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Abstract

We present a hybrid rule-based and neu-
ral method for translating Finnish compound
nouns into English. We use a lightweight set of
rules to split a Finnish word into its constituent
parts and determine the possible translations of
those words using a dictionary. We then use
an NMT model to rank these alternatives to
determine the final output. Since the number
of translations that takes into account different
spellings, inflections, and word separators can
be very large, we use beam search for the rank-
ing when the number of translations is over a
threshold. We find that our method is an im-
provement over using the same NMT model for
end-to-end translation in both automatic and hu-
man evaluation. We conclude that our method
retains the good qualities of rule-based transla-
tion such as explainability and controllability
while keeping the rules lightweight.

1 Introduction

In this paper, we present a system for translating Finnish
compound nouns into English by using a hybrid rule-
based and neural method that constructs a trie of possi-
ble translation alternatives in a rule-based manner and
then selects the translation using beam search.

Unlike in mainstream machine translation research
which focuses on sentences and longer texts, our system
is instead intended to be used as a fall-back for a dictio-
nary search, providing translations for individual words
in case they are not found in the dictionary. This feature
is important for languages such as Finnish, Swedish,
and German that allow novel ad hoc compound words
to be formed freely. These compounds are often long
and difficult to parse, especially for non-native speak-
ers, rendering traditional dictionary searches unusable
for them.

Unfortunately, translating single Finnish compound
words into English using current state-of-the-art neural
machine translation (NMT) can be quite vexing: at time
of writing, the Finnish word ”puolukka-kinuskirahka”
(lingonberry caramel quark) gets translated into En-
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glish as ”lingonberry custard” and ”lingonberry quinus-
giraffe” by two popular commercial machine transla-
tion systems. These are mistakes no human translator
would make, as the Finnish word is unambiguously the
compound of ”puolukka” (lingonberry), ”kinuski” (for
which caramel is a reasonable translation, even though
others can be argued for) and ”rahka” (quark).

“Puolukkakinuskirahka” is a real-world example and
a good demonstration of issues neural systems struggle
with (cf. Ismayilzada et al., 2024). In principle, translat-
ing Finnish compounds to English is an easy task. Both
languages share similar rules for simple compounds (see
Figure 1) and the constituent parts of the compounds
are often common words found in a dictionary or eas-
ily translated by an NMT model. However, rule-based
translators also struggle with the task, since the com-
pound parts usually have many translations in the target
language, and the probability of a wrong translation be-
ing chosen grows exponentially as more parts are added
to the compound (Forcada et al., 2011; Khanna et al.,
2021).

We solve this issue of lexical selection by choosing
the best translation given by the rule-based system by
scoring the alternatives with an NMT model. Since the
number of alternatives can be very large (even hundreds
of thousands in some cases), we implement a beam
search for searching the space (cf. Cao et al., 2021). We
argue that our method combines the good qualities of
rule-based translators such as explainability (each word
in the translation can be linked back to a dictionary en-
try) with the versatility of neural methods, not requiring
complex rulesets or algorithms for disambiguation.

Section 2 lists prior work with this problem. Section 3
describes our novel methods. Section 4 describes how
we evaluated our system on four datasets: a list of food
item names, two small forestry-related term banks, and
a subset of IATE. Finally, section 5 discusses the next
steps and the limitations of our work.

2 Background

In this section, we describe analysis of Finnish and En-
glish compound words and cover relevant prior work
both in the fields of rule-based and neural machine trans-
lation.
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puolukka-kinuskirahka

lingonberry caramel quark

fromage blanc aux airelles et au caramel

Figure 1: An example of compound words in three lan-
guages. The structure of the compound is similar for the
head-final Finnish and English, while the head-initial
French has a reversed structure. Furthermore, French
uses gendered and numbered preposition constructions
such as “au” and “aux” (a contraction of the plural arti-
cle and “au”, thus unambiguously referring to the plural
“airelles”) and conjunctions such as “et” to convey rela-
tionships between components that are left implicit in
Finnish compounds. While in this case the use of the
dash makes it explicit that “puolukka” and “kinuski” are
unrelated and have the same relationship to “rahka”, the
added specificity of languages that structure compounds
like French cannot be easily deduced from the Finnish
or English compound. This makes translating Finnish to
English significantly easier than translating it to French.

2.1 Finnish and English Compounds
In this work, we translate expressions that are formed
through two mechanisms: compounding or the con-
catenation of lexemes (producing such constructions
as broadsword, single-minded or distance learning) and
prefixation or the prepending of a prefix (eg. preschool).

In Finnish, compounds (Finnish: yhdyssana) are very
common and can be formed productively (Hakulinen
et al., 2004, §399). Finnish compound nouns consist of
two or more lexemes written together or with a dash,
and can be further broken down into so-called “spec-
ifier compounds” (määriteyhdyssana) consisting of a
specifier followed by the head noun, and “sum com-
pounds” (summayhdyssana) consisting of two equal
parts (Hakulinen et al., 2004, §398). In case of spec-
ifier compounds, the specifier can be inflected in any
case (Hakulinen et al., 2004, §403).

2.2 Decompounding
As long as the compounds are made of in-vocabulary
words, a morphological analyzer such as Voikko (voi,
2025) or Omorfi (Pirinen, 2015) can be used to analyze
the compound and return its constituent parts. We call
this process “decompounding”. Voikko and Omorfi are
both based on a finite-state transducer (FST) (Beesley
and Karttunen, 2003) that returns all possible interpre-
tations of the word. The limitation of these tools is
that they do not conduct any disambiguation or pars-
ing, i.e., while compound words have a tree-like struc-
ture (Hakulinen et al., 2004, §405) (see Figure 2), the
tools return a flat list.

The rule-based Finnish–English translator Trans-
mart (Arnola, 1996) always splits compounds in two:
the last component and everything else. As Finnish com-

pounds are either symmetric or head-final (Hakulinen
et al., 2004, §398), the last part of the compound is
often the most important. However, this choice makes
translating compounds that have more than two parts
impossible unless both parts returned by the analyzer
are present in the dictionary.

There are neural alternatives such as Trankit (Nguyen
et al., 2021), but presently its Finnish pipeline also re-
turns a flat list while being significantly worse than the
FST-based tools.1 It is also possible to instruct large
language models to perform morphological analysis, al-
though the performance on Finnish is still poor (Moisio
et al., 2024; Ismayilzada et al., 2024).

2.3 Rule-Based Translation of Compounds
Productively translating Finnish compounds is not a new
endeavor, with early attempts such as Transmart (Arnola,
1996) dating back to the 1990s. This was limited by a
disambiguation problem that has later been termed lexi-
cal selection by Forcada et al. (2011) and Khanna et al.
(2021), i.e. selection of the target lexemes correspond-
ing to the source lexemes. While Forcada et al. and
Khanna et al. focus on multi-word expressions (MWEs)
instead of compound nouns, we argue that their work is
still mostly relevant to this work. Khanna et al. present
both a data-driven and a rule-based mechanism for lex-
ical selection. The data-driven approach is based on
a maximum-entropy model used to generate weighted
lexical selection rules. The rule-based approach is a
separate dictionary of MWEs that should be translated
as a unit, giving the example of ”little brother” and
”big brother” having separate single-word translations
in Kyrgyz.

