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Abstract

Open-ended text generation has become a
prominent task in natural language process-
ing due to the rise of powerful (large) lan-
guage models. However, evaluating the quality
of these models and the employed decoding
strategies remains challenging due to trade-offs
among widely used metrics such as coherence,
diversity, and perplexity. This paper addresses
the specific problem of multicriteria evalua-
tion for open-ended text generation, proposing
novel methods for both relative and absolute
rankings of decoding methods. Specifically,
we employ benchmarking approaches based on
partial orderings and present a new summary
metric to balance existing automatic indicators,
providing a more holistic evaluation of text
generation quality. Our experiments demon-
strate that the proposed approaches offer a ro-
bust way to compare decoding strategies and
serve as valuable tools to guide model selection
for open-ended text generation tasks. We sug-
gest future directions for improving evaluation
methodologies in text generation and make our
code, datasets, and models publicly available.1

1 Introduction

Large language models (LLMs, e.g., Dubey et al.,
2024; Yang et al., 2024) have demonstrated remark-
able capabilities in generating coherent and con-
textually appropriate text across diverse domains.
However, the quality of LLM outputs is fundamen-
tally determined not only by the underlying model
architecture but also by the decoding strategies em-
ployed during inference—the algorithms that trans-
form the model’s output probability distributions
into actual text sequences. As the landscape of both
LLMs and decoding strategies continues to expand
rapidly, the need for robust evaluation frameworks
has become increasingly critical (Wiher et al., 2022;
Garces-Arias et al., 2025).

1https://github.com/YecanLee/2BeOETG

Figure 1: Multicriteria evaluation framework for
benchmarking models and decoding strategies, i.e., de-
coding methods. We distinguish two scenarios for
benchmarking (§1) and two ranking objectives (§4),
giving rise to three use-case tailored, distinct methods
(§4.1, 4.3 and 5).

Scope and Problem Definition. This paper
specifically addresses the challenge of multicriteria
evaluation in open-ended text generation, where
we must simultaneously consider multiple, often
conflicting quality dimensions (Holtzman et al.,
2019; Su and Xu, 2022). We focus on develop-
ing principled methods for both relative and abso-
lute rankings of decoding methods. Our approach
centers on a subset of automatic evaluation met-
rics—coherence, diversity, and generation perplex-
ity—that capture fundamental trade-offs in text
generation quality. While numerous other metrics
exist (e.g., relevance, informativeness, style con-
sistency), we deliberately limit our scope to these
three core dimensions to establish a foundational

631

mailto:Esteban.GarcesArias@stat.uni-muenchen.de
https://github.com/YecanLee/2BeOETG


framework that can be systematically extended.
Current evaluation approaches face remarkable

limitations when assessing the quality of text gen-
erations within this multicriteria context. Tradi-
tional methods typically rely on either human judg-
ments—considered the gold standard, but resource-
intensive, and dependent on carefully designed pro-
tocols (Howcroft et al., 2020; van der Lee et al.,
2021; Karpinska et al., 2021; Ruan et al., 2024)—or
individual automatic metrics. While automatic met-
rics such as MAUVE (Pillutla et al., 2021), coher-
ence (Su et al., 2022), diversity, and generation
perplexity (Jelinek et al., 2005) provide valuable in-
sights into specific aspects of generation quality, an
isolated consideration of these measures offers only
an incomplete perspective on overall performance
and fails to address the fundamental multicriteria
nature of the evaluation problem.

In the context of open-ended text generation, this
evaluation challenge is particularly acute because
decoding strategies inherently involve trade-offs be-
tween competing objectives such as coherence and
diversity. A method that excels in coherence may
underperform in diversity, and vice versa, making
it difficult to establish consistent relative rankings
among different approaches or provide meaningful
absolute assessments of their quality.

The fundamental challenge addressed in this
work lies in developing principled approaches for
both relative and absolute multicriteria evalua-
tion that can balance our selected subset of au-
tomatic metrics within a comprehensive frame-
work. This enables reliable comparison of differ-
ent models and decoding strategies—collectively
referred to as decoding methods throughout this
work (Fig. 1)—while acknowledging the inherent
trade-offs between the chosen evaluation criteria.
Addressing this challenge is essential for advancing
the field of open-ended text generation evaluation
and providing practitioners with evidence-based
guidance for selecting optimal decoding methods
within the multicriteria landscape we define.

Research Gap. When evaluating decoding meth-
ods based on multiple quality criteria in several sce-
narios (i.e., datasets), a method may excel in one
area while lagging in another. Aggregating such
multicriteria evaluation results for different scenar-
ios is still an open problem. Existing approaches
comprise the Pareto front or weighted sums. While
the former is hardly informative for large-scale
benchmarking (cf. §4), the latter depends on (ar-

bitrarily) selected weights. In this work, we offer
two alternative approaches while distinguishing
two2 prototypical practical benchmarking scenar-
ios with associated research questions (RQ):

Scenario 1 (Ranking). First, consider a practi-
tioner using open-ended text generation for a spe-
cific task, e.g., a customer support chatbot. This
practitioner might primarily be interested in a com-
plete scenario-specific relative ranking of existing
methods. This motivation renders metric informa-
tion about the methods’ performances a means to
an end. Thus, an ordinal ranking of methods will
do. RQ1: Can we exploit novel statistical method-
ologies for partial orders to establish multicriteria
rankings that potentially allow for incomparability?

Scenario 2 (Cardinal Assessment). Second, for
researchers interested in designing new decoding
methods (i.e., model, decoding strategy, or both), it
is of utmost importance to know how much better
one method is compared to another, i.e., having an
absolute ranking on a cardinal scale. Knowledge
of the performance of existing methods on different
tasks will help derive new methods. RQ2: Can we
aggregate multiple automatic evaluation metrics in
a meaningful and statistically valid way?

Contributions. We address RQ1 (§4) and RQ2
(§5) by proposing appropriate aggregation meth-
ods (cf. Fig. 1), including a novel summary met-
ric to balance multiple assessments. We further
provide experimental results by applying all intro-
duced methods to over 1.8M stories generated by
six LLMs on real-world datasets (cf. §3 for the
setup and §4.2, §4.4, §5.2 for the results).

2 Related Work

Benchmarks are ubiquitous in applied machine
learning (ML) research (Zhang and Hardt, 2024a;
Shirali et al., 2023; Ott et al., 2022; Zhang et al.,
2020; Thiyagalingam et al., 2022; Roelofs et al.,
2019; Vanschoren et al., 2014), being used to make
informed decisions and to demonstrate the supe-
riority of newly proposed methods over concur-
rent ones (Meyer et al., 2003; Hothorn et al., 2005;
Eugster et al., 2012; Mersmann et al., 2015). In
recent years, the focus has shifted towards multicri-
teria and multi-task benchmarking problems (Cruz

2In reality, one can imagine a multitude of scenarios in
between these two prototypical cases, hence we also consider
benchmarking methods along this spectrum. What unites
them, however, is their ability to aggregate multiple criteria.
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et al., 2024; Zhang and Hardt, 2024b; Kohli et al.,
2024; Jansen et al., 2024, 2023a,b; Rodemann and
Blocher, 2024; Blocher et al., 2024). In a multitude
of domains, there are several criteria concerning
which methods need to be compared. Classical
examples include runtime and accuracy in predic-
tive ML (Koch et al., 2015; Jansen et al., 2024) or
performance and speed in optimization (Schneider
et al., 2018), to name only a few.

Modern LLMs require evaluation across mul-
tiple metrics due to their broad capabilities (see,
e.g., Wei et al., 2024; Liu et al., 2025). Assessing
models on diverse tasks – from reasoning and com-
prehension to creativity and ethics – provides bet-
ter understanding of their strengths and limitations
(Chiang et al., 2024). These comprehensive evalua-
tion frameworks advance model performance while
ensuring alignment with real-world applications
and ethical standards (Liu et al., 2023; Ji et al.,
2023; Terry et al., 2023; Rodemann et al., 2025).
Multicriteria benchmarking has thus become es-
sential for guiding both theoretical progress and
practical deployment of LLMs.

Decoding methods for open-ended text genera-
tion are no exception. Several metrics to evaluate
the quality of decoding strategies have been pro-
posed and discussed in recent years (Alihosseini
et al., 2019; Celikyilmaz et al., 2021; Su and Xu,
2022; Su et al., 2022; Gao et al., 2022; Becker
et al., 2024; Garces-Arias et al., 2025). Diver-
sity, MAUVE, coherence, and generation perplex-
ity are among the most popular metrics. Diversity
measures lexical variation using n-gram repetition
rates, with higher scores indicating less repetition.
MAUVE is a distribution similarity metric between
generations and reference texts. Coherence is de-
fined as the averaged log-likelihood of the gener-
ated text conditioned on the prompt and rewards
logical flow. Finally, generation perplexity (Je-
linek et al., 2005) measures the predictability of
the generated text under the language model; lower
perplexity indicates that the text is more likely ac-
cording to the model’s own probability distribution.

This multitude of quality metrics naturally raises
the question of how to aggregate them, i.e., how to
account for multiple dimensions of text quality to
compare decoding methods holistically. It is self-
evident that focusing on single metrics has obvious
shortcomings. Exclusively optimizing for coher-
ence will favor decoding methods with only moder-
ate diversity, leading to degenerate, i.e., repetitive
and uncreative generations (Holtzman et al., 2019;

Lee et al., 2022). On the other hand, focusing solely
on diversity will eventually result in incoherent text
only slightly – if at all – related to the prompt. In
this work, we offer a fresh perspective on the prob-
lem of multicriteria evaluation, adopting recent de-
velopments in the theory of depth functions and
order theory (cf. §4).

3 Experimental Setup

We evaluate six model architectures that generated
over 1.8 million stories based on prompts sourced
from three distinct datasets, utilizing five decoding
strategies across 59 hyperparameter configurations.

Models. We employ GPT2-XL (1.5B, Radford
et al., 2019), Mistral 7B v0.3 (Jiang et al.,
2023, 2024), Llama 3.1 8B (Dubey et al., 2024),
Deepseek 7B (DeepSeek-AI et al., 2024), Qwen 2
7B (Yang et al., 2024), and Falcon 2 11B (Malartic
et al., 2024).

Evaluation Metrics. Building upon Su and Col-
lier (2023), we select diversity, coherence, and
generation perplexity3 as automatic metrics to as-
sess the quality of the generated texts individually.
Based on this subset of possible instance-level met-
rics, we construct partial orders for multicriteria
rankings (§4) and develop a cardinal assessment
that collapses all metrics into one single score (§5).
Since both approaches require instance-level met-
rics, we exclude MAUVE in this study as it as-
sesses distributional similarities between samples
of machine-generated text and human-written con-
tinuations, i.e. it relies on aggregated data, which
would prevent us from applying the methods pro-
posed in §4 and §5.

