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Abstract

CHRF and CHRF++ have become the preferred
metrics over BLEU for automatic n-gram eval-
uation of machine translation, as they leverage
character-level n-gram overlaps, which achieve
better correlations with human judgments for
translating into morphologically rich languages.
Building on this insight, we observed that
bytes capture finer, sub-character-level struc-
tures in non-Latin languages. To this end, we
propose BYTF to capture sub-character-level
information through byte-level n-gram over-
laps. Furthermore, we augment it to BYTF+
and BYTF++ where we consider character and
word n-gram backoffs. On machine translation
metric meta-evaluation datasets from English
into 5 Indian languages, Chinese and Japanese,
we show that BYTF and its variants are compa-
rable or significantly better compared to CHRF
and CHRF++ with human judgments at the seg-
ment level. We often observe that backing off
to characters and words for BYTF and to words
for CHRF does not have the highest correlation
with humans. Furthermore, we also observe
that using fixed n-gram values often leads to
scores having poorer correlations with humans,
indicating the need for well-tuned n-gram met-
rics for efficacy.!

1 Introduction

Recently, CHRFand CHRF++ (Popovic, 2015, 2017)
have become the preferred metrics for auto-
matic n-gram evaluation of machine translation
(MT) (Robinson et al., 2024; J et al., 2024; Gala
et al., 2023). Compared to BLEU (Papineni et al.,
2002), they focus on fine-grained character-level
n-grams. As a result, they appear to have better
correlations with human judgments for translating
into morphologically rich languages.
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Figure 1: BYTF captures not only character-level sim-

ilarity but also sub-character-level (named radical that
usually conveys the meaning of a Chinese character)
overlap.

However, for non-Latin languages with sub-
character structures, as shown in Figure 1 for Chi-
nese, we can go one step further to evaluate the sub-
character-level structures, which are usually repre-
sented by bytes. This applies to a wide range of
languages such as Japanese and Indian languages.
To this end, we propose BYTF, in which we con-
sider byte-level n-grams instead of character-level
n-grams that can be implemented with a single
line code change. Experimental results on WMT
and Indian MT meta-evaluation datasets show that
BYTF has a higher correlation (Pearson and Kendall
Tau) with human judgments at the segment level
compared to CHRF. We further extend BYTF to
BYTF+/BYTF++ where we incorporate character-
and word-level n-gram backoffs to show that this
further enhances correlations.

Our contributions are as follows:

1. Novel metric: We propose BYTF a complete ver-
sion of CHRF, to capture sub-character-level struc-
tural similarity for many non-Latin languages.

2. N-gram backoffs: We extend BYTF to BYTF+
and BYTF++ to incorporate character- and word-
level n-gram backoffs.

3. Extensive meta-evaluation: Experimental re-
sults on 10 languages show comparable or higher
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Pearson and Kendall Tau correlations with hu-
man evaluations compared to BLEU, CHRF, and
CHRF++.

4. Tuning is important: We show that the de-
fault choices of n-gram are not always optimal and
should ideally be tuned based on the language pair.

2 Related Work

We introduce commonly used MT evaluation met-
rics in Section 2.1 and the recent trend of byte-level
methods in Section 2.2.

2.1 Evaluation Metrics

BLEU (Papineni et al., 2002) is a long-standing,
widely adopted word-level n-gram evaluation met-
ric due to its simplicity:

N
BLEU = BP - exp <Z wy, logpn> . (D

n=1

where p,, is the n-gram word-level precision, wy,
is a weight smoothing factor and BP represents
the brevity penalty (Post, 2018). There are two
limitations of BLEU. First, it requires word bound-
ary information, but many languages do not have
it. For languages without explicit word bound-
aries—such as Japanese and Chinese, we have to
apply an additional word segmenter, such as Ju-
man++ (Tolmachev et al., 2018) or the Stanford
Chinese word segmenter (Wang et al., 2014) to
pre-process them. However, for low-resource lan-
guages such as Burmese, we do not even have high-
quality word segmenters. Another limitation is that
BLEU overlooks fine-grained character-level over-
laps. As a result, it does not capture the difference
between a critical translation error and a minor
typographical or morphological variation.

