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Abstract

Conflict scholars increasingly use computa-
tional tools to track violence and cooperation
at a global scale. To study foreign locations,
researchers often use machine translation (MT)
tools, but rarely evaluate the quality of the MT
output or its effects on Large Language Model
(LLM) performance. Using a domain-specific
multilingual parallel corpus, this study evalu-
ates the quality of several MT tools for text in
English, Arabic, and Spanish. Using ConfliB-
ERT, a domain-specific LLM, the study eval-
uates the effect of MT texts on model perfor-
mance and finds that MT texts tend to yield
better results than native-speaker written texts.
The MT quality assessment reveals consider-
able translationese effects in vocabulary reduc-
tion, loss of text specialization, and syntactical
changes. Regression analysis at the sentence
level reveals that such distortions, particularly
reductions in general and domain vocabulary
rarity, artificially boost LLM performance by
simplifying the MT output. This finding cau-
tions researchers about uncritically relying on
MT without considering MT-induced data loss.

1 Introduction

Political scientists, like many other domain-specific
users, often rely on computational tools to make
sense of large volumes of data. In particular, con-
flict scholars increasingly use computational meth-
ods to analyze global dynamics of political con-
flict and cooperation in foreign locations. To do
so, researchers frequently rely on machine transla-
tions (MT) to translate political text from different
languages (Boschee et al., 2018; Halterman et al.,
2023). Despite the growing research on MT qual-
ity (Liu and Zhu, 2023; Kahlon and Singh, 2023;
Lee, 2023; Ahrenberg, 2017), social scientists sel-
dom evaluate the quality of the MT output nor
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its consequences on model performance. Careful
researchers may be concerned about MT quality
due to data loss or incorrect translations, particu-
larly for low-resource languages (De Vries et al.,
2018; Licht et al., 2024; Bartaškevičius, 2024) or
specialized domains requiring precise terminology
(Cambedda et al., 2021). MT-induced changes
to the source text, known as translationese effect
(Gellerstam, 1986), may result in considerable al-
terations of the output text, making translationese
especially crucial to investigate in domain-specific
translations where seemingly minor distortions of
the output text may lead to incorrect inference.
Moreover, there is little work analyzing the impact
of MT quality on Large Language Model (LLM)
performance (Huang and Liu, 2024). Consequently,
the quality of the MT text often gets overlooked,
and its effects on LLM performance remain ig-
nored. For researchers tracking conflict around the
world, disregarding translationese or its effects on
LLM performance may lead to missing important
signals about security threats or cooperation.

By using a multilingual parallel corpus from the
United Nations (Ziemski et al., 2016), this study an-
alyzes the quality of various MT tools for English,
Arabic, and Spanish and evaluates the effects of MT
distortions on LLM performance on tasks related
to political conflict and cooperation. In particular,
the study evaluates four MT tools, Google Trans-
late (GT) (Google Cloud, 2024), DeepL Trans-
late (DeepL) (DeepL, 2024), Google Translate
within the Deep Learning Translator (Deep) (Deep
Translator, 2020), and OPUS Machine Transla-
tion (OPUS) (Tiedemann and Thottingal, 2020),
and evaluates the performance of their MT outputs
using ConfliBERT (Hu et al., 2022), a domain-
specific LLM specialized on political conflict.

This research offers several contributions. The
study carefully evaluates the quality of various MT
tools using a domain-specific parallel corpus in
English, Arabic, and Spanish. Contrary to the ex-
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pectation that LLMs work better when processing
native-speaker written/translated texts (NST), ex-
periments in this study indicate that ConfliBERT
performs better using MT output. By disentangling
sentence-level characteristics, the analysis reveals
MT distortions related to nouns, verbs, lemmas, vo-
cabulary complexity, and sentence structure. The
study further explores the effects of MT distortions
on LLM performance at the sentence level using
regression analysis. The results reveal that MT
distortions, primarily the vocabulary loss of gen-
eral and domain-specific rarity, generate simplified
text representations that artificially boost model
performance, particularly for translated text from
Arabic and Spanish to English. Such simplification
favors model performance on MT output over NST.
These results represent a double-edged sword for
researchers using MT tools who may face a trade-
off between achieving higher LLM performance at
the expense of domain-specific words that may be
relevant to their subject of study.

2 Related Works

Pre-trained Language Models (PLM) such as BERT
(Devlin et al., 2018a) achieve great results by us-
ing continued pre-training on domain-specific data
to capture its unique vocabulary, semantics, and
language style (Gururangan et al., 2020). Tak-
ing advantage of this capability, political scien-
tists use different models to study party manifestos
(Mens and Gallego, 2024), voter partisanship (Pot-
ter et al., 2024), social movements (Caselli et al.,
2021; Hürriyetoğlu et al., 2022; Radford, 2020),
dictionary development (Radford, 2021; Osorio
et al., 2019), codebook-based classification (Hal-
terman and Keith, 2024) and annotations (Ziems
et al., 2024), among other tasks. Similarly, conflict
scholars use specialized language to study polit-
ical violence and cooperation. For that purpose,
ConfliBERT (Hu et al., 2022) is a domain-specific
model specialized on political conflict that yields
superior performance compared to generic LLMs.

Researchers using non-English text generally
rely on MT tools to pre-process the original text.
However, MTs can heterogeneously distort the data,
thus affecting the model performance (Osorio et al.,
2024). Assessing MTs from Spanish to English,
previous research shows a net summarization of
the original text, which reduces the verboseness
of the original text and results in an adaptation of
the target text to linguistic characteristics of En-

glish. This adaptation to English linguistic stan-
dards yields high quality-metric results for MT text
(Osorio et al., 2024). The summarization effect can
further artificially enhance ConfliBERT EN’s per-
formance, as the English language generally favors
more concise text (Yang et al., 2023).

