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Abstract

Despite significant advancements in Multi-
modal Machine Translation, understanding and
effectively utilising visual scenes within mul-
timodal models remains a complex challenge.
Extracting comprehensive and relevant visual
features requires extensive and detailed input
data to ensure the model accurately captures ob-
jects, their attributes, and relationships within
a scene. In this paper, we explore using visual
scene graphs extracted from images to enhance
the performance of translation models. We in-
vestigate this approach for integrating Visual
Scene Graph information into translation mod-
els, focusing on representing this information in
a semantic structure rather than relying on raw
image data. The performance of our approach
was evaluated on the Multi30K dataset for En-
glish into German, French, and Czech transla-
tions using BLEU, chrF2, TER and COMET
metrics. Our results demonstrate that utilis-
ing visual scene graph information improves
translation performance. Using information on
semantic structure can improve the multimodal
baseline model, leading to better contextual un-
derstanding and translation accuracy.

1 Introduction

Neural Machine Translation (NMT) has signifi-
cantly advanced translation quality compared to
earlier methods, showcasing remarkable improve-
ments in fluency and precision (Cho et al., 2014).
Transformer-based models enhanced performance
by effectively capturing semantic dependencies and
producing fluent, contextually relevant translations
(Vaswani et al., 2017).

However, despite these advancements, text-only
NMT models face persistent challenges in translat-
ing the input text (Wang and Xiong, 2021; Zhao
et al., 2022). Resolving ambiguity in the input
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sentence is one of these challenges (Futeral et al.,
2023; Bowen et al., 2024; Hatami et al., 2024).

To address these limitations, researchers have ex-
plored Multimodal Machine Translation (MMT), a
subfield of NMT that integrates visual information
from images or videos to enhance translation mod-
els (Yao and Wan, 2020; Wang and Xiong, 2021;
Zhao et al., 2022). MMT leverages visual content
as a complementary source of information to aid
in understanding the source text and resolving am-
biguities. Text-only NMT models might struggle
to translate ambiguous sentences, but an accom-
panying image can provide crucial visual cues for
disambiguation, enabling the model to select the
correct translation.

Despite its potential, MMT presents its own chal-
lenges. Visual resources, such as images, often
contain a large amount of information, not all of
which is relevant to the translation task. This extra
information can not only fail to improve transla-
tion quality but may even degrade it. In addition,
training an MMT model requires a vast amount of
visual information covering different objects and
their relationships.

To address these challenges, recent studies have
focused on identifying and incorporating the most
relevant visual information into translation models
(Lala and Specia, 2018; Fei et al., 2023; Yin et al.,
2023; Hatami et al., 2023). These papers examine
the importance of using visual information by fo-
cusing on lexical ambiguity in the input text to find
relevant information on the visual side.

In this paper, we study the impact of using Visual
Scene Graphs (VSGs), which represent objects and
their relationships within an image, as a means to
enhance MMT models. First, we extract VSGs as
a semantic structure from images and then utilize
this information as triples to train our translation
model. Our work differs from previous studies
by directly leveraging VSGs to represent objects
and their relationships, providing a structured se-
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mantic context for translation. We evaluated our
approach on the Multi30K dataset for English into
German, French and Czech translations. The re-
sults demonstrate that the use of VSGs in MMT
leads to notable improvements in both quantitative
metrics and qualitative evaluations, highlighting
the potential of this approach for advancing the
field of multimodal translation.

2 Related Work

In recent years, MMT has gained significant atten-
tion to enhance traditional text-only translation by
incorporating visual information. MMT models
primarily relied on image features extracted from
vision-based transformers to improve translation
quality, particularly in cases of ambiguity or lexical
uncertainty (Delbrouck and Dupont, 2017). Early
approaches to MMT incorporated joint multimodal
embeddings to fuse textual and visual features.
Calixto et al. (2017) proposed an attention-based
framework that used convolutional neural networks
(CNNs) to extract image features, which were
then integrated into a sequence-to-sequence NMT
model. Similarly, Libovický and Helcl (2017) in-
troduced hierarchical attention mechanisms to bal-
ance contributions from different modalities dy-
namically.

Some other papers explored transformer-based
architectures to enhance multimodal fusion. Wu
et al. (2021) adapted the Transformer model by
introducing multimodal self-attention, enabling
better integration of visual and textual features.
Caglayan et al. (2019) demonstrated that incorpo-
rating region-based visual features (e.g., using ob-
ject detectors like Faster R-CNN) improved MMT
performance by focusing on semantically relevant
image regions.

Despite advancements, challenges remain in ef-
fectively integrating multimodal information with-
out introducing noise. Elliott (2018) found that
while images help in specific cases, text-only mod-
els often outperform multimodal ones when trained
on large-scale datasets. This has led to investiga-
tions into adaptive multimodal fusion techniques,
where the model selectively uses visual information
only when beneficial (Hatami et al., 2024).