2.4 Constrained Decoding
Constrained decoding is an umbrella term for meth-
ods where a generative model such as a large language
model is used not to simply generate the most proba-
ble text (or in our case, translation) from the set of all
possible texts. Instead, at each generation step only a
subset of all possible tokens to continue the text with is
considered. Constrained decoding has been successfully
used for many NLP tasks (Geng et al., 2023). In the
field of machine translation, constrained beam search
has been used for incorporating glossaries into an NMT
system (Hokamp and Liu, 2017; Post and Vilar, 2018;
Hu et al., 2019; Hauhio and Friberg, 2024)

In constrained decoding, the constraints are defined
using a grammar. If simple enough, this grammar can
be represented as a trie (Cao et al., 2021). In more
complex situations, a regular expression resulting in a
finite-state machine (Hauhio and Friberg, 2024) or a
context-free grammar (Geng et al., 2023) can be used.
The grammar is used to determine which tokens can be
valid continuations for a sequence, and the probabilities
1For example, the Trankit Finnish-TDT pipeline analy-
ses “apumekaanikkoaliupseeri” (assistant mechanic NCO)
as “apume#kaanikko#aliupseeri” instead of the correct
“apu#mekaanikko#ali#upseeri”. Compare with Figure 2.
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lento kone suihku turbiini

jet

moottori

engine

apu

assistant mechanic

mekaanikko ali upseeri

NCO student

oppilas

aircraft

Figure 2: To illustrate the hierarchical nature of Finnish compound words, we use “lentokonesuihkuturbiinimoottori-
apumekaanikkoaliupseerioppilas” (aircraft jet engine assistant mechanic NCO student) as an example word. This
word is often given in the “longest Finnish words” lists, although it is unclear if it ever has been used in real
life (Vartiainen, 2018). While this word is artificially long and would not occur in fluent Finnish text, it is a good
example of the recursive nature of Finnish words (Hakulinen et al., 2004, §405). The colored words are found in a
dictionary while “konesuihku” (machine jet), “moottoriapu” (motor help), or “mekaanikkoali” (agrammatical) are
not. Therefore, merely parsing the word into a flat list of parts is not enough – the tree structure of the word must be
maintained such that segments from the dictionary are subtrees of the original tree.

of invalid tokens are set to zero during the decoding. In
cases where it is enough for the constraints to appear
somewhere in the output such as glossary translation,
the grammar contains a wildcard allowing any token
to appear. In this work, we use a trie for defining the
constraints, and it contains no wildcards, which means
that the sequences contained in the trie are the only
allowed sequences.

3 Our Method
We present a pipeline for translating Finnish compounds
with a hybrid rule-based and neural approach. Our
pipeline has the following components:

1. Morphological Analysis (source language de-
pendent). This step splits the given word into its
component lemmas, returning all possible inter-
pretations of what those lemmas could be. This
step results in a list of different ways to split the
compound into atomic parts.

2. Hierarchical Disambiguation (source language
dependent). We decide which atomic compound
parts can be combined together into known larger
subcompounds that exist in the dictionaries. The
result of this step is a list of source components as
per Figure 2 (the colored components).

3. Candidate Generation (target language depen-
dent). We use a set of rules to generate differ-
ent spellings, inflections, and other variations of
the translations of the compound parts. This ac-
counts for instance for closed versus open com-
pound spelling in the target language.

4. Token Trie Formation (language independent).
The number of translation alternatives for a com-
pound is at least the product of the number of its
components’ translation alternatives. This can be

in the thousands or tens of thousands, especially
when accounting for all the spelling variations we
wish to try. To address this, we build a lazily tok-
enizing trie structure to only construct the transla-
tion alternatives that the beam search in the next
step will visit.

5. Beam Search (language independent). Finally,
we search the lazy trie using a beam search to
determine a good translation.

3.1 Morphological Analysis
We use the Voikko tool (via the pyvoikko Python
package) to split the compound words into their con-
stituent parts. As explained in section 2.2, Voikko
returns a flat list of the most atomic parts it can
find. Knowing the surface forms and order of the
parts, we can deduce the corresponding ranges in the
string to be analyzed. Some of the ranges may over-
lap: ”maastopaloja” (terrain fires) can be analyzed as
maasto—palo (terrain fire), maasto—pala (terrain piece)
or maa—stop—ala (earth stop area). For “maastopaloja”
we would get the range [1, 3] matching the entry for
maa, the range [1, 6] matching the entry for maasto, the
range [4, 7] matching the entry for stop, the range [7,
12] twice with one instance matching pala and the other
palo and finally the range [8, 12] matching ala.

3.2 Hierarchical Disambiguation
After the analysis, we determine the dictionary transla-
tions for the constituent parts. However, in many cases,
the dictionary does not only contain the translations for
the atomic parts, but also for subcompounds. For exam-
ple, consider the word “aliupseerioppilas”, made of the
parts ali (sub), upseeri (officer), and oppilas (student). A
word-by-word translation would be “subofficer student”.
However, the correct translation of aliupseeri in English
is “non-commissioned officer” or “NCO”. Therefore,
before determining the translations of the parts, we need
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to combine the parts into larger subcompounds in order
to find the best translations from the dictionary. This pro-
cess is further complicated by ambiguity. As “aliupseeri-
oppilas” is made of the subcompound aliupseeri and the
noun oppilas, it should be parsed as aliupseeri—oppilas.
Interpreting it as ali—upseerioppilas is incorrect, even
though in our case “upseerioppilas” (officer student) is
also present in our dictionary.

Our main solution for the ambiguity is to use the
NMT model for choosing the translation from the alter-
natives using beam search as described in the following
sections. However, to reduce the use of resources and
ensure useful time-performance, we want the search
space to be as small as possible. For this reason, we
prune the alternatives using the algorithm described be-
low. We support a case where we have two dictionaries
with differing priorities, in our case, a domain-specific
glossary and a general dictionary.

1. Dictionary Query (language independent). This
step looks up translations for the atomic parts and
all possible combinations of them in the domain-
specific glossary and the general dictionary. For
single-letter parts such as “A” in “A-rappu” (A
wing), no dictionary query is performed: the single
letter itself is returned as the only translation.

For example, for “aliupseerioppilas”, the atomic
parts ali, upseeri, oppilas, and the subcompounds
aliupseeri and upseerioppilas are all found in the
dictionary. (The full compound aliupseerioppilas
is not found in the dictionary – if it was, we would
return the dictionary translation and not use our
system at all.)

2. Scoring (language dependent). This step scores
translations depending on whether the source term
is interpreted as being inflected or not. If it is
inflected, it gets a 2.5 point penalty and if its in
lemma form, it gets a 1 point penalty. For a given
term, only translations with the lowest penalty are
kept. In the case of “aliupseerioppilas”, all parts
are in their base form and receive the penalty of 1.