When evaluating the translation quality from
Arabic to English, Osorio et al. (2024) found that
MTs artificially extend the source text. This data in-
crease in MTs from Arabic is penalized in English,
as metrics show a notable decrease in translation
quality relative to the original Arabic text. How-
ever, this data increase appears to introduce more
linguistic elements that artificially boost ConfliB-
ERT EN’s performance on the MT corpus.

The predominant body of research is in favor
of languages with abundant resources; thus, more
recent studies use translation tools to mitigate the
scarcity of training data, including (De Vries et al.,
2018), which used Google Cloud (2024) (GT) to
translate official transcripts of European Parliament
debates written in the official majority of the EU‘s
languages into English. To improve inference in
prompting multilingual LLMs, Etxaniz et al. (2023)
translated from languages that are comparatively
less represented in available LLMs, like Spanish,
into English to leverage the fact that English makes
up the majority of training data in multilingual
LLMs. Other recent studies further compare trans-
lation tools (Ibrahim, 2021; Akki and Larouz, 2021;
Behr and Braun, 2023) and quality translation met-
rics (Mathur et al., 2020; Sabtan et al., 2021; He
et al., 2021; Lee et al., 2023).

3 Data and Annotations

This research uses the United Nations Parallel Cor-
pus (UNPC) (Ziemski et al., 2016), containing
86,307 official United Nations (UN) Security Coun-
cil documents translated by professional UN trans-
lators. Since the UN operates in six official lan-
guages, these translations are considered the Gold
Standard Record (GSR). Out of the official UN lan-
guages, this study uses NST texts written in English
(EN), Spanish (ES), and Arabic (AR). In total, the
UNPC contains 11,365,709 fully aligned sentences
across languages. This study uses a random sam-
ple of 11,326 sentences from UN Security Council
documents related to human rights, the protection
of civilians, and terrorism. The resulting sample
provides a uniquely valuable multilingual parallel
corpus in the domain of political conflict and co-
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operation. Having the same GSR content across
multiple NST sentences within the UNPC provides
a ceteris paribus leveled field to compare the ef-
fects of different MT tools on model performance.

This study uses the UNPC sentences previously
annotated by Osorio et al. (2024),1 which classify
the content of the sentences according to PLOVER
(Open Event Data Alliance, 2018), an ontology of-
ten used in political science to categorize different
types of material and verbal interactions based on
the cooperative or conflictive conduct of the parties
involved. Annotators classified the full sample of
sentences according to three tasks. Relevance is a
binary classification identifying whether a sentence
is relevant for political conflict or cooperation or
not. QuadClass is a multi-class classification task
categorizing whether the sentences indicate verbal
conflict, verbal cooperation, material conflict, mate-
rial cooperation, or non-relevant sentences. Finally,
BinQuad is a binary classification for each Quad-
Class category identified above, indicating whether
the sentence can be categorized as the respective
PLOVER category or not, thereby representing one
of the other three categories.

The annotations have the following distribu-
tions2. In the Relevance binary task, coders iden-
tified 52% sentences as not relevant and the rest
48% as relevant. For the multi-class QuadClass
task, coders identified 14% sentences as Material
Conflict, 13% as Material Cooperation, 8% as Ver-
bal Conflict, 11% as Verbal Cooperation, and 53%
as not relevant. Finally, the BinQuad binary task of
QuadClass categories produced the following dis-
tribution for Material Conflict (yes 14%, no 86%),
Material Cooperation (yes 13%, no 87%), Verbal
Conflict (yes 8%, no 92%), and Verbal Cooperation
(yes 11%, no 89%). All experiments used balanced
datasets, with the number of randomly selected sen-
tences capped to match the smallest category size
in each task.

4 Translation Quality Assessment

Using UNPC text in English (EN), Spanish (ES),
and Arabic (AR), we conduct a series of MTs us-
ing different tools. Our analysis uses bidirectional
MT to convert the entire sample of Spanish and
Arabic texts into English (ES to EN, AR to EN)
and vice versa (EN to ES, EN to AR). To con-
duct the translations, we use four commonly used

1See appendix D for details on the annotation process.
2Details in Appendix E

MT tools: Google API Translate (GT) (Google
Cloud, 2024), DeepL Translate (DeepL) (DeepL,
2024), Deep Learning Translator (Deep) (Deep
Translator, 2020), and OPUS Machine Transla-
tion (OPUS) (Tiedemann and Thottingal, 2020).3

Google translate employs subword tokenizers opti-
mized on extensive multilingual corpora (Kudo and
Richardson, 2018). This approach addresses out-of-
vocabulary challenges by merging frequent char-
acter sequences into subwords and transforming
tokenized subwords into dense embeddings within
the Google-managed Transformer architecture. Po-
sitional encodings enable the self-attention mech-
anism to align and predict tokens in the encoder-
decoder pipeline. These vectors are continually re-
fined through large-scale training on vast datasets,
a process referred to as dynamic tuning (Google
Cloud, 2024; Vaswani et al., 2017). DeepL pro-
vides free and subscription-based translating ser-
vices between a variety of languages via its website
or an API (DeepL, 2024). Deep is a lightweight
Python package that invokes the public Google
Translate service. It accesses a standard and uni-
versal shared model that lacks dynamic tuning ca-
pabilities. This causes lower accuracy or a fail-
ure to accurately capture complex and domain-
specific words (Deep Translator, 2020; Google
Cloud, 2024). Google Translate was selected via
the deep translation package to establish a base-
line comparison between the paid and free versions
of the most used MT tool in the literature (Wu
et al., 2016). OPUS, a Hugging Face Transform-
ers library, presents a suite of state-of-the-art pre-
trained translation models (Tiedemann and Thot-
tingal, 2020). In particular, its Helsinki-NLP/opus-
mt-ar-en and Helsinki-NLP/opus-mt-es-en models
are specifically trained to translate from Arabic to
English and from Spanish to English, respectively
(OPUS, 2016).