CHRF (Popovié, 2015) relies on character-level
n-gram precision and recall, whereas CHRF++
(Popovi¢, 2017) uses word-level m-gram backoffs
and fine-tunes the hyperparameter n (from 1 to 4)
and m (from 1 to 2) to achieve the optimal correla-
tions with human judgments. However, they ignore
sub-character-level structures, which are important
for non-Latin languages, a gap that we explore.

In contrast to the simplicity of statistical metrics,
neural metrics leverage neural models trained to
minimize the difference between predicted evalua-
tions and human judgments. BERTScore (Zhang
et al., 2020), BLEURT (Sellam et al., 2020), and
COMET (Rei et al., 2020) are based on pre-trained
models such as BERT (Devlin et al., 2019) or

XLM (Conneau et al., 2020). They are then
fine-tuned on annotated MT quality evaluation
datasets including Direct Assessments (DA) (Gra-
ham et al., 2013) and Multidimensional Quality
Metrics (MQOM) (Lommel et al., 2014). However,
they rely on at least hundreds of annotated sam-
ples (Rei et al., 2022), which are hard to obtain for
low-resource languages, making them language-
specific. We do not compare with them as our goal
is not to beat them but to complete CHRF.

2.2 Byte-Level Methods

The byte-level method is a path to language-
agnostic NLP. For pre-processing, byte-level BPE
(BBPE) (Wang et al., 2019) handles unseen charac-
ters in Chinese and Japanese by segmenting them
into seen byte-subwords. The ByT5 model (Xue
et al., 2021) processes input text as raw UTF-8
bytes, thereby enabling it to handle any language,
increasing its robustness to noise, and simplifying
the pre-processing pipelines. The byte latent trans-
former (Pagnoni et al., 2024) is a purely tokenizer-
free model that learns from raw byte data. This
paper aims to find the missing piece: a byte-level
evaluation method.

3 Proposed Methods

This section introduces our proposed BYTF metric
and the extended BYTF+ and BYTF++ variants.

3.1 BYTF

We compute the byte-level F'-score, BYTFg, simi-
larly as CHRF, as

BYTP - BYTR
B2BYTP + BYTR’

where BYTP and BYTR denote the overall byte-level
n-gram precision and recall, respectively, which are
obtained by averaging the scores over all n-gram
orders. For each n (withn = 1,...,N), let G,
be the multiset of all byte n-grams in the candi-
date text, and let Count(g, -) denote the number
of occurrences of an n-gram g in the candidate or
reference text. For each n, we define the n-gram
precision and recall as

2

BYTF5 = (1 4 5?)

2 geg,, min {Count(g,cand), Count(g,ref) }

>_geg,, Count(g,cand) ’
3)

> geg, min {Count(g,cand), Count(g,ref) }

Ry = >_geg,, Count(g,ref)

“
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The overall byte-level precision and recall are
computed as the arithmetic mean over all n-gram
orders:

1Y 1Y
BYTP = NZP’“ BYTR:NT;Rn. (5)

n=1

The parameter  assigns [ times more impor-
tance to recall than to precision. In our experiments,
we set 5 = 1 so that they are equally weighted. To
capture more input details while tolerating some
redundancy, one can consider using 3 > 1 to favor
recall over precision.

Note that for languages using the Roman alpha-
bet such as English, BYTF reduces to CHRF, with
only minor differences (e.g., accent decomposition
in languages like Finnish).

3.2 BYTF+ and BYTF++

BYTF does not leverage character or word-level
information. Inspired by CHRF++ (Popovi¢, 2017),
we propose BYTF+, which integrates byte-level n-
grams and character-level m-grams, and BYTF++,
which further integrates word-level [-grams, within
the same F-score framework.

We define the extended metrics as

BYTP+/++ - BYTR+/++

B2BYTP+/++ + BYTR+/++"
(6)

where BYTP+/++ and BYTR+/++ denote the
overall precision and recall computed by averaging
the n-gram byte-level scores, m-gram character-
level scores (and, [-gram word-level scores for
BYTF++) statistics.