Recent advancements in MMT have explored
the integration of structured visual knowledge to
enhance translation quality. Yin et al. (2020) pro-
posed a graph-based multimodal fusion encoder for
NMT, leveraging Graph Neural Networks (GNNs)

to encode multimodal information more effectively.
By structuring both visual and textual inputs into a
graph representation, their model captures seman-
tic relationships between objects, improving the
contextual grounding of translations. These stud-
ies highlight the growing importance of structured
vision-language representations, such as scene
graphs and graph-based encoders, in addressing the
challenges of multimodal translation, particularly
in ambiguous and resource-constrained settings.

Incorporating knowledge graphs into NMT has
proven effective in improving the translation of
named entities and specialized terminology, as
demonstrated by Moussallem et al. (2019). Their
approach introduced two strategies: Entity Link-
ing with Knowledge Bases, which enriched NMT
embeddings through multilingual entity linking,
and Surface Form Initialization, which optimized
entity vector values without explicit linking. By
leveraging structured knowledge representations,
their method enhanced translation accuracy, par-
ticularly in handling domain-specific terms and
low-resource scenarios.

Unsupervised MMT (UMMT) system intro-
duced by Fei et al. (2023) that utilises scene graphs
as a pivoting mechanism to perform inference-time
image-free translation through visual scene hallu-
cination. Their method generates synthetic scene
graphs from textual input, enabling multimodal
translation even in the absence of actual image in-
puts. This approach effectively bridges the gap be-
tween vision and language representations, demon-
strating improved translation performance in low-
resource and zero-resource scenarios.

Although VSGs are widely used in various mul-
timodal tasks such as image captioning (Yang
et al., 2018), visual question answering (Hilde-
brandt et al., 2020), and image retrieval (Johnson
et al., 2018), they remain underexplored in the mul-
timodal translation task. VSGs provide a powerful
representation for understanding image semantics
by capturing objects, their attributes, and relation-
ships in a structured graph format. In the context of
MMT, leveraging the structured and interpretable
visual information provided by scene graphs has
the potential to enhance the translation process by
improving contextual grounding and disambiguat-
ing visually dependent terms.

In our work, we propose an approach by lever-
aging VSGs extracted using a Multimodal Large
Language Model (MLLM) to improve translation
quality in MMT systems. By using MLLMs, we

354



Figure 1: Example for extracting a Visual Scene Graph (VSG) from an image.

ensure accurate and detailed scene graph extraction,
capturing not only objects and their relationships
but also contextual nuances often missed by con-
ventional visual models. This structured visual in-
formation is then incorporated into the translation
pipeline, enabling our model to produce transla-
tions that are more contextually appropriate and
semantically accurate. Figure 1 shows an example
of the VSGs extracted from an image using Gemini
1.5 Flash.

To the best of our knowledge, few studies fo-
cus on extracting object relationships in MMT (Fei
et al., 2023; Yin et al., 2023). By integrating scene-
graph information into translation models, we aim
to address the limitations of raw visual inputs and
provide meaningful context for disambiguation and
improved translations. Unlike prior approaches
that focus on multimodal fusion without explicit
scene-graph extraction or rely on hallucinated vi-
sual representations during inference, we extract
VSGs from images and utilize them as triples to
enhance translation quality through structured se-
mantic learning. The integration of triples aims
to provide contextual information about the scene,
potentially disambiguating lexical or syntactic am-
biguities in the text. Our results demonstrate that
incorporating the VSG information yields better
performance compared to using raw images as vi-
sual input.

3 Methodology

In this section, we explain our methodology for
extracting scene graph information from images
and utilising it in the translation process.

3.1 Visual Scene Graph Extraction

To integrate visual information into the translation
model, we extract Visual Scene Graphs (VSGs)

Figure 2: Prompt example for extracting a Visual Scene
Graph (VSG) from an image in triples format using
Gemini.

in English from images. VSGs provide structured
representations of images in a triple format (subject,
relationship, object), capturing object relationships
and semantic context. This structure encodes visual
information in a textual format, covering all objects
and their relationships within the scene.

We use Gemini 1.5 Flash as a multimodal LLM
to generate Visual Scene Graphs (VSGs) from im-
ages. Gemini includes parameters such as tempera-
ture, top_P, and safety settings to control generating
the output. These parameters are explained in Sec-
tion 4.2 in more detail. After configuring these
parameters, the model generates VSGs from im-
ages for the training, validation, and test sets based
on the provided prompt. Figure 2 shows the prompt
used to extract VSG from the given image.