Building on (Han et al., 2022), we use four qual-
ity assessment metrics: SacreBLEU (Post, 2018),
METEOR (Banerjee and Lavie, 2005), BERTScore
(Devlin et al., 2018b), and COMET (Crosslingual
Optimized Metric for Evaluation of Translation),
using the wmt20-comet-da model (Rei et al., 2020).
SacreBLEU, and METEOR are lexical-based met-
rics measuring the similarity between NST and
MT text using mathematical or heuristic methods,
COMET is a neural-based metric (Rei et al., 2020),

3See Appendix F on MT tools development, training data
relevance, and Appendix G for quality metric evaluation.
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whereas BERTScore uses an embedding-based met-
ric that relies on deep learning methods (Lee et al.,
2023). Quality scores range from 0 to 1, with
high values indicating greater NST-MT similarity
(Chatzikoumi, 2020; Zhang et al., 2020). The met-
rics can be ranked according to their degree of
flexibility. SacreBLEU employs the Moses tok-
enizer, an advanced preprocessing tool that facili-
tates score comparability and was first created for
the Moses statistical machine translation system
(Post, 2018). The Moses tokenizer uses heuristics
and rules unique to a given language to normal-
ize text and to handle punctuation or special char-
acters. METEOR is more flexible and calculates
the similarity of word alignments. COMET is a
state-of-the-art neural-based MT evaluation met-
ric. BERTScore is the most flexible metric as it
considers contextual correctness and synonyms.

Using each UNPC NST text as a reference, Fig-
ure 1 presents the quality scores from the differ-
ent metrics applied to each MT output. Results
show that different tools generate varying degrees
of quality across languages. While for AR to EN
and ES to EN MTs, SacreBLEU, METEOR, and
BERTScore indicate that DeepL provides the best
quality output, COMET considers OPUS to be the
most accurate MT tool for these language com-
binations. For EN to ES, OPUS yields the best
MT quality based on all metrics, while for EN
to AR, COMET disagrees with all other metrics
and considers DeepL the best-performing MT tool.
While these metrics offer a first assessment of the
MT quality, they do not permit an in-depth under-
standing of MT-induced translationese effects on
the source text or assess more subtle changes in
meaning and nuance. Consequently, these metrics
do not fully capture whether MT-induced changes
influence LLM performance. The following sec-
tion evaluates LLM performance across MT texts
to see if the results align with quality assessment
suggestions.

5 Model Performance Across MT Tools

Following the quality assessment, we test the effect
of MTs on LLM performance. To do so, we use
ConfliBERT (Hu et al., 2022), a domain-specific
pre-trained language model specifically designed
to analyze political texts, to evaluate the UNPC
NST and MT texts for three classification tasks:
Relevant (binary) classification, QuadClass (multi-
class) classification, and BinQuad (binary) classifi-

Figure 1: Quality Assessment Metrics

cation of each QuadClass category. For each task,
the fine-tuning uses three versions of the ConfliB-
ERT family, namely ConfliBERT Arabic (Alsarra
et al., 2023), ConfliBERT Spanish (Yang et al.,
2023), and ConfliBERT English (Hu et al., 2022),
with cased and uncased variations, resulting in a
total of 6 different models. All models use bal-
anced datasets for each task. By keeping the UNPC
content and the use of ConfliBERT constant, we
analyze variations in performance derived from
different MT tools, including Deep, DeepL, GT,
OPUS, and the NST texts. First, we split the data
into training, testing, and developing using 70-15-
15 rule. Second, for each model, we perform the
evaluation using 10 seeds and 5 epochs. Finally,
we run a total of 114 fine-tuning tasks on those
models and their corresponding datasets. We used
a HPC system with a single A100 GPU 20GB and a
single V100 GPU 32GB, and a learning rate of 4e-
05, with a training batch size of 8 and a maximum
sequence length of 512 for both binary and multi-
class classifications. Figures 2-4 present the F1
scores highlighting the top-performing models in
red. Overall, results show that processing MT text
yields better results than analyzing NST text. This
is puzzling since domain-specific models would be
expected to perform better with NST texts.

5.1 Relevant Binary Classification

Figure 2 reports the F1 performance of the Con-
fliBERT models for the relevant binary task on the
NST and MT texts across languages. Red squares
indicate best models with p-values at p<0.01 or
lower. Overall, the results show high performance
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Figure 2: Binary Relevance Classification

levels and little variations across MT outputs. Most
importantly, the results show that MT texts yield
marginally better results in Arabic and Spanish
than models processing the NST texts. Yet, these
results do not hold for English, where models us-
ing NST text outperform those analyzing MT text.
For Arabic, ConfliBERT uncased performs best
(F1 0.921) on the EN to AR corpus translated with
OPUS. This result is statistically significantly bet-
ter than NST text in Arabic (F1 0.91). For English,
ConfliBERT cased on English NST text shows the
highest performance (F1 0.929) and performs sta-
tistically significantly better than AR to EN Deep
(F1 0.927). Finally, the results for Spanish indicate
that ConfliBERT cased performs best using the EN
to ES GT translation (F1 0.925) and significantly
better than NST text in Spanish (F1 0.917).