BYTF+/++5 = (1 + 7)

4 Experimental Setup

We describe our datasets, language pairs and meta-
evaluation setup.

4.1 Datasets and Language Pairs

We evaluate our n-gram metrics on the IndicMT
Eval (Sai B et al., 2023) and WMT2017-2022 (Bo-
jar et al., 2017, 2018; Barrault et al., 2019, 2020;
Akhbardeh et al., 2021; Kocmi et al., 2022) datasets.
The IndicMT Eval dataset contains MQM scores,
and the WMT dataset contains DA scores, both of
which are annotated by professional translators or
raters. The languages included in this study com-
prise six Indian languages—Hindi (Hin), Gujarati
(Guj), Malayalam (Mal), Tamil (Tam), Marathi
(Mar), and Bengali (Ben)—as well as two East

Human
Judgement

Ao

Reference

Correlation

Translation Evaluation Metric

i

Figure 2: The flowchart of meta evaluation. We calcu-
late the correlation between human judgment and our
evaluation metrics.

Asian target languages, Japanese (Jpn) and Chi-
nese (Zho). Their source language is primarily En-
glish, except for Ben«>Hin. The WMT datasets we
used primarily belong to the news domain (News*),
except for Ben<»Hin, which is sourced from Wiki-
media (Wiki21).

4.2 Meta Evaluation

To assess the reliability of evaluation metrics, meta
evaluation is commonly used to measure the cor-
relation between an evaluation metric and human
judgment, as illustrated in Figure 2. There are
two levels of meta evaluation: segment-level and
system-level. Segment-level correlation evaluates
how well a metric aligns with human scores on
individual translations, while system-level corre-
lation assesses its effectiveness in ranking entire
systems based on their aggregated performance.
In this work, we evaluate correlation only at the
segment level.

For correlation measurement, we employ Pear-
son correlation and Kendall’s Tau just as previous
works (Sai B et al., 2023; Singh et al., 2024). Pear-
son correlation measures the linear relationship
between two sets of numerical values, making it
useful for evaluating metrics that predict absolute
human scores. In contrast, Kendall’s Tau measures
ordinal association, which is particularly valuable
in ranking-based evaluations where the relative or-
dering of scores is more important than their exact
values.

5 Results

We now describe our results to determine whether
byte-based metrics can be used to replace character-
based metrics. Tables 1 and 2 provide the Pearson
and Kendall Tau correlations with human scores,
along with the winning metric and the optimal con-
figuration. For BYTF and its variants, the configu-
ration is given as a tuple a, b, ¢ for byte, character
and word n-gram values, respectively. Similar for
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Pearson Correlation Coefficient Kendall’s Tau

Direction BLEU CHRF BYTF BLEU CHRF BYTF

Eng-Hin (IndicMT) | 0.2600 0.2918120 0.346299001 | 0.1725 0.201299  0.263100 0t
Eng-Guj (IndicMT) | 0.2978 0.426950 0.4725600; | 0.2472 0.285750; 0.328413 01
Eng—Mal (IndchT) 0.2793 0-41756,0 0.44262070701- 0.3076 0.34636721 0.37462070’“
Eng-Tam (IndicMT) | 0.2647 0.366850 0.404350001 | 0.2069 0.2579 0.289620 0t
Eng—Mar (IndicMT) 0.1954 0.26564721 0.332713707(” 0.1468 0.17094721 0.2268137070]L
Ben-Hin (Wiki21) | 0.0901 0.115659 0.1165540; | 0.0563 0.066960 0.067316. 0t
Hin-Ben (Wiki21) | 0.1116 0.191555  0.1974990; | 0.0956 0.114464  0.11621600t
Eng—Guj (NCWSlg) 0.3992 0.47606,21 0-477416,6,21 0.2845 0.3366470 0‘33776,6,?[

Table 1: Translation Performance Metrics for Indian languages. 1 underneath BYTF denotes BYTF+. { underneath

CHRF and BYTF denotes CHRF++ and BYTF++ respectively.