We penalize all parts, since we prefer the solutions
with fewer compound boundaries and thus longer
subcompounds. This is a desirable quality, because
compounds can have a different meaning than the
sum of their components. Our penalty scheme also
prefers doing two extra splits to interpreting a sub-
compound as inflected, because we find inflected
subcompounds to be less likely than a subcom-
pound with a short word that happens to look like
a case ending at the end.

3. Disambiguation (language independent). This step
has two goals: enforcing the domain-specific glos-
sary and finding the best decompounding. We
do the first by splitting the compound into dictio-
nary words from the domain-specific glossary and
general dictionary so as to maximize the amount

No edit “Afro”
Hyphen “Afro-”
Space “Afro ”

Genitive “Afro’s ”
Lower case “afro”

Lower case + hyphen “afro-”
Lower case + space “afro ”

Lower case + genitive “afro’s ”

Table 1: Different spellings of the word Afro generated
during the candidate generation.

of characters covered by words from the domain-
specific glossary. We then forget the specifics of
what dictionary entry we assigned each range of
the compound and consolidate our assigned ranges
based on which dictionary they came from. Within
each consolidated range, we run another search
that finds the decompoundings that have the lowest
penalty per step two.

The word “aliupseerioppilas” does not have
domain-specific glossary words, so we treat it
as a whole as one consolidated range. We then
count the penalties of the possible splits by sum-
ming the penalties determined in the previous step:
ali—upseeri—oppilas has the penalty of 3, while
ali—upseerioppilas and aliupseeri—oppilas both
have a penalty of 2. Of these, we return the decom-
poundings that received the lowest penalty.

Our analysis would change if we had domain glos-
sary terms. If the user added, for example, “ali-
upseeri” to the domain-specific glossary, we would
have two consolidated ranges: “aliupseeri” and
“oppilas”. We would then perform this step sep-
arately for both of these, but using the glossary
for the first range and the general dictionary for
the second range. This would result in the single
interpretation aliupseeri—oppilas. The domain-
specific glossary can thus be used for both correct-
ing domain-specific terms and errors caused by
incorrect disambiguation.

See Appendix A.1 in general and Algorithms 1 and 2
in particular for a detailed description of this algorithm
and Figure 2 for an example of the result of this step.

3.3 Candidate generation
After determining the sequence of compound parts as
described above, we generate a list of translation can-
didates for each part. This is non-trivial, as we have to
account for at least capitalization, conveying informa-
tion from Finnish morphology, and different separators
used in different types of English compounds, such as
solid, closed, genitive, and hyphenated.

The translation candidates are generated by augment-
ing the list of dictionary translations determined in the
previous phase by including different capitalizations and
compound separators: no separator, hyphen (“-”), space
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(“ ”), and genitive (“’s ”). For example, the alterna-
tives generated for the word “Afro” are listed in Table 1.
The correct spelling and separator depends on the word:
e.g., Afrofuturism, Afro haircut, and Afro-Asiatic are
all spelled differently. In addition, if the Finnish com-
ponent was pluralized, we generate the English plural
forms of all variations in addition to the singular forms.

The number of alternatives generated can be very
high. For example, the Finnish word afro has only one
translation in our dictionary (“Afro” in different senses),
and thus results in the eight alternatives listed in Table 1.
However, the word ali has five translations (“sub”, “un-
der”, “low-level”, “deputy”, and “hypo”) which result
in 40 different alternatives. The word tulo has 16 dic-
tionary translations, resulting in 128 alternatives. If the
number of alternatives of all the parts in the compound
are multiplied with each other, even a word with as little
as three compound parts can result in tens of thousands
of different possible translations.

To combat this, we prune the number of alternatives
by utilizing a list of English prefixes. For words that are
not at the end of the compound, we generate candidates
as so:

1. We always offer the spelling with a space.

2. We offer the closed compound spelling if the word
is on our list of prefixes.

3. We offer the spelling with a hyphen if the word
ends with a hyphen.

4. If the Finnish word is plural, we offer the English
plural forms. If the Finnish word is in genitive, we
offer the English genitive form in addition to the
nominative form.

If the word is at the end of the compound, we do not
offer the spelling with a space and only offer the spelling
with a hyphen if the word itself ends in a hyphen: in
that case we assume that the compound ends with some
sort of code.

3.4 Decoding

We have two main approaches to decoding. If the num-
ber of candidates is smaller than a threshold (less than
400 in our experiments), we rank all of them using the
language model in one batch. If we determine that
we have too many candidates for this to be efficient,
we construct a lazy token trie structure over our can-
didate translations. Then we implement beam search
over the set of all candidates using the trie. Section
3.4.1 describes the token trie structure and section 3.4.2
describes the beam search.

3.4.1 Token Trie

We form a trie of tokens containing all possible tok-
enizations of the translation alternatives. For example,

consider the word “horseshoe”. The optimal Sentence-
Piece tokenization2 of this word is “ horses hoe”. There
is also a multitude of suboptimal tokenizations such as
“ horse s hoe”. Our trie includes all possible tokeniza-
tions. The rationale for this is that if “horseshoe” is a
common word in the model’s training set, the model has
likely learned it in the form “ horses hoe”. However,
if this was a very rare word, it might be possible that
the model has learned its parts “horse” and “shoe”, but
not the word as a whole, in which case it makes sense
to force a token boundary between the compound parts
(“ horse s hoe”). By including the different tokeniza-
tions, we allow the NMT model to pick the one it is the
most familiar with.

Since the number of combinations is often too large to
tokenize at translation time, we perform the tokenization
lazily. We form a token trie by first forming a word trie,
then a character trie, and finally a token trie. All of
these tries are lazy, which means that we only perform
tokenization for the branches that are actually searched
by the beam search. The details of this step are presented
in Appendix A.2.

3.4.2 Beam Search
After forming the trie, we use constrained beam search
to search for high-scoring sentences (cf. Cao et al.,
2021). In our experiments below, we used a beam size
of 50. The beam search is otherwise similar to a regular,
unconstrained beam search, but in each step, we remove
the hypotheses containing tokens not present in the trie.
This limits the output sequences to the sequences en-
coded in the trie. We also deduplicate the hypotheses
such that only the most probable tokenizations per the
NMT are retained. The detailed beam search algorithm
is presented in Appendix A.3.

4 Evaluation
Our main research question was: “Is this system an
improvement over using regular NMT translation for
single-word expressions, either in translation quality
or in time performance?” To measure the translation
quality, we conducted a human evaluation of several
compound word datasets translated by both our system
and an NMT model decoded with a normal beam search.
Along with our human evaluation, we also report auto-
mated metrics that we find relevant. Notably, we do not
report BLEU as our translation pairs are too short for it
to be representative. We also measured the translation
time for each of the translated expressions to estimate
whether the system is practical.