5.2 QuadClass Multi-Class Classification

Figure 3 presents the results of the QuadClass clas-
sification task. Overall, the results of the Quad-
Class classification report lower performance than
the Relevant binary task. This is understandable as
a five-categories multi-class classification is more
difficult than a dichotomous task, and the latter
has more training examples than the former. In
general, these results also indicate that analyzing
MT text performs marginally better than processing
NST texts across languages. For Arabic, ConfliB-
ERT uncased reports the highest F1 (0.680) for
the QuadClass on the EN to AR Deep translated
text. This result is statistically significantly better
than the NST text Arabic model (F1 0.672). For
English, ConfliBERT cased processing the ES to
EN Deep translation generates the best QuadClass
performance (F1 0.69), while the NST model in
English (F1 0.68) has a statistically significantly
lower performance. Finally, the results for Spanish

Figure 3: QuadClass Classification

show that ConfliBERT cased performs best using
EN to ES DeepL translation (F1 0.69). This result
is barely better than Spanish NST text (F1 0.684).

5.3 BinQuad Binary Classification

Figure 4 shows binary classification results for Ma-
terial Conflict (panel 4.a), Material Cooperation
(panel 4.b), Verbal Conflict (panel 4.c), and Ver-
bal Cooperation (panel 4.d). The analysis shows
heterogeneous results. For specific QuadClass in-
stances in Arabic, MT generally performs better
than Arabic NST text. However, the results for
NST text versus MT text in English and Spanish
are mixed.

Panel 4.a shows the Material Conflict scores. In
general, the results indicate that MT text performs
better than NST text in Arabic and English, but the
Spanish models show a comparable performance
in NST and MT texts. For Arabic, ConfliBERT
uncased has the best performance (F1 0.885) when
processing the Deep EN to AR translation. In con-
trast, NST text Arabic has a statistically lower per-
formance (F1 0.863). For English, ConfliBERT
cased performs the best (F1 0.908) using the ES
to EN Deep text. This result is statistically sig-
nificantly better than using English NST text (F1
0.890). For Spanish, ConfliBERT cased reports the
best performance with the EN to ES OPUS text
(F1 0.876). However, this result is not statistically
different from the NST text in Spanish (F1 0.876).

Material Cooperation results (panel 4.b) indicate
that MT works as well as NST Arabic and English
texts and sometimes works better than Spanish NST
text. For Arabic, ConfliBERT cased with NST Ara-
bic text yields the best performance (F1 0.819).
Yet, it is not different from ConfliBERT uncased
with EN to AR OPUS translation (F1 0.818). For
English, the top performing model is ConfliBERT
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Figure 4: Binary QuadClass Classification

cased using the ES to EN OPUS translation (F1
0.844). However, this result is not statistically su-
perior to English NST text (F1 0.843). Finally, the
results for Spanish show that the EN to ES GT
text yields the best results with ConfliBERT cased
(F1 0.838), while the Spanish NST text model has
lower performance (F1 0.82).

Panel 4.c reports the Verbal Conflict F1 scores.
In general, the results show that MT texts perform
better in Arabic, but these findings do not hold

for English and Spanish. The results for Arabic
indicate that ConfliBERT uncased has the best per-
formance with EN to AR Deep text (F1 0.86). This
score is better (p<0.001) than the Arabic NST text
performance (F1 0.833). For English, the AR to
EN GT translation using ConfliBERT cased has
the best result (F1 0.867). However, this score
is not different (p=0.805) from the English NST
text model (F1 0.866). For Spanish, ConfliBERT
uncased works the best when using Spanish NST
text (F1 0.87). However, this result is not different
(p=0.197) from its closest competitor, the EN to
ES Deep text with ConfliBERT cased (F1 0.862).

Finally, Verbal Cooperation results in panel 4.d
indicate that MT texts yield better results than NST
texts in Arabic and Spanish, but models using sen-
tences in English perform as well as those using
MT texts. For Arabic, ConfliBERT uncased pro-
cessing EN to AR DeepL translations has the best
performance (F1 0.88). This result is statistically
superior to the Arabic native model (F1 0.856).
For English, the top performing model is ConfliB-
ERT cased processing AR to EN DeepL translation
(F1 0.867). Although this model performs better
than the English NST text model (F1 0.863), the
difference is not statistically significant. Finally,
the results for Spanish indicate that processing the
EN to ES Deep translation with ConfliBERT cased
yields the best performance (F1 0.87). In contrast,
the Spanish NST text model reports a lower perfor-
mance (F 0.853) at statistically significant levels.

Overall, this section shows that LLM perfor-
mance does not necessarily align with the MT qual-
ity suggestions. The following sections try to iden-
tify the determinants of model performance.

6 Corpus Rarity and Vocabulary Loss

To disentangle the characteristics of MT out-
puts that yield marginally superior ConfliBERT
performance compared to processing NST texts,
this section analyzes MT-induced distortions to
the original corpora. First, we measure the
total vocabulary size after preprocessing using
spaCy’s en_core_web_trf transformer pipeline
for English (Honnibal et al., 2020), spaCy’s
es_dep_news_trf transformer pipeline for Span-
ish (Honnibal et al., 2020), and the Farasa seg-
menter (Al-shaibani, 2021) for Arabic. The vocab-
ulary size for each language represents the total
number of unique words included in the MT cor-
pora. Figure 5 shows the vocabulary sizes. We
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find that the MT corpora consistently have a lower
vocabulary size than the respective NST corpus.
This finding aligns with the characteristics of trans-
lationese, where translated text tends to show re-
duced lexical diversity compared to original text
(Riley et al., 2020). Therefore, there may be a con-
vergence of MT on similar phrasing, reducing the
need to learn diverse patterns as in the native text.

