors and Pan et al. (2021)
use CL to improve the many-to-many multilingual
NMT. We aim to improve the fluency of NMT,
which is a more general objective.

Besides NMT, CL has applications in other NLP
tasks. Sun and Li (2021) and Liu et al. (2022) apply
CL for text summarization. Sun and Li (2021) use
a pair-wise preference. The gold references are
positive samples, and low-quality predictions are
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negative ones. Liu et al. (2022) use a list-wise
preference. A group of ranked predictions are used
in CL. These two methods work at the sequence
level, while ours works at the token level.

Su et al. (2022) aim to mitigate the anisotropic
distribution of token representations. They use CL
to calibrate the representation space for tokens in
the model.

3 Methodology

3.1 Adequacy and Fluency

Our proposal is based on the insight that NMT gets
worse fluency than human translation.

There are two goals for machine translation: flu-
ency and adequacy (L&ubli et al., 2018; Kong et al.,
2019; Miao et al., 2021; Sulem et al., 2020). Flu-
ency measures whether a translation is fluent in
terms of the target language. Adequacy measures
whether the translation conveys the correct mean-
ing in the source sentence, even if the translation is
not fully fluent viewing from the target language.

While adequacy often requires human evalua-
tion, fluency can be easily evaluated using the per-
plexity (denoted as ppl) with a language model at
the target side. The relationship between perplexity
and NLL (Jurafsky and Martin, 2020) is :

NLL == log p(yily<:),

i=1

ey

ppl _ €N LL
where y; is the 7! target token and n is the total
length of the target sentence.

According to Laubli et al. (2018), NMT is good
at adequacy and weak at fluency compared to hu-
man evaluation. Their main result is illustrated in
Figure 1.

3.2 Two-Pass Decoder

We use a two-pass procedure in the decoder in
training. Each pass is related to a component in the
loss function.

The first pass is through a standard decoder
and gets the usual loss value of maximum likeli-
hood estimation (MLE), which is the negative log-
likelihood (NLL) with label smoothing (Edunov
et al., 2018):

LyvLE = — Z log p(yilXu y<i)

i=1

@
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Figure 1: There is no statistically significant difference between HUMAN (human translation) and MT in terms
of adequacy when evaluating sentences. However, raters show a significant preference for HUMAN in terms of

fluency. From Liubli et al. (2018)

where X and y; denote the source sentence and the
ground truth token for step ¢, respectively, and f is
the uniform distribution over the vocabulary. When
the size of the vocabulary is V, f = %

The objective of the second pass is to train the
decoder to learn a target language model by furning
off the context attention. It is realized by assigning
all ones to the values of context vectors from the
encoder. In this way, the cross-attention reduces to
the query from the decoder side:

) oK™
Attention(Q, K, V) = softmaz( %
Vi)
= softmax , when IC,V are all ones.
( \/ch)

Correspondingly, this second pass gets the second
loss component:

[ffluency = - Zl()g p(yl|y<l)

i=1

“

In this two-pass procedure, the same network archi-
tecture is used, and all parameters are shared.

This is a potential conflict between the L f;ency
in Equation 4 and L1 in Equation 2. When
the model is trained using the loss component in
Equation 4, log p(y;|y<;) is maximized. This may
conflict with the translation objective in Equation 2
which maximizes log p(y;|y<i, X). We use con-
trastive learning to mitigate this conflict.

3.3 Contrastive Fluency Enhancement (CFE)

Contrastive Learning (CL) has a key component: a
max function. It is defined as:

max{0,p+ S, — Sp}, (5)
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where S,, and S}, are scores for negative and posi-
tive samples, respectively. p is a hyperparameter,
the margin between the scores between negative
and positive samples.

This function outputs a positive loss when the
score of the negative sample is larger than one mar-
gin plus the score of the positive sample. The objec-
tive is to constrain the score of the negative sample
so that it is at least one margin lower than the score
of the positive sample.