4.1 Evaluated Systems
We evaluated two systems: our pipeline described in
this paper (called “our system” or the “compound trans-
lator”), and an NMT model baseline. We ran our
pipeline using a commercial dictionary of about 600

2Using the English tokenizer of the opus-mt-tc-big-fi-en
model.
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Fineli Hydrology Forest Soil IATE Total
Dictionary hit 118 95 146 1694 2053
No compound translation 19 38 36 114 207
Retained 63 45 20 192 320
Total 200 178 202 2000 2580

Table 2: Terms excluded from evaluation per dataset. Dictionary hit means that the term was found as such in the
dictionary. No compound translation means that the term had compound parts that were not found in the dictionary.

000 unique headwords in the Finnish–English direc-
tion as the source of compound part translations. This
dictionary is designed for human consumption, and no
significant changes were made to accommodate the ma-
chine translation use case. We scored all alternatives
if there were less than 400 and used the beam search
otherwise, with beam size set to 50.

We used the Opus-MT Tatoeba Challenge model for
Finnish–English3 (Tiedemann, 2020) as a baseline and
also as the scoring model used by our algorithm. For the
baseline, we used a beam search of width 50 to match
our constrained decoding beam size. We do not com-
pare against other baselines for two reasons: First, the
results would not be comparable if the scoring model
was different from the baseline model. Second, the
chosen model is the state-of-the-art model according to
the OPUS-MT Dashboard4 (Tiedemann and de Gibert,
2023) and choosing a worse model would likely not
have given useful information. Furthermore, while we
considered using large language models, based on exist-
ing literature, they perform poorly in Finnish morpho-
logical analysis (Ismayilzada et al., 2024; Moisio et al.,
2024) and, while they have demonstrated good transla-
tion quality in recent studies (Luukkonen et al., 2024),
their inclusion would have required significant com-
putational resources, so ultimately we decided against
including them.

4.2 Data

We used the following four test sets for the evaluation:

1. Fineli Food Composition Database. We sampled
200 rows from the Basic Package 1 of the national
Food Composition Database5 by the Finnish Insti-
tute for Health and Welfare. This dataset includes
names of food items. Preprocessing done for this
dataset is described in Appendix B.

2. Forest Hydrology Glossary. This is a glossary
provided by the Finnish Forest Centre. We received
an incomplete version of the glossary during its
development (Metsäkeskus, 2023a).

3https://huggingface.co/Helsinki-NLP/opu
s-mt-tc-big-fi-en
4https://opus.nlpl.eu/dashboard/index.p
hp?model=top&test=tatoeba-test-v2021-0
8-07&scoreslang=fin-eng&src=fin&trg=eng
(accessed 2025-01-22)
5https://fineli.fi/fineli/en/avoin-data
(accessed 2025-01-16)

3. Forest Soil Glossary. As the previous dataset,
this was provided by the Finnish Forest Cen-
tre in an incomplete state during its develop-
ment (Metsäkeskus, 2023b).

4. IATE We sampled 2,000 terms from the Finnish–
English IATE6. We used the following parameters
when downloading the dataset: all domains, term
type term, all reliability levels, and evaluation ad-
mitted, preferred, proposed or not specified.

We filtered out terms from the human evaluation in
two cases that had to do with the outcome of the dic-
tionary queries. The first case was that in which our
system could not parse the term into components found
in the dictionary. In real-world use, an NMT translation
would be presented to the user. In our experiment, we
simply removed these terms.

The much more common case on all data sets was that
the compound term was simply found in the dictionary.
Our new method reduces to a lemmatizing dictionary
search here, both in terms of computational cost and
outcome. As such, keeping these terms would be evalu-
ating the contents of the dictionary and not the quality of
the system. Again, a real-world user would be presented
the lexicographically validated dictionary item that has
even stronger accuracy guarantees and upon which a
manual intervention is easier. Whereas the first case is
quite clearly a undesirable outcome, we see the second
case as a not only desirable but even better than coming
up with a machine translation at all.

At a deeper level, the rationale for both cases being
excluded from our evaluation is that we want to focus
on evaluating the compound translator and not the dic-
tionary or the baseline NMT. See Table 2 for the number
of terms dropped for the above reasons. Altogether we
kept 320 terms.7

4.3 Methods

The terms in the datasets were translated with both the
proposed system and the Opus-MT model. To measure
the improvement in translation quality, we performed
both automatic and human evaluation. To measure time
performance, we timed the end-to-end time it took for
both systems to produce the final translations.

6https://iate.europa.eu/home (accessed 2025-01-
09); Download IATE, European Union, 2025
7Find the evaluated terms at https://github.com/kie
likone/mitra-eval-results
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4.3.1 Automatic Evaluation
We use the chrF2 (using the sacrebleu Python li-
brary) and COMET (using the unbabel-comet li-
brary) metrics. In the case of the Forest Soil data, all our
pairs where three words at most, resulting in a BLEU
score of 0. As most of our translations are only com-
posed of two or three individual words, we decided
against using the word-based BLEU even for datasets
where it was non-zero: it would look correct, but not
represent the vast majority of the translation pairs.

We used bootstrap resampling to calculate the p-
values for the results (using the builtin methods of the
sacrebleu and unbabel-comet libraries).

4.3.2 Human Evaluation
We created an evaluation spreadsheet with rows corre-
sponding to the test words, and columns corresponding
to the evaluated systems. We also included a column
containing the source language text and another with
the reference translation. We randomized the order of
the system columns per row. If the NMT model and the
proposed system gave the same result, it was presented
to the human evaluator only once. If a system gave the
reference translation as the result, that translation was
not presented to the evaluator and was given the max-
imal score automatically. If both translations were the
same except for differences in capitalization, the one
matching in capitalization with the correct translation
was presented to the human evaluator and the other was
given a grade automatically: if the correctly capital-
ized got grade 3 (see below), the incorrectly capitalized
got grade 2. Otherwise they got the same grade. This
deduplication scheme was designed to minimize human
labour and systematicise the grading of cases where an
obvious grade could be deduced.

We instructed the evaluator to follow the following
instructions. The grading scale was devised to allow
both comparing the quality of the translations (with the
grades having a clear order from worst to best quality)
and give useful information regarding the severity of the
quality issues relevant for us.

For instance, when translating pikkusuomunokkasärki
(a name for the fish species minnow-nase), the following
translations would get grades zero to four:

0. Unsuitable: a translation that has no connection
to the original term. ’pinkworm’ is an unsuitable
translation: it could refer to the name of an animal
species, but it has no other commonality with a
correct translation.

1. Approximate: meaning is conveyed only partially.
This category includes translations where the com-
ponents of the compound have been translated too
literally and cases where some part of the com-
pound has been mistranslated. A human that is
well-enough versed in the topic can guess what
the concept being translated is based on an ap-
proximate translation without having knowledge

Figure 3: The proportions of terms, for which a system
was better than the other according to the human eval-
uation. This is either inferred from the scores for the
translations being different, or directly marked by the
evaluator. (See Table 4)

of the source language. ’small scale beak roach’
could be an approximate translation: it contains
a correct translation for all the components of the
Finnish word. A human who knew fish well could
perhaps guess at which fish this is: the minnow-
nase does seem to have somewhat dense scales, a
slightly elongated face and a roach-like body plan
generally.