Figure 5: Native-MT Vocabulary Size Comparison

To further explore this reduction effect, we mea-
sure lexical rarity per sentence. Following (Proisl,
2022), we define lexical rarity as the proportion of
tokens in a text that does not appear in the 5,000
most common tokens for a domain. We consider
two types of rarity: general and domain. General
rarity relies on the 5,000 most common tokens for a
language, regardless of subject. Domain rarity uses
the 5,000 most common tokens in the sentences
from the UNPC to measure rarity as it relates to a
political corpus. We use rarity as a proxy for lexical
complexity and consider it the prime indicator for
the reduction of text complexity and loss of con-
text in the MT texts. A reduction in rarity for MT
text represents a decline in the number of unique
tokens compared to the NST text. Consequently,
a reduction in the mean rarity of the MT corpus
represents a loss of language complexity compared
to the NST corpus. The loss of rarity may be par-
ticularly relevant for domain-specific researchers
where key terms or technical words may carry par-
ticular substantive value. In addition to rarity, we
measure the number of unique lemmas, nouns, and
verbs in each sentence as additional measures of
linguistic features (see Appendix H).

Figure 6 shows the mean general and domain rar-
ity scores. Using a pairwise Wilcox test from the
stats R package (R Core Team, 2023), we com-
pare the MT text to the NST corpora in terms of
rarity and find that the English and Arabic MTs all
have statistically significantly lower general and do-
main rarity scores than the respective NST corpus.
Spanish, however, does not display the same effect.
In contrast, MTs using Deep, DeepL, and GT all

have statistically significant higher general rarity
scores than the Spanish NST corpus. However, re-
garding domain rarity, the difference between the
Spanish NST text and the MT output using Deep,
DeepL, and GT is not significant. OPUS transla-
tions are not significantly different from Spanish
NST text in general rarity, but show a statistically
significant reduction in domain rarity.

Figure 6: General and Domain Rarity Means

These results and the reduced vocabulary size
show that MTs into English and Arabic generate in
a significant loss of rare tokens. While this loss may
simplify the text and facilitate model classification,
these translationese-induced simplifications may
lead to the loss of critical context where specific
words and their substantive meaning are essential.

The significant increase in rarity for some MT
tools into Spanish is likely due to a bias toward
brevity using more complex words. While native
speakers may opt for longer but simpler phrasing
in NST text, the MT text may result in a brief but
vocabulary-heavy phrasing. This may be due to the
training data for translation into Spanish favoring
these characteristics. The reduction in text com-
plexity further indicates that there could be over-
fitting to MT text in fine-tuning. Models trained
on the MT text, which has lower text complexity,
may not perform well when tasked with classifying
NST text or even text from another MT tool that
introduces higher or different types of complex-
ity. This finding, consequently, warrants additional
consideration when fine-tuning using MT text.

These findings resonate with major challenges
in Neural Machine Translation (NMT). First, NMT
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systems perform poorly in specialized domains for
which the system has not been trained for. Sec-
ond, NMT systems are weak at translating low-
frequency (rare) words, especially in cases where
there are many inflections (as in verb conjugations
in Spanish). Third, NMT systems struggle with
long sentences, which are disproportionately un-
derrepresented in the UNPC (Koehn and Knowles,
2017). Finally, Vanmassenhove et al. (2019) simi-
larly find that MT systems fail to reach the diversity
of phrasing and vocabulary of natural human lan-
guage. Therefore, there is a loss of information,
context, and the unique voice of the speaker/writer
of the source text in this process. While event clas-
sification may not suffer from this loss, other tasks,
such as Named Entity Recognition (NER), may
experience poorer performance using MT.

7 Dependency Distance

To explore the MT effects on model performance,
the study also analyzes the dependency distance
mean (DDM) of each sentence across languages
and the dependency distance mean difference
(DDMd) of each MT output to their corresponding
NST text. DDM is the average syntactical distance
between the root of a sentence to other parts of
speech and is generally regarded as an indicator
of sentence complexity (Liu et al., 2017, 2022). A
high DDM refers to highly complex sentences. Re-
latedly, DDMd is interpreted here as the distortion
caused by the MT tool when compared to its target
NST text, such that a negative DDMd indicates syn-
tactical simplification and a positive DDMd shows
increasing syntactical complexity by the MT tool.

To get the DDM, we use textdescriptives,
spacy, spacy_transformers, and libraries with
en_core_web_sm, bert-large-arabertv02, and
es_core_news_sm models for English, Arabic,
and Spanish, respectively. For example, Table 1
presents the same English NST sentence in com-
parison to its English MT using DeepL from Arabic
and Spanish texts. As Table 1 shows, small differ-
ences in the MT output are consequential for the
dependency tree, the DDM, and DDMd of the MTs
into English. See Appendix I for details.

8 Sentence-Level Prediction Confidence

To better understand ConfliBERT’s performance
across NST and MT texts, we analyze the effects
of different sentence-level characteristics on model
performance. We first estimate the degree of con-

(a) EN NST: "For many States, the lack of sufficient

capacity represents a major challenge in effectively moni-

toring and enforcing the arms embargo." DDM = 2.63.

(b) AR to EN using DeepL: "For many states, lack

of sufficient capacity is a major challenge in monitoring and

effectively enforcing the arms embargo." DDM = 3.09,
DDMd compared to EN NST = 0.46.

(c) ES to EN using DeepL: "The lack of sufficient

capacity is a major challenge for many States in the effective

monitoring and enforcement of arms embargoes." DDM
= 2.45, DDMd compared to EN NST = -0.18.

Table 1: Dependency Distance Example

fidence to which ConfliBERT correctly classifies
each sentence. Then, we use regression analysis to
explain the levels of prediction confidence based
on various sentence-level characteristics.