Datasets. We evaluate our methods across three
domains for open-ended text generation: News,
Wikipedia articles, and stories. Specifically, we
use 2,000 articles from Wikinews for the news do-
main; 1,314 articles from the WikiText-103 dataset
(Merity et al., 2016) for the Wikipedia domain; and
1,947 examples from the Project Gutenberg split
of the BookCorpus (Zhu et al., 2015) for the story
domain. Each example consists of a prompt and
a gold reference (i.e., a human continuation) for
evaluation. Further, we utilize the dataset provided
by Garces-Arias et al. (2025), including over 1.8M
generated continuations (with a maximum length
of 256 tokens) for each prompt, along with aggre-
gated metrics (coherence, diversity, MAUVE). We

3For their definitions, please refer to Appendix A.
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Models Datasets Metrics Decoding strategy Hyperparameter Values # Data points
Deepseek Wikitext Coherence Beam search B {3, 5, 10, 15, 20, 50} 6 × 5261 × 6 = 189,396
Falcon2 Wikinews Diversity Contrastive search k {1, 3, 5, 10, 15, 20, 50} 6 × 5261 × 7 × 5 = 1,104,810
GPT2-XL Book Gen. Perplexity α {0.2, 0.4, 0.6, 0.8, 1.0}
Llama3 Temperature sampling τ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0} 6 × 5261 × 6 = 189,396
Mistralv03 Top-k sampling k {1, 3, 5, 10, 15, 20, 50} 6 x 5261 x 7 = 220,962
Qwen2 Top-p (nucleus) sampling p {0.6, 0.7, 0.8, 0.9, 0.95} 6 × 5261 × 5 = 157,830

Grand Total 1,862,394

Table 1: Experimental setup: Over 1.8M text generations produced using various models and decoding strategies
with different hyperparameter configurations. Prompts were drawn from three datasets (Wikitext, Wikinews, and
Book), and outputs were evaluated on Coherence, Diversity, and Generation Perplexity.

extend this dataset by computing sentence-level
metrics and incorporating generation perplexity.

Decoding Strategies and Hyperparameters.
For contrastive search (CS, Su et al., 2022), we
evaluate 35 combinations of α and k, while for
beam search (BS, Freitag and Al-Onaizan, 2017),
we consider six beam widths B. For temperature
sampling (Ackley et al., 1985), we consider six
different temperatures τ , for top-k sampling (Fan
et al., 2018), we use 7 different k values and for
top-p (nucleus) sampling (Holtzman et al., 2019)
we evaluate five different values for p, for a total of
59 decoding strategies configurations. All details
are summarized in Table 1.

4 Scenario 1: Ranking Methods

To benchmark decoding methods according to mul-
tiple criteria (cf. §2) aiming for a ranking of meth-
ods (Scenario 1 and RQ1 in §1), we adopt very
recent developments in the theory of multicriteria
and multitask benchmarking (Jansen et al., 2023b,a;
Cruz et al., 2024; Zhang and Hardt, 2024b; Kohli
et al., 2024; Jansen et al., 2024; Rodemann and
Blocher, 2024; Blocher et al., 2024), some of them
grounded in decision theory (social choice theory),
some in the theory of data depth.

In this section, we propose benchmarking of
decoding methods in terms of an ordinal rank-
ing along (i) the extended Bradley-Terry model
(§4.1; Bradley and Terry, 1952b) and (ii) the union-
free-generic (ufg) depth (§4.3; Blocher et al., 2024;
Blocher and Schollmeyer, 2024) as an alternative
approach. Both approaches deliver ordinal rank-
ings of decoding methods rather than a cardinal
quality assessment (cf. left and middle column of
Table 2). This can be motivated from a practical
perspective (cf. §1): The cardinal information in-
corporated in numerous metrics can be considered
redundant in cases when pure ranking of the decod-
ing methods is the overall aim of benchmarking,
not assigning scores to them. After all, a decoding

method can either be deployed by practitioners or
not, rendering the metric information not of pri-
mary practical interest.

Use Case To illustrate our evaluation methodol-
ogy, we apply it to the WikiText-103 dataset, which
comprises 1,314 human-written prompts. We as-
sess decoding methods by analyzing their text gen-
erations across three quality metrics: coherence,
generation perplexity, and diversity. Our bench-
marking approach produces partial rankings by de-
termining whether one decoding method outper-
forms another, without quantifying the magnitude
of performance differences.

Given the use of multiple quality metrics, we
employ a dominance-based comparison framework.
A decoding method is considered superior to an-
other if and only if all three metrics either sup-
port this preference or remain neutral (i.e., do not
contradict it). Consider, for example, the perfor-
mance of Mistral 3 CS with hyperparameter con-
figurations ((’0.2’, ’1’)) and ((’0.8’, ’1’)) on the
first WikiText prompt. We observe that the coher-
ence metric demonstrates a strict preference for
((’0.2’, ’1’)) over ((’0.8’, ’1’)), while the perplex-
ity and diversity metrics show no contradictory
evidence. Consequently, we conclude that Mis-
tral 3 CS ((’0.2’, ’1’)) dominates Mistral 3 CS
((’0.8’, ’1’)) for this particular prompt.4 Overall,
for each prompt, we derive pairwise comparisons
for 6 models × 59 decoding strategies = 354 text
continuations, one for each decoding method.

4.1 Extended Bradley-Terry Model: Theory

The extended Bradley-Terry model is based on
pairwise comparisons (Bradley and Terry, 1952a;
Davidson, 1970). It offers a flexible way to rank

4When two decoding methods yield identical metric values,
they are considered indifferent rather than incomparable. For
a detailed distinction between these concepts, see (Rodemann
and Blocher, 2024). For simplicity, we do not differentiate
between these cases in the present analysis.
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Characteristic Extended Bradley-Terry Model Union-Free Generic Depth Q*Text
Considered Information Order only Order only Order and metric value
Methodology Pairwise comparison Partial orders Mean values
Output Worth Parameter & Total Order Partial Order Mean Values & Total Order
Results (WikiText-103) Mistral 3 CS ((’0.4’, ’10’)) has

the highest worth parameter, while
GPT2-XL CS ((’1.0’, ’20’)) has the
lowest

The top five models in the Ex-
tended Bradley-Terry Model
are incomparable, despite the
suggested total order

Falcon 2 CS ((’0.8’, ’1’)) has
the highest mean and Mistral
3 CS ((’0.2’, ’1’)) the lowest

Table 2: Comparison of the extended Bradley-Terry Model, the ufg-depth and Q*Text (cf. Figure 1).

items while respecting both clear dominance struc-
tures and non-dominances (i.e., ties). Each item
i, in our situation, decoding method i, is assigned
a worth parameter πi. These worth parameters
represent the relative performance/strength of a
decoding method in comparison to another de-
coding method, with all worth parameters sum-
ming up to one. The probability that decoding
method i is preferred over decoding method j is
P (i > j) = πi/(πi + πj + ν

√
πiπj). Here, ν is

a discrimination parameter that reflects the likeli-
hood of a tie, i.e., no preference between the two
decoding methods. Based on the estimations, it is
possible to conclude that decoding methods with
high worth parameters dominate others.

Sinclair (1982) reformulated the extended
Bradley-Terry model as a generalized linear model
(GLM) with a Poisson distribution and log link:
Let mi>j be the count of times decoding method
i outperforms decoding method j and mi∼j be
the number of ties. Then the GLM is given by
log(mi>j) = µij + 1

2 log(πi) − 1
2 log(πj) and

log(mi∼j) = µij + log(ν) with parameters µij =
lnm − ln

(√
πi/πj +

√
πj/πi

)
and m the total

number of pairwise comparisons.
Since it is unlikely that two worth parameters

have exactly the same value, the extended Bradley-
Terry model yields a total order representing the
performance of the decoding methods across all
prompts.

4.2 Extended Bradley-Terry Model:
Experimental Results

The extended Bradley-Terry model returns so-
called "worth" parameters, which indicate the prob-
ability that this decoding method is preferred over
the other in a pairwise comparison. When all
datasets are considered at once, the method that
dominates all other methods according to the ex-
tended Bradley-Terry model is Mistral 3 CS ((’0.6’,
’15’)). The second-best method is Mistral 3 CS
((’0.4’, ’5’)), while the worst method is GPT2-XL

CS ((’1.0’, ’20’)). An excerpt of the results, includ-
ing the case when restricting the analysis to only
one dataset, is presented in Table 3.

Decoding Method Estimated worth parameter
Mistral 3 CS ((’0.6’, ’15’)) 0.047
Mistral 3 CS ((’0.4’, ’3’)) 0.037
Mistral 3 CS ((’0.8’, ’3’)) 0.035
Mistral 3 CS ((’0.4’, ’20’)) 0.030

Table 3: Estimated worth parameter of the extended
Bradley-Terry model based on WikiText-103 dataset,
and the metrics coherence, diversity and perplexity.

Note that the total order provided by the ex-
tended Bradley-Terry model respects the pairwise
dominance structures discussed in Appendix C. As
noted above, the extended Bradley-Terry model
leads (in almost all cases) to a total order. Hence,
it neglects information about incomparabilities.
However, the dominance structure provided by the
partial orders given by each generation, see Ap-
pendix C, already suggests that enforcing a total
order (e.g., not allowing incomparability of two de-
coding methods) may be too strong an assumption.
Additionally, the extended Bradley-Terry model
relies on further independence assumptions that
may not be appropriate for benchmarking purposes
(Blocher et al., 2024).

4.3 Union-Free Generic Depth: Theory

The union-free generic (ufg) depth (Rodemann and
Blocher, 2024; Blocher et al., 2024) directly ad-
dresses these concerns by incorporating incompara-
bility information in the estimation itself and avoids
any additional independence assumptions. Mathe-
matically, this means that we aim for partial rather
than total orders. Let us look again at a single
prompt and the procedure discussed directly be-
fore Section 4.1. For the extended Bradley-Terry
model, we only considered the pairwise compar-
isons. However, all the pairwise comparisons re-
sulting from one single prompt define a partial or-
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der that describes the performance of the decoding
methods based on that single prompt. This yields
1,314 partial orders for the WikiText-103 data. For
example, in the case where we compare four de-
coding methods, the two partial orders in Figure 2
correspond to two observations.

Figure 2: Partial orders with the highest (top) and lowest
(bottom) ufg-depths based on Wikitext-103 and the four
decoding methods presented in Table 3

The ufg-depth analysis provides a measure for
each partial order that indicates how central/typical
or outlying/atypical it is. Since each partial order
represents the performance of the decoding method,
the ufg-depth provides insights into typical and
atypical performance structures of the decoding
methods. This allows us to identify the most cen-
tral ranking, i.e., the ranking that is most supported
by the observed data. To achieve this, the ufg-depth
generalizes the well-known simplicial depth from
Rd (which measures centrality by the probability
that a point x lies in a randomly drawn d+ 1 sim-
plex (Liu, 1990)) to partial orders. This is, Blocher
et al. (2024) generalize the meaning of "lying in"
and "d+1 simplex" for R, which can be defined by
the convex closure operator and the convex sets, to
partial orders. Let P be the set of all partial orders
given by the items/decoding methods m1, . . . ,mk.
To transfer the idea of "lying in", (Blocher et al.,
2024) considered the closure operator γ : 2P →
2P , P 7→ {p ∈ P | ∩p̃∈P p̃ ⊆ p ⊆ ∪p̃∈P }. Blocher
et al. (2024) showed that d+ 1 simplices in Rd are
those convex sets that are non-trivial, minimal, and
not decomposable with respect to the convex clo-
sure operator. This is equivalent to consider those
sets of partial orders P = {p1, . . . , pk} ∈ S ⊆ 2P

that satisfy (I) P ⊊ γ(P ) and (II) there exists no
family (Bi), with i ∈ I index, such that Bi ⊆ P
and γ(P ) = ∪Iγ (Bi) (i.e. P cannot be decom-
posed). The ufg-depth of a partial order p is then
the probability that p lies in a randomly drawn
P ∈ S, weighted by the cardinality P , see Ap-
pendix B for details. For the empirical counterpart,
we use the empirical probability measure.