Pearson Correlation Coefficient Kendall’s Tau

Direction BLEU CHRF BYTF BLEU CHRF BYTF
Eng-Jpn (NCWSZO) 0.3615 0.41442721 0.4213272,21 0.2509 0.27692721 0.25766727“
Eng—Jpn (NCWSZI) 0.2645 0.31572721 0.3189272721 0.1740 0.19532’21 0.18952’2721
Eng-Zho (News17) | 0.4197 0.471759; 0.4708g50; | 0.2951 0.320359; 0.31966221
Eng—Zho (NCWSIS) 0.3101 0.34922721 0'3545272,2i 0.2209 0.24242’21 0.24442’2’21
Eng-Zho (News19) | 0.2262 0.248159; 0.2503550; | 0.1350 0.149155; 0.1489 291
Eng-Zho (News20) | 0.2672 0.309729; 0.3147399; | 0.1720 0.195450;  0.196255 o
Eng-Zho (News21) | 0.1703 0.183455; 0.1820590; | 0.1050 0.114955; 0.1137.9.91

Table 2: Translation Performance Metrics for Eng-Jpn and Eng-Zho. 1 underneath BYTF denotes BYTF+. i
underneath CHRF and BYTF denotes CHRF++ and BYTF++ respectively.

CHRF and CHRF++, the configuration is a, b for
character and word n-gram values respectively.

5.1 Byte Based Metrics Are Competitive

As shown in Tables 1 and 2, BLEU consistently has
the lowest correlation. This aligns with previous
findings that BLEU struggles to capture translation
quality in non-Latin and low-resource languages
(Kocmi et al., 2021). Its reliance on exact word
matching makes it less effective for languages with
flexible word order and rich inflections, such as In-
dian and East Asian languages. Kocmi et al. (2021)
suggest using CHRF among string-based metrics
for non-Latin languages.

The byte-based metric, BYTF, achieves the high-
est correlation with human judgments across vari-
ous language pairs, suggesting that byte-level rep-
resentations effectively capture essential aspects
of translation quality. While CHRF remains com-
petitive in some cases, BYTF operates at a more
granular level than characters and words, making it
more language-agnostic and a potentially superior
alternative to traditional string-based metrics.
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5.2 Correlation Improvements Are Domain
And Language Pair Specific

The effectiveness of BYTF varies depending on the
language pair and domain of the dataset, showing
a strong advantage in Indian languages but a com-
petitive performance with CHRF in Japanese and
Chinese. Correlation patterns differ depending on
the dataset, reinforcing that a single metric may not
perform best across all domains (e.g., News vs. In-
dicMT). This suggests that while byte-level evalua-
tion is effective, its application needs to be carefully
adapted to language- and domain-specific charac-
teristics. Future research should explore adaptive
evaluation strategies based on the specific charac-
teristics of the dataset.

5.3 The Optimal Metric And Configuration
Needs Tuning

The above results present the optimal configura-
tion for BYTF and CHRF, determined based on their
correlation with human scores. One key takeaway
is that BYTF and CHRF require tuning to achieve
their best performance. The n-gram order of bytes,



characters, and words plays a significant role in
influencing these correlations. The optimal config-
uration is language-specific, where the best settings
for Indian languages differ from those for Japanese
or Chinese, which use distinct scripts or writing
systems. Therefore, rather than viewing tuning as
a limitation, it should be seen as a necessary step
in improving the reliability of automatic metrics.

5.4 Backing Off To Larger Granularities Is
Not Always Reliable

The BYTF metric follows a common strategy in
evaluation metrics, which involves backing off to
larger linguistic units (e.g., moving from byte-level
to character-level, and then to word-level evalua-
tion). However, our results suggest that this strat-
egy is not always effective. Specifically, we found
that for Indian languages, particularly those in the
IndicMT Eval dataset, the backing-off strategy is
often unnecessary, as byte-level evaluation alone
provides adequate alignment with human judgment.
This suggests that, for these languages, smaller
linguistic units may be more appropriate or suffi-
cient for capturing translation quality. On the other
hand, for languages like Japanese and Chinese, the
backing-off strategy remains consistently effective,
highlighting the varying effectiveness of this ap-
proach depending on the linguistic characteristics
of the language in question.