To calculate prediction confidence at the sen-
tence level, we use the ConfliBERT-uncased model
in the Binary Relevant classification task. The
methodology generates label predictions and confi-
dence scores by applying the softmax function to
its output logits (Devlin et al., 2018b). The method-
ology processes the logits of each sentence through
softmax, converting them into probabilities ranging
from (0,1), thus indicating the model’s confidence
in correctly assigning the chunk to a specific class.
In this way, the prediction reflects the probability
of ConfliBERT’s correct classification.

For sentences longer than 512 tokens, we apply
a chunking strategy, splitting them into segments
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of 512 tokens each (Pappagari et al., 2019; Park
et al., 2022), and independently classify and gener-
ate a predicted label and confidence score for each
segment. To ensure an accurate sentence-level pre-
diction, we apply majority voting to determine the
final label and average the confidence scores across
all chunks in a sentence. This method ensures that
the final confidence prediction reflects the model’s
certainty across the entire sentence, allowing us
to handle longer texts without losing context or
compromising accuracy. Averaging the confidence
scores provides a robust measure of the model’s
overall confidence.

9 Explaining Model Performance

To explore the determinants of model performance,
we further analyze the sentence-level prediction
confidence for the binary classification task using a
linear regression model as indicated in equation 1.

yi = α+ β1Vi + β2Ni + β3Li + β4R
g
i+

β5R
d
i + β6DDMi + β7DDMd

i + ϵi
(1)

where yi is the predicted confidence of ConfliB-
ERT correctly identifying the binary classification
for sentence i. The independent variables refer
to sentence characteristics that could affect model
performance, including the number of verbs (Vi),
the noun count (Ni), unique lemmas (Li), general
rarity (Rg

i ), domain rarity (Rd
i ), the dependency

distance mean (DDMi), and the DDM difference
(DDMd

i ) caused by MT, the latter is only included
in MT texts. α and ϵ represent the intercept and
the errors, respectively. To facilitate the compari-
son of coefficients, we standardize Vi, Ni, Li, and
DDMi to range from 0,1 for the count measures,
and a [-1,1] range for DDMd

i . Using equation 1,
we regress these sentence-level characteristics to
explain ConfliBERT’s performance for the binary
classification task across NST and MT outputs. Ap-
pendix J reports the regression results.

Following Ward et al. (2010) and Brandt et al.
(2022), we evaluate the contribution of each vari-
able on the probability of correct classification by
comparing the contribution of each sentence-level
characteristic to the regression Root Mean Standard
Error (RMSE) using stepwise elimination. RMSE
is the standard deviation of the residuals away from
the regression line. A low RMSE indicates that the
observations closely revolve around the regression
line, which suggests a good model fit. The step-
wise elimination approach consists of first running

the full regression and calculating the RMSE, then
dropping one variable at a time from equation 1
and comparing the change in the RMSE from each
subsequent model. A large RMSE increase after
eliminating a certain variable indicates a greater
model fit loss, suggesting that this variable largely
contributes to the model performance. Since each
regression has its own RMSE (see Appendix K), we
favor the comparability of results by calculating the
Model Fit Loss as a percentage using as baseline
the full model’s RMSE. This provides a standard-
ized measure for cross-model comparison in which
lower Model Fit Loss values indicate worse model
performance after each variable elimination.

Figure 7 presents the Model Fit Loss by stepwise
elimination across native and MT texts. The base-
line in each panel is the full model RMSE from
equation 1. The Model Fit gradually decreases
after subsequently dropping each independent vari-
able in each elimination step; the magnitude of the
drop indicates the contribution of each eliminated
variable. In general, Figure 7 shows that all models
experience substantial performance loss after elimi-
nating the general and domain rarity variables. This
shows that general rarity and domain-specific rarity
have considerable leverage in explaining ConfliB-
ERT performance for binary classification. Text
translated using OPUS seems particularly sensitive
to the contributions of general and domain rarity in
any translation direction.

These results offer an important finding suggest-
ing that highly specialized words are crucial for
explaining model performance. As MT tools gener-
ally reduce the vocabulary richness (see Figure 5)
and decrease the number of specialized or domain-
specific terms in the MT text (see Figure 6), the
resulting translation output is a simplified repre-
sentation of the native text containing sentences
with fewer tokens and simpler words. This MT
text generally makes it easier for LLMs to process.
However, this performance gain comes at the cost
of lower vocabulary richness in key terms.

10 Discussion and Conclusion

Table 2 presents a general summary of the main
results. Based on these findings, we derive the fol-
lowing main conclusions: First, MT quality assess-
ment scores provide limited insight about which
MT tool performs best across classification tasks.
Most quality scores recommend DeepL and OPUS
as the best tool for Arabic and English, and OPUS
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Figure 7: Model Fit Loss by Stepwise Elimination

for Spanish. However, these tools rarely outper-
form other MT texts across classification tasks.

Second, the sentence-level analysis reveals that
all MT tools induce a reduction in vocabulary com-
plexity. In addition, Arabic and English transla-
tions suffer from a reduction in both general and
domain-specific lexical rarity. This suggests an im-
portant simplification of key terms that may be of
particular relevance to domain experts. However,
we detect an increase in general rarity in Spanish,
and no general changes in domain rarity.

Third, although LLMs are expected to perform
better with native documents than with MT texts,
results across downstream tasks indicate that LLMs
generally perform better with MT texts than with
native corpora. Yet, no single MT tool consistently
reports the top performance across languages.

Finally, using regression analysis and a stepwise
deletion approach to assess the contributions of dif-
ferent sentence-level characteristics on model per-
formance, the analysis indicates that highly special-
ized words—represented by general and domain-
specific rarity—have the most leverage in explain-
ing model performance for binary tasks.

