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Abstract

Recently, there have been increasing efforts on
Quality Estimation (QE) and Post-Editing (PE)
using Large Language Models (LLMs) for Ma-
chine Translation (MT). However, the focus
has mainly been on high resource languages
and the approaches either rely on prompting
or combining existing QE models with LLMs,
instead of single end-to-end systems. In this
paper, we investigate the efficacy of end-to-end
QE and PE systems for low-resource languages
taking 5 Indian languages as a use-case. We
augment existing QE data containing multidi-
mentional quality metric (MQM) error annota-
tions with explanations of errors and PEs with
the help of proprietary LLMs (GPT-4), follow-
ing which we fine-tune Gemma-2-9B, an open-
source multilingual LLM to perform QE and
PE jointly. While our models attain QE capa-
bilities competitive with or surpassing existing
models in both reference-based and reference-
free settings, we observe that they still struggle
with PE. Further investigation reveals that this
occurs because our models lack the ability to
accurately identify fine-grained errors in the
translation, despite being excellent indicators
of overall quality. This opens up opportuni-
ties for research in end-to-end QE and PE for
low-resource languages. The synthetic dataset
and evaluation metrics are publicly accessible
online.1

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) (Achiam et al., 2023; Touvron et al.,
2023; Riviere et al., 2024) have significantly im-
pacted Machine Translation (MT) leading to state-
of-the-art translation quality. This quality is usu-
ally measured at the corpus level using a variety
of quality estimation (Zerva et al., 2024) metrics
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Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
1https://github.com/AI4Bharat/QE-PE-MTEval.git

among which COMET (supervised) and GEMBA
(prompting-based)(Kocmi and Federmann, 2023)
are known to be the best. Specifically, COMET
has spurred research into language-family specific
versions of COMET like in the case of Indic lan-
gugaes (Sai B et al., 2023). Closely related is the
problem of post-editing where once a poor quality
translation has been detected, mistakes in transla-
tion need to be suitably fixed (Bhattacharyya et al.,
2023).

Recently, Treviso et al. (2024) have shown that
it is possible to take error annotations of COMET
models and the power of synthetic explanations
generated by GPT-4, to develop a system that can
post-edit erroneous translations thereby improving
translation quality. Their main focus was show-
ing that error explanations in human understand-
able formats lead to improved post-edits by LLMs.
On the other hand, Lu et al. (2025) have lever-
aged LLMs purely in prompting mode in multiple
stages to first annotate errors, choose the most reli-
able ones, and then post-edit to improve translation
quality. However, existing works have two major
limitations: a. They do not focus on a singular end-
to-end model which does error annotations, error
explanations and post-editing in one go. b. They
focus on high-resource languages, which makes it
difficult to determine the impact on low-resource
languages.

In this paper we attempt to fill this gap by fo-
cusing on English to Indian languages (En→X)
directions – specifically for five Indian languages:
Hindi, Gujarati, Marathi, Malayalam and Telugu,
which are considered low-resource in the world of
quality estimation and post editing. Given the low-
resource setting, we ask a simple question: How
good is an all-purpose end-to-end error annotation,
explanation and post-editing system for Indian lan-
guages in a low-resource setting?. This leads to 3
specific research questions (RQs):
(RQ1): How well do Large Language Models per-
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You are provided with a Source, Translation and a Translation quality analysis. The
Translation quality analysis contains a translation with marked error spans with different

levels of severity (Very Low, Low, Default, High, Very High) along with the error type
(Accuracy (addition, mistranslation, omission, untranslated text), Fluency (character
encoding, grammar, inconsistency, punctuation, register, spelling), Style (awkward),

Terminology (inappropriate for context, inconsistent use), Non-translation, Other, Source
error, Transliteration, and No-error). Given this information, generate an explanation for
each error and a fully correct translation. You have to correct all the errors pointed out in

the error span. If the sentence has multiple error spans, write explanations of all the errors
together, in a single paragraph. If there is no error pointed out, the corrected translation

will be same as translation.