To ensure a consistent output format, we en-
forced the model to generate VSGs in a Python list,
preventing variations in format. We also restricted
the model to generate VSGs strictly in English to
reduce hallucinations, as it sometimes defaulted to
other languages based on the image context. Ad-
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Figure 3: Prompt examples that we used for T5 and Gemini to translate the input text from English to German;
Prompt 1: Text-to-Text translation, Prompt 2: Text+Triples-to-Text translation, Prompt 3: Text+Image-to-Text
translation, Prompt 4: Text+Triples+Image-to-Text translation.

ditionally, we numbered identical objects in the
VSGs to improve scene comprehension when mul-
tiple identical objects were present.

3.2 Training Text-to-Text Model

Text-to-Text (T2T) translation is a baseline ap-
proach in which the model is used to translate the
input text from the source language into the tar-
get language. For T2T translation, we utilise four
models: NMT-T2T, mT5_Base, NLLB-200, and
Gemini. NMT-T2T is a transformer-based model
trained on the dataset, while mT5_Base and NLLB-
200 are fine-tuned on the dataset. Additionally, we
use Gemini for zero-shot translation of the test sets.

Prompt 1 in Figure 3 illustrates an example
prompt used for mT5 and Gemini to translate the
input sentence from English into German. Un-
like mT5 and Gemini, which are multitask mod-
els requiring prompt instructions for translation,
NLLB-200 is specifically trained for translation
tasks. Therefore, we simply provide the input sen-
tence to the fine-tuned NLLB-200 model to gener-
ate the translation.

3.3 Training Text+Triplets-to-Text Model

To investigate the impact of incorporating VSG, we
enriched the source text with the information ex-
tracted from VSG. In Text+Triples-to-Text (TT2T)

translation, we incorporate this information (Sec-
tion 3.1) into the training process of the translation
model. By augmenting the text with structured
visual-contextual information, we aimed to assess
whether the inclusion of triples improves the ability
of the models to capture implicit meanings and con-
text that are otherwise absent in text-only inputs.

For TT2T translation, we concatenate these
triples with the English input text to provide addi-
tional context, helping the model better understand
the input. This approach leverages semantic in-
sights from visual relationships in a textual format,
enhancing translation quality without directly using
images. Similar to T2T, in TT2T, we utilise four
models: NMT-T2T, mT5_Base, NLLB-200, and
Gemini. We train NMT-T2T on input text enriched
with triple information, along with the correspond-
ing output text. We also fine-tune mT5_Base and
NLLB-200 on input text enriched with triple infor-
mation. For Gemini, we apply zero-shot translation
to translate test set sentences while incorporating
triple information to ensure accurate translation.

Prompt 2 in Figure 3 presents an example prompt
used for mT5 and Gemini to translate an input sen-
tence from English to German. By adding triples
extracted from the paired image, we guide the
model to consider semantic information from the
image when translating. This approach ensures
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that the translation aligns correctly with the visual
context.

3.4 Training Text+Image-to-Text Model
In Text+Image-to-Text (TI2T) translation, we use
the input text along with an image to train the
model. For TI2T translation, we utilise two mod-
els: MMT-TI2T and Gemini. MMT-TI2T is a gated
fusion multimodal model trained on the training
and validation sets. For Gemini, we use zero-shot
translation of the given sentence, considering the
paired image. Prompt 3 in Figure 3 indicates the
example prompt in TT2T translation from English
to German. In the prompt, we provide an instruc-
tion to the model to use the given image to make
sure the translation is correct.

3.5 Training Text+Triplets+Image-to-Text
Model

For Text+Triples+Image-to-Text (TTI2T) transla-
tion, we add triples extracted from Visual Scene
Graphs (VSGs) as additional information to the
translation model alongside the input text and im-
age. The reason behind this approach is that us-
ing images alone may introduce noise and degrade
the performance of the translation model. By in-
corporating structured semantic information from
the scene graph along with the image, enables the
model to incorporate both low-level visual details
and high-level relational knowledge into the trans-
lation process.

For TTI2T, we employ two multimodal transla-
tion models: MMT-TI2T and Gemini. We explain
both models in Section 3.4. The only difference is
that TTI2T additionally provides extracted triples
along with the input text and image.

Prompt 4 in Figure 3 shows an example prompt
for TTI2T translation from English to German. In
the prompt, we instruct the model to use the given
image and triples to ensure the translation is accu-
rate.

4 Experimental Setup

In this section, we provide insights into the dataset
used in this work, extracting VSG from images,
settings for text-only and multimodal models, and
the translation evaluation metrics BLEU, ChrF2,
TER and COMET.

4.1 Multi30k Dataset
Multi30K (Elliott et al., 2016) is an extension of the
Flickr30K Entities dataset that consists of 29,000

images paired with descriptions in English, along
with translated sentences in German, French, and
Czech (Elliott et al., 2017). The dataset is specifi-
cally designed for evaluating MMT systems, where
both textual and visual information are utilised for
translation tasks. Multi30K also provides three test
sets: the 2016 and 2017 test sets, each with 1,000
images, and the 2018 test set with 1,071 images.