2. Spelling mistake: a competent human could pro-
duce these words as a translation, but would spell
them differently: together / with a space, capital-
ized / not capitalized, with an accent / without, etc.

’Minnownase’ could be an example of a spelling
mistake.

3. Natural: a competent human could produce this
translation. ’minnow-nase’ would be a natural
translation, as it is the agreed-upon name of this
fish.

Beside the scale, if two system outputs were presented
to the evaluator, they were instructed to select one as
the better translation if one was better.

Our human evaluator is a linguist with lexicographi-
cal expertise employed at our organisation. Evaluation
work was carried out during their normal office hours
and was compensated according to their normal salary.
They are a native Finnish speaker who has an excellent
level in English.

We calculated p-values for the results using the
Wilcoxon signed rank test.

4.4 Results
4.4.1 Automatic Evaluation
The automatic evaluation results are presented in Ta-
ble 3. With Fineli and Hydrology datasets, the com-
pound translator received significantly higher scores
than the NMT baseline, with the chrF2 score increasing
from 57.6 to 64.8 (Fineli) and from 47.5 to 52.7 (Hy-
drology). Similarly, the COMET scores increased from
0.79 to 0.85 and from 0.77 to 0.81, respectively.

On the Forest Soil and IATE datasets, the differences
between the two systems were not statistically signifi-
cant.

4.4.2 Human Evaluation
On the Fineli, Hydrology, and Forest Soil datasets, the
compound translator was judged to be better more often
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chrF2 COMET
Ours Opus-MT p-value Ours Opus-MT p-value

Fineli 64.8 (64.9 ± 8.2) 57.6 (57.8 ± 8.6) 0.0060∗ 0.8470 0.7882 0.0016∗
Hydrology 52.7 (52.6 ± 9.9) 47.5 (47.4 ± 9.1) 0.0170∗ 0.8115 0.7727 0.0090∗
Forest Soil 54.3 (54.6 ± 12.5) 49.9 (50.3 ± 14.9) 0.0949 0.7717 0.7863 0.6104

IATE 50.8 (50.8 ± 4.6) 53.1 (53.2 ± 5.0) 0.0529 0.8012 0.8072 0.3424

Table 3: Automatic evaluation results for the compound translator and the baseline Opus-MT model. For significant
results (p < 0.05), the better score is bolded.

Ours Opus-MT Unclear
Fineli 30 9 24

Hydrology 17 2 26
Forest Soil 6 4 10

IATE 40 44 108

Table 4: Number of test words for which the system received a higher grade in human evaluation than the other
system. Significant differences are bolded. (See Figure 3)

Dataset System Unsuitable Approximate Spelling mistake Natural p-value

Fineli Ours 9 15 4 35 0.0000501∗Opus-MT 14 13 15 21

Hydrology Ours 4 26 0 15 0.00128∗Opus-MT 14 18 2 11

Forest Soil Ours 3 9 1 7 0.887Opus-MT 3 8 2 7

IATE Ours 19 107 7 59 0.0584Opus-MT 20 100 13 59

Table 5: The number of each grade the systems received. We used the Wilcoxon signed rank test for significance
testing, interpreting our scale as cardinal. We were mainly interesting in whether the difference in grades was
statistically significant one way or the other, and so we opted for the two-sided formulation of the test.

Ours Opus-MT
Avg Max Min Avg Max Min

Fineli 0.265 0.715 0.191 0.157 0.417 0.111
Hydrology 0.389 0.622 0.198 0.138 0.402 0.0984
Forest Soil 0.620 0.909 0.410 0.158 0.469 0.111

IATE 0.619 1.06 0.418 0.137 0.393 0.0968

Table 6: Per-term running times (seconds) for compound translation on the different datasets (including the network
delays to access the dictionary). Lower time per data set and aggregate function in bold.
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than the NMT: 47.6% of terms versus 14.3% (Fineli),
37.8% of terms versus 4.44% (Hydrology); and 30.0%
of terms versus 20.0% (Forest Soil). On the larger IATE
dataset, the NMT was judged to be better slightly more
often than the compound translator: 25.6% of terms
versus 20.9%. These results are presented in Figure 3
and Table 4. Like with the automatic evaluation, only
the difference in Fineli and Hydrology datasets was
statistically significant.

The number of each grade received by the systems
is presented in Table 5. We find that the compound
translator produced at least as many natural translations
as the NMT on every dataset and strictly more on the
Fineli and Hydrology terms. On the other end of the
scale, it produced no more unsuitable translations than
the NMT model on any dataset and again strictly fewer
on the Fineli, Hydrology and IATE terms.

We also analyzed how the terms moved from one
grade group to another and rendered Sankey diagrams
based on this data (see Appendix C). The Hydrology
dataset was particularly clean in this, as every translation
by the compound translator was rated as at least as good
as the corresponding NMT translation (see Figure 8).
The case of Fineli (Figure 7), Forest Soil (Figure 9), and
IATE (Figure 10) data is more ambiguous, but some
patterns do emerge. In particular, terms with spelling
mistakes in the NMT translations tend to often flow
upward to the highest translation category. In the case
of the Hydrology data, spelling mistakes are even com-
pletely eliminated. In the IATE dataset, most spelling
mistakes from the compound translator were terms that
were translated cleanly by the NMT. At least some of
these are proper names built up from common nouns
(eg. Cohesion Report, Arms Trade Treaty) which have
the correct capitalization per the NMT and are spelled
fully in lowercase by the compound translator.

4.4.3 Time Performance

The average, maximum, and minimum translation times
are presented in Table 6. The compound translator is
significantly slower, requiring more than 0.2–0.7 sec-
onds per one test word on average. The Opus-MT NMT
model, on the other hand, uses less than 0.2 seconds
for each translation on average. There is a significant
difference between the Fineli and Hydrology test sets
and the Forest Soil and IATE test sets with the latter two
requiring over 0.6 seconds on average, while the other
two required less than 0.4 seconds on average.

The compound translator makes a request to the dic-
tionary database and performs morphological analysis,
both of which take time not required by the NMT model.
This added time is an artefact of our test setup and not
a constant of our method. Thus, these numbers do not
generalize to other setups that, for example, place the
database on the same system as the translator and there-
fore avoid network delay.

5 Discussion

In this section we discuss the implications of our re-
search and take a look at the next steps and further
research.

5.1 Scoring is More Practical than Rules

The decoder of a sequence-to-sequence model is a lan-
guage model and can be used to calculate probabilities
of texts. This allows our rule-based component (see
Sections 3.2 and 3.3) to be very simple. Instead of fo-
cusing on linguistically sound rules that provide good
translations, we can just produce as much different alter-
natives as possible, and filter them with the NMT model.
More specifically, we can leave out almost all rules re-
lated to disambiguation and focus on rules related to
morphological analysis and generation. Since morpho-
logical analysis and generation is a much more common
task than disambiguation, it is often possible to use pre-
existing morphological wordlists and libraries (such as
Voikko in our case). This radically simplifies the pro-
cess of writing the ruleset, which is often the bottleneck
of development in rule-based machine translation.