Prompt

Source: This gives them a wider range of small places to hide from
predators.

Translation: यह उ�� िशका�रयो ंसे िछपाने के िलए छोटे �थानो ंकी एक
�ापक �ंृखला देता है। 

Translation quality analysis: Error Span 0: िछपाने\n Error Type 0:
Fluency_Grammar\n Error Severity 0: Very High\n      

3 In-context
examples

Input

Explanation: The error in the translation is related to fluency and
grammar. The word 'िछपाने' is incorrectly used in the sentence. The
correct word should be 'िछपने' which translates to 'to hide'. The
incorrect usage of the word disrupts the fluency and grammatical
structure of the sentence.
Corrected Translation: यह उ�� िशका�रयो ंसे िछपने के िलए छोटे �थानो ंकी
एक �ापक �ंृखला देता है। 

Output

Figure 1: Overview of the approach used to generate
synthetic post-edits and explanations. The figure illus-
trates the prompt design, input structure, and model-
generated output. The prompt specifies how translation
quality is analyzed, with error spans and severity levels
guiding the generation of explanations and corrected
translations

form in evaluating machine translation quality for
Indian languages, considering both reference-based
and reference-free scenario?
(RQ2): Do explanations of errors and error span
detection by LLMs lead to demonstrable improve-
ments in post-editing performance for Indian lan-
guages?
(RQ3): Does joint QE and PE, affect QE?

Taking motivation from (Treviso et al., 2024),
we augment the Indic MT Evaluation dataset
(Sai B et al., 2023) with synthetic explana-
tions and post-edits (see Figure 1) and fine-tune
GEMMA2(Riviere et al., 2024) to obtain a single
model to generate error annotations (used for com-
puting MQM scores for QE), error explanations
and post-edits. On the positive side, we find that
QE significantly surpasses all existing models like
COMETKiwi, however, unlike previous works, we
observe that error annotation and explanation does
not often lead to higher translation quality after
post-editing. Upon further investigation, we find
that this mainly occurs because the limited amount
of training data leads to models, which are good
at evaluating overall translation quality, but are not
always reliable at fine-grained quality estimation.
Specifically, they tend to under-detect certain error

categories or sometimes misclassify errors, leading
to inconsistencies in post-editing corrections. This
shows that we are still far away from using LLMs
for fine-grained error annotation and use it for post-
editing in low-resource settings. Our contributions
are:
(i) State-of-the-art quality estimation models for 5
Indian languages in the En→X setting.
(ii) Augmented quality estimation dataset with er-
ror explanations and GPT4 post-edits.
(iii) A reality check that LLMs are still unreliable
for fine-grained quality estimation and post-editing
in low-resource settings.

2 Related Work

Research in the machine translation (MT) evalua-
tion has evolved significantly, driven by the need
for more accurate and interpretable metrics. Tradi-
tional MT evaluation metrics can be broadly clas-
sified into Reference-based and Reference-free ap-
proaches. Early metrics, such as BLEU (Papineni
et al., 2002) and chrF (Popovic, 2017), primarily
relied on lexical overlap between machine transla-
tions and human references, often failing to align
well with human judgments.

More recent neural based metrics like, COMET
(Rei et al., 2020) and BLEURT (Sellam et al., 2020)
have shown stronger correlations with humans, but
these metrics lack interpretability. These metrics
have further improved with the introduction to mod-
els like XCOMET (Guerreiro et al., 2024) and
COMETKiwi ( in reference-free direction) (Rei
et al., 2022, 2023) . However, XCOMET primarily
detects error spans and their severity without classi-
fying the specific type of error. We aim to explore
whether LLMs can capture fine-grained translation
errors by identifying their types alongside assessing
severity, focusing on Indian languages.

In parallel, the exploration of Large Language
Models (LLMs) for MT evaluation has gained mo-
mentum (Kocmi and Federmann, 2023; Xu et al.,
2023), with research examining their effectiveness
in assessing translation quality. While these ap-
proaches have been widely explored for high re-
source languages, their performance for Indian lan-
guages, which are notoriously resource poor for
quality estimation, remains unexplored.