4.4 Union-Free Generic Depth: Experimental
Results

Therefore, in the next step, we consider the union-
free generic depth approach, which allows for two
methods to be incomparable. Furthermore, the ufg-
depth considers the entire set of pairwise compar-
isons for a generation as one observation and does
not assume an independence structure between
them. Due to the high computational complex-
ity, we restrict our analysis to the WikiText-103
dataset and compare only the four methods that
appear to be the best according to the extended
Bradley-Terry model, see Appendix D: Mistral 3
CS ((’0.6’, ’15’)), Mistral 3 CS ((’0.4’, ’3’)), Mis-
tral 3 CS ((’0.8’, ’3’)) and Mistral 3 CS ((’0.4’,
’20’)).

The highest ufg-depth with a value of 0.977 (thus
the one that has the structure most supported by
the observation), is the one that shows no domi-
nance structure among the four methods, i.e. the
one that concludes that all methods are incompa-
rable to each other, see Figure 2 (top). Roughly
speaking, our method reveals that the four decoding
methods considered here are incomparable. More
formally put, we identify a trivial ranking with no
dominance structure as the “central” (in the sense
of being the “median”) of the dataset comprising
the benchmarking results. This means that such
a ranking has most support by the benchmarking
results. Our method further finds an “outlier”, i.e.,
a ranking of methods that has least support by the
benchmarking results. In the example at hand, this
outlier is a partial ranking that ranks Mistral 3 CS
((’0.4’, ’3’)) higher than Mistral 3 CS ((’0.4’, ’20’)),
see Figure 2 (bottom). This means that, given the
benchmarking results, such a ranking of methods is
“least central” or “atypical” and therefore based on
the benchmarking results with the least supportive
structure.

5 Scenario 2: Cardinal Assessment

While multicriteria analysis provides ordinal rank-
ings among decoding methods, many applications
require a single unified metric for benchmarking
and optimization.

Use Case We compute Q*Text scores for over
1.8M text continuations, as described in Table 1,
and analyze their performance on a model level,
decoding strategy level, and hyperparameter con-
figurations level.
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5.1 Q*Text: Theory

We propose Q*Text, a text quality metric that in-
tegrates coherence, diversity, and perplexity using
weighted combinations with Gaussian penalty func-
tions to handle extreme values.

Metric Formulation Q*Text is defined as:

Q*Text =
∑3

i=1wiMiPi(Mi)∑3
i=1wi

(1)

where Mi are normalized metrics, wi are weights,
and Pi(x) = exp(−αi(x − µi)

2) are Gaussian
penalties that discourage extreme values. Parame-
ters µi represent optimal targets while αi controls
penalty strength.

Normalization We apply inverse normalization
to perplexity (lower is better): M1 = pmax−pi

pmax−pmin
,

and standard min-max normalization to coherence
and diversity (higher is better): Mj =

mj−mmin

mmax−mmin

for j ∈ {2, 3}.

Parameter Optimization The nine parameters
θ = {wi, µi, αi}3i=1 are optimized via:

θ∗ = argmaxθρs(Q*Text(θ), H) (2)

where ρs is Spearman correlation and H are pub-
licly available human ratings (Garces-Arias et al.,
2025). The pseudo-code for the hyperparameter
tuning of Q*Text, as well as an interpretation of
the resulting values, are presented in Appendix G,
Table 20, and Table 21. Finally, a visualization
of the achieved ρs, highlighting alignments on a
decoding strategy level, is illustrated in Appendix
G, Figure 5.

5.2 Q*Text: Experimental Results

When analyzing the results we observe the follow-
ing: For deterministic decoding methods, Q*Text
favors balanced hyperparameter choices, particu-
larly CS with moderate penalties (α values of 0.4
or 0.6) and moderate k values (5, 10, or 15), as
shown in Tables 16 and 18. Counterbalancing com-
binations also perform well, such as low α values
(0.2) with high k values (20 or 50), or high α val-
ues (0.8 or 1.0) with moderate k values (3 or 5).
Beam Search (BS) is generally disfavored due to
extremely low diversity, indicating Q*Text’s capa-
bility to penalize degenerate text. For stochastic
methods, Q*Text prefers diversity-enhancing strate-
gies: temperature sampling with τ > 0.7, top-k

sampling with k > 10, and nucleus sampling with
p > 0.8.

To illustrate specific results, we sample eight
machine-generated continuations of a Wikitext
prompt and include the original human text con-
tinuation. The text generations are produced by
models of different sizes and decoding strategies
with varying hyperparameter configurations. The
results are presented in Table 4 and reveal a clear
pattern: moderate decoding parameters produce
reasonable continuations with scores ranging from
68 to 87, while extreme parameter settings lead to
either repetitive or erratic text.

When the degeneration penalty reaches 1.0 with
high top-k values, models like GPT2-XL and Qwen
2 generate completely incoherent text with scores
near zero. Similarly, Llama 3’s beam search pro-
duces repetitive, temporally inconsistent content.
The human reference completion achieves a score
of 87.33, establishing a quality benchmark. In-
terestingly, GPT2-XL with moderate parameters
(degeneration penalty of 0.6, top-k of 5) achieves
86.69, nearly matching human performance despite
its relatively small size. These findings align with
human evaluator preferences from (Garces-Arias
et al., 2025), who favored balanced CS strategies
like ((’0.4’, ’10’)), ((’0.4’, ’20’)), ((’0.6’, ’10’)),
top-k sampling with k = 10 or 50, and nucleus
sampling with p = 0.9. Unbalanced approaches
like CS ((’1.0’, ’50’)) and BS with moderate beam
widths were rated as low quality (Tables 11, 18).

6 Discussion

First, we examine the extended Bradley-Terry
model and the union-free generic depth approach,
both of which are based on pairwise comparisons.
A first impression can be seen in Appendix C. We
observe that out of a total of 124,962 pairwise com-
parisons among methods, only a very small percent-
age shows a clear dominance structure. That is, for
the majority of the method comparisons, the met-
rics contradict each other (or imply indifference),
e.g., a method is better with respect to coherence
but worse with respect to diversity. For a small
minority of comparisons, however, methods mul-
tilaterally outperform other methods, e.g., method
1 outperforms method 2 for at least 90% of the
generations with respect to all metrics.

Moving on to Q*Text results, we observe that
it shares a preference for larger architectures with
the extended Bradley-Terry model, though smaller
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Decoding Method Prompt: "Headlam served as Officer Commanding North @-@ Western Area in 1946, and as
Director of Training from 1947 to 1950. In 1950 - 51,"

Q*Text

Mistral 3 CS (0.4, 10) "he was Chief of Staff of the Malayan Armed Forces. Headlam was promoted to Major General in 1951,
and served as GOC Far East Land Forces from 1951 to 1953. He was promoted to Lieutenant General in
1953, and served as Adjutant General from 1953 to 1956.... (text continues)"

81.62

Mistral 3 CS (0.4, 5) "he was Commandant of the Royal Military Academy Sandhurst. He was promoted to Major General
in 1951, and served as General Officer Commanding 1st Division from 1951 to 1953. Headlam was
appointed Chief of the Imperial General Staff in 1953, and held that post until 1956. He was promoted to
Field Marshal in 1956, and retired from the Army in 1957 ... (text continues)"

77.63

Deepseek CS (0.6, 15) "he was Chief of Staff (C.O.S.) of the 1st Parachute Brigade, and in 1951 – 52, he was G.O.C. of the 1st
Parachute Brigade. He was promoted to Brigadier... (text continues)"

80.16

Falcon 2 CS (0.8, 1) "he was the first Commandant of the Staff College, Camberley. He was appointed General Officer
Commanding (GOC) 1st Division in 1951, and GOC 3rd Division in 1953. He was appointed Commander-
in-Chief (C-in-C) of the British Army of the Rhine (BAOR) in 1955, and retired in 1958... (text continues)"

68.44

GPT2-XL CS (0.6, 5) Headlam served as Assistant Chief of Staff, Headquarters U.S. Army (AHCUS) at Fort Leavenworth,
Kansas, before being promoted to Brigadier General and assigned to the United States Army Air Forces
(USAAF) at Ramstein Air Base, Germany. After the Korean War, Headlam was a consultant to the U.S.
Strategic Air Command (SAC) and the National Reconnaissance Office (NRO, which was established in
the 1950s to develop intelligence satellites and spy planes).

86.69

GPT2-XL CS (1.0, 20) "Headless Horsemurdertrud (his nom de veal et re, a translators and transcriph.coastavarism in Latin

-Ceux du Ponto-Monahawak at Keremej, New Heythorhampsthembryghtes-sur Meriont Bay of

Sulaunkhuyut/Arap Moheluwempeh is one hundred nautilus middelveth the ... (text continues)"

0.02

Qwen 2 CS (1.0, 20) " Headelm oversa Operation Agulhene535af69, to reoccupyo portug 1 st colonial outst a ncesin

AFRicacoun trie sto preva l sepa rabli st mov me s . In th es on he wro 4he couthoea2 rsh ipp ublicatin

hitherto re t aine o secret ... (text continues)"

0.02

Llama 3 beam (3) "he served as Commanding Officer of the 1st Battalion, The Queen’s Royal Regiment (West
Yorkshire Regiment). In 1951 2013 52, he served as Commanding Officer of the 2nd Battalion,
The Queen’s Royal Regiment (West Yorkshire Regiment). In 1952 2013 53, he served as Commanding

Officer of the 3rd Battalion, The Queen’s Royal Regiment (West Yorkshire Regiment). In 1953 2013 54

, he served as Commanding Officer of the 4th Battalion, ... (text continues)"

0.02

Human "he was Director of Operations and Intelligence, and in 1951–54, Commander of the 1st Division, which
was the most powerful division in the world. He was appointed Commander-in-Chief of the Army in
1954... (text continues)"

87.33

Table 4: Case Study: Comparison of multiple decoding methods for a prompt from the Wikitext corpus. The
first five rows show examples generated by high-ranked methods, while the next three rows display those from
low-ranked methods. Human-generated reference text is included for comparison. Degenerate text is highlighted in
purple while erratic content is highlighted in brown .

models like GPT2-XL can outperform modern ar-
chitectures with balanced decoding strategies (Ta-
ble 12).
Agreement analysis between the extended Bradley-
Terry model and Q*Text (Appendix F, Figures 3
and 4) highlights discrepancies for less diverse and
coherent generations, but good agreement for meth-
ods with moderate hyperparameters. The extended
Bradley-Terry model does not penalize diversity
drops as severely as Q*Text, while both approaches
strongly penalize incoherent, low-confidence meth-
ods like GPT2-XL with CS (α = 1.0, k = 20), see
Tables 13, 15 and 19.

We now examine the advantages and disadvan-
tages of the three proposed benchmarking methods
within our established framework. As highlighted
in Section 1, benchmarking serves different pur-
poses: Scenario 1 requires only an ordering of
decoding methods, while Scenario 2 additionally
demands a cardinal assessment of quality. While

Scenario 2 naturally encompasses Scenario 1, the
ordering focus in Scenario 1 enables the utiliza-
tion of partial ranking theory, leading to fundamen-
tally different procedures than those based on mean
transformations and incorporating concepts such
as method incomparability.

Both Scenario 1 methods build upon a data
transformation, where metric scores are trans-
lated into ordinal values. The extended Bradley-
Terry Model offers computational efficiency with
O(n2m) complexity, making it scalable to large
numbers of methods and generations. It provides
interpretable worth parameters representing esti-
mated preference probabilities and addresses in-
comparabilities and ties in observed data. However,
this approach forces a total order in results, poten-
tially oversimplifying complex dominance struc-
tures where methods may genuinely be incompa-
rable. The model assumes independence between
pairwise comparisons, which is questionable when
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comparing methods on fixed datasets, and relies
strictly on dominance agreements across all evalu-
ated metrics.