4.2 Gemini 1.5 Flash

To extract VSGs from the Multi30K dataset, we
used Gemini 1.5 Flash 1, a pre-trained LLM to anal-
yse the multimodal data. For our experiment, we
used Gemini through the free-tier API, which pro-
vides a rate limit of 15 requests per minute (RPM)
and 1,500 requests per day (RPD). We set the de-
fault inference parameters for the model. These
defaults included a temperature of 1.0, ensuring
a balanced mix of randomness and determinism
in responses, a Top-p sampling set to 0.95, allow-
ing diverse but high-probability token selections,
and a maximum output length of 8,192 tokens.
The default Top-k setting was automatically ad-
justed by the system. To ensure comprehensive
processing of all images in the dataset, we config-
ured the model’s safety settings, including thresh-
olds for "Harassment", "Hate Speech", "Sexually
Explicit Content", and "Dangerous Content" to
"BLOCK_NONE". This adjustment allows the
model to generate responses for every image ensur-
ing that outputs are returned in full without being
restricted by safety mechanisms. After setting the
parameters, the model generated VSG from the
image in our dataset based on the given prompt
(Figure 2).

Gemini 1.5 Flash is capable of processing both
text and visual information. For text-only and
multimodal translation, we also employed Gem-
ini, maintaining the same parameter settings and
safety configurations as described in VSG extrac-
tion. The model was used for zero-shot translation
from English into German, French, and Czech on
the Multi30k dataset, covering both text-only and
multimodal translation under different configura-
tions. These configurations included T2T (En →
De, Fr, Cs), TT2T (En + triples → De, Fr, Cs),
TI2T (En + image → De, Fr, Cs), and TIT2T (En
+ image + triples → De, Fr, Cs). This setup al-
lowed us to assess Gemini’s capability in handling
both textual and multimodal inputs across multiple

1https://deepmind.google/technologies/gemini/
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languages.

4.3 OpenNMT

A text-only transformer model serves as the base-
line in our experiment, utilising solely the textual
captions of images for translation. Trained using
the OpenNMT toolkit (Klein et al., 2018) on the
Multi30k dataset for English to German, French,
and Czech translations, the model comprises a 6-
layer transformer architecture with attention mech-
anisms in both encoder and decoder stages, trained
for 50K steps. Sentencepiece (Kudo and Richard-
son, 2018) is employed to segment words into sub-
word units, offering a language-independent ap-
proach to tokenization without necessitating pre-
processing steps, thus enhancing the model’s adapt-
ability and versatility in handling raw text.

4.4 Gated Fusion Multimodal

In the MMT model, we adopt the gated fusion
MMT model (Wu et al., 2021) as a multimodal
basline model. Gated fusion is a mechanism that
is used to integrate visual information from images
with textual information from source sentences
by fusing visual and text representations by em-
ploying a gate mechanism.. The main idea behind
gated fusion is to control the amount of visual in-
formation that is blended into the textual represen-
tation using a gating matrix. The source sentence
x is fed into a vanilla Transformer encoder to ob-
tain a textual representation Htext of dimension
T×d. The image z is processed using a pre-trained
ResNet-50 CNN which has been trained on the
ImageNet dataset (Deng et al., 2009) to extract
a 2048-dimensional average-pooled visual repre-
sentation, denoted as Embedimage(z). The visual
representation Embedimage(z) is projected to the
same dimension as Htext using a weight matrix
Wz . A gating matrix Λ of dimension T×d is gener-
ated to control the fusion of the textual and visual
representations. The gating matrix Λ is computed
as:

Λ = sigmoid(WΛEmbedimage(z) + UΛHtext)

where WΛ and UΛ are model parameters.

4.5 NLLB-200

In this section, we outline the setup used the No
Language Left Behind (NLLB) model. This model
is a transformer-based multilingual NMT model
designed for covering 200 languages. Due to

our GPU limitation, we fine-tune NLLB-200 with
600M model on our dataset. The process involved
data preprocessing, model training, hyperparameter
tuning, and evaluation.

Similar to mT5, the fine-tuning process was con-
ducted using two NVIDIA A6000 GPUs (2 × 48GB
GPU memory). We set the learning rate to 2e-5
and used the Adam optimizer with a weight de-
cay of 0.01 to prevent overfitting. The model was
trained for 10 epochs with a per-device batch size
of 16 for both training and evaluation. To ensure
efficient monitoring, logging was performed every
500 steps. The training leveraged Automatic Mixed
Precision (AMP) for optimized memory usage and
performance.

4.6 Multilingual T5
Multilingual Text-to-Text Transfer Transformer
(mT5) is a transformer-based language model de-
signed specifically for multilingual Natural Lan-
guage Processing (NLP) tasks. It extends the T5
model, which frames all NLP tasks as text-to-text
problems (Raffel et al., 2020). We fine-tuned the
mT5 model on the Multi30K dataset to optimise its
performance in translation tasks, focusing solely
on the textual modality without any information
from the visual side.