Additionally, research suggests that fine-grained
error analysis and explanations can improve post-
editing efficiency (Treviso et al., 2024; Lu et al.,
2025). However, our findings indicate that such

389



Output

Aerosmith have cancelled their 
remaining concerts on their tour.

Source

एरो��थ ने अपने दौरे पर अपने शेष संगीत 
काय��मो ंको र� कर िदया है।

Translation

एरो��थ ने अपने दौरे के अपने शेष संगीत 
काय��मो ंको र� कर िदया है.

Reference
Fine-tuned

Open-source LLM

Input

Error Span 0: पर
Error Type 0: Fluency_Grammar

Error Severity 0: Very High  

Error Analysis

The error concerns fluency and grammar. 'पर' is
misused; 'के' (meaning 'of') is correct.

Explanation

एरो��थ ने अपने दौरे के अपने शेष संगीत काय��मो ंको
र� कर िदया है|

Post-Edit

Figure 2: Overview of fine-tuned LLM models for translation quality assessment. The green box represents the
reference-free setting, while the purple box represents the reference-based setting. Given an input consisting of a
translation and source (with or without a reference and error analysis), we train models to generate one or more
of the error analysis (fine-grained MQM style error annotations), error explanations and post-edits as applicable.
Section 4.3 shows all possible model configurations we consider.

benefits may not necessarily extend to low-resource
Indian languages, highlighting the need for further
investigation into language-specific factors affect-
ing post-editing and evaluation.

3 Methodology

Our approach leverages synthetic explanations and
post-edits from LLMs followed by fine-tuning
open-source LLMs to enhance a large language
model’s (LLM) ability to detect, explain, and cor-
rect machine translation errors in both reference-
based and reference-free settings.

3.1 Error Explanations and Post-Edits

For the tasks of error analysis and post-editing, we
generated synthetic explanations and post-edits us-
ing a proprietary API based model. Our approach,
inspired by (Treviso et al., 2024) is shown in Figure
1. Our initial experiments with zero-shot prompting
yielded suboptimal outputs, highlighting the need
for more guided generation. To address this, we
adopted a 3-shot prompting strategy, incorporating
carefully selected in-context examples augmented
with explanations and corrections.

The in-context examples were derived from ex-
pert annotations provided by bilingual linguists
proficient in the target languages. Each linguist
was presented with the source sentence, its ma-

chine translation, and pre-identified error spans,
along with information on error type and severity.
They were asked to provide detailed explanations
for each error and generate a corresponding post-
edited translation that reflects natural and fluent
usage. Each expert annotated approximately 10
translation segments per language. From this pool,
we manually selected three high-quality examples
per language to serve as in-context demonstrations
for API based model, enabling it to generate con-
sistent and high-quality explanations and post-edits
across the broader dataset.

3.2 Joint Quality Estimation and Post-Editing

Using the original QE data augmented with error
explanations and post-edits, we fine-tune an open-
source multilingual model in a variety of configura-
tions. Figure 2 gives an overview and Section 4.3.2
details the training setups.

4 Experimental Setup

We now describe specifics of our experimen-
tal setup, namely datasets and languages, base-
lines, model configurations we tested, QE meta-
evaluation and PE evaluation approaches.
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Hindi Malayalam Marathi Tamil Gujarati AverageMetric
ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ

COMETMQM 0.441 0.597 0.405 0.516 0.365 0.490 0.498 0.654 0.426 0.487 0.427 0.549
Indic-COMETMQM 0.479 0.656 0.441 0.557 0.394 0.538 0.523 0.677 0.473 0.552 0.462 0.596
Base-IndicBERTMQM 0.438 0.638 0.443 0.517 0.370 0.512 0.437 0.576 0.487 0.582 0.435 0.565
XCOMET-XL 0.496 0.630 0.471 0.597 0.430 0.557 0.580 0.740 0.512 0.630 0.498 0.631
XCOMET-XXL 0.597 0.744 0.642 0.696 0.524 0.641 0.602 0.747 0.610 0.643 0.526 0.694