Despite our simplified rules, the system maintains,
in our opinion, the best qualities of rule-based transla-
tors: explainability and controllability. Each translation
alternative can be traced back to the dictionary entry
that produced it. Furthermore, the user can control the
output by editing the dictionary and by deciding which
domain-specified glossaries to use.

5.2 The Effect of the Dictionary

The performance of the compound translation is highly
dependent on the dictionary. We noticed that the ma-
jority of test words in our test datasets were found in
the dictionary we used (see Table 2). The compound
translator performs better with datasets that have a lower
dictionary coverage: the difference between it and the
baseline was greatest on the Fineli dataset that had 59%
dictionary coverage. Both Forest Soil and IATE had
ca. 90% dictionary coverage, but we found no signif-
icant difference between the compound translator and
the baseline. We argue that while the translator did
not improve performance on all datasets, it improved
it where it mattered: on the dataset not covered by the
dictionary.

While this may be an artifact of the chosen general
dictionary and the datasets, we hypothesize that the rea-
son for this might also be that the words in the Forest
Soil and IATE datasets are on average more unintuitive
and not merely the sum of their parts, which both causes
the compound translator to perform poorly, but also
is the reason for their inclusion in the dictionary: un-
intuitive words that cannot be translated productively
are more important for the dictionary user. The Fineli
dataset, on the other hand, contains names of food items
that are typically constructed systematically by listing
the same ingredients in all languages.
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5.3 Next steps

Currently, our system assumes that the word order of
the source and target languages is the same, with a
limited number of separators between the compound
parts. However, to support languages with differing
word order and more complex multi-word expressions
(MWE), this assumption does not hold anymore (see
Figure 1). This might require replacing the trie structure
with a more complex datastructure such as a finite-state
machine (FST) (cf. Hauhio and Friberg, 2024) encoding
the different word orders.

In this paper, we focused on translating single com-
pound words. However, translating sentences and whole
texts is a much more common task in machine trans-
lation. We hypothesize that our system could be com-
bined with a terminology-constrained translation algo-
rithm (Hauhio and Friberg, 2024; Bergmanis and Pinnis,
2021; Nieminen, 2024) by scanning the sentence for
compounds and adding them as constraints for the trans-
lator. In the case of FST-based algorithms, the token trie
produced by our system might even be directly incorpo-
rated into the finite-state machine.

We hypothesize that many of the issues NMT models
have with long compound words are caused by unopti-
mal tokenization. For example, the word used in the title
of this paper, “puolukkakinuskirahka”, was translated as
“lingonberry giraffe” likely because the model confused
the substring “kirah” with the word “kirahvi” giraffe.
This issue might be mitigated simply by tokenizing the
string differently and forcing a token boundary between
the compound parts (in this case, between “kinuski” and
“rahka”).8 See Section 3.4.1 for more discussion about
tokenization.

5.4 Limitations

A major limitation is that we only compared the com-
pound translator to one other system. The choice of
the NMT system affects the results considerably. In
particular, the model we used has been predominantly
trained with full sentences, and its quality may have
degraded when applied to single-word source texts. Fur-
thermore, the NMT model was used with a 50-wide
beam. It is possible that a greedy search or a smaller
beam size could have returned better results (cf. Yang
et al., 2018). As noted in Section 5.2, the choice of the
dictionary used is also important. In this work, we only
used one model and one dictionary, which limits the
generalizability of our results.

Another limitation is that our evaluation is relatively
narrow: We only used chrF2 and COMET for automatic

8We tested this one case and found that “puolukkakinuski-
rahka” was tokenized as [’ puol’, ’ukka’, ’kin’,
’us’, ’kir’, ’a’, ’hka’]. When we instead
tokenized it as [’ puol’, ’ukka’, ’kin’, ’us’,
’ki’, ’rah’, ’ka’], the NMT model translated it as
“lingonberry caramel”. While this is not the desired “lin-
gonberry caramel quark”, it is better than the translation “lin-
gonberry giraffe” given with the default tokenization. In both
of these cases, we used the beam width of 5.

evaluation, and COMET is intended for scoring full
sentences, so it might not be as indicative for single-
word translation quality. For manual evaluation, we
only had one reviewer. Furthermore, our test datasets
were quite small since we had to drop many terms that
were already present in our dictionary.

6 Conclusions

In this paper, we presented a system for translating
Finnish compound nouns into English using a hybrid
rule-based and neural approach. According to our auto-
matic and human evaluation, our system performs better
on average than the baseline NMT model on two of our
four test sets and has the same performance on the other
two test sets. Unlike the NMT model, our system is
explainable and controllable, allowing the user to see
the dictionary entries the translation is based on, and
to fix possible errors by simply modifying the glossary
used for translation. While we limited our scope to a
single language pair and only compound words, we see
promise in our methods to be usable in many kinds of
different hybrid rule-based and neural systems.

Carbon Impact Statement

The sum of the translation times of all terms was a hair
under 25 minutes, but it does not account for network
delays for round trips to the laptop coordinating the
translation or partial re-runs that we had to do. In total
we estimate that we used no more than an hour of GPU
time on an NVIDIA Tesla T4 GPU rated at a 70W max-
imum power draw to translate a little over 5000 terms.
In practice these experiments were running on Amazon
g4dn.xlarge instances in the Stockholm region. We used
two M3 MacBook Pros and their built-in GPUs and the
aforementioned g4dn.xlarge instances for the develop-
ment of the system and trained no new models. We find
it likely that normal development activities on our two
laptops, our CI systems and our two g4dn.xlarge stag-
ing instances (running mostly idle) over the course of
multiple months of development are the larger energetic
cost. The model we used is also comparatively small,
coming in at 236 megaparameters.

Overall, this results in an approximated less than 60 g
CO2e emissions based on the https://calculat
or.green-algorithms.org/ online calculator.
Of this, most is for the testing during the development of
the system and only less than 1 g is for the experiments.
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A Algorithms
A.1 Hierarchical Disambiguation
We call the process that parses our compound into sub-
components found in our dictionaries hierarchical dis-
ambiguation, as it respects the hierarchy of the subcom-
pounds (see Figure 2). Besides respecting the hierarchy,
we wish the resultant parse to have two other desir-
able properties: respect our domain glossary and be
otherwise linguistically plausible. Our solution to this
is composed of two successive dynamic programming
algorithms.

The first one or Algorithm 1 concerns itself with
enforcing the domain glossary: we consider it less de-
sirable to fail by not using domain glossary terms than
parsing the hierarchy suboptimally due to those terms.
It is a failure modality that is easily diagnosed by trans-
lating without the domain glossary and easily fixed by
ammending the domain glossary. Given the ranges in
the compound that entries from the domain glossary
and entries from the general dictionary represent, Al-
gorithm 1 splits the compound into domain glossary
ranges and general dictionary ranges such that the num-
ber of characters attributed to domain glossary ranges
is maximized. This does not yet tell us what is the best
way to parse the subcompounds, only that some solution
exists.