5.5 N-gram Metrics Appear To Have
Decreasing Correlation With Humans
Over The Years

Our results in Table 2 show that the correlation of
n-gram metrics with human judgments decreases
over time. This phenomenon can be explained by
several key factors: (1) modern neural machine
translation systems tend to generate more fluent or
natural-sounding translations rather than n-gram
matches with a reference translation, and (2) as
NMT becomes more fluent and context-aware, hu-
man evaluation criteria focus more on overall mean-
ing rather than literal word choices (Barrault et al.,
2019), making n-gram metrics less aligned with
human judgments. This suggests that while n-gram
metrics remain useful for basic assessments, they
should be supplemented with more sophisticated
semantic-based metrics like COMET (Falcio et al.,
2024) to provide a comprehensive evaluation of
translation quality.

5.6 Visualizing Impact Of Configuration On
Correlations

Figure 3 highlights that the choice of configuration
plays a crucial role in the n-gram metrics. BYTF
could be highly sensitive to its configuration es-
pecially on Hindi, Malayalam, and Tamil, but the
variation is more stable on Gujarati and Marathi.
A similar tendency can be observed for CHRF but
its sensitivity is lower compared to BYTF. These
findings further emphasize the importance of per-
language tuning to align with human judgment.

We further observe the overall tendency of the
optimal configuration for Indic languages in Figure
4. The results show that the configuration is optimal
when the orders of character and word are smaller
and when the byte order is larger. This suggests that
the configuration for the Indic languages should
have a larger byte order and smaller character and
word order. For example, most Indic languages
in Table 1 have an optimal configuration with a
byte order of 20 and character and word order of
zero. A similar analysis for Japanese and Chinese
is provided in Appendix A.

5.7 Recommendations

Based on our findings, we provide the following
recommendations for future evaluation:

* Byte-Based Metrics as Preferred Choice:
Given their strong performance, BYTF should
be prioritized over BLEU and CHRF, espe-
cially for Indian languages.

* Configuration Tuning: Metric configura-
tions should be fine-tuned per language and
domain, as the optimal settings vary across In-
dic, Japanese, and Chinese translations. Back-
ing off to larger granularity is not always reli-
able.

* Complementing N-Gram Metrics: As mod-
ern NMT evolves, we recommend supple-
menting n-gram metrics with semantic-based
metrics like COMET.

6 Conclusion

We proposed BYTF, a byte-level n-gram evalua-
tion metric that captures sub-character-level sim-
ilarities for machine translation. We further aug-
ment BYTF with character- and word-level back-
offs as BYTF+ and BYTF++. Our experiments show
that they achieve higher correlations with human
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Figure 4: Pearson Correlation in relation between n-gram order of byte, character, and word on IndicMT Eval.

judgments than BLEU and CHRF, though language-
specific hyper-parameter tuning is applied. Finally,
we recommend (1) avoiding excessive reliance on
backing off to larger granularities, as it weakens
correlation with human judgment; and (2) com-
plementing n-gram metrics with semantic-based
metrics like COMET, as exact n-gram matching
may fail to capture high-level semantics.

7 Sustainability Statement

In this work, we are using existing translations,
therefore, there is no need to train NMT models
or perform any inference. All results are based
purely on numerical correlations and were com-
puted using only CPUs, leading to significantly
lower energy consumption. This approach is both
efficient and environmentally friendly. We believe
that our experimental setup used in this study is
highly sustainable.
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A Visualizing Impact Of Configuration
On Correlations On Japanese and
Chinese

Figure 5 illustrates how performance varies across
different configurations for both Japanese and Chi-
nese. Additionally, we observe that sensitivity is
influenced not only by the language but also by the
domain, with some domains being more sensitive
than others. This reinforces our conclusion about
the significance of configuration tuning. Moreover,
Figures 6 and 7 demonstrate the general trends of
optimal configurations for Japanese and Chinese,
respectively.
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Figure 5: Correlation of various configurations on Japanese and Chinese.
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Figure 6: Pearson Correlation in relation between n-gram order of byte, character, and word on Japanese.
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Figure 7: Pearson Correlation in relation between n-gram order of byte, character, and word on Chinese.
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