MetricX23-XL 0.419 0.401 0.457 0.427 0.388 0.406 0.465 0.396 0.452 0.449 0.436 0.416
MetricX23-XXL 0.439 0.333 0.417 0.391 0.476 0.421 0.323 0.478 0.323 0.533 0.438 0.422
MetricX24-XL 0.409 0.490 0.478 0.544 0.379 0.509 0.597 0.510 0.532 0.689 0.479 0.550
MetricX24-XXL 0.397 0.360 0.486 0.520 0.386 0.470 0.438 0.401 0.554 0.720 0.452 0.494

ErrSp 0.776 0.778 0.470 0.665 0.616 0.657 0.509 0.589 0.600 0.410 0.594 0.620
ErrSp-Exp 0.754 0.766 0.449 0.592 0.637 0.602 0.346 0.422 0.596 0.397 0.556 0.556

Table 1: Segment-level Pearson (ρ) and Kendall tau (τ ) scores for evaluation models in the reference-based setting.

4.1 Languages and Dataset Agumentation

For our experiments, we employed the IndicMT
Eval dataset(Sai B et al., 2023), which comprises
1,476 examples per language, covering Hindi,
Marathi, Malayalam, Tamil, and Gujarati. The
dataset was partitioned into training, validation,
and test sets containing 1000, 200 and 276 exam-
ples, respectively, for each language.

To enrich the dataset with explanations and post-
edits, we employed the GPT-4 API to generate syn-
thetic explanations and post-edits using a 3-shot
prompting strategy( refer Figure 1). Building upon
existing prompt design (Treviso et al., 2024), we in-
corporated expert-annotated in-context examples to
enhance the quality and relevance of the generated
explanations and corrections.

While leveraging LLMs for synthetic data gener-
ation offers scalability, it also introduces challenges
such as generic meta-phrases or contextually irrel-
evant content. To mitigate these, we iteratively
refined prompts, curated in-context examples, and
incorporated human verification steps. This metic-
ulous process resulted in well-structured training
and validation pairs tailored for error detection, ex-
planation generation, and post-edit prediction.

Additionally, to gauge the quality and utility of
the synthetic annotations, we conducted a human
evaluation wherein annotators assessed 20 GPT-4-
generated explanations per language. The feedback
was largely positive, particularly for Hindi, Gu-
jarati, and Marathi. These findings were further
corroborated by COMET-22 score comparisons,
which showed notable improvements in 76% of
Hindi cases, 50% of Marathi, and 44% of Gujarati.
Although Tamil (29%) and Malayalam (36%) saw
more modest gains, they still reflect incremental
improvements attributable to the synthetic data.

4.2 Implementation and Training
We fine-tuned the Gemma-2-9B (Riviere et al.,
2024) model on a diverse set of machine translation
evaluation tasks, as shown in Figure 2. We initially
experimented with fine-tuning LLaMA-3 (Touvron
et al., 2023) models; however, their performance
was suboptimal compared to Gemma-2, and hence
we focused only on the latter. Fine-tuning was con-
ducted with LoRA with a rank of 2 and an alpha
value of 16 to optimize memory efficiency while
maintaining model performance. For training we
used a batch size of 8, a learning rate of 1.5e-4, and
BF16 precision. Training was conducted using the
open-instruct library2.

4.3 Models Compared
We describe baselines followed by our various
model configurations we tested.

4.3.1 Baselines
All existing baselines we consider only have the
capability to do QE and we compare them with the
QE capabilities of models we train. We compared
our QE results against COMET(MQM) (Rei et al.,
2020), IndicCOMET and its variants (Sai B et al.,
2023; Singh et al., 2024), MetricX23 (Juraska et al.,
2023), MetricX24 (Juraska et al., 2024), XCOMET
(in a reference-based setting), and COMETKiwi
(for a reference-free setting).