We use the negative log-likelihood (NLL) of
target tokens as the scores. The values from the
training models are negative samples, while those
from LLMs are positive samples. This method
is denoted as Contrastive Fluency Enhancement
(CFE) and the corresponding loss component is:

LcrE =

max{0,p — » _ log p(yily<i) + Y _ log pum (yily<i)},

1=1 1=1

(6)
where py;;, is the probability in LLM.
The final loss function is:
L=LyvrLe+ LcFE @)

To conduct the ablation study, we implemented
a variant without CL. Its loss function is:

LyvrE + Lituency = LMLE — Z log p(yily<i) (8)
=1
4 Experiments
4.1 Datasets

We use the negative log-likelihood (NLL) from an
LLM as the positive samples during training. The



major data used to train an LLM are usually in
English. Therefore, we use English as the target
language in our experiments.

We use the corpora from WMT! as our datasets.

We use Europarl v7, News-commentary-v12,
and Common Crawl for training in De—-En. The
training data have totally 4.6 million sentences. We
use Newstest2014 for validation, and Newstest2021
for testing in De—En. For Ru-En, ParaCrawl v9,
News-commentary-v10, and Common Crawl are
used for training. These training data have totally
13.1 million sentences. Newstest2014 is used for
validation, Newstest2021 is used for testing in Ru—
En. For Fr-En, Europarl v7, News-commentary-
v10, and Common Crawl are used for training.
These training data have totally 5.4 million sen-
tences. Newstest2013 is used for validation, and
Newstest2015 is used for testing in Fr—En.

We need to use an LLM to infer each target
sentence in the training set to get its negative log-
likelihood. Therefore, we limit the size of the train-
ing set by filtering the original datasets. We ran-
domly select 350 million sentences from the orig-
inal training dataset for each language pair. We
use the condition below to further choose data with
high quality:

* Both source and target sentences have lengths
within the range of 5 to 300.

» The disparity between the source and target
sentence length does not exceed five times.

The number of sentence pairs for each language
pair is as follows: De—En 2.6 million, Ru—-En 2.9
million, Fr—En 2.7 million.

4.2 Systems

We compare our method with the vanilla Trans-
former model, three typical token-level methods
improving NMT, and two methods introduced in
Section 2 for comparison. Our method is not com-
pared with sequence-level methods such as MIXER
(Ranzato et al., 2016) and MRT (Shen et al., 2016).
These sequence-level methods use online samples
and are more than ten times slower than the token-
level methods (Edunov et al., 2018).

e TX is the vanilla Transformer.

* §S (Mihaylova and Martins, 2019) is a sched-
uled sampling method with a Transformer that

"http://www.statmt.org
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uses two-pass decoding. The Inverse Sigmoid
Decay is used for scheduling in our experi-
ments. It performs best among the scheduling
algorithms according to Liu et al. (2021).

CASS (Liu et al., 2021) is Confidence-Aware
Scheduled Sampling. It enhances the normal
scheduled sampling by sampling different to-
kens according to the model’s probability of
ground truth tokens.

TFN (Goodman et al., 2020) uses two stacking
decoders. The loss values are computed on
each decoder and the results are combined to
form the final loss value. We use the hyperpa-
rameters according to their recommendation
in the paper. The second decoder’s weight is
set to 0.4, and both decoders share the same
set of parameters.

* Refine includes the translations from NMT in
the prompt and explicitly asks LLM to refine
the fluency.

* ReRank uses LLMs to rerank the output can-
didates from NMT and choose the one with
the smallest perplexity in LLM.

We implement our proposal, Contrastive Fluency
Enhancement (CFE), as described in Section 3.

Since ReRank is a post-processing method, we
can apply ReRank to the output of CFE. This vari-
ant is denoted as CFE+ReRank.

4.3 Implementation Details

We use Llama2-13B-chat-hf 2 as the LLM for ex-
periments. Its negative log-likelihood of each token
in the target sentences in the training data is used
as described in Section3.3. For the method Refine,
this model is also used to generate refined transla-
tions. In inference, we use top-p (0.9) sampling,
and the sampling temperature is set to 0.9.