The Union-Free Generic Depth method pre-
serves incomparabilities through partial orderings,
providing more realistic representations of method
relationships while offering insights into entire
performance distribution structures. Unlike the
extended Bradley-Terry approach, it does not as-
sume independence between pairwise comparisons,
making it more suitable for fixed-dataset evalu-
ations. Nevertheless, this method suffers from
computational intensity with worst-case complex-
ity O(2m), limiting applicability to smaller meth-
ods and dataset subsets. The approach is more
complex to interpret than traditional rankings and,
like the extended Bradley-Terry method, may be
overly conservative in establishing dominance rela-
tionships.

Q*Text provides cardinal assessment with mean-
ingful score differences, enabling quantification of
performance gaps. It incorporates penalization of
extreme values to prevent degenerate solutions such
as repetitive or erratic text, automatically balances
multiple criteria through mean aggregation, and
remains computationally efficient and straightfor-
ward to implement. However, the method relies on
normalization bounds and penalization parameters
that may not generalize across different contexts.
By collapsing multiple metrics into a single score,
it may obscure important trade-offs between in-
dividual metrics and prove less interpretable than
separate metric examination, potentially masking
insights about specific strengths and weaknesses.

7 Conclusion

In this work, we analyze the challenge of evalu-
ating open-ended text generation by introducing
a multicriteria benchmarking framework that sup-
ports both relative and absolute rankings of de-
coding methods. We present three complementary
approaches—the extended Bradley-Terry model,
the union-free generic (ufg) depth, and Q*Text, a
unified metric that harmonizes coherence, diversity,
and perplexity into a single score. Moreover, we
show that our framework captures nuanced trade-
offs among metrics and avoids misleading compar-
isons when methods excel on different criteria.

Extensive experiments involving six large lan-
guage models, three distinct domains (news,
Wikipedia, stories), and over 1.8 million generated

continuations demonstrate the practical benefits of
our approach. The extended Bradley-Terry model
yields interpretable “worth” parameters that reflect
overall preference probabilities, while ufg-depth
uncovers central and atypical ranking structures,
highlighting when decoding methods are genuinely
incomparable. Q*Text further enables direct com-
parison and quantification of performance gaps, re-
vealing that balanced hyperparameter settings out-
perform extreme configurations and that smaller
models can rival larger ones under appropriate de-
coding choices. Taken together, these contribu-
tions provide practitioners and researchers with a
more reliable, data-driven basis for selecting and
designing decoding methods in open-ended text
generation, paving the way for more holistic bench-
marking practices.

8 Key Takeaways and Practical
Recommendations

Our study revealed that different practical scenar-
ios require different multicriteria benchmark eval-
uation frameworks. Hence, NLP benchmarking
should move beyond a “one fits all”-approach. In-
stead of relying on one single benchmark suite
with a pre-specified evaluation method, we recom-
mend that practitioners define the overall aim of
benchmarking and evaluation thereof as precisely
as possible.

Specifically, we identify two crucial questions to
be answered beforehand:

1. Is it sufficient to rank methods, or is metric
information about the methods’ performances
required? (Scenario 1 and 2 in §1)

2. Does the use case require a total or partial
ordering method, i.e., should the evaluation
allow for incomparability among some meth-
ods, or should it enforce comparability of all
methods? (§4)

In case metric information is required and com-
parability of all methods should be enforced, we
recommend our novel aggregation metric Q*Text,
see §5. If the metric information is not the over-
all aim, but comparability should still be enforced,
we recommend using the Bradley-Terry model, see
§4.1. Eventually, if a ranking is required that al-
lows for incomparability, we recommend deploying
ufg-depth; see §4.3.
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Limitations

While our study presents three different benchmark-
ing approaches, this by no means covers the full
range of different benchmarking strategies that aim
to address the different objectives, i.e., selecting an
estimated best method vs. estimating the perfor-
mance structure of methods. Therefore, this article
provides only a glimpse of the complexity and dif-
ferent approaches to multi-metric evaluation.

Besides this, further limitations merit attention.
First, our experiments focused on a limited set of
decoding strategies and language models. Alter-
native methods—such as contrastive decoding (Li
et al., 2023), typical sampling (Meister et al., 2023),
and adaptive contrastive search (Garces Arias et al.,
2024)—were not analyzed and may provide in-
sights that refine or challenge our findings.

Secondly, the choice of metrics is a matter of
debate. Our reliance on model-dependent metrics,
such as coherence, which is measured by an ide-
ally unbiased OPT 2.7B model (Zhang et al., 2022),
raises questions about their robustness across differ-
ent models and datasets He et al. (2023). Moreover,
including further metrics might enhance the robust-
ness and generalizability of our conclusions.

Additionally, while our work focuses on open-
ended text generation, the methodologies and in-
sights may also apply to other NLP tasks, such
as summarization and machine translation, which
present different challenges and evaluation crite-
ria. Applying our framework to these tasks can
provide valuable insights into evaluation metrics
and benchmarking strategies in broader contexts.

We acknowledge these limitations as avenues
for future research. Exploring additional decod-
ing strategies, models, datasets, and metrics will
strengthen our approach’s validity and adaptability
across various language generation tasks, facilitat-
ing more nuanced and reliable evaluations.
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Appendix

A Automatic metrics

Diversity. This metric aggregates n-gram repeti-
tion rates:

DIV =

4∏

n=2

| unique n-grams (xcont ) |
| total n-grams (xcont ) |

A low diversity score suggests the model suffers
from repetition, and a high diversity score means
the model-generated text is lexically diverse.

Coherence. Proposed by Su et al. (2022), the
coherence metric is defined as the averaged log-
likelihood of the generated text conditioned on the
prompt as

Coherence(x̂,x) =
1

|x̂|

|x̂|∑

i=1

log pM (x̂i | [x : x̂<i])

where x and x̂ are the prompt and the generated
text, respectively; [:] is the concatenation operation
and M is the OPT model (2.7B) (Zhang et al.,
2022).

Generation Perplexity. Perplexity (Jelinek et al.,
2005; Holtzman et al., 2019) P (W ) of a sequence
of words (or tokens) W = w1, w2, ..., wN is com-
puted as:

P (W ) = exp

(
− 1

N

N∑

i=1

log p(wi | w1, ..., wi−1)

)

Here, p(wi | w1, ..., wi−1) is the probability of
word wi given its preceding context.

Perplexity measures how well a probabilistic
model predicts a sequence of words. Lower per-
plexity indicates better predictive performance, as
the model assigns a higher probability to the ac-
tual sequence. It is commonly used to evaluate the
quality of language models.

B Union-Free Generic Depth

General definitions. Let M be a set of
items/models. p ⊆ M × M is a par-
tial order (poset) iff p is reflexive (i.e. for
all m ∈ M, (m,m) ∈ p ), transitive
(i.e. (m1,m2) , (m2,m3) ∈ p ⇒ (m1,m3) ∈ p)
and antisymmetric (i.e. (m1,m2) , (m2,m1) ∈
p ⇒ m1 = m2 ). A closure operator on a set
Ω is a function γ : 2Ω → 2Ω that is extensive (i.e.
for all A ⊆ Ω we have A ⊆ γ(A) ), increasing (
A ⊆ B ⊆ Ω ⇒ γ(A) ⊆ γ(B) ) and idempotent
(for all A ⊆ Ω, γ(A) = γ(γ(A)))

Union-free generic depth. The definition of the
ufg-depth, see (Blocher et al., 2024), is analo-
gous to the definition of the simplicial depth on
Rd, see (Liu, 1990). Hence, we first have to con-
sider a closure operator γ : 2P → 2P , P 7→
{p ∈ P | ∩p̃∈P p̃ ⊆ p ⊆ ∪p̃∈P p̃}. Then a poset
p ∈ P . This is indeed a closure operator and now
can be used to generalize the notion of d+ 1 sim-
plices. As described above, we therefore define the
set

S = {P ⊆ P | Condition (C1) and (C2) hold }

with conditions (C1) P ⊊ γ(P ) and (C2) there
does not exist a family (P̃ i)i ∈ 1, . . . , ℓ such that
for all i ∈ 1, . . . , ℓP̃ i ⊊ P and

⋃
i∈1,...,ℓ γ(P̃ i) =

γ(P ). Note, the (empirical) ufg-depth is given by:
Let p1, . . . , pn ∈ P be a sample with correspond-
ing empirical probability measure νn (equipped
with the power set as σ-field). Then, the (empiri-
cal) union-free generic ( ufg) depth is given by

Dn(p) =





0, if ∀S ∈ S :
∏

p̃∈S νn(p̃) = 0

cn
∑

S∈S
p∈γ(S)

∏

p̃∈S

νn(p̃), else

with cn =
(∑

S∈S
∏

p̃∈S νn(p̃)
)−1

. Note
that since νn(p) = 0 if p ∈ P is not ob-
served, we can restrict the set S to Sobs =
{S ∈ S | S ⊆ {p1, . . . , pn}} consisting only of
the observed posets.

Example: As example consider the four methods
Mistral 3 CS((0.6, 15)) (here denoted as m1), Mis-
tral 3 CS((0.4, 3)) (here denoted as m2), Mistral 3
CS((0.8, 3)) (here denoted as m3 ), and Mistral 3
CS((0.4, 20)) (here denoted as m4 ). Assume that
the quality metrics provide us with the following
four posets:
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Let S = {(mi,mi) | i ∈ {1, 2, 3, 4}}. Then:

p1 = S ∪ {(m1,m2)}
p2 = S ∪ {(m1,m3)}
p3 = S ∪ {(m1,m2), (m2,m3), (m1,m3)}
p4 = S ∪ {(m1,m4)}

Then, with the closure operator above, we
get that p3 /∈ γ (p1, p2) (note that also in-
comparabilities are of interest via the union in
the definition of the closure operator). The
set Sobs = {{p1, p2}, {p1, p4}, {p2, p4}, {p3, p4},
{p1, p2, p3}, {p1, p2, p4}, {p2, p3, p4}}. With this,
the ufg-depth of Dn (p1) = 6/7 and Dn (p4) =
5/7. Hence, p1 is more central than p4.

C Results of Pairwise Comparisons

The following tables consider the pairwise compar-
isons of the methods on the generation level, e.g.,
we count on how many generations one method
strictly outperforms another method, compared to
§4.1. Since we are comparing 354 many methods
(consisting of model and decoding strategy combi-
nation), we have to consider 354 · 353 = 124962
many pairwise comparisons.

Table 5 collects all pairwise comparisons where
Method 1 strictly dominates Method 2 based on all
1314 generations of WikiText-103 and the metrics
perplexity, diversity and coherence. Moreover, we
can observe that only for 75 of all 124962 pairwise
comparisons we have that at least on 90% of the
generations method 1 dominates method 2 strictly.
For 30080 pairwise method comparisons, we ob-
tain that method 1 never strictly dominates method
2 (i.e., on every generation, method 2 either domi-
nates method 1 or the three metrics disagree on the
dominance structure or are completely equal).