The second one or Algorithm 2 is then run individ-
ually on each of the subcompounds produced by the
previous step. Each run of Algorithm 2 is only given
access to terms coming from the dictionary matching

that subcompound, thus enforcing the domain glossary
whenever some subrange can be parsed with only do-
main terms. Algorithm 2 produces the parse that mini-
mizes the penalties associated with the ranges.

At the end of this search, we get a sequence of dic-
tionary entries (and the grammatical forms they were
inflected in) that match the compound word that was
given. Alternatively, we get no sequence at all, indi-
cating that the dictionary we have can not be used to
produce a translation for the given compound. This
happens early, right after our first dynamic program-
ming search (Algorithm 1). In this situation, we find
it wise to fall back onto a normal NMT system, poten-
tially using a constraint-translation method for honoring
the domain-specific glossary (cf. Hauhio and Friberg,
2024). If a sequence is produced, it has some desirable
qualities. In particular, it represents the interpretation of
the compound word that had the most characters cov-
ered by domain-specific terms. If there is only one way
to choose the ranges to maximally cover from our do-
main glossary, the parse is further the one considered
linguistically the most credible per our scoring. Given
this parse, we can proceed onto generating the set of
candidate translations, as we see in Section 3.3.

A.2 Token Trie

For the constrained beam search described in Sec-
tion 3.4.2, we need to know what tokens an incomplete
translation can continue with. As we may have expo-
nentially many translation candidates in regard to the
number of compound components, we wish to have a
data structure that can be built lazily, focusing only on
the translation candidates the model seems to prefer.
Finally, the data structure needs to somehow map from
our compound components to tokens. This is made dif-
ficult by SentencePiece, which expects look-ahead to
the next piece of punctuation. This can be in the next
compound component if we are unlucky. We would
need to know the full translation in order to tokenize it.
The NMT model is trained on optimal SentencePiece
tokenizations, and we do not trust it to rank suboptimal
tokenizations reliably.

The solution we present here is a multi-level prefix
trie. Using a trie for this kind of constraint decoding is
a well-known technique (Hu et al., 2019; Hauhio and
Friberg, 2024). Some previous works do incorporate a
level of dynamism into the trie itself: Cao et al. (2021)
use control tokens to either enable or disable constrained
decoding from the trie, effectively amounting to an infi-
nite nested trie structure. However, all previous works
we have found either have a small-enough set of op-
tions to tokenize them fully at translation time (Hu et al.,
2019; Hauhio and Friberg, 2024) or know all the options
ahead of time (Cao et al., 2021). Knowing all the items
in the trie ahead of time allows Cao et al. (2021) to
simply tokenize everything before their inference stage
and have tokenization take as much time as it needs.
We need to deal with tokenization while we are running

184

https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://doi.org/10.18653/v1/2023.acl-demo.30
https://doi.org/10.18653/v1/2023.acl-demo.30
https://doi.org/10.18653/v1/2023.acl-demo.30
https://kielikello.fi/pisin-sana/
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342


Algorithm 1 The constraint coverage algorithm. Takes
as input a sequence of ranges that belong to dictionary
entries from a domain-specific glossary, a sequence of
ranges that belong to dictionary entries from a general
dictionary and the length of the full string these ranges
point to. Returns either null if there is no way to se-
lect non-overlapping ranges that cover the whole of the
string or a selection of ranges that do. If it returns such
a selection of ranges, they are each annotated with a
boolean value indicating whether it belongs to the do-
main specific glossary. This selection is guaranteed to
have the maximal number of character indices covered
by ranges from the domain specific glossary.

1: procedure COVERAGE(glossary ranges, normal ranges, length)
2: coverages← [0]
3: solutions← [([0, 0], False)] ▷ Here [0, 0] is a range
4: glossary lookup← empty hash map
5: for all r← glossary ranges do
6: if r.stop /∈ glossary lookup.keys() then
7: glossary lookup[r.stop]← []
8: end if
9: glossary lookup[r.stop].append(r)

10: end for
11: normal lookup← empty hash map
12: for all r← normal ranges do
13: if r.stop /∈ normal lookup.keys() then
14: normal lookup[r.stop]← []
15: end if
16: normal lookup[r.stop].append(r)
17: end for
18: for all i← [1, text length] do
19: best coverage← −∞
20: solution← null
21: for all r← glossary lookup[i] do
22: ▷ Note the +|r|
23: if coverages[r.start] > −∞ ∧ best coverage ≤ cover-

ages[r.start] + |r| then
24: best coverage← coverages[r.start] + |r| ▷ likewise
25: solution← (r, True)
26: end if
27: end for
28: for all r← normal lookup[i] do
29: if coverages[r.start] > −∞ ∧ best coverage ≤ cover-

ages[r.start] then
30: best coverage← coverages[r.start]
31: solution← (r, False)
32: end if
33: end for
34: solutions.append(solution)
35: coverages.append(best coverage)
36: end for
37: if solutions ends with null then
38: return null ▷ No solution was found
39: end if
40: selected ranges← []
41: i← |solutions|-1
42: while i > 0 do
43: selected ranges.append(solutions[i])
44: i← solutions[i][0].start
45: end while
46: reverse(selected ranges)
47: ▷ Consolidate subsequent ranges with the same source.
48: return consolidate(selected ranges)
49: end procedure

Algorithm 2 The hierarchical parsing algorithm, made
up of two procedures. The main procedure PARSE takes
as argument the ranges that are attributed to dictionary
entries that are from the correct dictionary and within
relevant range, their matching penalties and the range
of the subcompound it is operating in. It returns the set
of lists of ranges that the subcompound can be parsed
into with the minimal penalty. UNRAVEL backtracks
through the dynamic programming data structure and
recursively produces the aforementioned set, to be re-
turned by PARSE. It is the caller’s responsibility to
match the ranges to dictionary entries.

1: procedure PARSE(ranges, penalties, relevant range)
2: range lookup← empty hash map with default value of []
3: for all r, p← zip(ranges, penalties) do
4: range lookup[r.stop].append((r, p))
5: end for
6: cost table← empty hash map with default value of∞
7: cost table[relevant range.start]← 0
8: solutions← empty hash map with default value of []
9: for all i← sorted(range lookup.keys()) do

10: for all r, p← range lookup[i] do
11: if cost table[r.start] + p < cost table[i] then
12: cost table[i]← cost table[r.start] + p
13: solutions[i].clear()
14: end if
15: if cost table[i] <∞∧ cost table[r.start] + p = cost table[i]

then
16: solutions[i].append((r, p))
17: end if
18: end for
19: end for
20: if solutions[relevant range.stop] = [] then
21: return ∅
22: end if
23: return UNRAVEL(solutions, relevant range.stop, relevant range.start)
24: end procedure
25: procedure UNRAVEL(solutions, i, start)
26: if i = start then
27: return {[]}
28: end if
29: result← ∅
30: for rhs← solutions[i] do
31: for lhs← UNRAVEL(solutions, rhs[0].start, start) do
32: result.add(concatenate(lhs, rhs[0]))
33: end for
34: end for
35: return result
36: end procedure
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Figure 4: Compound trie. The lazy search has not
explored continuations to “feline”. The circled numbers
are search states held by the character trie (see Figure
5).
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Figure 5: Character trie. The character trie holds ref-
erences to the compound trie (see Figure 4) in its cells
(circled numbers). Note the unexplored continuations
of feline.

inference, and so even if our trie is multiple orders of
magnitude smaller, it is still a bottleneck.