Our implementation of NMT is based on the
Fairseq toolkit (Ott et al., 2019) using a typi-
cal configuration * similar to the original Trans-
former (Vaswani et al., 2017). The Transformer
Base model with about 60 million parameters is
used. Since we use the token-level negative log-
likelihood from Llama2-13B-chat-hf, we need to

2https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf
3https://github.com/facebookresearch/fairseq/
tree/main/examples/scaling_nmt
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De-En Ru-En Fr-En
Metrics BLEU Meteor Comet | BLEU Meteor Comet | BLEU Meteor Comet
Baselines

Transformer 26.19 49.18 7545 | 28.76 49.98 75.28 | 34.41 51.17 7651

SS 26.43 4920 7540 | 28.71 4982 7499 | 3455 5112 76.29

CASS 26.27 49.54 7556 | 28.96 50.14 7530 | 35.14 5172 76.67

TFN 26.31 49.54 7544 | 28.99 50.23 75.30 | 34.32 51.13 76.67

Refine 26.19 49.18 7545 | 28.76 49.98 75.28 | 34.41 51.17  76.51

ReRank 26.42 4990 75.76 | 28.99 51.05 7593 | 33.09 51.08 76.06

A (-TX) 0.23 0.72 0.31 0.23 1.07 0.65 -1.32 -0.09 -0.45
Our Proposal

CFE 26.65 4945 7591 | 29.67 50.82  76.51 | 35.50 51.88  76.86

A (-TX) 0.46 0.27 0.46 0.91 0.84 1.23 1.09 0.71 0.35

CFE+ReRank | 27.06 50.18 76.03 | 29.72 51.73  76.87 | 33.76 51.714  76.12

A (-TX) 0.87 1.00 0.58 0.96 1.75 1.59 -0.65 0.57 -0.39

Table 1: Performance of different methods. The scores of CFE and those better than CFE are highlighted in Bold,
while the scores that are worse than the vanilla Transformer (denoted as TX) are shown in Italic. A denotes the

gain compared to TX.

use the same tokenizer for NMT and Llama2-13B-
chat-hf so that one sentence has the same subwords
in two systems. We use the tokenizer of Llama2-
13B-chat-hf for subwords. The vocabulary size is
equal to 32,000, which is shared for the source and
target sentences. Both the dropout rate and the la-
bel smoothing are set to 0.1. We use beam search
for decoding with a beam size of six, and the factor
for length penalty is 0.6. The number of candidates
used for ReRank is the same as the beam size.

In our preliminary experiments for Refine, we
found that the outputs from LLMs may contain
some explanation words. This result makes it diffi-
cult to extract the refined sentence for evaluation.
Therefore, the prompt used for Refine in our evalu-
ation requires that the LLM do not give any expla-
nation. The prompt is shown below:

"initial translation”

If there are minor mistakes in the above sentence,
please correct them and make this sentence more
fluent. If there is no mistake, keep it intact. Only
output the result. No explanation.

Our method, its variant for ablation study, and
token-level baseline methods (SS, CASS, TFN) use
a common pre-trained NMT model for finetuning.
This pre-trained model is trained for a minimum
of 20 epochs on the filtered data set described in
Section 4.1, stopping if the validation loss does not
decrease for 20 consecutive epochs. For finetuning,
we adopt the same early-stop policy as Choshen
et al. (2019), where the process is terminated if the
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validation loss does not decrease for ten consecu-
tive epochs. The margin p in the loss function of
CFE is set to 0.1.

All GPUs used for training are Nvidia
GF1080Ti.

4.4 Evaluation and Results

Three metrics are used to evaluate the performance
of the methods using: BLEU, Meteor, and Comet.
We use SacreBLEU* (Post, 2018)° for BLEU. For
Meteor®, we use its version 1.5. For Comet, we use
its wmt22-comet-da model’.

Table 1 illustrates the performance of methods
for De—En, Ru—En, and Fr—En.