Method 1 Method 2 count
Mistral 3 CS ((’0.2’, ’1’)) Mistral 3 CS ((’0.8’, ’1’)) 1314
Qwen 2 CS ((’0.2’, ’1’)) Qwen 2 CS ((’1.0’, ’1’)) 1314
Falcon 2 CS ((’0.2’, ’1’)) Falcon 2 CS ((’0.8’, ’1’)) 1314
Falcon 2 CS ((’0.2’, ’1’)) Falcon 2 CS ((’1.0’, ’1’)) 1314
Falcon 2 CS ((’0.6’, ’1’)) Falcon 2 CS ((’1.0’, ’1’)) 1314
GPT2-XL CS ((’0.2’, ’1’)) GPT2-XL CS ((’0.8’, ’1’)) 1314
GPT2-XL CS ((’0.4’, ’1’)) GPT2-XL CS ((’0.8’, ’1’)) 1314
GPT2-XL CS ((’0.2’, ’1’)) GPT2-XL CS ((’1.0’, ’1’)) 1314
GPT2-XL CS ((’0.4’, ’1’)) GPT2-XL CS ((’1.0’, ’1’)) 1314

Table 5: All pairwise comparisons of two methods
where Method 1 strictly dominates Method 2 based
on the three metric perplexity, coherence, and diversity
on all 1314 generations of WikiText-103. Count denotes
the number of generations where Method 1 strictly dom-
inates Method 2.

Table 6 collects all pairwise comparisons where
Method 1 strictly dominates Method 2 based on
all 2000 generations of Wikinews and the metrics
perplexity, diversity, and coherence. Moreover, we
can observe that for 878 of all 124,962 pairwise
comparisons we have that at least on 90% of the
generations method 1 dominates method 2 strictly.
For 25,108 pairwise method comparisons, we ob-
tain that method 1 never strictly dominates method
2 (i.e., on every generation, method 2 either domi-
nates method 1 or the three metrics disagree on the
dominance structure or are completely equal).

Method 1 Method 2 count
Falcon 2 CS ((’0.2’, ’1’)) Falcon 2 CS ((’1.0’, ’1’)) 2000
Falcon 2 CS ((’0.4’, ’1’)) Falcon 2 CS ((’1.0’, ’1’)) 2000

Table 6: All pairwise comparisons of two methods
where Method 1 strictly dominates Method 2 based
on the three metric perplexity, coherence and diversity
on all 2000 generations of Wikinews. Count denotes the
number of generations where Method 1 strictly domi-
nates Method 2.

Table 7 collects all pairwise comparisons where
Method 1 strictly dominates Method 2 based on
all 1947 generations of Book and the metrics per-
plexity, diversity and coherence. Moreover, we
can observe that for 546 of all 124962 pairwise
comparisons we have that at least on 90% of the
generations method 1 dominates method 2 strictly.
For 27947 pairwise method comparisons, we ob-
tain that method 1 never strictly dominates method
2 (i.e. on every generation method 2 either domi-
nates method 1 or the three metrics disagree on the
dominance structure or a completely equal).

Method 1 Method 2 count
Falcon 2 CS ((’0.4’, ’1’)) Falcon 2 CS ((’1.0’, ’1’)) 1947
GPT2-XL CS ((’0.4’, ’15’)) GPT2-XL CS ((’1.0’, ’15’)) 1947

Table 7: All pairwise comparisons of two methods
where Method 1 strictly dominates Method 2 based
on the three metric perplexity, coherence and diversity
on all 1947 generations of Book. Count denotes the
number of generations where Method 1 strictly domi-
nates Method 2.

When we merge the three datasets WikiText-103,
Wikinews and Book, we consider 1314 + 2000 +
1947 = 5261 generations and 124962 pairwise
comparisons based on each generation. Compar-
ing the tables 5, 6, 7 we find that there is no pair-
wise comparison that occurs in each table. There-
fore, there is no pair of two methods where method
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1 dominates method 2 based on all 5261 genera-
tions. With 4601 is the dominance of Mistral 3 CS
((’0.8’, ’10’)) over GPT2-XL CS ((’1.0’, ’10’))
the one that occurs most often. For 2990 pair-
wise comparison at least on 90% of the generations
method 1 dominates method 2 strictly. In 9191 pair-
wise method comparisons, we obtain that method
1 never strictly dominates method 2 (i.e. on ev-
ery generation method 2 either dominates method
1 or the three metrics disagree on the dominance
structure or a completely equal).

D Results of the extended Bradley-Terry
model

In this section, we present the complete result of the
extended Bradley-Terry model for all 354 methods.

Method Estimated worth parameter
Mistral3CS0.6_15 0.046 94
Mistral3CS0.4_3 0.037 45
Mistral3CS0.8_3 0.034 60
Mistral3CS0.4_20 0.029 52
Mistral3CS0.4_50 0.026 74
Mistral3CS0.4_10 0.021 99
Mistral3CS0.6_5 0.021 43
Qwen2beam50 0.019 94
Mistral3CS0.6_20 0.019 59
Mistral3beam10 0.018 51
Qwen2beam10 0.018 08
. . .
GPT2XLCS0.6_1 0.000 056 98
Falcon2CS1.0_20 0.000 056 47
Mistral3CS1.0_50 0.000 055 85
Falcon2CS1.0_50 0.000 053 78
Mistral3CS1.0_15 0.000 053 19
GPT2XLCS1.0_1 0.000 050 94
GPT2XLCS0.8_1 0.000 047 13
Deepseektemp0.5 0.000 046 17
GPT2XLtopk15 0.000 040 77
Qwen2CS1.0_15 0.000 036 23
GPT2XLCS1.0_10 0.000 034 03
GPT2XLtopk1 0.000 033 63
GPT2XLCS1.0_20 0.000 031 53
GPT2XLtemp0.5 0.000 026 64
GPT2XLtopk3 0.000 024 89

Table 8: Estimated worth parameter of the extended
Bradley Terry model based on WikiText-103 dataset
and the metric coherence, diversity and perplexity.

Note that the higher the estimated worth parame-
ter of the extended Bradley-Terry model, the higher
the estimated probability that the method outper-

forms another method. Hence, the method with
the highest worth parameter is, according to the
extended Bradley-Terry model, the one that outper-
forms all others.

Method Estimated worth parameter
Mistral3CS0.6_3 0.056 85
Mistral3CS0.6_15 0.047 91
Mistral3CS0.4_20 0.041 73
Mistral3CS0.4_10 0.041 52
Mistral3CS0.6_5 0.033 47
Mistral3CS0.4_50 0.032 80
DeepseekCS0.6_10 0.021 46
Mistral3CS0.4_15 0.021 20
Mistral3CS0.4_3 0.018 72
DeepseekCS0.4_50 0.018 20
Mistral3CS0.6_20 0.015 76
GPT2XLCS0.4_15 0.015 53
Mistral3CS0.2_50 0.015 08
Mistral3CS0.2_20 0.013 86
Mistral3CS0.2_10 0.012 67
Mistral3CS0.2_15 0.012 32
Mistral3beam5 0.012 22
Qwen2CS0.6_5 0.012 08
. . .
Deepseektemp1 0.000 078 84
Deepseektopk3 0.000 077 28
Mistral3CS1.0_5 0.000 075 16
GPT2XLtopk20 0.000 073 72
Mistral3CS1.0_10 0.000 073 44
Falcon2CS1.0_50 0.000 065 49
Qwen2CS1.0_15 0.000 063 60
GPT2XLtemp1 0.000 062 77
Falcon2CS1.0_15 0.000 062 17
Qwen2CS1.0_10 0.000 061 68
Falcon2CS0.8_5 0.000 058 30
GPT2XLtemp0.3 0.000 056 65
Falcon2CS1.0_20 0.000 056 25
GPT2XLtopp0.6 0.000 055 72
GPT2XLtopk5 0.000 052 12
Qwen2CS1.0_50 0.000 052 11
GPT2XLtopp0.7 0.000 051 67
GPT2XLtopk3 0.000 049 41
GPT2XLCS1.0_10 0.000 049 34
Mistral3CS1.0_15 0.000 047 53
GPT2XLCS1.0_5 0.000 044 59
GPT2XLCS1.0_20 0.000 041 33

Table 9: Estimated worth parameter of the extended
Bradley-Terry model based on Wikinews dataset and
the metric coherence, diversity and perplexity.

For reasons of clarity and comprehensibility, we
decided to show here only a snippet, but the full
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result can be easily and fast obtained by the already
stored results in GitHub-repository. Table 8 de-
notes the worth parameter based on WikiText-103,
Table 9 on Wikinews, Table 10 on Books and all
three datasets combined can be seen in Table 11.
All computations are based on the metrics of per-
plexity, coherence, and diversity.

Method Estimated worth parameter
Mistral3CS0.6_10 0.037 29
Mistral3CS0.4_50 0.027 66
Mistral3CS0.6_5 0.027 65
Mistral3CS0.4_10 0.025 90
DeepseekCS0.8_15 0.020 91
Mistral3CS0.4_5 0.020 12
Mistral3CS0.4_15 0.018 89
Falcon2CS0.6_20 0.017 53
DeepseekCS0.6_15 0.016 64
Falcon2CS0.4_20 0.015 55
Qwen2CS0.6_10 0.013 32
Mistral3beam15 0.012 37
Qwen2CS0.4_50 0.012 18
Qwen2beam5 0.011 75
Deepseekbeam5 0.011 75
Mistral3CS0.6_15 0.010 95
Mistral3CS0.6_50 0.010 88
Falcon2beam15 0.010 17
Mistral3beam3 0.009 950
Deepseekbeam15 0.009 685
Deepseekbeam20 0.009 523
Mistral3beam20 0.009 489
Mistral3beam5 0.009 439
. . .
DeepseekCS1.0_50 0.000 089 67
Mistral3CS1.0_15 0.000 086 30
GPT2XLCS1.0_3 0.000 085 26
GPT2XLCS0.4_3 0.000 085 26
Qwen2temp0.9 0.000 084 48
Mistral3CS1.0_50 0.000 082 85
GPT2XLCS0.4_5 0.000 082 68
GPT2XLtopp0.6 0.000 078 19
GPT2XLtopk10 0.000 070 44
Falcon2CS1.0_50 0.000 064 77
GPT2XLCS1.0_5 0.000 063 46
GPT2XLCS0.4_20 0.000 059 06
Mistral3CS1.0_20 0.000 056 02
GPT2XLtopk3 0.000 050 49
GPT2XLCS1.0_20 0.000 042 92

Table 10: Estimated worth parameter of the extended
Bradley-Terry model based on Book dataset and the
metric coherence, diversity, and perplexity.