4.3.2 Our Models
We have reference-based models for QE and er-
ror explanation and reference-free models for QE,
error explanation, and PE. Detailed in Appendix A
Reference-based QE Models These take in source,
translation and a reference and produce:

1. ErrSp: Error Annotations (error spans).
2https://github.com/allenai/open-instruct
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Hindi Malayalam Marathi Tamil Gujarati AverageMetric
ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ

COMET_QEMQM 0.487 0.651 0.354 0.457 0.302 0.416 0.485 0.650 0.359 0.370 0.397 0.509
IndicCOMETMQM 0.507 0.675 0.424 0.507 0.349 0.470 0.526 0.680 0.434 0.428 0.448 0.552
Base-IndicBERTMQM 0.439 0.632 0.409 0.520 0.362 0.479 0.476 0.596 0.445 0.547 0.426 0.555
COMET_Kiwi 0.542 0.634 0.458 0.480 0.392 0.475 0.482 0.393 0.494 0.681 0.474 0.533
COMET_Kiwi-XL 0.521 0.586 0.448 0.457 0.405 0.480 0.458 0.287 0.498 0.581 0.466 0.478
COMET_Kiwi-XXL 0.528 0.646 0.448 0.501 0.415 0.526 0.473 0.479 0.451 0.605 0.463 0.551

MetricX23-XL 0.464 0.455 0.423 0.285 0.371 0.300 0.447 0.197 0.443 0.503 0.430 0.348
MetricX23-XXL 0.550 0.417 0.484 0.334 0.424 0.369 0.499 0.241 0.538 0.600 0.499 0.392
MetricX24-XL 0.424 0.593 0.419 0.492 0.326 0.443 0.465 0.486 0.482 0.650 0.423 0.533
MetricX24-XXL 0.461 0.581 0.454 0.501 0.386 0.459 0.399 0.435 0.517 0.717 0.443 0.539

ErrSp 0.779 0.777 0.641 0.429 0.619 0.634 0.438 0.536 0.611 0.403 0.618 0.556
ErrSp-Exp 0.726 0.731 0.594 0.434 0.621 0.644 0.456 0.374 0.575 0.368 0.594 0.510
ErrSp-Exp-PE 0.754 0.765 0.656 0.457 0.588 0.621 0.370 0.479 0.582 0.374 0.590 0.539
ErrSp-Exp-PEgpt 0.753 0.763 0.569 0.452 0.567 0.592 0.443 0.361 0.541 0.343 0.575 0.502
ErrSp-PE 0.753 0.742 0.697 0.560 0.615 0.642 0.473 0.561 0.604 0.412 0.628 0.583
ErrSp-PEgpt 0.783 0.773 0.672 0.506 0.586 0.612 0.455 0.523 0.584 0.368 0.616 0.556

Table 2: Segment-level Pearson (ρ) and Kendall tau (τ ) scores for evaluation models in the referenceless setting.

2. ErrSp-Exp: 1 + human readable explanations
(henceforth explanations).

Reference-free QE and PE Models These take in
only source and translation and produce:

1. ErrSp: Error Annotations (error spans).
2. ErrSp-Exp: 1 + explanations.
3. PE: Post-edits with the original reference was

used as the post-edit during training.
4. PEgpt: Post-edits with the GPT generated cor-

rection as the post-edit during training.
5. ErrSp-Exp-PE: 2+3
6. ErrSp-Exp-PEgpt: 2+4
7. ErrSp-PE: 1+3
8. ErrSp-PEgpt: 1+4

Additionally, we trained some control models
specifically for the purposes of PE, to determine if
PE quality improves when the correct error spans
are supplied to the model as a part of the prompt
(ip). To this end, we take the correct error spans
as inputs along with the source and translation as a
part of the model prompt when training.