The vanilla Transformer model is a strong base-
line. Our method CFE outperforms it in all three
metrics for all language pairs. CPE generally
achieves the best performance compared to other
baselines except for a few cases in Meteor.

Refine gets the same performance as the vanilla
Transformer. We find that LLM almost always re-
gards the translation from NMT as fluent enough
and does not provide improved translations. The
number of intact sentences are illustrated in Ta-
ble 4.

ReRank gets better performance than the vanilla
Transformer for De-En and Ru—En, but much

*https://github.com/mjpost/sacreBLEU
3case.mixed+numrefs. 1 +smooth.exp+tok. 13a+version.2.3.1
6ht’cp ://www.cs.cmu.edu/~alavie/METEOR/
"https://github.com/Unbabel/COMET
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worse for Fr—En. Table 2 and 3 illustrate that
ReRank always gets much lower perplexity than
the vanilla Transformer. The inconsistency be-
tween low perplexity and good translation reflects
the complexity of machine translation and the im-
portance of the balance between adequacy and flu-
ency.

CPE+ReRank gets gains in De—En and Ru—En.
However it has worse performance than CPE in
Fr—En. This result is consistent with the bad per-
formance of ReRank alone in Fr—En.

Model De-En Ru-En Fr-En
ppl  TX 217.9 128.5 2423
ReRank 73.0 62.4 94.9
CFE 117.6 131.5 223.0
CFE+ReRank 72.1 66.1 87.8
NLL TX 4.131 3.923 4.406
ReRank 3.823 3.631 4.019
CFE 4.108 3.895 4.404
CFE+ReRank 3.798 3.602 3.999

Table 2: Fluency measured with average perplexity
(ppD) and negative log-likelihood (NLL).

De-En Ru-En Fr-En
Better 855 835 1301
Equal 145 165 195
Worse 0 0 0

(a) ReRank, compared to Transformer

De-En  Ru-En Fr-En
Better 477 486 578
Equal 95 93 346
Worse 428 421 572

(b) CFE, compared to Transformer

De-En  Ru-En Fr-En
Better 775 767 1174
Equal 37 38 113
Worse 188 195 209

(c) CFE+ReRank, compared to Transformer

Table 3: Investigate the fluency compared to Trans-
former at sentence-level using negative log-likelihood.

5 Analysis
5.1 Loss Components in CFE

Figure 2 shows the components in the loss func-
tion of CFE for De—En during training. Both the
loss component L f;,¢p ¢y (Figure 2a) and the total
loss (Figure 2b) steadily decrease. These figures
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demonstrate the effectiveness of the CFE loss func-
tion presented in Section 3.

The results on other language pairs get to the
same conclusion as illustrated in Figure 3 and 4.

5.2 Fluency

The fluency usually is measured with perplexity,
denoted as ppl. We use Llama2-13B-chat-hf to
get the NLL of each translation, which is averaged
based on the number of tokens in the generated
sentence. These NLLs are used to calculate that
sentence’s perplexity according to Equation 1.

Table 2 illustrates each test set’s average per-
plexity and NLL. ReRank outputs the one with
the lowest NLL in the candidates. Therefore, it
consistently gets much lower perplexity and NLL
compared with the vanilla Transformer, even for
Fr—En that ReRank gets much worse performance
as shown in Table 1.

Our method CFE consistently gets lower NLL
for all language pairs than the vanilla Transformer.
CFE generally gets a lower average perplexity, with
the only exception being Ru—En. Compared to
ReRank, CFE gets larger perplexity and NLL. This
result reflects that CFE gets a better balance be-
tween fluency and adequacy.

We also compare the NLL of the vanilla Trans-
former and other methods for each translation and
count the number of cases that other methods have
lower (better), equal, or greater (worse) NLL than
the vanilla transformer. When the absolute value of
the difference in comparison is less than 0.001, two
NLL values are counted as equal. The results illus-
trated in Table 3 show that our method effectively
improves the fluency of NMT.