Method
Estimated

worth parameter
Mistral3CS0.4_10 0.038 41
Mistral3CS0.4_5 0.037 66
Mistral3CS0.6_10 0.021 74
Mistral3CS0.4_50 0.020 71
Mistral3CS0.6_15 0.017 05
Mistral3CS0.2_50 0.016 50
Mistral3CS0.6_50 0.016 24
Mistral3beam50 0.014 53
Mistral3beam10 0.013 82
Mistral3beam3 0.013 15
Mistral3beam20 0.013 12
Qwen2beam5 0.012 86
Mistral3CS0.4_1 0.012 60
Mistral3CS0.4_15 0.011 63
Mistral3beam5 0.011 55
DeepseekCS0.6_50 0.011 46
Mistral3CS0.6_20 0.011 31
GPT2XLbeam20 0.010 88
Mistral3CS0.2_3 0.010 81
Mistral3CS0.2_15 0.010 05
Qwen2CS0.6_50 0.009 991
Qwen2beam20 0.009 966
Qwen2CS0.4_50 0.009 659
Mistral3CS0.2_10 0.009 592
Qwen2beam3 0.009 403
LLama3beam20 0.008 993
Mistral3CS0.2_5 0.008 868
Mistral3CS0.6_5 0.008 842
Mistral3CS0.6_1 0.008 508
LLama3beam10 0.008 505
LLama3beam3 0.008 160
Qwen2beam50 0.007 920
LLama3beam5 0.007 636
Qwen2CS0.4_20 0.007 613
Qwen2beam15 0.007 445
Falcon2CS0.6_50 0.007 364
Qwen2beam10 0.007 307
Mistral3CS0.4_3 0.007 242
Qwen2CS0.4_15 0.007 236
GPT2XLCS0.6_10 0.007 113
Mistral3CS0.8_5 0.006 781
Falcon2beam15 0.006 526
LLama3beam50 0.006 246
LLama3beam15 0.006 175
Mistral3beam15 0.006 097
Deepseekbeam10 0.006 073
Mistral3CS0.2_1 0.006 015
Falcon2beam5 0.005 898
DeepseekCS0.8_15 0.005 789
Qwen2CS0.4_5 0.005 717
Falcon2CS0.4_50 0.005 41
Qwen2CS0.2_1 0.005 382
Deepseekbeam3 0.005 328
Qwen2CS0.2_50 0.005 189
Mistral3topp0.7 0.004 943
Falcon2CS0.4_20 0.004 924
Qwen2CS0.2_15 0.004 791
Qwen2CS0.6_20 0.004 779
DeepseekCS0.4_20 0.004 730
GPT2XLbeam5 0.004 724
Mistral3CS0.2_20 0.004 709
Falcon2CS0.2_20 0.004 658
DeepseekCS0.8_10 0.004 637
Falcon2beam50 0.004 589
Deepseekbeam50 0.004 513
Falcon2beam3 0.004 435
Falcon2beam10 0.004 345
Falcon2CS0.4_3 0.004 321
Deepseekbeam15 0.004 298
Falcon2CS0.4_15 0.004 280
Falcon2CS0.4_10 0.004 212
Deepseekbeam5 0.004 125
DeepseekCS0.6_15 0.004 079
Falcon2CS0.6_20 0.003 949
Falcon2CS0.4_1 0.003 893
Qwen2CS0.2_5 0.003 890
Mistral3CS0.4_20 0.003 880
Qwen2CS0.2_20 0.003 746
Falcon2CS0.6_3 0.003 744
Falcon2CS0.6_10 0.003 690
Falcon2CS0.2_50 0.003 651
Falcon2CS0.6_15 0.003 643
Falcon2CS0.2_15 0.003 562
DeepseekCS0.2_10 0.003 527
Falcon2CS0.2_10 0.003 514
DeepseekCS0.2_20 0.003 507
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Method
Estimated

worth parameter
Qwen2CS0.2_10 0.003 504
Falcon2CS0.2_3 0.003 451
Falcon2beam20 0.003 394
GPT2XLCS0.6_5 0.003 319
DeepseekCS0.2_15 0.003 257
GPT2XLCS0.4_50 0.003 225
Falcon2CS0.2_1 0.003 174
DeepseekCS0.2_3 0.003 153
Deepseekbeam20 0.003 123
Falcon2CS0.4_5 0.003 10
DeepseekCS0.4_10 0.002 934
Falcon2CS0.2_5 0.002 919
Qwen2CS0.4_1 0.002 782
DeepseekCS0.4_50 0.002 636
Qwen2CS0.6_10 0.002 627
Qwen2CS0.8_1 0.002 605
GPT2XLCS0.6_50 0.002 549
GPT2XLbeam10 0.002 522
GPT2XLbeam3 0.002 481
Qwen2CS0.4_10 0.002 480
DeepseekCS0.2_1 0.002 478
Mistral3CS0.6_3 0.002 468
GPT2XLbeam15 0.002 457
GPT2XLCS0.6_50 0.002 549
GPT2XLbeam10 0.002 522
GPT2XLbeam3 0.002 481
Qwen2CS0.4_10 0.002 480
DeepseekCS0.2_1 0.002 478
Mistral3CS0.6_3 0.002 468
GPT2XLbeam15 0.002 457
GPT2XLbeam50 0.002 453
Mistral3topp0.8 0.002 387
Qwen2CS0.6_5 0.002 329
Falcon2CS0.6_5 0.002 317
Qwen2CS0.4_3 0.002 307
DeepseekCS0.2_50 0.002 247
Mistral3topp0.6 0.002 193
Qwen2CS0.6_1 0.002 175
Qwen2CS0.2_3 0.002 161
Falcon2CS0.8_10 0.002 132
Falcon2CS0.8_20 0.002 118
DeepseekCS0.6_1 0.002 094
Mistral3CS0.8_10 0.002 046
DeepseekCS0.4_1 0.002 034
DeepseekCS0.8_20 0.002 019
DeepseekCS0.8_3 0.001 956
GPT2XLCS0.6_20 0.001 950
LLama3temp0.9 0.001 922
GPT2XLCS0.2_50 0.001 921
DeepseekCS0.4_15 0.001 886
GPT2XLCS0.8_1 0.001 874
Falcon2CS0.6_1 0.001 852
DeepseekCS1.0_20 0.001 845
GPT2XLCS0.6_1 0.001 839
GPT2XLCS0.8_15 0.001 816
GPT2XLCS0.4_10 0.001 800
Mistral3CS0.8_1 0.001 785
GPT2XLCS0.6_3 0.001 765
Falcon2temp0.1 0.001 763
Mistral3temp0.5 0.001 761
DeepseekCS0.6_5 0.001 738
LLama3CS1.0_15 0.001 703
LLama3CS0.2_15 0.001 680
GPT2XLCS0.2_5 0.001 660
Deepseektopp0.6 0.001 656
Qwen2topp0.6 0.001 654
LLama3topk15 0.001 619
GPT2XLCS0.8_5 0.001 603
GPT2XLtemp1 0.001 581
Mistral3temp0.3 0.001 557
GPT2XLCS0.2_10 0.001 536
GPT2XLCS0.2_15 0.001 514
LLama3temp0.3 0.001 498
Falcon2topp0.9 0.001 477
DeepseekCS0.6_10 0.001 469
LLama3temp0.7 0.001 464
GPT2XLCS0.2_3 0.001 456
Falcon2topk20 0.001 453
LLama3CS0.2_5 0.001 452
Mistral3topk15 0.001 445
Mistral3temp0.9 0.001 429
Qwen2topp0.95 0.001 419
LLama3CS0.6_5 0.001 408
LLama3CS0.8_5 0.001 403
Mistral3topk5 0.001 397
GPT2XLCS0.4_15 0.001 388

Method
Estimated

worth parameter
Qwen2topk1 0.001 352
Deepseektemp0.7 0.001 341
LLama3CS0.4_5 0.001 300
Qwen2CS0.6_3 0.001 296
Falcon2topp0.7 0.001 291
Mistral3topk50 0.001 290
Qwen2CS0.6_15 0.001 279
GPT2XLCS0.2_1 0.001 268
GPT2XLCS0.2_20 0.001 253
LLama3CS0.8_50 0.001 245
Falcon2temp0.3 0.001 222
DeepseekCS0.8_50 0.001 205
LLama3CS1.0_5 0.001 204
Mistral3topp0.9 0.001 192
Qwen2topk15 0.001 186
Falcon2temp1 0.001 177
LLama3CS0.8_15 0.001 173
LLama3CS0.4_50 0.001 167
Qwen2temp0.1 0.001 162
GPT2XLCS0.6_15 0.001 162
DeepseekCS0.4_3 0.001 157
Falcon2topk3 0.001 149
Falcon2CS0.8_3 0.001 141
DeepseekCS1.0_10 0.001 113
LLama3temp0.5 0.001 112
Falcon2topk1 0.001 107
LLama3CS1.0_50 0.001 105
DeepseekCS0.2_5 0.001 089
GPT2XLCS0.4_1 0.001 086
LLama3CS0.6_50 0.001 070
Falcon2topp0.8 0.001 066
LLama3topp0.9 0.001 063
LLama3CS0.6_10 0.000 982 0
Qwen2topp0.7 0.000 969 7
LLama3CS0.4_15 0.000 965 9
LLama3CS0.2_20 0.000 964 1
LLama3CS0.8_10 0.000 959 6
LLama3CS0.4_1 0.000 959 2
GPT2XLCS0.4_5 0.000 958 4
LLama3CS0.8_20 0.000 958 0
Deepseektopk20 0.000 946 3
Mistral3topk20 0.000 927 1
LLama3CS0.6_20 0.000 915 4
Mistral3topk1 0.000 903 3
LLama3CS0.6_3 0.000 902 9
LLama3CS0.2_1 0.000 899 8
Mistral3topk10 0.000 893 4
LLama3CS1.0_1 0.000 889 8
Falcon2CS0.8_50 0.000 887 2
LLama3CS0.8_3 0.000 879 8
LLama3CS0.8_1 0.000 875 4
Falcon2topk50 0.000 872 7
Qwen2CS1.0_1 0.000 871 0
LLama3CS0.2_3 0.000 870 1
LLama3CS1.0_10 0.000 868 3
LLama3CS1.0_3 0.000 867 6
LLama3CS1.0_20 0.000 855 5
Qwen2CS0.8_15 0.000 855 1
Qwen2CS1.0_15 0.000 853 5
LLama3CS0.2_10 0.000 851
Qwen2topp0.8 0.000 849 0
Qwen2temp0.3 0.000 848 9
LLama3topk5 0.000 848 5
Qwen2topk50 0.000 824 3
GPT2XLCS0.4_3 0.000 823 7
LLama3temp0.1 0.000 801 7
Mistral3CS1.0_20 0.000 783 8
LLama3CS0.6_1 0.000 778 7
Qwen2temp0.7 0.000 775 9
Deepseektemp1 0.000 769 5
Falcon2topk10 0.000 741 9
Deepseektopk3 0.000 739 6
Deepseektopk10 0.000 729 7
Mistral3CS1.0_5 0.000 728 9
DeepseekCS1.0_3 0.000 709 0
Qwen2CS0.8_50 0.000 708 7
Mistral3CS0.8_20 0.000 700 6
Falcon2CS0.8_15 0.000 697 9
LLama3CS0.2_50 0.000 691 3
GPT2XLCS0.4_20 0.000 690 4
LLama3topk50 0.000 677 0
Qwen2temp1 0.000 668 9
Falcon2topp0.95 0.000 647 0
LLama3CS0.4_20 0.000 645 5
LLama3topk20 0.000 641 9
LLama3topk3 0.000 641 4
Falcon2topp0.6 0.000 639 5
LLama3topp0.8 0.000 638 9
Qwen2CS0.8_20 0.000 630 9
Mistral3temp0.1 0.000 627 0
LLama3topk1 0.000 625 3
LLama3CS0.4_3 0.000 624 0
Falcon2CS1.0_3 0.000 621 4
LLama3CS0.6_15 0.000 616 3
Qwen2topk20 0.000 615 8
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Method
Estimated