One of the key features of mT5 is its support
for 101 languages, making it a powerful model
for multilingual applications such as translation
tasks (Xue et al., 2021). The model is pretrained
on mC4 (Multilingual Common Crawl), a large-
scale dataset containing filtered web text from a
wide range of languages. This extensive training
allows mT5 to perform well in both high-resource
and low-resource languages. Additionally, since
mT5 is trained on a diverse dataset, it is more ca-
pable of handling syntactic and grammatical varia-
tions across different languages (Raffel et al., 2020).
Supporting multiple languages makes it well-suited
for machine translation, allowing us to leverage a
single model without the need for separate models
for different languages.

We used mT5-Base which has around 220 M
parameters. When fine-tuning mT5, common set-
tings include a learning rate of 2e-5, which helps
to ensure stable convergence during training while
avoiding overfitting. The batch size is set to 16
for both training and evaluation, which balances
efficiency and memory constraints, though it can
be adjusted depending on GPU availability. Addi-
tionally, a weight decay of 0.01 is used to reduce
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English → German English → French English → Czech
BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑ BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑ BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑

Text-to-Text (T2T)
NMT-T2T 41.1 65.4 43.8 0.8604 60.6 71.4 31.8 0.8765 31.8 56.4 49.8 0.8852
mT5_Base 36.8 62.1 46.7 0.8072 52.7 70.5 32.4 0.8255 27.4 50.7 54.5 0.8109
NLLB-200 44.0∗† 68.7∗† 41.2∗ 0.862 66.4∗† 80.3∗† 22.3∗† 0.8916 37.6∗† 61.3∗† 44.7∗† 0.8867
Gemini 1.5 Flash 43.7∗† 68.7∗† 41.2∗ 0.8657 54.5 73.2∗ 30.9 0.8755 35.0∗† 59.9∗ 47.4∗ 0.8929

Text+Triplets-to-Text (TT2T)
NMT-TT2T 41.3 65.7 43.6 0.8618 60.5 71.3 31.6 0.8779 31.9 56.6 49.7 0.8854
mT5_Base 37.2 62.5 46.0 0.8107 52.7 70.5 32.8 0.8266 27.7 51.1 54.4 0.8167
NLLB-200 44.6∗† 69.1∗† 40.7∗† 0.8626 67.0∗† 80.5∗† 21.9∗† 0.8912 36.9∗† 60.7∗† 45.5∗† 0.8828
Gemini 1.5 Flash 43.9∗ 68.7∗† 40.8∗† 0.8688 54.5 73.2 30.6 0.8803 34.5∗† 59.2∗ 48.0 0.8923

Text+Image-to-Text (TI2T)
MMT-TI2T 42.3∗ 66.6∗ 42.1∗ 0.8672 62.1∗ 72.6 31.1 0.8786 32.7 58.2∗ 47.6∗ 0.8864
Gemini 1.5 Flash 44.1∗† 68.7∗† 40.3∗† 0.868 55.0 73.5∗ 30.8 0.8738 35.0∗† 59.7∗ 48.4 0.8917

Text+Triplets+Image-to-Text (TTI2T)
MMT-TTI2T 42.6∗ 66.8∗ 41.8∗ 0.8681 62.2∗ 72.5 30.9 0.8791 32.9 58.1∗ 47.8∗ 0.8862
Gemini 1.5 Flash 45.1∗† 69.2∗† 40.1∗† 0.8696 54.6 73.5∗ 30.4∗ 0.8767 34.8∗† 59.7∗ 48.3 0.8964

Table 1: BLEU, ChrF2, TER and COMET scores for baseline and proposed models for English to German, French
and Czech on the 2016 test set (∗ and † represent a statistically significant results compared to baseline NMT and
MMT respectively at a significance level of p < 0.05).

the risk of overfitting by penalizing excessively
large model weights. We fine-tuned the model for
10 epochs by monitoring the validation loss dur-
ing training to prevent unnecessary computations
and potential overfitting. During training, logging
every 500 steps provides periodic updates on per-
formance, ensuring that any issues can be quickly
identified and addressed.

4.7 Evaluation Metrics
We use four evaluation metrics: BLEU (Papineni
et al., 2002), ChrF2 (Popović, 2015), TER (Snover
et al., 2006), and COMET (Rei et al., 2020). BLEU
assesses translation precision by comparing can-
didate translations to reference translations based
on n-grams. ChrF2 evaluates the similarity be-
tween character n-grams in machine-generated and
reference translations, particularly beneficial for
languages with complex writing systems. TER
quantifies the number of edits needed to align
machine translations with human-generated refer-
ences. COMET 2 is a neural-based metric that
leverages both source and reference sentences to
produce quality assessments aligned with human
judgments. We conduct statistical significance test-
ing using the sacrebleu3 toolbox.