9. ErrSp-ip-PE: Analogous to 7.
10. ErrSp-ip-PEgpt: Analogous to 8.
11. ErrSp-ip-Exp-PE: Analogous to 5.
12. ErrSp-ip-Exp-PEgpt: Analogous to 6.

4.4 QE and PE Evaluation

To meta-evaluate the QE capabilities of models,
we follow Rei et al. (2020) and compute Pearson
and KendallTau correlations of MQM scores com-
puted using predicted MQM error spans against
those done by humans. For PE, we compute chrF

(Popovic, 2017) and COMET-22 scores of the post-
edit generated by the model against the human
written reference.

5 Result

In this section, we present the evaluation results of
our LLM-based approach for MT quality assess-
ment of Indian languages, addressing the research
questions outlined in Section 1. Section 5.1 ad-
dresses RQ1 by evaluating the performance of our
models under both reference-based and reference-
free settings, comparing them against state-of-the-
art MT evaluation systems. Section 5.2 focuses on
RQ2, investigating whether error annotations and
explanations enhance post-editing performance.
Additionally, throughout both sections, we explore
RQ3, analyzing whether joint quality estimation
(QE) and post-editing (PE) influence QE perfor-
mance. By structuring our results around these
questions, we provide a comprehensive assessment
of LLM capabilities for low-resource MT evalua-
tion.

5.1 LLM-Based MT Evaluation for Indian
Languages

Table 1 presents the results of reference-based MT
evaluation. Our LLM-based approach achieves
competitive performance, comparable to the sig-
nificantly larger XCOMET-XXL (10.7B) model.
Notably, unlike XCOMET-XXL, our method iden-
tifies error spans with greater diversity in both cat-
egory and severity (refer Table 6 for details). Our
system demonstrates strong performance for Hindi
and Marathi, but we observe comparatively lower
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Metric Hin Mal Mar Tam Guj

pre-edit 48.89 / 0.737 47.67 / 0.839 48.47 / 0.729 48.33 / 0.850 50.96 / 0.851

PE 45.24 / 0.733 45.06 / 0.842 42.71 / 0.703 45.80 / 0.854 44.99 / 0.851
PEgpt 48.86 / 0.733 48.46 / 0.842 48.89 / 0.703 49.12 /0.854 51.59 / 0.851
ErrSp-PE 45.16 / 0.738 45.69 / 0.840 43.69 / 0.711 47.41 / 0.863 47.05 / 0.859
ErrSp-PEgpt 48.66 / 0.743 48.03 / 0.832 48.75 / 0.734 48.60 / 0.843 51.17 / 0.846
ErrSp-Exp-PE 47.12 / 0.665 43.54 / 0.736 43.63 / 0.684 44.97 / 0.669 47.45 / 0.761
ErrSp-Exp-PEgpt 46.69 / 0.673 44.78 / 0.725 46.12 / 0.698 44.06 / 0.707 47.47 / 0.745

ErrSp-ip-Exp-PE 46.96 / 0.731 45.26 / 0.838 43.53 / 0.717 47.69 / 0.841 45.17 / 0.843
ErrSp-ip-Exp-PEgpt 47.43 / 0.714 46.32 / 0.815 48.82 / 0.730 48.40 / 0.815 49.52 / 0.831
ErrSp-ip-PE 44.61 / 0.730 44.85 / 0.837 43.50 / 0.707 46.06 / 0.856 46.90 / 0.855
ErrSp-ip-PEgpt 48.70 / 0.743 48.92 / 0.845 49.00 / 0.737 49.99 / 0.858 51.71 / 0.854

Table 3: ChrF and COMET scores of model-suggested post-edits vs. reference. Scores are in X/Y format, where X
is ChrF and Y is COMET. The "pre-edit" row shows ChrF and COMET scores for MT output vs. reference.

performance for Gujarati and Tamil. This discrep-
ancy suggests language-specific challenges, which
require further investigation.