worth parameter
GPT2XLCS0.8_3 0.000 612 7
Mistral3CS0.8_50 0.000 608 9
Deepseektopk15 0.000 606 3
Falcon2CS1.0_5 0.000 605 5
DeepseekCS1.0_15 0.000 605 3
DeepseekCS0.8_5 0.000 600 0
DeepseekCS0.6_20 0.000 594 9
GPT2XLtopp0.95 0.000 587 7
Qwen2topp0.9 0.000 586 6
LLama3CS0.4_10 0.000 576 7
Deepseektemp0.3 0.000 573 3
LLama3topk10 0.000 571 7
DeepseekCS0.6_3 0.000 558 6
GPT2XLCS0.8_10 0.000 554 1
Mistral3CS1.0_1 0.000 545 8
Deepseektopp0.7 0.000 544 8
LLama3topp0.95 0.000 539 0
Mistral3CS0.8_15 0.000 530 6
GPT2XLtopk1 0.000 529 7
Mistral3topk3 0.000 520 7
Falcon2CS0.8_5 0.000 520 4
Falcon2CS1.0_10 0.000 513 8
Qwen2temp0.5 0.000 505 4
GPT2XLtopp0.7 0.000 499 9
Qwen2CS0.8_10 0.000 487 5
Qwen2topk5 0.000 485 7
GPT2XLCS0.8_20 0.000 480 4
Mistral3topp0.95 0.000 467 1
DeepseekCS0.4_5 0.000 452 2
DeepseekCS1.0_5 0.000 440 4
Falcon2CS1.0_20 0.000 437 5
Qwen2topk10 0.000 436 5
Mistral3temp1 0.000 435 0
GPT2XLtopk5 0.000 426 0
Qwen2topk3 0.000 421 3
Qwen2CS0.8_5 0.000 419 1
GPT2XLtemp0.3 0.000 414 0
LLama3temp1 0.000 409 9
Falcon2temp0.7 0.000 391 6
Falcon2topk15 0.000 388 1
Falcon2temp0.5 0.000 385 6
LLama3topp0.6 0.000 380 3
LLama3topp0.7 0.000 378 4
Falcon2topk5 0.000 376 0
Deepseektemp0.5 0.000 354 5
GPT2XLtemp0.7 0.000 352 1
Mistral3CS0.8_3 0.000 348 0
Deepseektopp0.95 0.000 342 9
Qwen2CS0.8_3 0.000 339 1
Deepseektopk50 0.000 338 5
Deepseektopp0.9 0.000 334 8
Falcon2CS0.8_1 0.000 330 2
Deepseektopp0.8 0.000 329 5
GPT2XLtopk50 0.000 329 1
GPT2XLtopp0.9 0.000 328 7
GPT2XLtemp0.9 0.000 314 9
Qwen2CS1.0_3 0.000 310 9
DeepseekCS0.8_1 0.000 305 6
Mistral3temp0.7 0.000 297 8
GPT2XLCS1.0_3 0.000 297 5
GPT2XLtopk3 0.000 292 3
GPT2XLCS1.0_1 0.000 287 3
Qwen2temp0.9 0.000 285 3
Deepseektopk5 0.000 282 0
Mistral3CS1.0_15 0.000 274 5
Mistral3CS1.0_10 0.000 268 4
Falcon2CS1.0_15 0.000 265 1
Mistral3CS1.0_3 0.000 256 0
GPT2XLtemp0.5 0.000 249 4
Qwen2CS1.0_5 0.000 246 5
GPT2XLtemp0.1 0.000 244 0
GPT2XLCS0.8_50 0.000 241 6
Deepseektemp0.1 0.000 239 2
Falcon2temp0.9 0.000 237 7
GPT2XLCS1.0_50 0.000 233 5
DeepseekCS1.0_50 0.000 231 9
Qwen2CS1.0_50 0.000 224 2
Falcon2CS1.0_1 0.000 222 6
Qwen2CS1.0_10 0.000 222 5
DeepseekCS1.0_1 0.000 222 1
Mistral3CS1.0_50 0.000 212 5
Deepseektopk1 0.000 200 3
Qwen2CS1.0_20 0.000 198 6
Falcon2CS1.0_50 0.000 196 7
GPT2XLtopk10 0.000 187 9
Deepseektemp0.9 0.000 162 1
GPT2XLCS1.0_15 0.000 149 0
GPT2XLtopk15 0.000 134 1
GPT2XLCS1.0_10 0.000 124 6
GPT2XLtopk20 0.000 120 7
GPT2XLtopp0.8 0.000 118 7
GPT2XLtopp0.6 0.000 111 4
GPT2XLCS1.0_5 0.000 097 67
GPT2XLCS1.0_20 0.000 081 80

Table 11: Estimated worth parameter of the extended
Bradley-Terry model based on WikiText-103, Wikinews,
and Book datasets together and the metric coherence,
diversity, and perplexity (2/2).

E Discussion of the Ufg-depth Results

At first glance, this result seems to contradict the
number of observations of the partial orders, since
the most frequent order, 646 out of 1314, has the
lowest depth, and the one with the highest depth is
observed only once. But let us take a closer look
at the definition of the ufg-depth. The ufg-depth
considers subsets of observed partial orders S with
size greater than 2, where, in a first step, the number
of occurrences is ignored (i.e. not every subset of
partial orders is considered, for details see (Blocher
et al., 2024)). Then, in a second step, the ufg-depth
of a partial order is the proportion of the set S that
supports that partial order (e.g. the partial order
lies between the intersection and union of S). This
proportion is weighted by the proportion of the
number of observations corresponding to the partial
orders in S. For this dataset, we have that almost
all subsets of partial orders do not agree on any
dominance structure. Thus, the empty partial order
is supported by almost all subsets and, therefore,
has such a high depth. Summing things up, the
reasons for the low depth value of the most frequent
observation are 1) that the number of observations
is only considered as a weight and not directly, and
2) that the only subsets S that support this partial
order are those that contain the partial order itself
in S. Since the partial order corresponding to the
highest ufg-depth does not have much in common
with other observed partial orders, this set S always
implies many other also observed partial orders.5

F Results of Q*Text

Based on the Q*Text metric introduced in §5, we
can induce a total ordering of decoding methods.
Tables 12, 14, 16 and 18 illustrate the results for
the most dominant decoding models, strategies,
hyperparameters and methods, respectively. On the
other hand, We observe in Tables 13, 15, 17 and 19
the results for the least dominant decoding models,
strategies, hyperparameters and methods.

Alignment with extended Bradley-Terry In
this section, we explore the alignment between the
extended Bradley-Terry model and Q*Text through
various decoding methods.

5Note that this observation can also be made for the second
(280 out of 1314) and third (208 out of 1314) most observed
partial orders .
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Figure 3: Decoding methods with the smallest rank discrepancies between the extended Bradley-Terry model
and Q*Text. Green instances represent decoding methods where both rankings agree on high performance; blue
instances indicate agreement on neutrality; and red instances signify agreement on lower quality.

Figure 4: Decoding methods with the largest rank discrepancies between the extended Bradley-Terry model and
Q*Text. Here, the extended Bradley-Terry model notably favors low-diversity methods, such as BS, while Q*Text
tends to rank highly diverse methods higher. This highlights the differing emphases of each approach on diversity in
decoding strategies.
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Most Dominant Model Count Proportion
Falcon 2 2195 42%
Mistral 3 1471 28%
Qwen 2 904 17%
Deepseek 617 12%
GPT2-XL 55 1%
LLama 3 19 0%
Total 5261 100%

Table 12: Most dominant models based on Q*Text re-
sults.

Least Dominant Model Count Proportion
GPT2-XL 4050 77%
Qwen 2 703 13%
Llama 3 259 5%
Mistral 3 106 2%
Deepseek 80 2%
Falcon 2 63 1%
Total 5261 100%

Table 13: Least dominant models based on Q*Text
results.

Most Dominant Strategy Count Proportion
CS 5095 97%
temp 135 3%
topp 16 0%
topk 12 0%
beam 3 0%
Total 5261 100%

Table 14: Most dominant strategies based on Q*Text
results.

Least Dominant Strategy Count Proportion
CS 4567 87%
beam 652 12%
temp 34 1%
topk 5 0%
topp 3 0%
Total 5261 100%

Table 15: Least dominant strategies based on Q*Text
results.

Most Dominant Hyperparameter Count Proportion
(’0.8’, ’1’) 2138 41%
(’1.0’, ’1’) 830 16%
(’0.6’, ’1’) 805 15%
(’0.8’, ’5’) 360 7%
(’0.8’, ’10’) 216 4%
(’0.6’, ’10’) 163 3%
(’0.8’, ’3’) 89 2%
(’0.4’, ’3’) 86 2%
(’0.6’, ’5’) 71 1%
0.7 70 1%
(’0.8’, ’15’) 64 1%
(’0.6’, ’3’) 60 1%
(’0.4’, ’10’) 55 1%
0.1 39 1%
(’0.2’, ’10’) 34 1%
(’0.2’, ’3’) 26 0%
0.3 22 0%
(’0.8’, ’20’) 18 0%
(’0.4’, ’1’) 17 0%
(’0.4’, ’5’) 13 0%
(’0.6’, ’20’) 12 0%
(’0.6’, ’15’) 11 0%
(’1.0’, ’3’) 8 0%
0.5 6 0%
3 6 0%
0.9 6 0%
0.8 6 0%
(’0.6’, ’50’) 5 0%
10 5 0%
(’0.2’, ’1’) 4 0%
(’0.2’, ’20’) 2 0%
(’0.2’, ’5’) 2 0%
(’0.4’, ’20’) 2 0%
20 2 0%
0.6 2 0%
(’0.4’, ’15’) 2 0%
(’1.0’, ’5’) 1 0%
50 1 0%
(’0.2’, ’15’) 1 0%
15 1 0%
Total 5261 100%

Table 16: Most dominant hyperparameters based on
Q*Text results.

Least Dominant Hyperparameter Count Proportion
(’1.0’, ’50’) 4439 0.84
50 366 0.07
10 99 0.02
15 64 0.01
20 62 0.01
5 40 0.01
(’1.0’, ’20’) 39 0.01
(’1.0’, ’15’) 30 0.01
(’0.8’, ’50’) 27 0.01
3 22 0
0.1 20 0
(’0.2’, ’1’) 14 0
0.3 9 0
0.5 5 0
(’0.4’, ’15’) 5 0
1 4 0
(’0.6’, ’1’) 3 0
(’0.4’, ’50’) 3 0
0.7 1 0
0.6 1 0
(’0.2’, ’10’) 1 0
0.95 1 0
(’0.6’, ’5’) 1 0
(’0.8’, ’10’) 1 0
(’0.6’, ’20’) 1 0
(’0.4’, ’5’) 1 0
(’0.4’, ’3’) 1 0
(’0.2’, ’15’) 1 0
Total 5261 100%