Our trie has three levels: on the bottom level, we
have a lazy search tree in the compound space (see
Figure 4). It handles the complexities of generating
spelling variations and can generate the set of all follow-
up search states with one translation of a compound
locked in. It indicates that the search is complete by
returning an empty set.

On top of this lazy search tree, we build a character-
level trie (see Figure 5). Externally, it has a similar
interface: it has a method to list all characters that can
continue a string along with indices in the trie that match
these continuations. Internally the cells of this trie hold
references to the compound search states. If the possible
continuations of a cell that holds no references to the
compound search are queried, the outgoing edges from
that cell are returned. Otherwise, the compound search
states are asked to generate their follow-ups and nodes
are added to the character trie accordingly. The refer-
ences that the original cell was holding are cleared and
any new cells matching an unexplored search state are
pointed to it. The character trie is initialized with a sin-
gle cell holding a reference to an unexplored compound
search tree. Thus we can abstract away the compound
formation completely and deal with characters without
losing the laziness of the compound search tree.

Finally, on top of the character trie, we build the to-
ken trie (see Figure 6). In a similar manner, it exposes
a method to list all tokens that can continue a token se-
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Figure 6: Token trie. The token trie holds references to
the character trie (see Figure 5) in its cells (subscript).

quence along with indices into the token trie that match
them. Cells in the token trie hold references to the char-
acter trie and unravel it just enough to know what tokens
can continue a sequence, much like the character trie
itself does with the lazy search tree. In practice, the
token trie holds a character-level prefix trie of all the
tokens in the vocabulary, allowing for fast elimination
of tokens that are not allowed given the allowed char-
acters that the character level trie produces. This third
level allows us to answer queries about the token-level
representation of the translation without fully knowing
it in advance: among the options that the token trie gen-
erates, the correct SentencePiece tokenization is bound
to exist and selecting it is the task the NMT model has
been trained on.

A.3 Beam Search
The beam search algorithm is presented as Algorithm 3.

B Data Preprocessing
We sampled 200 rows from the Basic Package 1 of the
national Food Composition Database in Finland9. It
required some non-trivial pre-processing. Each row of
the files foodname FI.csv and foodname EN.csv in the
package contains a description of an ingredient or a
food item such as ’FLOUR MIXTURE, FOR BREAD
ROLLS, WHEAT FLOUR, WHEAT GROATS, RYE’.
We split this string on commas and only kept the first
chunk, as it seemed to match better across languages.
These string pairs were filtered to only keep the ones
where the Finnish side contains only dashes, characters
A-Z and Å, Ä and Ö. Selected strings were then low-
ercased. From the lowercased string pairs, a sample of
200 was randomly drawn. The matching of the Finnish
and English terms was somewhat imperfect, as noted by
our evaluator.

C Sankey Diagrams
We produced the Sankey diagrams in Figures 7, 8, 9,
and 10 to visualize how our system changed the transla-
tions when compared to the NMT model. The diagrams
have the evaluation result of the NMT model on the left
and our system on the right.

9https://fineli.fi/fineli/en/avoin-data
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Algorithm 3 Constraint beam search algorithm used in this work. Unlike the ones used in (Hauhio and
Friberg, 2024), (Hu et al., 2019) and (Post, 2018), it is rooted such that the constraint starts at the start of
the string and spans the whole string. Takes as arguments the token trie object, the width of the beam and
a function LM that calls the language model on token sequences. Returns a tuple with the tokens of the
best hypothesis as the first element and its score as the second. The book-keeping to match the selected
dictionary entries to the hypotheses is ommitted for brevity. In practice, the token trie would know the
matching hierarchical analysis for any final state. The analysis for a finished translation can then be deduced
by iterating through the trie token by token.

1: procedure TRIEBEAMSEARCH(trie, beam size, LM)
2: generations← [[start token]]
3: trie indices← [0]
4: ongoing scores← [0]
5: finished hypothesis← nul l
6: while |trie indices| > 0 do
7: continuations← []
8: for all hypothesis← [0, |trie indices|) do ▷ Generate candidate continuation for all hypotheses.
9: for all new idx, token← trie.children(trie indices[hypothesis]) do ▷ Continuations coming from trie.

10: continuations.append((token, hypothesis, new idx))
11: end for
12: if trie.finished hypothesis at(trie indices[hypothesis]) then ▷ Continuations that finish hypotheses.
13: continuations.append((eos token, hypothesis, nul l))
14: end if
15: end for
16: scores← LM(generations) + ongoing scores
17: relevant scores← []
18: for all c← continuations do
19: relevant scores.append(scores[c[1]][c[0]])
20: end for
21: score order← relevant scores.argsort()
22: reverse(score order)
23: for all idx← score order do ▷ Update the finished hypothesis.
24: if finished hypothesis ̸= nul l and finished hypothesis[1] > score order[idx] then
25: break
26: end if
27: if continuations[idx][2] = nul l then ▷ This must be a finished hypothesis.
28: finished hypothesis← (generations[continuations[idx][1]] + [continuations[idx][0]], relevant scores[idx])
29: end if
30: end for
31: new trie indices← []
32: new generations← []
33: new ongoing scores← []
34: for all idx← score order do
35: if |new generations| = beam size or finished hypothesis[1] ≥ score order[idx] then ▷ Traditional cut-off
36: break
37: end if
38: if trie idx ∈ new trie indices then ▷ We have got a cheaper way to tokenize this string.
39: continue
40: end if
41: new trie indices.append(continuations[idx][2])
42: new generations.append(generations[continuations[idx][1]] + [continuations[idx][0]])
43: new scores.append(relevant scores[idx])
44: end for
45: trie indices← new trie indices
46: generations← new generations
47: ongoing scores← new ongoing scores
48: end while
49: return finished hypothesis
50: end procedure
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Compound Natural - 35

Figure 7: Distribution of the FINELI terms with NMT evaluation on the left and compound translator evaluation on
the right.
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Figure 8: Distribution of the Hydrology terms with NMT evaluation on the left and compound translator evaluation
on the right.
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Figure 9: Distribution of the Forest Soil terms with NMT evaluation on the left and compound translator evaluation
on the right.
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Figure 10: Distribution of the IATE terms with NMT evaluation on the left and compound translator evaluation on
the right.
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