The reference-free evaluation results in Table
2 highlight that our model achieves state-of-the-
art performance. Specifically, our model ranks
second-best when only predicting error spans but
outperforms all models when tasked with both error
span detection and post-editing. This underscores
the effectiveness of LLMs in evaluating MT qual-
ity, particularly when integrating error correction.
Consistent with our reference-based findings, the
strongest performance is observed for Devanagari-
script languages (Hindi and Marathi), reinforcing
the notion that script and linguistic features play a
crucial role in quality estimation. We also observed
that our model got a relatively lower Pearson score;
the reason can be the non-linear relationship be-
tween model predicted scores and actual MQM
scores, the presence of clustered values around cer-
tain score ranges (e.g., 0.6, 0.8, and 1.0), and the
skewed distribution, which weakens Pearson abil-
ity to capture a strong linear correlation despite
maintaining a high rank correlation (KendallTau).

5.2 Impact of Error Analysis on Post-Editing

In this section, we analyze the impact of error analy-
sis on post-editing, with a particular focus on RQ3,
which examines whether joint quality estimation
(QE) and post-editing (PE) influence QE perfor-
mance. Table 3 presents ChrF++ and COMET
scores for both original machine translations (pre-
edits) and their best post-edited versions. Contrary
to prior work suggesting that error explanations
significantly improve post-editing quality (Treviso
et al., 2024), our results show only marginal gains
across Indian languages. Interestingly, while er-

ror detection leads to notable improvements in
reference-free QE (as shown in Section 5.1), these
gains do not consistently carry over to post-editing.
The highest ChrF++ and COMET scores are ob-
served when error annotations are available, yet
the improvements remain modest, underscoring
the limitations of LLM-based post-editing in low-
resource settings. Our findings suggest that joint
modeling of QE and PE does not consistently en-
hance QE performance. Although the best results
are achieved when combining error analysis with
post-editing, the addition of explanations does not
yield further benefits. One potential reason for this
can be the scarcity of high-quality training data.
In contrast to high-resource languages, where fine-
grained error analysis and explanations can drive
significant improvements, LLMs struggle to gener-
ate precise, actionable feedback for low-resource
languages. These results indicate that while LLMs
show promise in overall MT quality estimation,
they remain less reliable for fine-grained quality
assessment and post-editing in low-resource sce-
narios.

6 Conclusion

Our study investigates the role of Large Language
Models (LLMs) in machine translation (MT) eval-
uation for Indian languages, addressing key chal-
lenges in fine-grained quality estimation (QE) and
post-editing (PE). We leveraged synthetic error
explanations and post-edits from GPT-4 and fine-
tuned the GEMMA-2-9B model in a variety of set-
tings for reference-based QE and reference-free QE
and PE. In reference-based settings we got compa-
rable if not slightly better QE performance against
existing strong baselines. On the other hand, in
reference-free settings we obtained significantly
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improved QE performance. However in the case
of PE, contrary to previous works in high-resource
settings, involving error detection and explanation
in the PE framework does not lead to improved
post-edited translations. The explanation for this
is in the poor fine-grained error detection capabili-
ties of our fine-tuned models due to low-resource
settings. This indicates a dire situation but opens
avenues for future research on joint QE and PE for
low-resource languages.

7 Limitations

This study examined LLM performance on a selec-
tion of Indian languages. Future research should
broaden this scope to encompass a more diverse set,
particularly low-resource languages. Furthermore,
even with fine-tuning, LLM post-editing perfor-
mance for Indian languages requires improvement.
To this end, better strategies for low-resource post-
editing need to be studied. Another limitation of
this work is the limited amount of synthetic data
created which should also be a future topic of in-
vestigation.

8 Sustainability Statement

Experiments were conducted using a private in-
frastructure, which has a carbon efficiency of 0.45
kgCO2eq/kWh. A cumulative of 48 hours of com-
putation was performed on hardware of type A100
PCIe 40GB (TDP of 250W). Total emissions are
estimated to be 5.4 kgCO2eq of which 0 percents
were directly offset. Given the low-resource nature
of our work, we do not expect our work to have
any large negative environmental impact.