Table 17: Least dominant hyperparameters based on
Q*Text results.
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Most Dominant Method Count Proportion
Falcon 2_CS ((’0.8’, ’1’)) 1083 21%
Mistral 3_CS ((’0.8’, ’1’)) 656 12%
Mistral 3_CS ((’0.6’, ’1’)) 629 12%
Falcon 2_CS ((’1.0’, ’1’)) 510 10%
Falcon 2_CS ((’0.8’, ’5’)) 335 6%
Qwen 2_CS ((’0.8’, ’1’)) 317 6%
Deepseek_CS ((’0.6’, ’1’)) 160 3%
Qwen 2_CS ((’0.8’, ’10’)) 148 3%
Deepseek_CS ((’1.0’, ’1’)) 141 3%
Qwen 2_CS ((’1.0’, ’1’)) 112 2%
Falcon 2_CS ((’0.6’, ’10’)) 99 2%
Deepseek_CS ((’0.8’, ’1’)) 76 1%
Deepseek_CS ((’0.4’, ’3’)) 70 1%
Falcon 2_CS ((’0.8’, ’10’)) 68 1%
Falcon 2_CS ((’0.6’, ’5’)) 67 1%
Qwen 2_CS ((’0.8’, ’15’)) 63 1%
Deepseek_CS ((’0.6’, ’10’)) 58 1%
Qwen 2_CS ((’0.4’, ’10’)) 48 1%
Mistral 3_temp (0.7) 45 1%
GPT2-XL_CS ((’1.0’, ’1’)) 42 1%
Qwen 2_CS ((’0.8’, ’3’)) 41 1%
Deepseek_CS ((’0.8’, ’3’)) 37 1%
Qwen 2_CS ((’0.2’, ’10’)) 32 1%
Mistral 3_CS ((’0.6’, ’3’)) 31 1%
Mistral 3_CS ((’1.0’, ’1’)) 30 1%
Mistral 3_temp (0.1) 29 1%
Qwen 2_CS ((’0.6’, ’3’)) 20 0%
Falcon 2_CS ((’0.6’, ’1’)) 19 0%
Deepseek_CS ((’0.2’, ’3’)) 19 0%
Deepseek_CS ((’0.4’, ’1’)) 17 0%
Qwen 2_CS ((’0.8’, ’20’)) 15 0%
Qwen 2_CS ((’0.8’, ’5’)) 15 0%
Qwen 2_CS ((’0.4’, ’3’)) 15 0%
Mistral 3_CS ((’0.8’, ’3’)) 14 0%
Qwen 2_CS ((’0.6’, ’15’)) 12 0%
Mistral 3_temp (0.3) 12 0%
Mistral 3_CS ((’0.4’, ’5’)) 11 0%
Deepseek_CS ((’0.6’, ’3’)) 11 0%
GPT2-XL_CS ((’0.8’, ’1’)) 10 0%
Falcon 2_temp (0.7) 10 0%
Qwen 2_topp (0.7) 9 0%
Qwen 2_CS ((’0.6’, ’10’)) 9 0%
Qwen 2_temp (0.7) 9 0%
Mistral 3_CS ((’0.8’, ’5’)) 8 0%
Qwen 2_temp (0.3) 7 0%
Qwen 2_CS ((’0.2’, ’3’)) 7 0%
Qwen 2_temp (0.9) 7 0%
Deepseek_CS ((’0.4’, ’10’)) 7 0%
Qwen 2_temp (0.1) 7 0%
Mistral 3_CS ((’0.6’, ’20’)) 6 0%
Deepseek_CS ((’0.8’, ’5’)) 6 0%
Deepseek_CS ((’0.6’, ’5’)) 6 0%
Qwen 2_topk (3) 6 0%
Qwen 2_CS ((’1.0’, ’3’)) 6 0%
Deepseek_temp (0.5) 5 0%
Falcon 2_CS ((’0.8’, ’20’)) 5 0%
Deepseek_CS ((’0.2’, ’1’)) 5 0%
Qwen 2_topp (0.8) 5 0%
Qwen 2_topk (10) 5 0%
Deepseek_temp (0.1) 5 0%
LLama 3_temp (0.3) 4 0%
Total 5261 100%

Table 18: Most dominant methods based on Q*Text
results.

Least Dominant Method Count Proportion
GPT2-XL_CS ((’1.0’, ’50’)) 3821 73%
Qwen 2_CS ((’1.0’, ’50’)) 561 11%
LLama 3_beam (50) 130 2%
GPT2-XL_beam (50) 95 2%
Qwen 2_beam (50) 53 1%
Mistral 3_beam (50) 51 1%
LLama 3_beam (10) 38 1%
GPT2-XL_beam (10) 38 1%
Deepseek_CS ((’1.0’, ’50’)) 34 1%
Qwen 2_CS ((’1.0’, ’20’)) 29 1%
GPT2-XL_CS ((’1.0’, ’15’)) 29 1%
LLama 3_beam (20) 27 1%
LLama 3_beam (15) 26 0%
Deepseek_beam (50) 22 0%
LLama 3_beam (5) 18 0%
Mistral 3_CS ((’1.0’, ’50’)) 16 0%
Qwen 2_beam (10) 15 0%
Falcon 2_beam (50) 15 0%
Qwen 2_CS ((’0.8’, ’50’)) 15 0%
Mistral 3_beam (15) 14 0%
GPT2-XL_beam (20) 10 0%
GPT2-XL_beam (5) 10 0%
GPT2-XL_beam (3) 9 0%
Falcon 2_CS ((’1.0’, ’20’)) 9 0%
GPT2-XL_CS ((’0.2’, ’1’)) 8 0%
Qwen 2_beam (15) 8 0%
Mistral 3_beam (20) 8 0%
Qwen 2_beam (20) 7 0%
Deepseek_beam (20) 7 0%
Falcon 2_CS ((’1.0’, ’50’)) 7 0%
Falcon 2_CS ((’0.8’, ’50’)) 7 0%
LLama 3_temp (0.1) 6 0%
Deepseek_beam (15) 6 0%
GPT2-XL_beam (15) 5 0%
GPT2-XL_CS ((’0.4’, ’15’)) 5 0%
Falcon 2_beam (15) 5 0%
Qwen 2_beam (3) 5 0%
GPT2-XL_temp (0.1) 5 0%
GPT2-XL_CS ((’0.8’, ’50’)) 4 0%
Mistral 3_beam (5) 4 0%
Mistral 3_beam (3) 4 0%
Mistral 3_temp (0.1) 3 0%
LLama 3_temp (0.3) 3 0%
GPT2-XL_temp (0.3) 3 0%
Falcon 2_temp (0.1) 3 0%
Mistral 3_beam (10) 3 0%
Falcon 2_beam (20) 3 0%
GPT2-XL_CS ((’0.6’, ’1’)) 3 0%
Deepseek_beam (10) 3 0%
Falcon 2_beam (5) 3 0%
Qwen 2_beam (5) 3 0%
Mistral 3_temp (0.3) 2 0%
Qwen 2_temp (0.1) 2 0%
Falcon 2_beam (10) 2 0%
Deepseek_topk (1) 2 0%
LLama 3_beam (3) 2 0%
LLama 3_CS ((’0.2’, ’1’)) 2 0%
Qwen 2_CS ((’0.2’, ’1’)) 2 0%
Deepseek_beam (5) 2 0%
Falcon 2_topk (1) 2 0%
Falcon 2_temp (0.5) 2 0%
GPT2-XL_temp (0.5) 2 0%
Qwen 2_topp (0.7) 1 0%
Qwen 2_temp (0.3) 1 0%
LLama 3_CS ((’0.6’, ’20’)) 1 0%
LLama 3_temp (0.5) 1 0%
Deepseek_temp (0.1) 1 0%
Falcon 2_CS ((’0.4’, ’5’)) 1 0%
GPT2-XL_CS ((’0.2’, ’10’)) 1 0%
GPT2-XL_topp (0.95) 1 0%
LLama 3_CS ((’0.8’, ’50’)) 1 0%
LLama 3_CS ((’0.6’, ’5’)) 1 0%
LLama 3_CS ((’0.8’, ’10’)) 1 0%
Deepseek_CS ((’0.4’, ’50’)) 1 0%
Qwen 2_CS ((’0.4’, ’50’)) 1 0%
LLama 3_topp (0.6) 1 0%
GPT2-XL_topk (3) 1 0%
Falcon 2_CS ((’0.4’, ’50’)) 1 0%
Falcon 2_CS ((’0.4’, ’3’)) 1 0%
Deepseek_CS ((’1.0’, ’15’)) 1 0%
LLama 3_CS ((’0.2’, ’15’)) 1 0%
Falcon 2_CS ((’0.2’, ’1’)) 1 0%
Falcon 2_beam (3) 1 0%
Deepseek_CS ((’1.0’, ’20’)) 1 0%
Mistral 3_CS ((’0.2’, ’1’)) 1 0%
Total 5261 100%

Table 19: Least dominant methods based on Q*Text
results.

653



G Q*Text Hyperparameters

Line Pseudocode: Q*Text Hyperparameter Tuning
Input: Perplexity, Coherence and Diversity scores (P, C, D)

1 P_norm = (max(P) - P) / (max(P) - min(P))
2 C_norm = (C - min(C)) / (max(C) - min(C))
3 D_norm = (D - min(D)) / (max(D) - min(D))
4 θ = [1,1,1,0.5,0.5,0.5,1,1,1]
5 bounds_w = [[0.1,5],[0.1,5],[0.1,5]]
6 bounds_µ = [[0,1],[0,1],[0,1]]
7 bounds_α = [[0.1,10],[0.1,10],[0.1,10]]
8 for trial in range(max_trials):
9 θ_new = θ + random_normal(0, 0.1)

10 θ_new = clip(θ_new, bounds)
11 for i in range(N):
12 penalty_p = exp(-α1(P_norm[i]-µ1)

2)
13 penalty_c = exp(-α2(C_norm[i]-µ2)

2)
14 penalty_d = exp(-α3(D_norm[i]-µ3)

2)
15 QText[i] = (w1P_norm[i]penalty_p +
16 w2C_norm[i]penalty_c +
17 w3D_norm[i]penalty_d) / (w1+w2+w3)
18 ρ = spearman_corr(QText, Human)
19 if ρ > best_ρ: θ_best = θ_new
20 return θ_best

Table 20: Q*Text Optimization Algorithm

Algorithm explanation: Lines 1-3 normalize met-
rics to [0,1]. Lines 5-7 define parameter bounds for
weights (wi ∈ [0.1, 5.0]), targets (µi ∈ [0.0, 1.0]),
and penalties (αi ∈ [0.1, 10.0]), this bound defi-
nition aims at (i) preventing zero weights while
allowing one metric to dominate, (ii) match the
normalized metric range, and (iii) ensure positive
penalties with reasonable strength. Lines 9-10 per-
turb parameters with Gaussian noise and clip to
bounds. The optimization maximizes Spearman
correlation ρ with human ratings.

Parameter Symbol Value

Metric Weights
Perplexity Weight w1 0.586
Coherence Weight w2 0.834
Diversity Weight w3 3.853

Gaussian Target Values (µ)
Perplexity Target µ1 0.458
Coherence Target µ2 0.000
Diversity Target µ3 0.854

Gaussian Penalty Strength (α)
Perplexity Penalty α1 2.579
Coherence Penalty α2 1.496
Diversity Penalty α3 7.370

Table 21: Optimal Q*Text Hyperparameters (Spearman
ρs = 0.5545)

Parameter Interpretation. The optimized pa-
rameters reveal insights about text quality assess-
ment.
Diversity dominance: The substantially higher
weight for diversity (w3 = 3.853) compared to per-
plexity (w1 = 0.586) and coherence (w2 = 0.834)
indicates that lexical variety is the most discrimina-
tive factor for human preferences in our dataset.
Target preferences: The optimal targets sug-
gest humans prefer moderate perplexity levels
(µ1 = 0.458), minimal coherence constraints
(µ2 = 0.000), and high diversity (µ3 = 0.854).
Penalty sensitivity: The high diversity penalty
strength (α3 = 7.370) enforces strict adherence
to the diversity target, while the moderate perplex-
ity penalty (α1 = 2.579) and lenient coherence
penalty (α2 = 1.496) allow more variation in these
two dimensions.

Figure 5: Correlation between Q*Text scores and hu-
man ratings across six text generation methods. Each
point represents a text sample, colored by generation
method. The dashed line shows the linear regression fit.
Q*Text achieves a moderate positive correlation (Spear-
man ρ = 0.5545, p < 0.001) with human evaluations,
demonstrating its effectiveness in capturing human pref-
erences for text quality.
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