Based on a specific application in the field of

Finding Arabic English Spanish
Best MT Quality OPUS DeepL OPUS
MT Voc. size Decrease Decrease Decrease
Gral. rarity Decrease Decrease Increase
Domain rarity Decrease Decrease Not signif.
Best Binary OPUS Native GT
Best QuadClass Deep Deep DeepL
Best Mat. Conf. Deep Deep OPUS
Best Mat. Coop. OPUS OPUS GT
Best Verb. Conf. Deep GT Native
Best Verb. Coop. DeepL DeepL Deep
Main performance Rg

i Rg
i and Rg

i and
contributors Rd

i Rd
i

Table 2: Summary of Results

political science, this study suggests an important
trade-off for the use of MT tools that could be ex-
tended to other domains. On the one hand, results
indicate that MT tools may substantially reduce
the time and effort for human analysis to process
large volumes of text, and such MT texts tend to
yield better results when using specialized LLMs
for a variety of tasks. In simple terms, it seems
that machines talking to machines tend to generate
better results. On the other hand, the use of MT
tools tends to produce translationese outputs that
reduce vocabulary richness, particularly for rare
terms that may be of high substantive value to do-
main experts. For human translators operating in
highly technical fields, such vocabulary loss may
prove unacceptable despite the artificially superior
machine-to-machine performance.

11 Limitations

The study has several limitations. First, this analy-
sis is circumscribed to the political domain. There-
fore, results may not be generalizable to other do-
mains. Second, the conclusions derived from the
regression analysis are based on a relatively simple
binary classification task. Future research should
evaluate if these findings hold in more sophisti-
cated downstream tasks such as multi-class and
multi-label classification, or named entity recogni-
tion. Third, MT tools were trained on either the
UNPC itself (OPUS) or similar multilingual UN
text (GT, Deep), or can be expected to have been
trained on it (DeepL). MT tools can, therefore, be
expected to achieve a higher translation accuracy
due to their familiarity with UN text. Furthermore,
some MT tools are not free, limiting their accept-
ability. Additionally, the study does not include
other MT tools such as ChatGPT (OpenAI, 2022)
or Gemini (Gimine, 2023). However, the selection
of MT tools focuses on the most used tools in the
chosen languages. Fourth, fine-tuning ConfliBERT
on multiple languages with large datasets consumes
significant time and computational resources.
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Ali Hürriyetoğlu. 2021. Protest-er: Retraining bert
for protest event extraction. In Proceedings of the 4th

Workshop on Challenges and Applications of Auto-
mated Extraction of Socio-political Events from Text
(CASE 2021), pages 12–19, Online. Association for
Computational Linguistics. Accessed: 2023-07-10.

Eirini Chatzikoumi. 2020. How to evaluate machine
translation: A review of automated and human met-
rics. Natural Language Engineering, 26(2):137–161.

Erik De Vries, Martijn Schoonvelde, and Gijs Schu-
macher. 2018. No longer lost in translation: Evi-
dence that google translate works for comparative
bag-of-words text applications. Political Analysis,
26(4):417–430.

Deep Translator. 2020. deep-translator: A flexible
free and unlimited python tool to translate between
different languages in a simple way using multi-
ple translators. https://github.com/nidhaloff/
deep-translator. (Accessed on 04/16/2025).

DeepL. 2024. DeepL Translator. https://www.deepl.
com/translator. (Accessed on 04/16/2025).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Julen Etxaniz, Gorka Azkune, Aitor Soroa, Oier Lopez
de Lacalle, and Mikel Artetxe. 2023. Do multilingual
language models think better in english? Preprint,
arXiv:2308.01223.

Martin Gellerstam. 1986. Translationese in swedish
novels translated from english. In L. Wollin and
H. Lindquist, editors, Translation studies in Scandi-
navia: Proceedings from the Scandinavian Sympo-
sium on Translation Theory (SSOTT) II, number 75 in
Lund Studies in English, pages 88–95. CWK Gleerup,
Lund.

Gimine. 2023. Gimine: Open-source data mining plat-
form. https://gimine.com. Accessed: 2024-09-
12.

Google Cloud. 2024. Google cloud translation api. Ac-
cessed: 2025-04-16.

Suchin Gururangan, Ana Marasović, Swabha
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Ali Hürriyetoğlu, Osman Mutlu, Fırat Duruşan, Onur
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A Replication Files

The data and replication files are available in
GitHub at https://github.com/javierosorio/
devil_in_the_details_mtsummit25.

B Ethical Considerations

This research utilizes United Nations Parallel Cor-
pus as a source of information but does not in-
volve human research subjects. By evaluating MT
tools on political conflict and cooperation, we aim
to help low-resource languages expand their high-
quality data on such scarce contents (Magueresse
et al., 2020). Creating a gold standard content of
UN data aligned per sentence across multiple native
languages sets up the foundation for researchers
to use as labeled data sets for the specified lan-
guages of English, Arabic, and Spanish. And even
extrapolate the work into the other three UN offi-
cial languages, such as French, Chinese, and Rus-
sian, which are also considered lower-resource lan-
guages when compared to English.

C Sustainability Statement

Following Lacoste et al. (2019), this section
presents the estimated energy cost and its corre-
sponding carbon impact statement. The experi-
ments reported in this study were conducted using
the National Center for Supercomputing Applica-
tions (NCSA) in Illinois, and the University of Ari-
zona offers High Performance Computing (HPC).
The study used 418 hours of computation on type
gpuA100*4 (TDP of W) hardware. The total esti-
mated emissions are 45.14 kgCO2eq. According to
the United States Environmental Protection Agency
United States Environmental Protection Agency
(2015), this amount of emissions is equivalent to
driving 115 miles in an average gasoline-powered
passenger vehicle.