5.3 Refine With LLM

Table 4 illustrates that most sentences are kept in-
tact when the LLM is asked to improve fluency.
There are a few sentences in which no translations
are identified in the feedback from Llama2-13B-
chat-hf. When these empty feedback are identified,
the original translations are reasonably used before
evaluation in our implementation. This analysis
explains why Refine gets the exactly same perfor-
mance as the vanilla Transformer.

5.4 Ablation Study

Table 5 shows the performance of CFE with and
without Contrastive Learning (CL). The variant
without CL implements the loss function in Equa-
tion 8. It maximizes the target language model
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Figure 5: Investigate the performance on the validation sets during training for CFE and its variant without

contrastive learning for De—En.

and does not make use of LLM’s knowledge as a
ceiling. While CFE without CL also outperforms

the vanilla Transformer model and demonstrates its
efficacy in improving NMT, its gains are generally
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De-En Ru-En Fr-En

Total 1000 1000 1496

Intact 995 996 1480
Empty 5 4 16

Table 4: Refine with the LLM does not improve NMT.

Model | De-En Ru-En Fr-En
TX 26.19 28.76 3441
CFE 26.65 29.67 35.50

A (-TX) 0.46 0.91 1.09

w/o-CL | 26.58 29.01 34.66

ACTX) | 0.39 0.25 0.25

Table 5: Ablation test by removing Contrastive Learn-
ing from CFE, denoted as w/o-CL.

lower than CFE.

Figure 5 shows the performance on the valida-
tion sets during training for CFE (black and solid)
and its variant (blue and dashed) without CL in
De-En. It shows that the variant consistently gets
higher loss and lower accuracy during training. Fig-
ure 6 and 7 illustrate the performance on the vali-
dation set for the other language pairs, which are
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consistent with the conclusion of De—En.

These ablation tests demonstrate the importance
of Contrastive Learning in CFE.

5.5 Significance Tests

Table 6 shows the results of significance tests
for ReRank, CFE and CFE+ReRank (denoted as
CFE+RR+ST). We report mean and standard error
over five training runs with seeds 1-5. For ReRank,
these seeds are applied to pretrained models. These
results are generally consistent with Table 1.

Model BLEU Meteor Comet
TX 26.19 49.18 75.45
ReRank-ST 26.37 +£.11 49.88 £.09  75.70 +.06
A (-TX) 0.18 0.70 0.25
CFE-ST 26.654+.09 4937 +£.06  75.87 £.07
A (-TX) 0.46 0.19 0.42
CFE+RR-ST | 26.70+.11  49.84+.11  75.85 +.09
A (-TX) 0.51 0.66 0.40

Table 6: Significance tests on De—En.



6 Conclusion

This paper investigates how to improve neural
machine translation (NMT) with Large language
models (LLMs). Our experiments show that
post-processing methods like re-ranking and self-
refining are not effective. Based on the insight that
NMT is good at adequacy and weak at fluency,
we propose to use LLMs to enhance the fluency
of NMT’s generation by integrating a language
model at the target side and using Contrastive learn-
ing to constraint the probabilities to a ceiling, the
LLM’s fluency. Our experiments on three language
pairs (De-En, Ru—En, and Fr—En) show that this
method effectively improves the performance of
NMT. The empirical analysis further demonstrates
that this method improves the fluency at the tar-
get side and Contrastive Learning with knowledge
from the LLM plays an important role in achieving
the gains.

7 Sustainability Statement

We trained and finetuned the model with the early-
stop strategy as described in Section 4.3. Pretrain-
ing and finetuning the model typically took nearly
140 and 100 GPU-hours using Nvidia GF1080Ti.
The estimated energy cost for each model is illus-
trated in Table 7, according to the calculation using
Green-Algorithms?.

GPU-Hour CO2(kg) Engergy(kWh)
Pretrain 140 31.88 59.32
Finetune 110 25.05 46.61

Table 7: Estimated energy cost for each model.
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