Estimations were conducted using the Machine-
Learning Impact calculator presented in (Lacoste
et al., 2019).
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Model Name Inputs Provided Outputs Expected
Reference-Based

ErrSp Source, Translation, Reference Error Spans
ErrSp-Exp Source, Translation, Reference Error Spans + Explanations
ErrSp-ip-Exp Source, Translation, Reference, Error Spans Explanations

Reference-Free
ErrSp Source, Translation Error Spans
ErrSp-Exp Source, Translation Error Spans + Explanations
ErrSp-Exp-PE Source, Translation Error Spans + Explanations + Post-Edits
ErrSp-ip-Exp Source, Translation, Error Spans Explanations
ErrSp-ip-Exp-PE Source, Translation, Error Spans Explanations + Post-Edits
ErrSp-ip-PE Source, Translation, Error Spans Post-Edits
ErrSp-PE Source, Translation Error Spans + Post-Edits
PE Source, Translation Post-Edits

Table 4: Overview of GEMMA fine-tuning tasks under reference-based and reference-free settings. Each task is
defined by the specific inputs provided and the expected outputs the model learns to generate.

Metric Hin Mal Mar Tam Guj

Err_Sp Exp 59.46 46.18 55.03 46.78 52.05
Err_Sp Exp PE 58.83 55.11 46.10 49.31 52.97
Err_Sp_Exp PE-gpt 59.26 49.37 41.74 43.71 47.87
Err_Sp_ip Exp 70.17 61.63 55.70 65.47 61.65
Err_Sp_ip Exp PE 70.20 60.94 55.29 64.96 60.81
Err_Sp_ip Exp PE-gpt 70.46 61.67 56.35 65.38 61.47

Table 5: chrF scores of model-suggested explanation vs.
GPT generated explanation

A Training Data Preparation

To fine-tune GEMMA-9B for translation quality
estimation and post-editing tasks, we constructed a
diverse set of input-output training pairs using syn-
thetic error explanations and post-edits. The model
was trained under two major settings: reference-
based (using human reference translations) and
reference-free (using only the source and machine
translation). Table 4 summarizes the task variants
explored under each setting.

Figure 2 shows an example prompt for the
ErrSp-Exp-PE task in the reference-free setting.
Other task prompts follow similar structures, differ-
ing in the presence or absence of reference transla-
tions, error spans, or expected outputs (e.g., expla-
nations, corrections).

For reference-free training, we experimented
with two post-edit supervision strategies: one using
GPT-4 generated outputs (PEgpt), and the other us-
ing human references (PE). This comparison helps
evaluate the reliability of synthetic supervision in
low-resource scenarios.
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Error Category Explanation

Accuracy Addition Translation includes information not present in the source.
Omission Translation is missing content from the source.
Mistranslation Translation does not accurately represent the source.
Untranslated text Source text has been left untranslated

Fluency Spelling Incorrect spelling or capitalization.
Grammar Problems with grammar, other than orthography.
Register Wrong grammatical register (eg, inappropriately informal pronouns).
Character Encoding Characters are garbled due to incorrect encoding. Example: Sink ->$ink

Terminology Inappropriate Terminology is non-standard or does not fit context.

Style Awkward The style of the text does not feel very apt. (Example: 1. The source sentence
feels formal like in a newspaper, but the translation doesn’t. 2. Sentences are
correct, but simply too long, etc..)

Transliteration If it transliterates instead of translating words/ phrases, where it should not.

Other Any other issues.

Source Error An error in the source.

Non Translation Impossible to reliably characterize the 5 most severe errors.

Table 6: This table outlines the error categories our models are capable of detecting in machine translation outputs.
It includes a comprehensive list of common translation errors, ranging from accuracy issues like additions and
omissions to fluency problems such as spelling and grammar mistakes. The categorization is adapted from previous
work IndicMT-eval(Sai B et al., 2023)
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