D Annotation Process

As indicated in Osorio et al. (2024), the annotation
process involved eight steps:

• First, 12 human coders with domain-specific
knowledge in political science and interna-
tional relations received extensive training on
the codebook. These annotators possessed
bilingual skills in either English and Spanish,
or English and Arabic.

• Second, the coders worked on various sets of
randomly sampled 300 aligned sentences. For

each set, we had three or four coders. Each
human coder processed each individual sen-
tence.

• Third, coders performed a first round of sen-
tence classification blindly. Preventing coders
from seeing the annotations conducted by
other coders prevents artificial inter-coder cor-
relation. Coders classified each sentence into
any of the QuadClass categories or marked
them as non-relevant.

• Fourth, after finishing the first round of blind
annotations, coders compared their annota-
tions in a non-blind revision round. This helps
to rectify discrepancies between coders and
strengthen their mastery of the codebook.

• Fifth, sentences with unanimous agreement
are considered GSR annotations.

• Sixth, for those sentences in which there was
no initial unanimous agreement, coders re-
solved disagreements in a third round of re-
views to enhance inter-coder reliability.

• Seventh, for unresolved sentences, a final
coder made the ultimate classification deci-
sion.

• Finally, sentences with unresolved classifica-
tions or multiple QuadClass labels were ex-
cluded from the final dataset.

E Annotation Result

Figures 8 and 9 present the distribution of anno-
tations for the binary classification (relevant or
not) and the QuadClass classification, indicating
whether a sentence can be categorized as Material
Conflict (Mat Conf), Material Cooperation (Mat
Coop), Verbal Conflict (Verb Conf), Verbal Co-
operation (Verb Coop), or not relevant. For the
Binary QuadClass task, the study uses each of the
QuadClass as a binary classification.
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Figure 8: Binary Annotations
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Figure 9: QuadClass Annotations

F MT Tools Training

Each of the MT tools used in this analysis was
trained on different corpora of multilingual text,
some of which may have included or are known
to include multilingual UN documents. While GT
and, consequently, Deep, as GT variant, were origi-
nally trained on UN documents, they do not specif-
ically include the UNPC as training data (Schäfer-
hoff, 2024). OPUS, in contrast, specifically in-
cludes the UNPC as part of its multilingual training
corpora, which may result in OPUS showing ex-
ceptionally high accuracy in MT the NST text into
the target language (OPUS, 2016). DeepL does
not specify which training data was used to train
the model but emphasizes that DeepL uses a web
crawler to find and validate translations on the inter-
net (DeepL, 2024). Consequently, it is possible that
DeepL also included UN multilingual documents
as training data. While all MT tools can, therefore,
be assumed to have been trained on some variant of
multilingual UN data, this can be expected to affect
the MT output insofar as it is likely to show lower
translationese effects than could be expected from
an MT model that has not ’seen’ the data before
when compared to the original UNPC corpus. This
limitation notwithstanding, we expect MT tools
to differ in terms of their quality and expect their
training on UN data not to favor one tool over the
others.

G MT Quality Evaluation Metric
Configurations

This appendix provides additional technical details
related to the configuration used for the MT quality
evaluation metrics implemented in the study.

• SacreBLEU: Implemented with default set-
tings (tokenizer=’13a’, force=False, lower-
case=False) to ensure reproducibility across
multi-lingual settings.

• METEOR: Implemented via NLTK library
with default settings.

• BERTScore: Calculated using bert-base-
multilingual-cased model.

• COMET: Computed using wmt20-comet-da
model with default configurations.

H Nouns, Verbs, and Lemmas

Figure 10 presents the noun count comparison, Fig-
ure 11 the verb count comparison, and Figure 12
the lemma count comparison across the native lan-
guage corpora and MT corpora across languages.

Figure 10: Noun Count Difference

Figure 11: Verb Count Difference

Figure 12: Lemma Count Difference
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I Dependency Distance

Figure 13 presents the distribution of the depen-
dency distance mean (DDM), and Figure 14 shows
the DDM difference (DDMd) between the MT
texts and their corresponding native language.
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Figure 14: Dependency Distance Mean Difference

J Regression Results

Figure 15 presents the results of the regression anal-
ysis indicated in equation 1, where the dependent
variable in the probability of ConfliBERT correctly
categorizing each sentence in the binary classifica-
tion task. Coefficients present the point estimate
with confidence intervals at 95% of statistical sig-
nificance. Estimates to the right of the 0 threshold
indicate that such sentence characteristic increases
the model performance. In contrast, estimates to
the left of the threshold indicate a reduction in
model performance.
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Figure 15: Determinants of Model Performance
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K Individual RMSE plots

The Figures in this Appendix present the original
Root Mean Standard Errors (RMSE) generated by
each regression. In these plots, the higher RMSE
value indicates broader disturbances and, conse-
quently, a lower model fit for ConfliBERT correctly
predicting the binary classification task. Figure 16
reports the RMSE from the regressions using the
native languages. Figure 17 reports the RMSE
from the regressions using the Arabic to English
MT output. Figure 18 reports the RMSE from the
regressions using the Spanish to English MT text.
Figure 19 reports the RMSE from the regressions
using the English to Arabic MT documents. Figure
20 reports the RMSE from the regressions using
the English to Spanish MT sentences.
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Figure 16: RMSE from NST Text
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Figure 17: RMSE from Arabic (AR) to English (EN)
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Figure 18: RMSE from Spanish (ES) to English (EN)
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Figure 19: RMSE from English (EN) to Arabic (AR)
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Figure 20: RMSE from English (EN) to Spanish (ES)
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