5 Results

In this section, we present the results of different
translation models for language pairs of English
into German, French and Czech. The evaluation
2https://github.com/Unbabel/COMET
3https://github.com/mjpost/sacrebleu

is based on four metrics: BLEU, ChrF2, TER and
COMET. In the first part, we focus on quantitative
analysis, and in the second part, we conduct a qual-
itative analysis to manually evaluate the translation
outputs of the models.

5.1 Quantitative Analysis

Table 1 presents the evaluation scores for our pro-
posed multimodal and text-only translation mod-
els across English to German, French, and Czech
translation tasks for the 2016 test set from the
Multi30k dataset. For English to German trans-
lation, the Gemini (TTI2T) model achieved the
highest scores in BLEU (45.1), ChrF2 (69.2), and
COMET (0.8696) while also maintaining the low-
est TER (40.1). This indicates that the inclusion
of both triples and images in the input signifi-
cantly enhanced translation quality. The NLLB-
200 (TT2T) model closely followed, showing com-
petitive results, particularly in ChrF2 (69.1) and
COMET (0.8626). This suggests that leveraging
structured data, even without images, is beneficial.
Meanwhile, for English to French, the NLLB-200
(TT2T) model outperformed others with the highest
BLEU (67.0) and lowest TER (21.9), showcasing
its efficiency in maintaining fluency and adequacy.
However, Gemini (TTI2T) scored the highest in
COMET (0.8767), indicating that it produced the
most human-like translations despite slightly lower
BLEU. For English to Czech, NLLB-200 (T2T)
led in all metrics, except COMET, where Gemini
(TI2T) achieved the highest score (0.8929), em-
phasizing the benefit of incorporating multimodal
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English → German English → French
BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑ BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑

Text-to-Text (T2T)
NMT-T2T 35.4 61.7 51.3 0.8548 49.4 68.6 35.8 0.8761
mT5_Base 29.9 57.3 55.8 0.7829 45.3 65.7 38.4 0.8169
NLLB-200 39.4∗† 66.5∗† 46.4∗† 0.8566 59.9∗† 76.8∗† 26.8∗† 0.8839
Gemini 1.5 Flash 40.0∗† 66.2∗† 46.4∗† 0.8632 53.1∗† 73.2∗† 32.0∗† 0.8804

Text+Triplets-to-Text (TT2T)
NMT-TT2T 35.3 61.5 51.6 0.8554 49.5 68.5 36.1 0.8723
mT5_Base 29.8 57.4 55.9 0.7796 45.5 65.7 38.8 0.8134
NLLB-200 38.1∗† 65.7∗† 48.9∗ 0.8504 59.5∗† 76.4∗† 27.9∗† 0.8815
Gemini 1.5 Flash 39.8∗† 66.2∗† 45.8∗† 0.863 52.5∗ 72.7∗ 32.5∗ 0.8737

Text+Image-to-Text (TI2T)
MMT-TI2T 36.8 62.8 49.4 0.8572 51.3 71.5∗ 33.7 0.8768
Gemini 1.5 Flash 39.9∗† 66.3∗† 46.2∗† 0.8624 54.3∗† 73.6∗† 31.7∗ 0.8786

Text+Triplets+Image-to-Text (TTI2T)
MMT-TTI2T 37.1∗ 63.3 48.5∗ 0.8586 51.5 71.4 33.6 0.8781
Gemini 1.5 Flash 40.6∗† 66.9∗† 45.4∗† 0.865 53.9∗† 73.6∗† 31.5∗† 0.8814

Table 2: BLEU, ChrF2, TER and COMET scores for baseline and proposed models for English to German and
French on the 2017 test set (∗ and † represent a statistically significant results compared to baseline NMT and MMT
respectively at a significance level of p < 0.05).

information.
Gemini (TTI2T) consistently achieved top-tier

scores, highlighting the advantages of integrating
text, triples, and images across all language pairs.
The lower BLEU and higher TER for mT5_Base
across the board suggest its weaker ability to cap-
ture linguistic nuances. Notably, models using
additional structured data (TT2T and TI2T) gen-
erally performed better than pure text-only mod-
els, confirming the effectiveness of multimodal ap-
proaches.

Table 2 presents the evaluation scores for our pro-
posed multimodal and text-only translation mod-
els across English to German and French transla-
tion tasks for the 2016 test set from the Multi30k
dataset. For English to German, Gemini (TTI2T)
achieved the highest BLEU (40.6), ChrF2 (66.9),
and COMET (0.865), along with the lowest TER
(45.4). This again confirms the model’s ability to
leverage triplets and images to improve translation
quality. Interestingly, NLLB-200 (T2T) performed
best among text-only models, demonstrating its
robustness. For English to French, NLLB-200
(T2T) set the highest scores in BLEU (59.9), ChrF2
(76.8), and TER (26.8), suggesting that its archi-
tecture excels in handling sentence-level fluency.
However, Gemini (TTI2T) achieved the highest
COMET (0.8814), implying that its translations
were more aligned with human preferences.

Across both language pairs, Gemini (TTI2T) and
NLLB-200 (T2T) consistently dominated, with the
former benefiting from multimodal inputs and the

latter excelling in text-based scenarios. Compared
to 2016, TER values increased slightly, indicating
a possible complexity shift in the test data. Overall,
the performance gaps between text-only and mul-
timodal models further widened, reinforcing the
importance of multimodal approaches.

Table 3 presents the evaluation scores for our pro-
posed multimodal and text-only translation mod-
els across English to German, French, and Czech
translation tasks for the 2016 test set from the
Multi30k dataset. For English to German, Gemini
(T2T) outperformed all models in BLEU (37.6),
TER (49.9), and COMET (0.8519), while Gem-
ini (TI2T) led in ChrF2 (64.0). This suggests that
including images provides more lexical coverage,
enhancing character-level similarity. In English to
French, NLLB-200 (TT2T) obtained the highest
BLEU (43.1), while Gemini (TTI2T) dominated
COMET (0.8503) and had the lowest TER (40.9),
reinforcing the effectiveness of triples-based multi-
modal training. For English to Czech, NLLB-200
(TT2T) showed the highest BLEU (34.7), but Gem-
ini (TTI2T) again achieved the highest COMET
(0.8882), demonstrating improved translation qual-
ity with respect to human preferences.

Compared to 2016 and 2017, BLEU scores de-
clined slightly in 2018, suggesting that the 2018
test set was more challenging. However, models
incorporating multimodal inputs consistently per-
formed better, emphasizing their enhanced ability
to handle complex translation tasks. The consis-
tently strong COMET scores achieved by Gemini
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English → German English → French English → Czech
BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑ BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑ BLEU ↑ ChrF2 ↑ TER ↓ COMET ↑

Text-to-Text (T2T)
NMT-T2T 32.4 59.8 54.6 0.8352 38.9 62.7 45.5 0.8418 28.9 52.8 57.4 0.8663
mT5_Base 28.1 55.2 58.9 0.7656 34.1 58.3 48.8 0.778 21.8 46.2 62.6 0.757
NLLB-200 37.3∗† 63.5∗ 50.5∗ 0.8365 42.8∗† 65.7∗† 40.8∗† 0.8429 34.4∗† 59.2∗† 49.9∗† 0.8688
Gemini 1.5 Flash 37.6∗† 63.9∗ 49.9∗† 0.8519 42.3∗† 65.6∗ 41.5∗† 0.8475 33.2∗† 59.4∗† 51.5∗† 0.8877

Text+Triplets-to-Text (TT2T)
NMT-TT2T 32.2 59.4 54.9 0.8346 39.1 62.8 45.5 0.8407 28.8 52.8 57.2 0.8641
mT5_Base 28.4 55.4 59.2 0.7678 34.3 58.4 48.9 0.7806 22.1 46.5 61.8 0.7628
NLLB-200 37.0∗† 63.4∗ 51.3∗ 0.8351 43.1∗† 65.8∗† 41.1∗† 0.8414 34.7∗† 59.2∗† 50.8∗† 0.8672
Gemini 1.5 Flash 37.0∗† 63.7∗ 50.2∗† 0.85 41.0 64.6∗ 42.3∗ 0.844 32.6∗ 58.5∗† 51.8∗† 0.8852

Text+Image-to-Text (TI2T)
MMT-TI2T 33.7 61.2 52.4 0.8364 39.9 63.6 43.8 0.8485 30.1 54.8∗ 55.4∗ 0.8687
Gemini 1.5 Flash 37.0∗† 64.0∗ 50.4∗ 0.8506 42.4∗ 65.5∗ 41.3∗ 0.8476 33.1∗† 58.7∗† 52.2∗† 0.8851

Text+Triplets+Image-to-Text (TTI2T)
MMT-TTI2T 33.6 61.3 52.6∗ 0.8385 40.1 63.4 43.5∗ 0.847 30.3 54.7∗ 55.3∗ 0.8664
Gemini 1.5 Flash 37.2∗† 63.3∗ 50.3∗† 0.8519 42.6∗ 65.7∗ 40.9∗† 0.8503 32.7∗ 58.5∗† 52.7∗† 0.8882

Table 3: BLEU, ChrF2, TER and COMET scores for baseline and proposed models for English to German, French
and Czech on the 2018 test set (∗ and † represent a statistically significant results compared to baseline NMT and
MMT respectively at a significance level of p < 0.05).

(TTI2T) across all language pairs further underline
its potential to produce translations that align more
closely with human judgments.

Across the three test sets, the best-performing
models varied depending on the language pair and
evaluation metric. For English to German transla-
tion, the Gemini model showed the most signifi-
cant improvement, particularly in the TTI2T setting.
In English to French, the NLLB-200 model con-
sistently outperformed others, especially in T2T
translation. For English to Czech, the same model
demonstrated strong performance. Overall, the re-
sults indicate that incorporating multimodal data,
such as images and structured triples, enhances
translation quality, with the TTI2T setting often
achieving the best performance. These findings
suggest that advanced multimodal approaches, par-
ticularly leveraging large-scale models like Gemini,
can efficiently benefit from multimodal informa-
tion and significantly improve machine translation
across multiple languages and evaluation bench-
marks.

5.2 Qualitative Analysis

In this section, we present examples from trans-
lation outputs to qualitatively analyse the perfor-
mance of the models. We calculated sentence-level
BLEU scores for each translation model and man-
ually compared the translation quality across all
sentences. Figure 4 shows two examples from the
2016 test set of the Multi30K data set: one for
English to German and one for English to French
translation.

In English to German, Gemini (TTI2T) provides
the most accurate translation as it is identical to the
reference sentence. This indicates that it perfectly
preserves the original sentence’s word choice, struc-
ture, and meaning. Specifically, it correctly trans-
lates "A boy wearing a red shirt" as "Ein Junge in
einem roten Shirt", maintaining both the phrasing
and natural German expression. Gemini (TI2T) is
slightly less accurate but still acceptable. The only
difference is the phrase "mit rotem Shirt" instead
of "in einem roten Shirt." While both are grammat-
ically correct, "in einem roten Shirt" is the more
natural way to describe someone wearing a shirt
in German. NLLB-200 (T2T) produces the weak-
est translation compared to Gemini. It translates
"red shirt" as "roten Hemd," where "Hemd" usu-
ally refers to a button-down shirt rather than the
more general "Shirt" in English. Also, NLLB-200
translates "into the sand" as "in den Sand," slightly
altering the meaning. The reference phrase "mit
einer gelben Schaufel im Sand" correctly implies
that the boy is digging within the sand, while "in
den Sand" suggests movement into the sand, mak-
ing it a less precise translation.

In the English to French example, Gemini
(TTI2T) offers a perfect translation, maintaining an
exact correspondence with the original text. How-
ever, Gemini (TI2T) diverges slightly with two
key differences that make it less accurate: first,
it replaces "maillot" (jersey) with "chemise" (shirt),
which, while understandable, is not the proper term
in the context of sportswear, where "maillot" is
universally used to describe athletic jerseys. Sec-
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Figure 4: Examples of translations from English to German (top) and English to French (bottom). Green highlights
indicate perfect translations, while yellow marks less accurate translations of the source text.

ond, it translates "just tagged" as "vient de mettre
un joueur hors jeu" (just put a player out of play),
which, though conveying the general idea, is less
precise than the term "toucher" (to tag) in base-
ball, where the action refers specifically to a player
being touched to be considered out. While this
translation remains understandable, these differ-
ences make it slightly less accurate than Gemini
(TTI2T). The NLLB-200 (T2T) translation intro-
duces additional variations, further straying from
the original: it changes "joueuse" (female player)
to "joueur" (male player), which introduces an as-
sumption about gender that isn’t specified in the
source text, and although "joueur" could be used
in a gender-neutral sense, "joueuse" would be the
more appropriate term in a context where the gen-
der is unclear. It also replaces "maillot" with "T-
shirt," a term that, while commonly understood, is
less specific and appropriate for sportswear, where
"maillot" is the established term. Additionally, the
NLLB-200 translation opts for the borrowed En-
glish term "taguer" instead of "toucher," a choice
that might be understandable in informal or col-
loquial French, but is not the correct terminology
in the context of baseball, where "toucher" is the
standard.

6 Conclusion

In this paper, we explored the use of Visual Scene
Graphs as a structured and interpretable represen-
tation of visual information to enhance translation
quality. We focused on integrating these repre-
sentations into translation models by representing
visual content in a semantically structured form
rather than relying on raw image data. The results

demonstrated that incorporating this information
into multimodal machine translation models led to
significant improvements in both quantitative met-
rics and qualitative evaluations, highlighting the
potential of this approach to advance multimodal
translation.

Given the ability of multimodal Large Language
Models (LLMs) to extract Visual Scene Graphs in
multiple languages, our approach can be applied
to improve translation performance across various
language pairs. This capability not only broadens
the applicability of visual scene graphs but also
facilitates the use of multimodal LLMs in handling
diverse languages and domains. However, our ap-
proach depends on the language coverage of these
models, which constitutes a limitation, restricting
applicability to the languages supported by mul-
timodal LLMs. In future work, we plan to refine
the integration of Visual Scene Graphs and explore
additional language pairs to further validate and ex-
tend the applicability of our approach across trans-
lation directions.
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